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Abstract
Protein-protein interactions (PPIs) are crucial in regulating numerous cellular
functions, including signal transduction, transportation, and immune defense. As
the accuracy of multi-chain protein complex structure prediction improves, the
challenge has shifted towards effectively navigating the vast complex universe
to identify potential PPIs. Herein, we propose PPIretrieval, a retrieval model for
protein-protein interaction exploration, which leverages existing PPI data to effec-
tively search for potential PPIs in an embedding space, capturing rich geometric
and chemical information of protein surfaces. When provided with an unseen query
protein with its associated binding site, PPIretrieval effectively identifies a potential
binding partner along with its corresponding binding site in an embedding space,
facilitating the formation of protein-protein complexes. Our codes are available on
https://anonymous.4open.science/r/ppi_search-9E39.

1 Introduction
Proteins are the building blocks of life, engaged in a myriad of interactions [39]. Understanding how
proteins interact with each other is fundamental to unraveling the intricate machinery of biological
systems [7, 39]. Therefore, the ability to predict and analyze protein-protein interactions (PPIs) not
only improves our understanding of cellular functions but also plays a pivotal role in drug discovery
[8, 30, 1]. Current methods try to analyze, understand, and design PPIs [34, 9, 28, 10], but the
results are often constrained by the complexity of protein interactions and the limited understanding
of the underlying mechanisms. Despite the progress, there is a pressing need for more effective
strategies aimed at designing new protein binders. This objective is crucial for advancing therapeutic
interventions and understanding the protein interactions of various biological processes.

Geometric deep learning emerges as a potent strategy for representing and learning about proteins,
focusing on structured, non-Euclidean data like graphs and meshes [29, 24, 22, 23, 14, 13]. In this
context, proteins can be effectively modeled as graphs, where nodes correspond to individual atoms
or residues, and edges represent interactions between them [12, 45]. In addition, protein structures
can be represented as point clouds or meshes, wherein each point or vertex corresponds to an atom or
a residue [9, 35]. Indeed, representing proteins as graphs or point clouds offers a valuable approach
for gaining insights into and learning the fundamental geometric and chemical mechanisms governing
PPIs [28, 10, 38]. This representation allows for a more comprehensive exploration of the intricate
relationships and structural features within protein structures [36, 15].

Instead of directly generating PPIs, given the limited understanding of their underlying biological
mechanisms, we draw inspiration from a previously developed model known as Foldseek [37]. This
model aligns the structure of a query protein against a database by representing its tertiary structure
in an embedding space. Rather than attempting to build a generative model that may inaccurately
interpret the complex mechanisms of PPIs, we can utilize existing PPI data to develop a retrieval
model for PPIs in an embedding space.

Therefore, we introduce a protein-protein-interaction retrieval model, namely PPIretrieval, which
leverages existing PPI data to search for potential PPIs in an embedding space with rich geometric and
chemical information. In our approach, PPIretrieval learns surface representations of PPI complexes,
which are initially represented as two point clouds along with their corresponding binding interfaces.
Then, the embedded surface representations with information about binding partners are stored in our
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database for further comparison. When provided with an unseen query protein, PPIretrieval learns
its surface representation and retrieves the most similar surface representation along with its known
binding partner in our database. PPIretrieval outputs the binding partner along with predicted binding
interface for the query protein, enabling the exploration of potential PPIs.

Why a Retrieval Model? The retrieval model is designed to leverage the wealth of existing
PPI data. Unlike generative models [40, 43, 4, 25], our approach focuses on retrieving potential
binders directly from a curated surface database. When presented with a query protein P , if it shares
sequential or structural similarities with proteins in our database, the model can identify and retrieve
binders that are structurally complementary to P . This method addresses the limitations of generative
models, which may inaccurately predict binder size or overlook shape complementary.

Addressing the Retrieval Challenge Retrieving a potential binding partner poses a dual challenge:
the binding sites must not only exhibit similar representations but also be shape complementary. Our
model incorporates principles from shape correspondence studies to learn these complementary inter-
actions and emulate the lock-and-key mechanism. Furthermore, we conduct experiments comparing
our heat message-passing (heat-MP) surface encoder with different encoders, e.g., MPNN [11], GIN
[42], implicit representations [32], which empirically validate our model’s efficacy in Sec. 7.2.

Generalization Assurance PPIretrieval is not designed to memorize specific PPIs or predict
particular binding sites. Instead, it is trained to optimize parameters that capture the universal lock-
and-key structures inherent to receptor-ligand interactions (Sec. 4). Through fine-grained surface-level
learning, which encapsulates chemical and geometric features, our model is optimized to capture the
fundamental complementary structures between receptors and ligands (Sec. 7.1 cross-data validation).

Potential Application The potential application of our proposed method lies in its ability to
facilitate the discovery and design of novel protein binders by accurately retrieving entire proteins
that are likely to interact with a given target protein (Sec. 5). Unlike traditional PPI classification
tasks that typically predict whether a pair of proteins will interact, our method focuses on identifying
potential binding partners from a vast database of known interactions. To clarify, PPIretrieval is a
ligand-specific method, while dMaSIF [35] and MaSIF [9] are not ligand-specific. One promising
approach is to jointly use use dMaSIF/MaSIF with PPIretrieval. For a new folded protein structure,
one may use dMaSIF/MaSIF (non ligand-specific method) to determine the active site of it, followed
by PPIretrieval (ligand-specific method) to identify top-n binders.

2 Preliminaries
In PPIretrieval, the objective is to identify a binding partner B with its corresponding binding interface
for an unseen query protein P with a known binding interface using surface representations.

Protein Surface Representation A protein is a chain of residues P = {a1, ...,aNP
} ∈

[0, 1]NP×20, consisting of NP residues in Euclidean space υP = {r1, ..., rN} ∈ RNP×3. The
binding interface Yres

P ∈ {0, 1}NP×1 of protein P denotes a region where the protein is poised to
interact with another protein, forming a complex. The protein P can be characterized by a set of
surface points {x1, ..., xMP

} ∈ RMP×3 with unit normals {n1, ..., nMP
} ∈ RMP×3 located on its

surface. In this context, we employ the surface representation to learn the protein, which captures its
structural characteristics and potential interactions with other proteins.

LB Operator on Protein Surface The Laplace-Beltrami (LB) operator is known for its smooth
operation on compact Riemannian manifolds [19, 38]. When applied to the protein surface, which
can be considered as a 2D Riemannian manifoldM with a Laplace-Beltrami (LB) operator ∆M, the
LB operator operates smoothly. The LB operator ∆ has an eigendecomposition ∆ϕi = λiϕi, 0 ≤
λ1 ≤ λ2 ≤ ..., and the set {ϕ1, ϕ2, ...} forms orthonormal basis for the space of functions defined on
M. Any function on the surface can be expressed as a linear combination of these eigenfunctions,

g =
∑
i

aiϕi, ai = ⟨g, ϕi⟩M. (1)

Here, g is a linear combination of basis functions, with the scalars ai determined by the inner product
defined on the surface.

LB Operator-Induced Message-passing Consider g(x, t) as the measure of heat at point x on the
surface at time t. The heat operation is a message-passing process (heat-MP), smoothly propagating
information from hot regions to cool regions. The change in heat over time is described by the LB

2



operator ∂g
∂t = ∆g [19]. After time t, the heat distribution is equivariant to

g(x, t) = exp (Ht)g, Ht = −∆t = −λt. (2)

where Ht denotes the heat operator at time t. Following Eq. 1, we can define a function propagation
operator F on the heat distribution over the surface [38],

Fg(x, t) =
∑
i

Fi exp(−λit)⟨g, ϕi⟩Mϕi, (3)

where {Fi} are frequency filters, {λi} are eigenvalues, {ϕi} are eigenfunctions, and t is a time
parameter for the operator. [38] propose to use a linear Gaussian filter to learn frequency, Fi =

F(µ,σ)(λi) = exp(− (λi−µ)2

σ2 ), where µ, σ2 are learned parameters for mean and variance. This LB
operator-induced message-passing is employed for smooth and effective information flow on the
(compact) protein surface, as discussed in Sec. 3.1.
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Figure 1: An overview of PPIretrieval pipeline, demonstrating the training and inference workflows.
During training, PPIretrieval processes a PPI complex. These embeddings with their binding
partnership are stored in our database. During inference, PPIretrieval takes a protein P with its
corresponding binding interface to the encoder. Then, it identifies a binding partner B from our
database. The decoder takes them to predict the PPI complex. Details can be found in App. A.

The overview of PPIretrieval is demonstrated in Fig. 1. PPIretrieval follows a specific design process.
Starting with a query protein P comprising NP residues in Euclidean space υP ∈ RNP×3, along
with its corresponding binding interface Yres

P , we first encode the protein into a surface representation
HP ∈ RMP×d. The next step involves retrieving the most similar surface feature HA ∈ RMA×d in
the database. Once identified, we locate a binding partner protein B that binds to A, with a surface
feature HB ∈ RMB×d. Then, the model decodes the pair of protein surface features, HP ,HB ,
utilizing the known binding interface Yres

P . The final prediction involves estimating the binding
interface Ŷres

B for protein B. In summary, the model outputs the protein B that is most likely to bind
to the input protein P , accompanied by the predicted binding interface Ŷres

B .

3.1 Surface Representation Encoder
The surface encoder network aims to encode an input protein P into a surface representation
HP ∈ RMP×d, where MP denotes the number of surface points representing P . This representation
captures the propagated chemical and geometric information. It can be stored in our database for
subsequent retrieval and comparison purposes.

Protein Surface Preparation The input consists of one-hot encoded residue types for protein P ∈
[0, 1]NP×20 in Euclidean space υP ∈ RNP×3, along with the corresponding binding interface Yres

P ∈
{0, 1}NP×1. We apply dMaSIF [35] to generate a set of oriented surface points {x1, ..., xMP

} ∈
RMP×3 with unit normals {n1, ..., nMP

} ∈ RMP×3 to approximate a smooth manifold representing
the surface of protein P .
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Upon it, we define the LB operator ∆P on the surface for heat-MP. We compute the first k eigenfunc-
tions of ∆P stacked in matrix ΦP ∈ RM×k with their corresponding eigenvalues {λi}ki=1 (k = 100),
then calculate the Moore-Penrose pseudo-inverse of the eigenfunction matrix, Φ+

P ∈ Rk×M . Heat-MP
allows effective information flow between surface points, crucial for message propagation [38].

Geometric & Chemical Descriptors Following the computation of surface points to represent the
input protein, we describe the local geometric features of the surface. We approximate the per-point
mean curvature, Gaussian curvature as detailed in [5], and compute the Heat Kernel Signatures as de-
scribed in [33]. The geometric features processed by a MLP, FGeom ← MLP([FMean,FGauss,FHKS]) ∈
RMP×dG , capture the local geometric environment for each surface point.

