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ABSTRACT

Diffusion-based generative models generate samples by mapping noise to data via
the reversal of a diffusion process that typically consists of independent Gaussian
noise in every data coordinate. This diffusion process is, however, not well suited
to the fundamental task of molecular conformer generation where the degrees of
freedom differentiating conformers lie mostly in torsion angles. We, therefore,
propose Torsional Diffusion that generates conformers by leveraging the definition
of a diffusion process over the space Tm, a high dimensional torus representing
torsion angles, and a SE(3) equivariant model capable of accurately predicting
the score over this process. Empirically, we demonstrate that our model outper-
forms state-of-the-art methods in terms of both diversity and accuracy of generated
conformers, reducing the mean minimum RMSD by respectively 32% and 17%.
When compared to Gaussian diffusion models, torsional diffusion enables signifi-
cantly more accurate generation while performing two orders of magnitude fewer
inference time-steps.

1 INTRODUCTION

Molecules are defined by their molecular graph, i.e., a set of atoms and the covalent bonds between
them.However, it is the set of structures that the graph realizes when embedded in 3D space, called
conformers, that determine many of its properties. Molecular conformer generation—predicting an
ensemble or distribution over 3D conformers for a given molecular graph—is, therefore, a funda-
mental problem in computational chemistry. Existing approaches consist of methods that sample
from the underlying potential energy surface, which are accurate but slow; or approaches leveraging
chemical heuristics, which are fast but less accurate.

Deep generative models have been explored for molecular conformer generation in the hopes of
combining high accuracy with fast sampling. GeoMol (Ganea et al., 2021) recently demonstrated
competitive performance with a message-passing neural network and a custom parameterization and
assembly procedure. Diffusion generative models (Ho et al., 2020; Song et al., 2021), which learn to
reverse a stochastic process transforming the data distribution into noise, have also shown promise
on this task (Shi et al., 2021; Luo et al., 2021; Xu et al., 2021b).

An advantage of diffusion models is that they predict incremental corrections to samples, rather than
map latent space elements to samples, which can present challenges due to the geometric symmetries
of the target domain. Consequently, mature approaches for predicting geometric quantities (i.e.,
tensors) over point clouds, such as Tensor Field Networks (TFN) (Thomas et al., 2018) and E(3)NN
(Geiger et al., 2020) can be easily used to construct a diffusion generative model. GeoDiff (Xu et al.,
2021b) demonstrated that such an approach is superior to diffusion modeling over distance matrices.
However, a key drawback to the direct application of diffusion models to point clouds is that the
forward diffusion consists of independent Gaussian random noise in each data coordinate. Sampling
thus consists of denoising a point cloud where atoms are in random initial positions irrespective
of the molecular graph. To obtain competitive results, GeoDiff requires a very large number of
(T = 5000) such denoising steps, followed by further physics-based optimizations.
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We argue that this approach is ill-suited for molecular conformer generation, where bond lengths
and angles can be determined very quickly and relatively accurately from the graph alone, and
the difference between possible conformers lies largely in the torsion angles (Axelrod & Gomez-
Bombarelli, 2020). Instead, it is much simpler and more natural to consider each conformer to
be parameterized by torsion angles, and learn to reverse a diffusion that occurs only over these
torsion angle coordinates. This has the effect of significantly reducing the dimensionality of the
sample space; the molecules in GEOM-DRUGS, a common conformer generation dataset (Axelrod
& Gomez-Bombarelli, 2020), have, on average, n = 46.2 atoms, corresponding to a 3n-dimensional
Euclidean space, but only m = 8.65 torsion angles of rotatable bonds.

However, m torsion angle coordinates define not a Euclidean space, but rather an m-dimensional
torus Tm. Thus, we first formulate the forward diffusion, score-matching, reverse diffusion and
denoising procedures over the torus Tm. The theoretical extension of diffusion modeling to non-
Euclidean manifolds was developed very recently by De Bortoli et al. (2022). We build upon their
work to present, to the best of our knowledge, the first extension of diffusion models to a real-world
non-Euclidean domain.

Learning a neural network score model over the input space Tm presents its own challenges. The di-
mensionality of this space varies between molecular graphs, and all the information about the molec-
ular graph would have to be made available to the score model. Additionally, there is no canonical
way to define the torsion angle coordinate about each bond. To circumvent these difficulties, we
instead formulate a torsion update about a particular bond as a geometric (i.e., SE(3)-equivariant)
property of a 3D point cloud, and use 3D-equivariant networks to directly predict these properties
from a point cloud R3n representation of the conformer.

By combining diffusion over a torus with a novel equivariant score model over point clouds,
we achieve state-of-the-art results on the standard GEOM-DRUGS dataset (Axelrod & Gomez-
Bombarelli, 2020). Moreover, we can generate samples with as few as 10 denoising steps—nearly
3 orders of magnitude fewer than the Euclidean diffusion approach employed by GeoDiff.