We proceed to compute chemical features for surface points based on the one-hot encoded residue
types and the binding interface. This is computed through a multi-level message-passing process by
first propagating information between residues, then propagating information from residues to surface
points via radius graphs, resulting in per-point features FChem = Chem-Descriptor(P,Yres

P , υP ) ∈
RMP×dC . Implementation details can be found in App. A.1.

Finally, we use a MLP to combine them, FSurf ← MLP([FGeom,FChem]) ∈ RMP×d. For each surface
point, these features capture the local geometric and chemical environment, along with binding
interface information. These can be effectively used in the heat-MP for facilitating information flow
on the approximated protein surface.

Message-passing on Protein Surface Then, we perform heat message-passing on protein surfaces,
resulting in surface-level embeddings HP = Heat-MP(FSurf,ΦP ,Φ

+
P , λ) ∈ RM×d. This operation

treats the protein surface as a compact object [38]. Implementation details can be found in App. A.1.

Training Stage During training, the encoder network is fed with the paired receptor and ligand pro-
teins R,L, along with their corresponding binding interfaces Yres

R ,Yres
L . It then processes these inputs

to generate distinct surface features for each protein, HR = Encoder(R,Yres
R ) ∈ RMR×d, HL =

Encoder(L,Yres
L ) ∈ RML×d.

Surface-level Binding Interface We construct the surface-level binding interface Ysurf
P ∈

{0, 1}MP×1 for surface points based on the residue-level binding interface Yres
P ∈ {0, 1}NP×1

for protein P . For each residue in P , we define a region with a predefined radius of r = 10Å. All
surface points falling within this region are then labeled as part of the surface binding interface.

3.2 Interactive Decoder
The decoder network operates by taking surface features as input, allowing interaction between two
proteins, and ultimately predicting a binding interface.

We assume that input data comprises the receptor R and its corresponding binding interface Yres
R .

The encoder network generates a surface feature HR ∈ RMR×d. Simultaneously, we compute the
surface-level binding interface Ysurf

R ∈ {0, 1}MR×1. Then, the model identifies a binding partner L
and obtains its own surface feature HL ∈ RML×d. The objective is to predict the binding interface
for ligand L, expressed as p(Ŷres

L |HR,HL,Y
surf
R ) ∈ [0, 1]NL×1.

Cross-Attention Given the surface-level features HR,HL of the receptor and ligand along with
their respective geometries xR, xL, we employ a cross-attention module to compute their interactions,
FR,FL = Cross-Attn(HR, xR,HL, xL) ∈ RMR×d,RML×d. Implementation details can be
found in App. A.2.

Binding Interface Once we obtain the propagated surface features for the ligand FL ∈ RML×d,
we employ a MLP with sigmoid function directly on these features, predicting for the binding
interface, Ŷsurf

L ← σ(MLP(FL)) ∈ [0, 1]ML×1. Thus, the prediction of surface-level binding interface
for ligand L is solely conditioned by the surface features of both the receptor and the ligand, along
with the binding interface information of the receptor.

Surface Point to Residue We compute the residue-level binding interface Ŷres
L ∈ {0, 1}NL×1

from Ŷsurf
L , and embedding F̂L ∈ RNL×d from FL. For each residue i in L, we define a region with

a fixed radius of r = 10Å and collect a set of surface points within this region, each with a binding
interface ŷsurf

j and embedding fj . The residue i is considered part of the binding interface if the
majority of surface points in the region are labeled as part of the binding interface, i.e., ŷres

i = 1 if
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Mean(
∑

j ŷ
surf
j ) > 0.5; otherwise ŷres

i = 0. And the residue-level embedding is obtained using the
same logic, where f̂i = Mean(

∑
j fj).

Training Stage During training, each PPI sample is treated as two training instances. The model
first takes the receptor R and its associated binding interface Ysurf

R as input, predicting the ligand’s
binding interface; then the model takes the ligand L and its corresponding binding interface Ysurf

L as in-
put, predicting the receptor’s binding interface, Ŷres

L , F̂L = Decoder(HR,HL,Y
surf
R ), Ŷres

R , F̂R =
Decoder(HR,HL,Y

surf
L ).

4 Training Objective
Consider F̂R ∈ RNR×d, F̂L ∈ RNL×d as the propagated surface features derived from our interactive
decoder model for the receptor and ligand proteins. Additionally, let Ŷres

R ∈ [0, 1]NR×1, Ŷres
L ∈

[0, 1]NL×1 denote the predicted binding interface for the receptor and ligand protein, respectively.
The optimization aims to utilize the lock-and-key structure within a PPI complex.

4.1 Lock-and-Key Optimization
In the modeling, we assume an entirely rigid protein structure. Within PPIs, a lock-and-key structure is
established between the rigid proteins, where their structures exhibit complementary representations
[27]. To utilize the structure, we optimize the model to learn the lock-and-key counterpart and
pairwise matching between residue features F̂R, F̂L, inspired from shape correspondences [16, 21].

Affinity Metric Given F̂R, F̂L, we compute the global affinity matrix A ∈ RNR×NL and its cor-
responding doubly-stochastic matrix X̂ ∈ [0, 1]NR×NL as follows, A = exp (F̂T

RW F̂L/τA), X̂ =
sinkhorn(A), where W ∈ Rd×d consists of learnable affinity weights and τA denotes the tempera-
ture hyperparameter. X̂ is a doubly-stochastic matrix computed by the differentiable sinkhorn layer
[6], where X̂ij measures the soft-matching score between surface features f̂i ∈ F̂R, f̂j ∈ F̂L.
Lock-and-Key We construct a ground-truth matching matrix X ∈ {0, 1}NR×NL to optimize the
soft-matching score between two proteins as follows, xij = 1 if dij ≤ dcut,xij = 0 otherwise. Here
xij = 1 only if the pairwise Euclidean distance between two residues i ∈ R, j ∈ L is within a cutoff
distance dcut = 10Å, implying that they are close enough to interact; otherwise xij = 0.

To optimize PPIretrieval from the lock-and-key perspective, we enforce the soft-matching score to
closely resemble the ground-truth matching matrix, Lmatch = BCE(X̂,X). The matching loss serves
the dual purpose of encouraging a close alignment between the soft-matching scores and the ground
truth, as well as providing global rigidity guidance by ensuring each residue is matched with its
complementary part in the opposite protein. This reinforces the lock-and-key structure within PPIs.

4.2 Contrastive Optimization True Sturcture Retrieval Sturcture

(a) Interface dockQ similarity: 0.4845 

(b) Interface dockQ similarity: 0.4735

(c) Interface dockQ similarity: 0.4572

(d) Interface dockQ similarity: 0.5007 

True Sturcture Retrieval Sturcture

(e) Interface dockQ similarity: 0.4550 

(f) Interface dockQ similarity: 0.5280

Figure 2: Visualization of PPIretrieval results for pro-
teins in the PDB test set, evaluated by dockQ. Proteins
colored in blue are input query proteins; proteins col-
ored in red are binding partners. Left column displays
the ground-truth structures; right column shows the
structure predictions.

In addition to the the lock-and-key opti-
mization objective, we aim to bring the
residue features of the binding interface
closer while pushing residue features
that do not belong to the binding in-
terface farther apart. To achieve this,
we employ the contrastive loss [41]
designed for point clouds. This loss
minimizes the distance between the
residue features of corresponding residues
and maximizes the distance between
non-corresponding residues as, Lcontra =

−
∑

i∈SR

∑
j∈SL

log
exp(f̂ iR·f̂jL/τc)∑

k∈SL
exp(f̂ iR·f̂kL/τc)

.

Here SR = (Yres
R = 1), SL = (Yres

L = 1)
are residues of binding interface for recep-
tor and ligand, and τc is the temperature
hyperparameter. This objective effectively
minimizes the distance between residue features f̂ iR ∈ F̂R, f̂

j
L ∈ F̂L of corresponding binding

interfaces, enhancing the proximity of relevant residue features.
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4.3 Auxiliary Binding Interface Optimization
In addition to the lock-and-key and contrastive optimization objectives, we aim to make the predic-
tions of binding interface Ŷres

R , Ŷres
L close to the ground-truth values Yres

R ∈ {0, 1}NR×1,Yres
L ∈

{0, 1}NL×1, as Lbind = BCE(Ŷres
R ,Yres

R ) + BCE(Ŷres
L ,Yres

L ). This objective ensures that the model
makes accurate predictions for the binding interfaces by minimizing the difference between predicted
and ground-truth values. The total loss is the sum of the three loss terms L = Lmatch +Lcontra +Lbind.
This optimization is designed to leverage the lock-and-key structure inherent in PPI complexes.

5 Retrieval Visualization
We visualize some retrieval results, showing the predictions of PPIretrieval when provided with
an unseen query protein and observing its potential binding partner within our protein surface
database. The database currently comprises a total of 151, 207 paired proteins with 302, 414 surface
representations, trained and embedded using PPIs from PDB, DIPS, and PPBS training and validation
sets (see Sec. 7). In Fig. 2, we observe that the predicted PPIs, with interface dockQ similarity, form
a well-defined lock-and-key structure. This reliable structure formation bolsters confidence in the
potential of PPIretrieval for exploring novel protein interactions. One can utilize our model and
database to investigate and learn about unknown protein interactions. Additional visualizations are
available in App. B.

6 Related Work
Protein Representation Learning The goal of protein representation learning is to derive mean-
ingful and informative representations from protein sequences and structures. ESM [20] utilize
protein sequences alongside evolutionary data to inform the learning process. SaProt [31] combine
evolutionary insights with structure-aware protein tokens in its language modeling, achieving superior
performance. GearNet [45] employs geometric contrastive learning to capture protein structural
information. DSR [32] introduce a implicit neural network to represent protein surface representa-
tion. ProteinINR [18] leverage the multiview sequence-structure protein pretraining with additional
implicit protein surface representations.

Protein-Protein Interactions Exploration Methods such as PPIformer [3] and MPAE-PPI [40]
apply learned protein representations to explore protein-protein interactions. PPIformer [3] develops
coarse-grained representations of protein complexes, defines structural masking of protein–protein
interfaces to pretrain unlabeled PPIs. MPAE-PPI [40] encodes microenvironments into chemically
meaningful discrete codes via a sufficiently large microenvironment vocabulary, and propose to
capture the dependencies between different microenvironments.

7 Experiment
We use the PDB dataset from [9, 35], the DIPS dataset from [26], and the PPBS dataset from [36].
The PDB dataset comprises 4754 and 933 protein complexes for training and testing, , with 10%
of the training set used for validation following [35]. The DIPS dataset includes 33159 and 8290
protein complexes for training and validation, with the first 4290 complexes of the validation set used
for testing. The PPBS dataset comprises 101755, 10221, and 10911 protein complexes for training,
validation, and testing (following homology split in [36]).

For surface sampling of each protein, we use dMaSIF [35] with sampling resolution 1.0Å, sampling
distance 2.25Å, sampling number 20, and sampling variance 0.3Å. Additionally, we use 32 hidden
dims and 0.3 dropout for all projections, use 2 propagation layers and 2 cross-attention layers. We
choose a learning rate of 1e− 4 and use the AdamW optimizer with a weight decay of 5e− 10. We
select the models with the lowest validation loss L.
7.1 Empirical Evaluation
We empirically assess the quality of PPIs carried out by PPIretrieval during the inference stage. For
PPIs in the test set, we measure the dockQ score [2], TM score [44], and root-mean-square-distance
(rmsd) to compare PPIretrieval reference binding site, masif-predicted binding site [9], dmasif-
predicted binding site [35], and PPIretrieval predicted binding site with the ground-truth binding sites.
(1) dockQ score measures the quality between a ground-truth binding site and a predicted binding site,
which combines the fraction of native contacts, the interface root mean square distance, and the ligand
root mean square distance; a higher dockQ score indicates a better quality of the predicted binding
site. (2) TM score measures the similarity between a ground-truth binding site and a predicted
binding site, which considers both the distance and the alignment of the residues; a higher TM score
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indicates higher similarity between the two binding site. (3) rmsd measures the distance between a
ground-truth binding site and a predicted binding site after superimposition; a lower rmsd indicates
higher superimposition similarity between the two binding site. A comprehensive visualization and
explanation of our metrics to assess quality of PPI binding sites are demonstrated in Fig. 3.

Dataset Metrics PDB DIPS PPBS

Site Quality

dockQ(↑)
Ytrue,Y

ref
B 0.4073 0.4177 0.5535

Ytrue,Y
pred
B 0.4220 0.4304 0.5946

Ytrue,Y
masif
B 0.1334 0.1021 0.1228

Ytrue,Y
dmasif
B 0.1155 0.0837 0.1036

TM(↑)
Ytrue,Y

ref
B 0.2134 0.6617 0.4622

Ytrue,Y
pred
B 0.2366 0.6649 0.4735

Ytrue,Y
masif
B 0.0773 0.0981 0.0911

Ytrue,Y
dmasif
B 0.0665 0.0831 0.0871

rmsd(↓)
Ytrue,Y

ref
B 11.40 11.33 8.20

Ytrue,Y
pred
B 10.44 6.02 9.77

Ytrue,Y
masif
B 15.73 19.66 17.32

Ytrue,Y
dmasif
B 17.87 23.55 19.65

Dataset Metrics PDB DIPS PPBS

Site Quality

dockQ(↑)
Ytrue,Y

ref
B 0.4250 0.4367 0.6014

Ytrue,Y
pred
B 0.4678 0.4410 0.6045

Ytrue,Y
masif
B 0.1345 0.1026 0.1249

Ytrue,Y
dmasif
B 0.1235 0.0998 0.1261

TM(↑)
Ytrue,Y

ref
B 0.3222 0.6914 0.6014

Ytrue,Y
pred
B 0.3300 0.6944 0.6045

Ytrue,Y
masif
B 0.0833 0.1002 0.1004

Ytrue,Y
dmasif
B 0.0823 0.0911 0.1144

rmsd(↓)
Ytrue,Y

ref
B 9.30 9.65 9.96

Ytrue,Y
pred
B 10.70 5.67 6.52

Ytrue,Y
masif
B 15.56 19.05 16.82

Ytrue,Y
dmasif
B 16.81 21.22 16.08

Table 1: dockQ, TM, and rmsd for evaluation of Top1 hit binding sites predicted by PPIretrieval in
comparison with other binding sites over three runs. Left: The database for each test set comprises
surface features from the training and validation sets of each respective dataset. Right: The database
comprises all surface features from the training and validation sets of PDB, DIPS, and PPBS datasets.

Partner

Ytrue

Ground-truth binding partner of query protein, 
but not stored in PPIretrieval database

Query

Yquery

Query protein queued for retrieval

A

YA

Protein A stored in PPIretrieval database, 
with most similar surface representation to query protein

Protein A’s binding partner protein B, 
stored in PPIretrieval database

(1) Test set

(2) Train set Yref
B

B
Ymasif

B

Ydmasif
B

Yquery

Query + Decoder Query + B

Ypred
B

Query protein and protein B fed into interactive decoder model to predict B’s binding site

Yref
B

B

Ymasif
B

Ydmasif
B

Figure 3: Evaluation of PPI binding site during
inference. For a PPI in the test set, a query
protein with a known binding site Yquery seeks a
binding partner with an actual binding site Ytrue.
However, we assume that the binding partner is
unknown to us. So, PPIretrieval aims to retrieve a
potential binding partner from the surface databse.
PPIretrieval identifies protein A in the surface
database, which has the most similar surface
representation to the query protein. Protein A
has a known binding partner B with a reference
binding site Yref

B (stored in database), a binding
site Ymasif

B predicted by masif, and a binding site
Ydmasif

B predicted by dmasif. PPIretrieval takes
query protein and B as input and predicts a new
binding site Ypred

B . We compute dockQ(Ytrue,
Ypred

B ), TM(Ytrue,Y
pred
B ), rmsd(Ytrue,Y

pred
B ),

dockQ(Ytrue,Y
masif
B ),TM(Ytrue,Y

masif
B ), rmsd(Ytrue,Y

masif
B ),

dockQ(Ytrue,Y
dmasif
B ),TM(Ytrue,Y

dmasif
B ), rmsd(Ytrue,Y

dmasif
B ),

dockQ(Ytrue,Y
ref
B ),TM(Ytrue,Y

ref
B ), rmsd(Ytrue,Y

ref
B )

to evaluate and compare the quality of PPI and
binding interfaces. Ytrue denotes the known
binding site of the ground-truth binding partner;
Yref

B denotes the known binding site (stored in
database) of the retrieved binding partner; Ypred

B
denotes the predicted binding site of the retrieved
binding partner.

Inference Result In Tab. 1-left, we assess
the quality of PPIs and binding interface identi-
fied by PPIretrieval with smaller databases. The
database for each test set comprises surface rep-
resentations from the training set of the respec-
tive dataset. For example, when evaluating the
PDB test set, we only search for surface repre-
sentations in the PDB training set. Also, the
models are trained on each respective dataset. In
Tab. 1-right, we evaluate the quality of PPIs and
binding interface identified by PPIretrieval with
larger database. The database includes surface
representations from the training and validation
sets of the PDB, DIPS, and PPBS datasets, in
total of 155, 384 paired proteins with their sur-
face features for retrieval. And the models are
trained on all training PPIs.

By comparing the tabular results, it is evident
that the qualities of the predicted PPIs car-
ried out by PPIretrieval improve with a larger
database, as reflected in higher dockQ and TM
scores, as well as lower rmsd. This improve-
ment suggests that using PPIretrieval could be
highly beneficial in facilitating the discovery of
novel PPIs. More experimental results can be
found in App. F

Cross-Dataset Validation for Generalization
In addition, we show the cross-dataset perfor-
mance in Tab. 2. We take the model trained
on PDB training set only to encode the PPIs in
DIPS and PPBS training and validation sets, re-
spectively. Then we evaluate the cross-dataset
performance on DIPS and PPBS test sets at two
different hit rates. Top10 hit means that PPIre-
trieval retrieves the 10 most similar surface rep-
resentations to the query protein in the test set
for inference. Then, PPIretrieval decodes be-
tween the query protein and the 10 potential
binders associated with these similar proteins.
The best binding partner for the query protein is then selected based on the highest dockQ score.
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Dataset Metrics DIPS-Top1 DIPS-Top10 PPBS-Top1 PPBS-Top10

Site Quality

dockQ(↑)
Ytrue,Y

ref
B 0.4030 0.4156 0.5231 0.5611

Ytrue,Y
pred
B 0.4207 0.4435 0.5579 0.5857

Ytrue,Y
masif
B 0.0515 0.0523 0.0621 0.0633

Ytrue,Y
dmasif
B 0.0434 0.0515 0.0601 0.0633

TM(↑)
Ytrue,Y

ref
B 0.5330 0.6714 0.4202 0.3725

Ytrue,Y
pred
B 0.5419 0.6792 0.4421 0.3889

Ytrue,Y
masif
B 0.0499 0.0511 0.0611 0.0620

Ytrue,Y
dmasif
B 0.0433 0.0491 0.0519 0.0602

rmsd(↓)
Ytrue,Y

ref
B 11.12 7.35 8.92 8.91

Ytrue,Y
pred
B 5.84 10.50 11.76 10.49

Ytrue,Y
masif
B 20.73 19.21 19.81 19.55

Ytrue,Y
dmasif
B 23.89 22.05 20.66. 20.04

Table 2: dockQ, TM, and rmsd for evaluation of
Top1, Top10 hit binding sites predicted by PPIre-
trieval in comparison with other binding sites on
cross-datasets over three runs. The database for
each test set comprises surface representations
from the training and validation sets of each re-
spective dataset.

The size and diversity of DIPS and PPBS ex-
ceed that of PDB, providing a robust test for
generalization. The results, presented in Tab. 1,
show improvements in dockQ and TM scores
over the baseline results in Tab. 7.1, which are
derived from models trained and tested within
the same dataset. This enhancement in per-
formance when applied to novel PPIs—unseen
during training—affirms that our model has ef-
fectively learned to generalize the lock-and-key
structures to new receptor-ligand pairs.

Computational Resources Our models are
trained on a single Nvidia 48G A40 GPU. Re-
garding training time, PPIretrieval takes approximately 0.35s to train a protein complex. In terms of
inference time, PPIretrieval requires about 0.11s for a protein complex.