2 METHOD

Toroidal diffusion In Euclidean diffusion models, the data distribution x(0) ∈ Rd is the initial
distribution for a diffusion process dx = f(x, t) dt + g(t) dw t ∈ (0, T ) which transforms
x(0) into (approximately) a simple Gaussian x(T ). A neural network trained to model the score
∇x log pt(x) enables sampling from the reverse diffusion,

dx = f(x, t) dt− g2(t)∇x log p(x, t) dt+ g(t) dw̄ (1)

which transforms samples from the simple Gaussian x(T ) into the data distribution x(0) (Song et al.,

2021; Anderson, 1982). A common choice of diffusion process is f(x, t) = 0, g(t) =
√

d
dtσ

2(t)

where σ2(t) is the variance of the heat kernel p(x(t) | x(0)). Access to this heat kernel is sufficient
to train a score model sθ(x, t) via denoising score matching; and for sampling the reverse diffusion
via the Euler-Maruyama solver. We refer to Song et al. (2021) for further details.

De Bortoli et al. (2022) extended the diffusion model framework to compact Riemannian mani-
folds, on which the Brownian diffusion converges to a uniform distribution rather than a Gaus-
sian. In particular, for a manifold M embedded in Euclidean space, and knowledge of the score
∇x log p(x, t) ∈ TxM ∀x ∈ M , the reverse diffusion (equation 1), with Brownian motion on the
manifold, remains valid—i.e., its terminal distribution is the original data distribution x(0).

While modeling and sampling the heat kernel for general manifolds can be complex, for the toroidal
diffusion we leverage the fact that Tm ∼= [−π, π)m is the quotient space of Rm with equivalence
relations (x1, . . . xm) ∼ (x1 +2π, . . . , xm) . . . ∼ (x1, . . . xm +2π). Hence, the heat kernel on Tm

is a simple wrapping of the heat kernel on Rm; that is, for any x,x′ ∈ [−π, π)m, we have

p(x′ | x;σ2(t)) ∝
∞∑

d∈Zm

exp

(
−||x− x′ + 2πd||2

2σ2(t)

)
(2)

We can therefore compute the scores of the heat kernel via a numerical approximation, enabling
the training of a score model via denoising score matching. The formalism for sampling from the
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reverse diffusion via the Euler-Maruyama sampler is generalized to Riemannian manifolds in terms
of a geodesic random walk (De Bortoli et al., 2022), which is also simplified in the case of the torus
as the wrapping of the random walk on Rm.

Conformer diffusion A molecule is a graph G = (V, E) ∈ G with atoms v ∈ V and bonds
e ∈ E , with n = |V|. A conformer c ∈ CG of a molecule is a vector in R3n defined (up to global
rototranslation) by G along with chirality tags z ∈ {−1, 1}k where k is the number of chiral centers,
a set L of bond lengths and angles, and a set of torsion angles T = (t1, t2, . . . tm) ∈ [−π, π)m =
Tm where m is the number of rotatable bonds. The assembly of 3D coordinates from these intrinsic
coordinates L, T is thus a function FG : {−1.1}k × L × Tm 7→ CG where each c ∈ CG is a set
c = {g(x) | g ∈ SE(3)} for some x ∈ R3n. Given this parameterization and with z, L fixed in
advance, a diffusion over Tm maps to a diffusion on CG.

We now desire a score model which maps from CG to the tangent space of Tm, which is isomorphic
to Rm. We therefore use an SE(3)-equivariant score model (Geiger et al., 2020) conditioned on the
input graph sG : R3n 7→ Rm, which can be viewed as a function over CG since for any c ∈ CG
and any x,x′ ∈ c, we have sG(x) = sG(x

′). An additional symmetry arises from the fact that
the underlying physical energy is invariant under parity inversion; thus our learned density should
respect pG(−c) = pG(c) where −c = {−x | x ∈ c}. The intrinsic coordinates transform under
parity inversion as z 7→ −z, L 7→ L, T 7→ −T , where the latter can be seen from the formula for
the torsion angle ∠(ABC,ABD) (Ganea et al., 2021):

∠(ABC,ABD) = arctan 2

(
||xB − xA||(xA − xC) · [(xB − xA)× (xD − xB)]

[(xA − xC)× (xB − xA)] · [(xB − xA)× (xD − xB)]

)
(3)

Therefore, parity inversion invariance is respected if the learned density over the torsion angles Tn

respects pG(T ;L, z) = pG(−T ;L,−z). Since an invariant density corresponds to an equivariant
score, we need sG(FG(T, L, z)) = −sG(FG(−T, L,−z)), which implies sG(x) = −sG(−x).
Thus, the score model must be invariant under SE(3) but equivariant under parity inversion of the
input point cloud—i.e., it must output a set of pseudoscalars. Note that both the 3D coordinates x
and the score sG(x) do not depend on the parametrization of each torsion angle ti (based on the
arbitrary choice of neighbors) which, therefore, we can avoid and are invariant to.

Score model The architecture we designed to predict is formed by three components: an embed-
ding layer, a series of interaction layers and a torque layer. In the embedding layer, we build a radius
graph around each atom on top of the original molecular graph and generate initial embeddings for
nodes and edges combining chemical properties, sinusoidal embeddings of t and, for the edges, a
radial basis function representation of their length.