7.2 Ablation Study
Model PDB (dockQ ↑) PDB (TM ↑) PDB (rmsd ↓)
reference 0.4073 0.2134 11.40
surface-level heat-diffusion 0.4220 0.2366 10.44
surface-level MPNN 0.4085 0.2254 11.21
surface-level GIN 0.4093 0.2265 11.26
residue-level heat-diffusion 0.3941 0.1901 12.13
residue-level MPNN 0.3435 0.1911 12.77
residue-level GIN 0.3566 0.2026 12.03

Model PDB (dockQ ↑) PDB (TM ↑) PDB (rmsd ↓) Time (↑)
reference 0.4073 0.2134 11.40 -
explicit cloud + geometric + chemical 0.4220 0.2366 10.44 5 it/s
explicit cloud + chemical 0.3740 0.2001 12.38 6 it/s
explicit cloud + geometric 0.3375 0.1521 14.67 6 it/s
implicit representation + geometric + chemical 0.4113 0.2358 10.87 10 it/s
implicit representation + chemical 0.3439 0.1445 13.75 11 it/s
implicit representation + geometric 0.3035 0.1301 14.89 11 it/s

Table 3: Comparison of retrieval results with different baseline modules. Left: Surface-level
heat-diffusion, MPNN [11], GIN [42] and residue-level heat-diffusion, MPNN [11], GIN [42] as
encoders. Right: Explicit point cloud with geometric and chemical descriptors, and implicti neural
representation [18, 32] with geometric and chemical descriptors.
7.2.1 Baseline Comparisons
In Tab. 3-left, we evaluate retrieval models equipped with various modules, including surface-level
heat-diffusion, MPNN [11], GIN [42], and residue-level heat-diffusion, MPNN, GIN as encoders.
Notably, encoders based on residue-level heat-diffusion, MPNN, and GIN yield neutral outcomes.
In contrast, learning the lock-and-key structures and shape complementary between receptors and
ligands is more effectively achieved at the surface level. Furthermore, our proposed surface encoder
(at surface-level) outperforms MPNN and GIN in capturing the lock-and-key structures within PPI
complexes. This capability to more precisely represent geometric and shape correspondences leads to
enhanced generalization performance.

7.2.2 Implicit Surface Representation
In Tab. 3-right, we evaluate retrieval models using implicit neural representations [32, 18]. This
involves training a signed distance function to represent protein surfaces, thereby eliminating the
need for explicit representations. This aims to address memory-intensive issue and slow-inference
associated with storing numerous protein complexes. We observe a trade-off between the dockQ
similarity and inference speed when comparing explicit surfaces with implicit neural representations.
It is beneficial to use implicit neural representations, for which we observe a significant increase in
the inference time. Moreover, adopting implicit neural representations is more memory-efficient.

7.2.3 Training Objective & Model Design
Model PDB (dockQ ↑) PDB (TM ↑) PDB (rmsd ↓)
reference 0.4073 0.2134 11.40
lock-and-key + contrastive + interface 0.4220 0.2366 10.44
lock-and-key + contrastive 0.3991 0.2235 11.31
lock-and-key + interface 0.4173 0.2231 11.37
contrastive + interface 0.3591 0.1580 13.40
lock-and-key 0.3672 0.1938 12.55
contrastive 0.2044 0.1099 15.36
interface 0.3345 0.1567 15.21

Model PDB (dockQ ↑) PDB (TM ↑) PDB (rmsd ↓)
reference 0.4073 0.2134 11.40
geometric + chemical + heat message-passing 0.4220 0.2366 10.44
geometric + chemical + message-passing 0.4085 0.2254 11.21
geometric + message-passing 0.2938 0.1117 15.05
chemical + message-passing 0.3370 0.1839 13.30
geometric + heat message-passing 0.3375 0.1521 14.67
chemical + heat message-passing 0.3740 0.2001 12.38

Table 4: Comparison of retrieval results with different components. Left: Training objectives. Right:
(Heat) message-passing with geometric and chemical descriptors.

In Tab. 4-left, we evaluate retrieval models with different training objectives. We observe that the
lock-and-key and interface objectives contribute most to the model to learn the shape complementary
between receptors and ligand, and the contrastive objective is a bonus loss for better generalization
added to the lock-and-key and interface objectives.

In Tab. 4-right, we evaluate retrieval models with different model designs. We observe that the
chemical descriptor and heat-MP contribute most to the model to learn the shape complementary
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within PPIs, the heat-MP can infer the geometric information existed in PPI complexes. However, it
is also important to directly use geometric descriptor to provide the signals of geometric information
to the model for learning the shape complementary between receptors and ligands.

7.3 Additional Experiments
PDB Dataset Metrics Top1 Top10 Top20 Top50 Top100

Site Quality

dockQ(↑)
Ytrue,Y

ref
B 0.4126 0.4331 0.4480 0.4491 0.4490

Ytrue,Y
pred
B 0.4235 0.4402 0.4531 0.4649 0.4708

Ytrue,Y
masif
B 0.1433 0.1436 0.1455 0.1458 0.1478

Ytrue,Y
dmasif
B 0.1225 0.1266 0.1301 0.1398 0.1405

TM(↑)
Ytrue,Y

ref
B 0.3944 0.3877 0.3833 0.3554 0.3422

Ytrue,Y
pred
B 0.4041 0.3969 0.3863 0.3625 0.3528

Ytrue,Y
masif
B 0.0787 0.0766 0.0750 0.0721 0.0709

Ytrue,Y
dmasif
B 0.0536 0.0548 0.0588 0.0582 0.0601

rmsd(↓)
Ytrue,Y

ref
B 10.41 9.73 9.70 9.49 9.32

Ytrue,Y
pred
B 10.04 8.97 8.66 8.20 7.35

Ytrue,Y
masif
B 15.73 15.71 15.54 15.26 15.19

Ytrue,Y
dmasif
B 17.75 17.22 17.02 16.40 16.11

Model S cerevisiae (acc ↑) S cerevisiae (roc ↑) Human (acc ↑) Human (roc ↑)
GCN LSTM-LM 91.42 95.26 97.93 98.37
GAT LSTM-LM 92.15 95.85 98.13 98.28
PPIretrieval LSTM-LM 94.30 97.22 98.99 99.03
GCN BERT-LM 86.68 92.01 96.32 97.59
GAT BERT-LM 86.74 92.23 96.59 97.35
PPIretrieval BERT-LM 86.89 92.55 97.31 98.44
GCN Onehot 71.09 79.23 81.30 84.25
GAT Onehot 69.23 75.27 79.84 82.24
PPIretrieval Onehot 74.56 82.21 82.57 86.00

Table 5: Left: dockQ, TM, and rmsd for evaluation of Top1, Top10, Top20, Top50, Top100 hit
binding sites predicted by PPIretrieval in comparison with other binding sites in the PDB test set over
three runs. Right: PPIretrieval for PPI classification in comparison with [17].

7.3.1 Hit Rates
In Tab. 5-left, we present experimental results for PPIretrieval at five different hit rates, increasing
from Top1 to Top100. The models are trained on all PDB, DIPS, and PPBS training set, and the
database comprises surface representations from training and validation sets of them. We observe
improved predicted interface quality in terms of dockQ, TM scores, and rmsd, with larger surface
database. The robust experimental results suggest that PPIretrieval has the potential to facilitate and
expedite the discovery of novel PPIs, identifying candidates with higher dockQ scores.
7.3.2 PPI classification
To underscore the distinctive benefits of our approach, we conduct experiments with existing PPI
classification methods [17], emphasizing the use of surface-level features. This is done by adding
a downstreaming head, thereby refining the model for PPI classification. In Tab. 5-right, we report
the average results of 5-fold cross-validation following the approach in [17]. We observe improved
accuracy and roc on both classification datasets with our method. By leveraging heat-MP for capturing
surface features, our model can predict interactions based on structural complementary, which is a
step beyond mere classification.
7.4 Case Study

RKRVTSSDPAALKRAATERRSARKLQRM
KQLEDLLSKNYHLENVEALRKKLVGER

Binding Partner1 (not in database)
RRRVSPFGGGHLRLREALELFDENLPPL
LELFDGEANMLPPNMPLELRGGEAPTKR

Binding Partner2 (in database)

True Structure

PPIretrieval

Inference

Same Sequence 
Different Geometry

RRRVSPFGGGHLRLREALELFDENLPPL
LELFDGEANMLPPNMPLELRGGEAPTKR

Prediction

Figure 4: Case study using PPIretrieval. The query protein,
highlighted in blue, successfully identifies a binding partner
within our surface database using PPIsearch.

In real-world scenarios, a protein
can have a binding site that inter-
acts with multiple partners. While
some of these binding partners may
be unknown, others might already be
known and stored in our database.
PPIretrieval can be effectively used
to identify these binding partners by finding similar surface representations within the database. A
case study demonstration is visualized in Fig. 4.

In our case study, the query protein has two binding partners: one is already stored in our surface
database (pdb id: 5J28), while the other is not (pdb id: 1DGC). It is important to note that, although
the query protein in the two ground-truth structures shares the same sequence representation, there
are slight differences in their geometric configuration. Given the query protein, PPIretrieval identifies
the protein in the database that most closely matches in both sequential and geometric representation.
Thus, it successfully predicts the corresponding binding partner for this query protein.

8 Limitation and Future Work
Indeed, the storage of thousands of surface representations of protein complexes can be memory-
intensive, potentially requiring several gigabytes of space. To mitigate this issue, we will use
implicit neural networks for protein surface representations [32, 3]. This involves training a signed
distance function to represent the protein surfaces, which eliminates the need to store explicit surface
representations. With implicit representation, a potential work is to train a larger model with increased
parameters to better approximate the protein surface manifold. Also, we aim to continuously integrate
more high-quality PPI data into the collection of our database. As demonstrated in Tab. 2, PPIretrieval
exhibits the ability to generalize to unseen proteins. Therefore, future work involves training our
model on new PPI data, enabling direct encoding and storage of these data in our existing database.
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A PPIretrieval Model Design
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Figure 5: An overview of PPIretrieval pipeline, demonstrating the training and inference workflows.
During training, PPIretrieval processes a PPI complex. The encoder network (shown in grey) encodes
the two proteins, generating surface features, HR,HL. These features, along with information about
their binding partnership, are stored in our database. The decoder network (shown in brown) then
takes these surface features, along with the receptor’s binding interface as input, predicting the
ligand’s binding interface and generating its embedding FL, and vice versa. During inference,
PPIretrieval takes a protein P with its corresponding binding interface to the encoder network. It
encodes P into a surface feature HP . Then, PPIretrieval identifies a surface feature HB for binding
partner B in our database. The decoder network takes the surface features HP ,HB , along with P ’s
binding interface, predicting B’s binding interface. A PPI complex is predicted between the input
protein P with the given binding interface and the predicted binding partner B with the predicted
binding interface, as demonstrated above. Details of PPIretrieval can be found in Sec. 3.

The overview of PPIretrieval is demonstrated in Fig. 1. PPIretrieval follows a specific design process.
Starting with a query protein P comprising NP residues in Euclidean space υP ∈ RNP×3, along
with its corresponding binding interface Yres

P , we first encode the protein into a surface representation
HP ∈ RMP×d. The next step involves retrieving the most similar surface feature HA ∈ RMA×d in
the database. Once identified, we locate a binding partner protein B that binds to A, with a surface
feature HB ∈ RMB×d. Then, the model decodes the pair of protein surface features, HP ,HB ,
utilizing the known binding interface Yres

P . The final prediction involves estimating the binding
interface Ŷres

B for protein B. In summary, the model outputs the protein B that is most likely to bind
to the input protein P , accompanied by the predicted binding interface Ŷres

B .

It is important to highlight that our entire pipeline operates on a deep-learning framework. There is
no need for precomputation of protein or surface patches, making PPIretrieval an efficient tool. This
characteristic enables a fast encoding for the input protein and facilitates effective retrieval for the
output protein within the model.

A.1 Surface Representation Encoder
The surface encoder network aims to encode an input protein P into a surface representation
HP ∈ RMP×d, where MP denotes the number of surface points representing P . This representation
captures the propagated chemical and geometric information. It can be stored in our database for
subsequent retrieval and comparison purposes.

Protein Surface Preparation The input consists of one-hot encoded residue types for protein P ∈
[0, 1]NP×20 in Euclidean space υP ∈ RNP×3, along with the corresponding binding interface Yres

P ∈
{0, 1}NP×1. We apply dMaSIF [35] to generate a set of oriented surface points {x1, ..., xMP

} ∈
RMP×3 with unit normals {n1, ..., nMP

} ∈ RMP×3 to approximate a smooth manifold representing
the surface of protein P .
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Upon approximating the protein surface with surface points, we define the LB operator ∆P on the
surface for heat-MP. We compute the first k eigenfunctions of ∆P stacked in matrix ΦP ∈ RM×k

with their corresponding eigenvalues {λi}ki=1 (k = 100), then calculate the Moore-Penrose pseudo-
inverse of the eigenfunction matrix, Φ+

P ∈ Rk×M . The heat-MP allows effective information flow
between surface points, crucial for operating heat-MP on the surface [38].

Geometric Descriptor Following the computation of surface points to represent the input protein,
we describe the local geometric features of the surface. We approximate the per-point mean curvature,
Gaussian curvature as detailed in [5], and compute the Heat Kernel Signatures as described in [33].
The geometric features processed by a MLP, FGeom ← MLP([FMean,FGauss,FHKS]) ∈ RMP×dG ,
capture the local geometric environment for each surface point.

Chemical Descriptor We proceed to compute chemical features for surface points based on the
one-hot encoded residue types and the binding interface. The residue-level chemical features are
first encoded using a MLP with concatenated features, FRes ← MLP([P,Yres

P ]) ∈ RNP×dC , then
transformed by an equivariant-GNN [29], FRes ← EGNN(FRes, υP ) ∈ RNP×dC . The residue-level
features FRes preserve the local information pertaining to residues and the binding interface.

Then, we project these residue-level features onto surface-level features. For each surface point xi,
we identify its k nearest neighboring residues {ri1, ..., rik} with features {f i,1Res, ..., f

i,k
Res}. A vector

of chemical features is computed by applying a MLP and summation over the nearest neighboring
residues with a distance filter1, f iChem ← MLP(

∑k
j=1 fcos(∥xi − rij∥) ·MLP([f i,jRes, 1/∥xi − rij∥])) ∈

RdC . By computing and stacking these per-point features, we obtain the chemical features for the
protein surface FChem = {f1Chem, ..., f

M
Chem} ∈ RMP×dC .

Finally, we use a MLP to combine the per-point geometric and chemical features, FSurf ←
MLP([FGeom,FChem]) ∈ RMP×d. For each surface point, these features capture the local geo-
metric and chemical environment, along with binding interface information. These can be effectively
used in the heat-MP for facilitating information flow on the approximated protein surface.

Message-passing on Protein Surface We perform heat-MP on protein surfaces for message
passing. This operation can be smoothly applied to the protein surface, treating it as a compact
object [38]. For a protein with surface feature FSurf, we first project it onto the column space of
eigenfunctions, F′

Surf ← Φ+
PFSurf ∈ Rk×d, expressing features in the orthogonal basis with a reduced

dimension. Then following Eq. 3, we can perform heat-MP on the surface as,

HP = Φ


e
− (λ1−µ1)2

σ2
1

−λ1t1 · · · e
− (λ1−µd)2

σ2
d

−λ1td

...
. . .

...

e
− (λk−µ1)2

σ2
1

−λkt1 · · · e
− (λk−µd)2

σ2
d

−λktd


︸ ︷︷ ︸

=F exp(−λt)∈Rk×d

⊙F′
Surf ∈ RM×d. (4)

Here, each feature channel of FSurf has its unique set of {µi, σi, ti}di=1. In summary, the encoder
network encodes a protein (represented by residues) into a surface representation by applying heat-MP
on the surface, capturing both local geometric and chemical environments.

Training Stage During training, the encoder network is fed with the paired receptor and ligand
proteins R,L, along with their corresponding binding interfaces Yres

R ,Yres
L . It then processes these

inputs to generate distinct surface features for each protein,

HR = Enc(R,Yres
R ) ∈ RMR×d, HL = Enc(L,Yres

L ) ∈ RML×d. (5)

Binding Interface of Surface We construct the surface-level binding interface Ysurf
P ∈ {0, 1}MP×1

for surface points based on the residue-level binding interface Yres
P ∈ {0, 1}NP×1 for protein P .

Here, ysurf
i,P = 1 indicates that the surface point xi belongs to the binding interface. For each residue

in P , we define a region with a predefined radius of r = 10Å. All surface points falling within this
region are then labeled as part of the surface binding interface.

1We use a cosine cutoff function, fcos(d) = 1
2
(cos( πd

dcut
) + 1), to smooth out the distance transition to 0 as

the distance d approaches a pre-defined cutoff distance dcut = 30Å.
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A.2 Interactive Decoder
The decoder network operates by taking surface features as input, allowing interaction between two
proteins, and ultimately predicting a binding interface.

We assume that input data comprises the receptor R and its corresponding binding interface Yres
R .

The encoder network generates a surface feature HR ∈ RMR×d. Simultaneously, we compute the
surface-level binding interface Ysurf

R ∈ {0, 1}MR×1. Then, the model identifies a binding partner L
and obtains its own surface feature HL ∈ RML×d. The objective is to predict the binding interface
for ligand L, expressed as p(Ŷres

L |HR,HL,Y
surf
R ) ∈ [0, 1]NL×1.

Cross-Attention Before computing the cross-attention, we update the surface features for re-
ceptor and ligand using an equivariant-GNN and MLPs, HR ← EGNN(MLP([HR,Y

surf
R ]), xR) ∈

RMR×d,HL ← EGNN(MLP(HL), xL) ∈ RML×d. Here, HR is updated with information about the
binding interface, providing the model with improved capabilities for locating the binding interface
of the ligand L during cross-attention.

Given the updated receptor features HR and ligand features HL, we compute the cross-attention
between two protein surface features, enabling interaction and communication,

FR = softmax
(
(HRWQ)(HLWK)

T

√
d

)
(HLWV),

FL = softmax
(
(HLWQ)(HRWK)

T

√
d

)
(HRWV),

where WQ,WK,WV ∈ Rd×d are learned parameters for the query, key, value in the attention
mechanism, respectively. This facilitates effective interaction and communication between the
receptor and ligand surface features.

Binding Interface Once we obtain the propagated surface features for the ligand FL ∈ RML×d, we
employ a MLP with sigmoid function directly on these features, predicting for the binding interface,
Ŷsurf

L ← σ(MLP(FL)) ∈ [0, 1]ML×1. Thus, the prediction of surface-level binding interface for
ligand L is solely conditioned by the surface features of both the receptor and the ligand, along with
the binding interface information of the receptor.

Surface Point to Residue We compute the residue-level binding interface Ŷres
L ∈ {0, 1}NL×1

from Ŷsurf
L , and embedding F̂L ∈ RNL×d from FL. For each residue i in L, we define a region with

a fixed radius of r = 10Å and collect a set of surface points within this region, each with a binding
interface ŷsurf

j and embedding fj . The residue i is considered part of the binding interface if the
majority of surface points in the region are labeled as part of the binding interface, i.e., ŷres

i = 1 if
Mean(

∑
j ŷ

surf
j ) > 0.5; otherwise ŷres

i = 0. And the residue-level embedding is obtained using the
same logic, where f̂i = Mean(

∑
j fj).

Training Stage During training, each PPI sample is treated as two training instances. The model
first takes the receptor R and its associated binding interface Ysurf

R as input, predicting the ligand’s
binding interface; then the model takes the ligand L and its corresponding binding interface Ysurf

L as
input, predicting the receptor’s binding interface,

Ŷres
L , F̂L = Dec(HR,HL,Y

surf
R ), Ŷres

R , F̂R = Dec(HR,HL,Y
surf
L ). (6)

A.3 Overview: PPIretrieval Pipeline

Training Stage During training, PPIretrieval processes a PPI complex with their corresponding
binding interface. The encoder network encodes the two proteins, resulting in two surface features
HR,HL, respectively. These surface representations, along with information about their binding
partnership, are stored in our database. Then, the decoder network takes the surface features, HR,HL,
along with the receptor’s binding interface Ysurf

R as input, and predicts the ligand’s binding interface
Ŷres

L . This process is repeated to predict the receptor’s binding interface Ŷres
R vice versa. PPIretrieval

undergoes optimization to utilize the lock-and-key structures of the PPI complex, following a specific
approach discussed in Sec. 4. This training setup ensures that PPIretrieval learns to predict binding
interfaces for both proteins involved in a PPI complex.
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Inference Stage During inference, PPIretrieval takes an unseen query protein P along with a
specified binding interface to the encoder network. It encodes P into a surface feature HP . Then,
PPIretrieval searches our database to retrieve the most similar surface feature HA using a similarity
function. Once the match is found, the surface feature HB of the binding partner B that binds to A
is identified. Then, the decoder network takes the surface features HP ,HB , along with P ’s given
binding interface Ysurf

P , and predicts B’s binding interface, Ŷres
B . This process entails the model

making predictions on how the surface of the binding partner interacts with the provided protein
and its binding interface. Finally, PPIretrieval outputs protein B along with the predicted binding
interface, indicating the most likely binding scenario with protein P and its given binding interface.
A visual demonstration of this process is illustrated in Fig. 1.

B Protein-Protein Interaction Visualization

We visualize additional predicted PPIs carried out by PPIretrieval.

True Sturcture Retrieval Sturcture

(a) Interface dockQ similarity: 0.4845 

(b) Interface dockQ similarity: 0.4735

(c) Interface dockQ similarity: 0.4572

(d) Interface dockQ similarity: 0.5007 

True Sturcture Retrieval Sturcture

(e) Interface dockQ similarity: 0.4550 

(f) Interface dockQ similarity: 0.5280

Figure 6: Visualization of PPIretrieval results for proteins in the PDB test set, evaluated by dockQ.
Proteins colored in blue are input query proteins; proteins colored in red are binding partners.
Left column displays the ground-truth structures; right column shows the structures predicted by
PPIretrieval.

In Fig. 6, we observe that the predicted PPIs, with interface dockQ similarity, form a well-defined
lock-and-key structure. This reliable structure formation bolsters confidence in the potential of
PPIretrieval for exploring novel protein interactions. One can utilize our model and database to
investigate and learn about unknown protein interactions.