The interaction layers are based on TFN convolutional layers. At each layer, for every pair of nodes
in the graph, we construct messages using tensor products the current irreducible representation of
each node with the second-order spherical harmonics representation of the normalized edge vector
and weight them. These messages are represented using irreducible representations up to the 2nd

rotation-order and weighted channel-wise by a scalar function of the current scalar representations
of the two nodes and the edge. Finally, these messages are averaged to obtain new irreducible
representation for each node.

Finally, in the torque layer, for every rotatable bond, we construct a tensor-valued filter from the
tensor product of the spherical harmonics with a L = 2 representation of the bond axis. This
filter is then used to convolve with the representations of every neighbor on a radius graph, and the
pseudoscalar products are passed through odd-function (i.e., with tanh nonlinearity and no bias)
dense layers to produce a single prediction.

3 EXPERIMENTS

Inference setup At inference time, in order to use torsional diffusion on a molecule we first need
an estimate of the bond lengths and angles of its conformers. This estimate can be done with high
accuracy with rule-based methods. Therefore we use RDKit ETKDG (Riniker & Landrum, 2015)
to generate a set of conformations, and then sample uniformly random initial conformations in the
toroidal space by randomly changing each of its torsion angles by U [−π, π], while keeping the same
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Table 1: Performance of various methods on the GEOM-Drugs dataset test-set. Note that GeoDiff
uses a different set of random splits.

Cov-R ↑ AMR-R ↓ Cov-P ↑ AMR-P ↓
Model Mean Med Mean Med Mean Med Mean Med

RDKit ETKDG 68.78 76.04 1.042 0.982 71.06 88.24 1.036 0.943
OMEGA 81.64 97.25 0.851 0.771 77.18 96.15 0.951 0.854
CGCF 54.35 56.74 1.248 1.224 24.48 15.00 1.837 1.829
GeoMol 82.43 95.10 0.862 0.837 78.52 94.4 0.933 0.856
GeoDiff 89.13 97.88 0.863 0.853 61.47 64.55 1.171 1.123
Torsional Diffusion (ours) 96.32 100 0.582 0.565 84.90 94.38 0.778 0.729

bond lengths and angles. Conformers are then sampled from the learned model by performing 20
steps of reverse diffusion with the Euler-Maruyama reverse SDE sampler.

Training setup At training time, if we directly diffuse the ground truth conformers, the model in
its diffusion process would have access to the exact bond lengths and angles. Our experiments show
that the disparity between training and inference of having exact versus estimated bond lengths and
angles causes a distributional shift that hurts the model performance at inference time. We bridge
this shift at training time with the following procedure: as a preprocessing step, we substitute the
true conformers with conformers generated by matching the ones generated with ETKDG to the true
conformer with a torsion angle differential evolution fitting procedure.

Dataset & evaluation We test our method on the GEOM-DRUGS dataset (Axelrod & Gomez-
Bombarelli, 2020), which is composed of a total of 304k molecules each with an associated set of
conformers obtained using CREST. To provide a fair comparison with previous methods, we follow
the filtering, splitting and evaluation metrics from Ganea et al. (2021). We report Average Minimum
RMSD (AMR) and Coverage (COV) both for Recall (R) —how many ground truth conformers are
correctly predicted— and Precision (P) —how many of the predicted structures are of high quality.

Baselines We compare our performance with a wide variety of existing methods. RDKit ETKDG
(Riniker & Landrum, 2015) is the most popular open-source method. OMEGA (Hawkins et al.,
2010; Hawkins & Nicholls, 2012) is a rule-based commercial package in continuous development.
CGCF (Xu et al., 2021a), GeoMol (Ganea et al., 2021) and GeoDiff (Xu et al., 2021b) are recent
machine learning approaches that have achieved competitive or state-of-the-art performances.

Results & discussion The results presented in Table 1 show that our method obtains state-of-
the-art results in most precision and recall metrics, reducing the mean AMR by 17% and 32% for
precision and recall respectively. This highlights the strength of the presented method and the high
diversity obtainable with diffusion models. The advantage provided by the torsional diffusion is
evident when comparing it to the other method based on diffusion models, GeoDiff, operating in
Euclidean space. GeoDiff requires 5000 inference steps, and therefore 5000 score model evalua-
tions, to obtain the results in Table 1. On the other hand, torsional diffusion is able to significantly
outperform it on all metrics with only 20 steps by restricting the diffusion process in the subspace
where most of the molecule’s flexibility lies.

4 CONCLUSION

We presented torsional diffusion, a novel method based on score-based diffusion models, to generate
molecular conformers. We define a diffusion process of the high dimensional torus representing the
space of possible torsion angles and the associated score-matching and reverse diffusion. Then,
we present a novel SE(3)-equivariant model to predict the scores in the torsion angle distributions
and a preprocessing technique to bridge the inference distributional shift. Empirically, we obtain
state-of-the-art performances on precision and recall metrics. Moreover, unlike previous diffusion-
based techniques on Euclidean spaces, we are able to generate conformers with almost two orders
of magnitude fewer time-steps.
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