C Additional Experiments on Empirical Evaluation

In additional to dockQ(Ytrue,Y
pred
B ),TM(Ytrue,Y

pred
B ), rmsd(Ytrue,Y

pred
B ),

dockQ(Ytrue,Y
ref
B ),TM(Ytrue,Y

ref
B ), rmsd(Ytrue,Y

ref
B ), dockQ(Ytrue,Y

masif
B ),TM(Ytrue,Y

masif
B ), rmsd(Ytrue,Y

masif
B )

used in Sec 7, we evaluate dockQ(Yquery,Ytrue),TM(Yquery,Ytrue), rmsd(Yquery,Ytrue),
dockQ(Yquery,Y

ref
B ),TM(Yquery,Y

ref
B ), rmsd(Yquery,Y

ref
B ), dockQ(Yquery,Y

pred
B ),TM(Yquery,Y

pred
B ), rmsd(Yquery,Y

pred
B )as

demonstrated in Fig. 7
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Partner

Ytrue

Ground-truth binding partner of query protein, 
but not stored in PPIretrieval database

Query

Yquery

Query protein queued for retrieval

A

YA

Protein A stored in PPIretrieval database, 
with most similar surface representation to query protein

Protein A’s binding partner protein B, 
stored in PPIretrieval database

(1) Test set

(2) Train set Yref
B

B
Ymasif

B

Ydmasif
B

Yquery

Query + Decoder Query + B

Ypred
B

Query protein and protein B fed into interactive decoder model to predict B’s binding site

Yref
B

B

Ymasif
B

Ydmasif
B

Figure 7: Evaluation of PPI quality during inference. For a PPI in the test set, a query
protein with a known binding site Yquery seeks a binding partner with an actual binding site
Ytrue. We compute dockQ(Yquery,Ytrue),TM(Yquery,Ytrue), rmsd(Yquery,Ytrue) to measure
quality of the ground-truth PPI. However, the binding partner is unknown to the PPIretrieval
surface database. So, PPIretrieval aims to find a potential binding partner from the surface
databse. PPIretrieval identifies protein A in the surface database, which has the most similar
surface representation to the query protein. Protein A has a known binding partner B with
a binding site Yref

B . We compute dockQ(Yquery,Y
ref
B ),TM(Yquery,Y

ref
B ), rmsd(Yquery,Y

ref
B )

to assess quality of the PPI, and TM(Ytrue,Y
ref
B ), rmsd(Ytrue,Y

ref
B ) to evaluate quality of

the binding sites. PPIretrieval takes query protein and B as input and predicts a new bind-
ing site Ypred

B . We compute dockQ(Yquery,Y
pred
B ),TM(Yquery,Y

pred
B ), rmsd(Yquery,Y

pred
B )

to assess quality of the PPI, dockQ(Ytrue,Y
pred
B ),TM(Ytrue,Y

pred
B ), rmsd(Ytrue,Y

pred
B ),

dockQ(Ytrue,Y
ref
B ),TM(Ytrue,Y

ref
B ), rmsd(Ytrue,Y

ref
B ), dockQ(Ytrue,Y

masif
B ), TM(Ytrue, Ymasif

B ),
rmsd(Ytrue, Ymasif

B ) to evaluate and compare quality of the binding sites.

In Tab. 6, we assess the quality of PPIs and binding sites identified by PPIretrieval with smaller
databases. The database for each test set comprises surface representations from the training set of
the respective dataset. For example, when evaluating the PDB test set, we only search for surface
representations in the PDB training set. Also, the models are trained on each respective dataset.

In Tab. 7, we evaluate the quality of PPIs and binding sites identified by PPIretrieval with larger
database. The database includes surface representations from the training and validation sets of the
PDB, DIPS, and PPBS datasets, in total of 155, 384 paired proteins with their surface features for
retrieval. And the models are trained on all training PPIs.

In Tab. 8, we show the cross-dataset performance. We take the model trained on PDB training set only
to encode the PPIs in DIPS and PPBS training and validation sets, respectively. Then we evaluate the
cross-dataset performance on DIPS and PPBS test sets at two different hit rates, respectively. Top10
hit means that we identify the 10 most similar surface representations to the query protein in the test
set for inference. Then, PPIretrieval decodes between the query protein and the 10 potential binding
partners associated with these similar proteins. The best binding partner for the query protein is then
selected based on the highest dockQ score.

Additionally, we show the quality distribution of PPIs predicted by PPIretrieval in comparison
with ground-truth and reference at different hit rates in Fig 8. For dockQ score [2], a score in the
range (0, 0.23) denotes incorrect interaction, [0.23, 0.49) denotes acceptable interaction, [0.49, 0.8)
denotes medium interaction, and [0.8, 1) denotes good interaction. In Fig 8, we divide these ranges
into sub-ranges for better visualization of the quality distribution, (0, 0.23)→(0, 0.1)∪[0.1, 0.23),
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Dataset Metrics PDB DIPS PPBS

PPI Quality

dockQ(↑)
Yquery,Ytrue 0.4596 0.4797 0.4949

Yquery,Y
pred
B 0.4039 0.4042 0.4092

Yquery,Y
ref
B 0.3907 0.3935 0.4040

TM(↑)
Yquery,Ytrue 0.4552 0.5909 0.5767

Yquery,Y
pred
B 0.2196 0.4211 0.3167

Yquery,Y
ref
B 0.1950 0.4346 0.3105

Yquery,Ytrue 7.38 6.70 6.70

rmsd(↓) Yquery,Y
pred
B 11.60 8.99 11.07

Yquery,Y
ref
B 10.80 10.34 10.27

Site Quality

dockQ(↑) Ytrue,Y
pred
B 0.4220 0.4304 0.5946

Ytrue,Y
ref
B 0.4073 0.4177 0.5535

TM(↑) Ytrue,Y
pred
B 0.2366 0.6649 0.4735

Ytrue,Y
ref
B 0.2134 0.6617 0.4622

rmsd(↓) Ytrue,Y
pred
B 10.44 6.02 9.77

Ytrue,Y
ref
B 11.40 11.33 8.20

Table 6: dockQ, TM, and rmsd for evaluation of PPIs and binding sites of Top1 hit predicted by
PPIretrieval in comparison with ground-truth structures over three runs. The database for each test
set comprises surface representations from the training and validation sets of each respective dataset.

Dataset Metrics PDB DIPS PPBS

PPI Quality

dockQ(↑)
Yquery,Ytrue 0.4596 0.4797 0.4949

Yquery,Y
pred
B 0.4110 0.4394 0.4400

Yquery,Y
ref
B 0.4061 0.4093 0.4130

TM(↑)
Yquery,Ytrue 0.4552 0.5909 0.5767

Yquery,Y
pred
B 0.2649 0.4507 0.4148

Yquery,Y
ref
B 0.2507 0.4394 0.4009

Yquery,Ytrue 7.38 6.70 6.70

rmsd(↓) Yquery,Y
pred
B 10.78 8.84 9.11

Yquery,Y
ref
B 9.88 10.09 11.01

Site Quality

dockQ(↑) Ytrue,Y
pred
B 0.4678 0.4410 0.6045

Ytrue,Y
ref
B 0.4250 0.4367 0.6014

TM(↑) Ytrue,Y
pred
B 0.3300 0.6944 0.6045

Ytrue,Y
ref
B 0.3222 0.6914 0.6014

rmsd(↓) Ytrue,Y
pred
B 10.70 5.67 6.52

Ytrue,Y
ref
B 9.30 9.65 9.96

Table 7: dockQ, TM, and rmsd for evaluation of PPIs and binding sites of Top1 hit predicted by
PPIretrieval in comparison with ground-truth structures over three runs. The database comprises all
surface representations from the training and validation sets of PDB, DIPS, and PPBS datasets.
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Dataset Metrics DIPS-Top1 DIPS-Top10 PPBS-Top1 PPBS-Top10

PPI Quality

dockQ(↑)
Yquery,Ytrue 0.4797 0.4797 0.4949 0.4949

Yquery,Y
pred
B 0.4334 0.4432 0.4098 0.4447

Yquery,Y
ref
B 0.4054 0.4316 0.4040 0.4051

TM(↑)
Yquery,Ytrue 0.5909 0.5909 0.5767 0.5767

Yquery,Y
pred
B 0.3965 0.4691 0.3219 0.3021

Yquery,Y
ref
B 0.3708 0.4357 0.2903 0.2780

Yquery,Ytrue 6.70 6.70 6.70 6.70

rmsd(↓) Yquery,Y
pred
B 8.71 10.49 12.09 10.25

Yquery,Y
ref
B 11.68 9.26 10.71 10.13

Site Quality

dockQ(↑) Ytrue,Y
pred
B 0.4207 0.4435 0.5579 0.5857

Ytrue,Y
ref
B 0.4030 0.4156 0.5231 0.5611

TM(↑) Ytrue,Y
pred
B 0.5419 0.6792 0.4421 0.3889

Ytrue,Y
ref
B 0.5330 0.6714 0.4202 0.3725

rmsd(↓) Ytrue,Y
pred
B 5.84 10.50 11.76 10.49

Ytrue,Y
ref
B 11.12 7.35 8.92 8.91

Table 8: dockQ, TM, and rmsd for evaluation of PPIs and binding sites of Top1, Top10 hit predicted
by PPIretrieval in comparison with ground-truth structures on cross-datasets over three runs. The
database for each test set comprises surface representations from the training and validation sets of
each respective dataset.

d. Top100 Hit PDB PPI quality in Quality Categories
iT=Incorrect Ground-truth 
iP=Incorrect Prediction 
iR=Incorrect Reference 
aT=Acceptable Quality Ground-truth 
aP=Acceptable Quality Prediction 
aR=Acceptable Quality Reference 
mT=Medium Quality Ground-truth 
mP=Medium Quality Prediction 
mR=Medium Quality Reference 
hT=High Quality Ground-truth 
hP=High Quality Prediction 
hR=High Quality Reference

Medium GoodAcceptableIncorrect

c. Top50 Hit PDB PPI quality in Quality Categories
iT=Incorrect Ground-truth 
iP=Incorrect Prediction 
iR=Incorrect Reference 
aT=Acceptable Quality Ground-truth 
aP=Acceptable Quality Prediction 
aR=Acceptable Quality Reference 
mT=Medium Quality Ground-truth 
mP=Medium Quality Prediction 
mR=Medium Quality Reference 
hT=High Quality Ground-truth 
hP=High Quality Prediction 
hR=High Quality Reference

Medium GoodAcceptableIncorrect

a. Top1 Hit PDB PPI quality in Quality Categories
iT=Incorrect Ground-truth 
iP=Incorrect Prediction 
iR=Incorrect Reference 
aT=Acceptable Quality Ground-truth 
aP=Acceptable Quality Prediction 
aR=Acceptable Quality Reference 
mT=Medium Quality Ground-truth 
mP=Medium Quality Prediction 
mR=Medium Quality Reference 
hT=High Quality Ground-truth 
hP=High Quality Prediction 
hR=High Quality Reference

Medium GoodAcceptableIncorrect

b. Top10 Hit PDB PPI quality in Quality Categories
iT=Incorrect Ground-truth 
iP=Incorrect Prediction 
iR=Incorrect Reference 
aT=Acceptable Quality Ground-truth 
aP=Acceptable Quality Prediction 
aR=Acceptable Quality Reference 
mT=Medium Quality Ground-truth 
mP=Medium Quality Prediction 
mR=Medium Quality Reference 
hT=High Quality Ground-truth 
hP=High Quality Prediction 
hR=High Quality Reference

Medium GoodAcceptableIncorrect

Figure 8: Comparison of PPI qualities in the test set of PDB dataset, considering ground-truth,
predicted, and reference PPIs, evaluated using the dockQ score at Top1, Top10, Top50, Top100 hit.
The database comprises surface representations from training and validation sets from PDB dataset
only.

[0.23, 0.49)→[0.23, 0.31)∪[0.31, 0.4)∪[0.4, 0.49), [0.49, 0.8)→[0.49, 0.57)∪[0.57, 0.65)∪[0.65,
0.73)∪[0.65, 0.73)∪[0.65, 0.8),[0.8, 1)→[0.8, 0.9)∪[0.9, 1).

We observe that more predicted PPIs fall into the medium-quality category as hit rates increase from
Top1 to Top100, surpassing the number of ground-truth PPIs of acceptable and medium qualities.
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This consistent quality distribution of PPIs predicted by PPIretrieval indicates a strong potential for
novel PPI findings. Furthermore, we compare the results of using cosine similarity in Tab. 11 and
Fig. 9.

C.1 More Ablation Results

In Tab. 9, we present experimental results for PPIretrieval at five different hit rates, increasing from
Top1 to Top100. The models are trained on PDB training set only.

PDB Dataset Metrics Top1 Top10 Top20 Top50 Top100

Site Quality

dockQ(↑)
Ytrue,Y

ref
B 0.4073 0.4362 0.4379 0.4411 0.3507

Ytrue,Y
pred
B 0.4220 0.4375 0.4459 0.4569 0.4688

Ytrue,Y
masif
B 0.1334 0.1338 0.1355 0.1401 0.1405

Ytrue,Y
dmasif
B 0.1155 0.1194 0.1212 0.1247 0.1301

TM(↑)
Ytrue,Y

ref
B 0.2134 0.2078 0.2059 0.2059 0.2108

Ytrue,Y
pred
B 0.2366 0.2266 0.2241 0.2231 0.2265

Ytrue,Y
masif
B 0.0773 0.0775 0.0774 0.0758 0.0702

Ytrue,Y
dmasif
B 0.0665 0.0668 0.0679 0.0698 0.0701

rmsd(↓)
Ytrue,Y

ref
B 11.40 9.74 9.59 9.50 9.34

Ytrue,Y
pred
B 10.44 9.33 8.94 8.52 8.16

Ytrue,Y
masif
B 15.98 15.88 15.84 15.76 15.53

Ytrue,Y
dmasif
B 17.87 17.31 17.03 16.55 16.02

Cost PPIretrieval runtime(↓) second/protein 0.29 0.91 1.97 4.64 9.44

Table 9: dockQ, TM, and rmsd for evaluation of Top1, Top10, Top20, Top50, Top100 hit binding
sites predicted by PPIretrieval in comparison with other binding sites in the PDB test set over three
runs. The database comprises surface features from training and validation sets from PDB dataset
only.

We observe an improvement in the quality of predicted PPIs, measured by dockQ, TM scores and
rmsd, as the hit rate increases from Top1 to Top100. Notably, with 100 similar representations, the
predicted PPIs exhibit high quality in terms of the dockQ and TM scores. This suggests potential PPI
exploration with PPIretrieval.

Furthermore, we present experimental results for PPIretrieval at five different hit rates, increasing
from Top1 to Top100, in Tab. 10. The models are trained on all PDB, DIPS, and PPBS training set,
and the database comprises surface representations from training and validation sets of them.

PDB Dataset Metrics Top1 Top10 Top20 Top50 Top100

Site Quality

dockQ(↑)
Ytrue,Y

ref
B 0.4126 0.4331 0.4480 0.4491 0.4490

Ytrue,Y
pred
B 0.4235 0.4402 0.4531 0.4649 0.4708

Ytrue,Y
masif
B 0.1433 0.1436 0.1455 0.1458 0.1478

Ytrue,Y
dmasif
B 0.1225 0.1266 0.1301 0.1398 0.1405

TM(↑)
Ytrue,Y

ref
B 0.3944 0.3877 0.3833 0.3554 0.3422

Ytrue,Y
pred
B 0.4041 0.3969 0.3863 0.3625 0.3528

Ytrue,Y
masif
B 0.0787 0.0766 0.0750 0.0721 0.0709

Ytrue,Y
dmasif
B 0.0536 0.0548 0.0588 0.0582 0.0601

rmsd(↓)
Ytrue,Y

ref
B 10.41 9.73 9.70 9.49 9.32

Ytrue,Y
pred
B 10.04 8.97 8.66 8.20 7.35

Ytrue,Y
masif
B 15.73 15.71 15.54 15.26 15.19

Ytrue,Y
dmasif
B 17.75 17.22 17.02 16.40 16.11

Table 10: dockQ, TM, and rmsd for evaluation of Top1, Top10, Top20, Top50, Top100 hit binding
sites predicted by PPIretrieval in comparison with other binding sites in the PDB test set over three
runs. The database comprises surface features from training and validation sets from PDB, DIPS, and
PPBS dataset.
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We observe improved predicted interface quality in terms of dockQ, TM scores, and rmsd, with
larger surface database. The robust experimental results suggest that PPIretrieval has the potential to
facilitate and expedite the discovery of novel PPIs, identifying candidates with higher dockQ scores.
However, it is important to note that the computational time has also increased significantly. As
a retrieval model, there exists a trade-off between performance and efficiency, and this trade-off
becomes evident with higher hit rates.

D Additional Experiments on Euclidean Distance vs. Cosine Similarity

We show additional results and visualize more quality distributions carried out by PPIretrieval using
Euclidean distance and cosine similarity in this section.

In Sec. A.3 and Fig. 1, we present the PPIretrieval inference strategy to find a binding partner for a
query protein. We identify a similar surface representation to the query protein in the PPIretrieval
database using the Euclidean distance function for the surface embeddings,

d(HP ,HA) =

√√√√√ d∑
i=1

 1

N

N∑
j=1

Hj,i
P −

1

M

M∑
k=1

Hk,i
A

2

∈ R. (7)

Here, HP ∈ RN×d represents the surface embedding of the query protein, and HA ∈ RM×d

represents the surface embedding of a protein in our PPIretrieval database. In addition to the
Euclidean distance, we can use cosine similarity to find the surface representation that is the most
similar to the query protein.

In Tab. 11, we present experimental results for PPIretrieval using Euclidean Distance and Cosine
Similarity at five different hit rates, ranging from Top1 to Top100. The models are exclusively
trained on the PDB training set. Our observations reveal an improvement in the quality of predicted
PPIs, as measured by the dockQ score and rmsd, when employing Cosine Similarity to find similar
surface representations compared to using Euclidean Distance for the same purpose in the PPIretrieval
database. During the inference stage, we leverage Cosine Similarity as an alternative method for
retrieving similar surface representations for the query protein, in contrast to the original approach
using Euclidean distance.

PDB Dataset Metrics Top1 Top10 Top20 Top50 Top100

PPI Quality

dockQ(↑)
Yquery,Ytrue 0.4596 0.4596 0.4596 0.4596 0.4596

Yquery,Y
pred
B 0.4039 0.4352 0.4428 0.4532 0.4614

Yquery,Y
ref
B 0.3907 0.3920 0.3943 0.3963 0.3968

TM(↑)
Yquery,Ytrue 0.4552 0.4552 0.4552 0.4552 0.4552

Yquery,Y
pred
B 0.2196 0.2183 0.0.2174 0.2168 0.2159

Yquery,Y
ref
B 0.1950 0.1938 0.1944 0.1950 0.1958

Yquery,Ytrue 7.38 7.38 7.38 7.38 7.38

rmsd(↓) Yquery,Y
pred
B 11.60 9.52 9.17 8.73 8.42

Yquery,Y
ref
B 10.80 9.77 9.65 9.65 9.56

Site Quality
TM(↑) Ytrue,Y

pred
B 0.2366 0.2195 0.2174 0.2154 0.2156

Ytrue,Y
ref
B 0.2134 0.1986 0.1960 0.1955 0.1957

rmsd(↓) Ytrue,Y
pred
B 11.52 10.01 9.84 9.62 9.42

Ytrue,Y
ref
B 10.50 9.69 9.62 9.53 9.47

PDB Dataset Metrics Top1 Top10 Top20 Top50 Top100

PPI Quality

dockQ(↑)
Yquery,Ytrue 0.4596 0.4596 0.4596 0.4596 0.4596

Yquery,Y
pred
B 0.3907 0.4381 0.4472 0.4601 0.4683

Yquery,Y
ref
B 0.3147 0.3319 0.3388 0.3407 0.3422

TM(↑)
Yquery,Ytrue 0.4552 0.4552 0.4552 0.4552 0.4552

Yquery,Y
pred
B 0.2009 0.2101 0.2085 0.2089 0.2095

Yquery,Y
ref
B 0.1838 0.1857 0.1861 0.1934 0.1941

Yquery,Ytrue 7.38 7.38 7.38 7.38 7.38

rmsd(↓) Yquery,Y
pred
B 11.08 9.15 8.86 8.39 7.99

Yquery,Y
ref
B 11.01 9.91 9.81 9.92 9.79

Site Quality
TM(↑) Ytrue,Y

pred
B 0.1981 0.2084 0.2082 0.2049 0.2055

Ytrue,Y
ref
B 0.1818 0.1832 0.1860 0.1923 0.1919

rmsd(↓) Ytrue,Y
pred
B 11.05 9.56 9.42 9.13 9.09

Ytrue,Y
ref
B 10.90 9.93 9.83 9.80 9.87

Table 11: Left: Retrieval Using Euclidean Distance. Right: Retrieval Using Consine Similarity.dockQ,
TM, and rmsd for evaluation of PPIs and binding sites of Top1, Top10, Top20, Top50, Top100 hit
predicted by PPIretrieval in comparison with ground-truth structures on PDB dataset over three runs.
The database comprises surface representations from training and validation sets from PDB dataset
only.

In addition to the tabular results in Tab. 11, we visualize the quality distribution of predicted PPIs by
PPIretrieval using Euclidean Distance and Cosine Similarity in Fig. 9. Our observations reveal that,
as hit rates increase from Top1 to Top100, more predicted PPIs fall into the medium-quality category
when using cosine similarity to retrieve surface representations similar to the query protein. This trend
exceeds the number of ground-truth PPIs of acceptable and medium qualities. The consistent quality
distribution of predicted PPIs by PPIretrieval suggests a robust potential for novel PPI exploration
with PPIretrieval. Additionally, we provide Cosine Similarity as an alternative choice to the Euclidean
distance in our approach.

21



d. Top100 Hit PDB PPI quality in Quality Categories
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hP=High Quality Prediction 
hR=High Quality Reference
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(a) Retrieval Using Euclidean Distance
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(b) Retrieval Using Cosine Similarity

Figure 9: Comparison of PPI qualities in the test set of PDB dataset, considering ground-truth,
predicted, and reference PPIs, evaluated using the dockQ score at Top1, Top10, Top50, Top100 hit.
The database comprises surface representations from training and validation sets from PDB dataset
only.

E Additional Experiments on Cross-Dataset Validation

We show additional results and visualize more quality distributions carried out by PPIretrieval on
the cross-dataset validation. Following the cross-dataset validation results in Tab. 2, we provide a
thorough experimental analysis and visualization here.

In Table 12, we present the cross-dataset validation results for Top1 and Top10 hits on the PPBS test
set. We utilize two models for this analysis: one is trained on the PPBS training set and validated
on the PPBS test set, and the other is trained on the PDB training set and cross-validated on the
PPBS test set. With Top1 hit, we find that PPIretrieval is capable of generalizing to unseen protein
complexes, as evidenced by the second model exhibiting better PPI quality compared to the first
model in terms of dockQ and TM scores. When we expand our retrieval space to Top10 hit, the first
model (trained on the PPBS training set) predicts PPIs with improved quality.

Dataset Metrics PPBS-Top1 PPBS-Top1 (PDB Cross-Dataset) PPBS-Top10 PPBS-Top10 (PDB Cross-Dataset)

PPI Quality

dockQ(↑)
Yquery,Ytrue 0.4949 0.4949 0.4949 0.4949

Yquery,Y
pred
B 0.4092 0.4098 0.4513 0.4447

Yquery,Y
ref
B 0.4040 0.4040 0.4345 0.4051

TM(↑)
Yquery,Ytrue 0.5767 0.5767 0.5767 0.5767

Yquery,Y
pred
B 0.3167 0.3219 0.3245 0.3021

Yquery,Y
ref
B 0.3105 0.2903 0.3219 0.2780

Yquery,Ytrue 6.70 6.70 6.70 6.70

rmsd(↓) Yquery,Y
pred
B 11.07 12.09 9.46 10.25

Yquery,Y
ref
B 10.27 10.71 9.53 10.13

Site Quality
TM(↑) Ytrue,Y

pred
B 0.4652 0.4421 0.4323 0.3889

Ytrue,Y
ref
B 0.4747 0.4202 0.4396 0.3725

rmsd(↓) Ytrue,Y
pred
B 9.77 11.76 8.95 10.49

Ytrue,Y
ref
B 8.20 8.92 8.15 8.91

Table 12: dockQ, TM, and rmsd for evaluation of PPIs and binding sites of Top1, Top10 hit predicted
by PPIretrieval in comparison with ground-truth structures on cross-datasets over three runs. The
database for each test set comprises surface representations from the training and validation sets of
each respective dataset.

In addition to the results presented in Table 12, we also provide a visualization of the quality
distribution of predicted PPIs by PPIretrieval for the cross-dataset validation in Fig. 10. Fig. 10(a)
displays the results of the model trained on the PDB training set and then cross-validated on the
PPBS test set, while Fig. 10(b) shows the results of the model trained on the PPBS training set and
then validated on the PPBS test set. With Top1 hit, it is noticeable that both models predict PPIs
of approximately the same quality, as evidenced by comparing the quality distributions. This visual
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(a) PDB Model Cross-Validated on PPBS Test Set
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(b) PPBS Model Validated on PPBS Test Set

Figure 10: Comparison of PPI qualities in the test set of PPBS dataset, considering ground-truth,
predicted, and reference PPIs, evaluated using the dockQ score at Top1, Top10 hit. (a) presents
results from the model trained on the PDB training set and cross-validated on the PPBS test set. (b)
presents results from the model trained on the PPBS training set and validated on the PPBS test set.

representation demonstrates that PPIretrieval possesses the capability to generalize to unseen protein
complexes and accurately predict their interactions.

F Additional Experiments on Binding Interface Prediction

We show additional results on the binding interface prediction task.

We evaluate the models on PDB and PPBS datasets (details reported in Sec. 7). For baseline
comparisons, we train MaSIF-search [9] and dMaSIF-search2 [35] to predict the binding interfaces
of receptor and ligand proteins in a complex. The comparisons are summarized and highlighted
in Tab. 13. MaSIF [9] and dMaSIF [35] offer model variants, namely MaSIF-search and dMaSIF-
search, for predicting interactions between protein complexes. To enable these models to make
predictions for the binding interfaces of protein complexes, we extract their final embeddings,
denoted as FR ∈ RMR×d and FL ∈ RML×d, just before the output layer. Employing the strategy
outlined in Sec. 3.2 to predict the surface-level binding interface, we employ a MLP with sigmoid
function directly on these embeddings, resulting in Ŷsurf

R ← σ(MLP(FR)) ∈ [0, 1]MR×1, Ŷsurf
L ←

σ(MLP(FL)) ∈ [0, 1]ML×1. We then compute the residue-level binding interfaces, denoted as
Ŷres

R ∈ {0, 1}NR×1, Ŷres
L ∈ {0, 1}NL×1 from Ŷsurf

R , Ŷsurf
L , respectively. For each residue i in R, we

define a region with a fixed radius of r = 10Å and collect a set of surface points within this region,
each with a binding interface ŷsurf

j and embedding fj . The residue i is considered part of the binding
interface if the majority of surface points in the region are labeled as part of the binding interface, i.e.,
ŷres
i = 1 if Mean(

∑
j ŷ

surf
j ) > 0.5; otherwise ŷres

i = 0. The residue-level binding interface Ŷres
L for

L is computed by the same method. In terms of training strategy, these baseline models are directly
optimized through the binding interface optimization in Sec. 4.3.

Dataset PDB PPBS
Model Acc(↑) ROC(↑) Acc(↑) ROC(↑)

MaSIF-search 22.93 20.10 20.45 19.79
dMaSIF-search 20.86 20.74 22.35 21.08

PPIretrieval 92.76 92.61 93.55 94.98

Table 13: Accuracy and ROC of PPIretrieval in comparison with MaSIF-search and dMaSIF-search
on datasets over 5 runs.

In Table 13, we observe that PPIretrieval surpasses MaSIF-search and dMaSIF-search, achieving
improvements of 69.83%, 71.90% in accuracy, and 72.51%, 71.87% in ROC on the PDB dataset.
Additionally, PPIretrieval outperforms MaSIF-search and dMaSIF-search by 73.10%, 71.20% in
accuracy, and 75.19%, 73.90% in ROC on the PPBS dataset.

2The MaSIF and dMaSIF models were originally designed without prediction capabilities for binding
interfaces of protein complexes. We have modified their architectures to enable the models to make predictions
for binding interfaces.
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Abalation Study In Tab. 14, we conduct an ablation study to examine the effectiveness of our
training objectives for the PPIretrieval model, which includes the lock-and-key goal Lmatch, the
contrastive goal Lcontra, and the binding interface goal Lbind.

Dataset Lmatch Lcontra Lbind Acc(↑) ROC(↑)
PDB ✓ 91.10 90.88
PDB ✓ ✓ 92.11 91.13
PDB ✓ ✓ 90.86 91.95
PDB ✓ ✓ ✓ 92.76 92.61

Table 14: Ablation study of PPIretrieval optimization. A checkmark (✓) indicates that an objective
is used to optimize the model.

We observe that, overall, PPIretrieval performs better in terms of both accuracy and ROC when
all three optimization objectives are combined. This suggests that PPIretrieval successfully learns
the lock-and-key structure between the receptor and ligand in a protein complex under our training
strategy.

In Fig. 11, we visualize protein surface sampling with different dMaSIF parameters. We can observe

(a) Residue (c) Surface. (1.0, 2.25, 20, 0.3)(b) Surface. (1.0, 2.25, 8, 0.3)

(d) Surface. (1.0, 2.25, 40, 0.3) (e) Surface. (1.0, 2.25, 100, 0.3) (f) Surface. (1.0, 2.25, 200, 0.3)

(g) Surface. (0.5, 2.25, 20, 0.3) (h) Surface. (1.0, 2.85, 20, 0.3) (i) Surface. (0.5, 2.85, 100, 0.3)

Figure 11: Visualization of dMaSIF parameters for surface sampling. The bracket includes (Resolu-
tion, Distance, #Sample, Variance).

that lower sampling resolution, higher sampling distance, and a greater number of sampling points
contribute to a more accurate approximation of the protein surface manifold. However, due to limited
computational resources, we can only perform sampling and training shown in Fig. 11(c). Training
PPIretrieval on more precise surface sampling with more computing resources is a potential direction
for exploration.

In Tab. 15, we present the performance of PPIretrieval with different dMaSIF sampling parameters.
PPIretrieval exhibits improved accuracy and ROC on PDB, with more precise protein surface sampling.

Dataset Resolution Distance #Sample Variance #Surf Point Acc(↑) ROC(↑)
PDB 1.00 2.25 8 0.30 2175 90.16 90.96
PDB 1.00 2.25 12 0.30 2425 91.44 90.99
PDB 1.00 2.85 20 0.30 2632 92.03 91.55
PDB 1.00 2.25 20 0.30 2680 92.76 92.61

Table 15: Ablation study of dMaSIF parameters for PPIretrieval. #Surf Point denotes the average
number of surface points of a protein sampled by dMaSIF across the training set.

Once again, these results motivate further exploration for future enhancements.

Computational Resources Our models are trained on a single Nvidia 48G A40 GPU. Regarding
training time, dMaSIF-search takes approximately 0.29s to train a protein complex, while PPIretrieval
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takes around 0.35s for the same task. In terms of inference time, dMaSIF-search requires about 0.10s
for a protein complex, while PPIretrieval takes approximately 0.11s.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Full experiments
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 8
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Provided with code links for checking

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Full code access

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All discussed in Section 7

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bar NA for such task

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Single A40 GPU

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Well confirmed
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Well discussed
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Full credits

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: NA
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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