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Abstract
Normative Restraining Bolts (NRBs) adapt the re-
straining bolt technique (originally developed for
safe reinforcement learning) to ensure compliance
with social, legal, and ethical norms. While ef-
fective, NRBs rely on trial-and-error weight tun-
ing, which hinders their ability to enforce hierarchi-
cal norms; moreover, norm updates require retrain-
ing. In this paper, we reformulate learning with
NRBs as a multi-objective reinforcement learning
(MORL) problem, where each norm is treated as
a distinct objective. This enables the introduction
of Ordered Normative Restraining Bolts (ONRBs),
which support algorithmic weight selection, prior-
itized norms, norm updates, and provide formal
guarantees on minimizing norm violations. Case
studies show that ONRBs offer a robust and prin-
cipled foundation for RL-agents to comply with a
wide range of norms while achieving their goals.

1 Introduction
Autonomous agents play an increasingly significant role in
society, and Reinforcement Learning (RL) [Sutton and Barto,
1998] offers a promising means of designing them (see, e.g.,
[Singh et al., 2022]). In this approach, agents operating in a
given environment are assigned rewards or punishments, and
thereby learn which actions are optimal with respect to their
goals. As RL-based agents often interact with humans, it is
crucial to ensure their actions comply with legal, ethical, and
social norms; these interactions present the challenge of re-
straining their behaviours while still enabling them to fulfil
their goals.

In this work, we focus on model-free RL, where the agent
has no model of its environment and relies on exploration
to learn optimal behaviour. In such scenarios, an effective
technique for defining boundaries for the actions of RL-based
agents is the restraining bolt (RB) [De Giacomo et al., 2019],
inspired by a device from Star Wars that enforces obedience
in droids. This technique shapes the agent’s behaviour, align-
ing it with LTLf (Linear Temporal Logic over finite traces)
specifications by providing additional rewards when they are
satisfied. While this approach ensures reasonable agent per-
formance while adhering to a wide range of constraints, it

is not specifically designed to address norms. Norms differ
from regular constraints in that they define ideal rather than
actual behaviour. Norms can be violated, are often condi-
tional, can be activated or overridden by other norms, and
may arise from the compliance with or violation of other
norms (e.g., contrary-to-duty (CTD) obligations).

To address adherence to norms, [Neufeld et al., 2024] in-
troduced Normative Restraining Bolts (NRBs) — an adap-
tation of RBs that uses LTLf formulae to specify norm vio-
lations rather than compliant behaviour. NRBs assign neg-
ative rewards (punishments) to discourage norm violations,
making it effective for managing intricate normative dynam-
ics, such as conditional obligations/prohibitions, CTDs, per-
missions as exceptions, and temporal obligations. While ef-
fective, NRBs rely on trial-and-error reward tuning to ensure
norm adherence and therefore can be unwieldy when trying
to resolve norm conflicts. Moreover, they require retraining
to accommodate norm updates, and do not lend themselves to
guarantees that optimal policies minimize norm violations.

In this paper, we propose an enhanced approach to ad-
dress these limitations by introducing Ordered Normative Re-
straining Bolts (ONRBs). We frame learning with Normative
Restraining Bolts (NRBs) as a multi-objective RL (MORL)
problem, where each norm is treated as a separate objective,
and we define a priority relation over each objective, depend-
ing on the importance of each norm. In contrast to restraining
bolts [De Giacomo et al., 2019], which rely on manually se-
lected rewards to enforce LTLf specifications, we build on the
work of [Rodriguez-Soto et al., 2022; Rodriguez-Soto et al.,
2023] and propose an algorithm that automatically derives the
punishments required to enforce lexicographically ordered
norms. Our approach adapts MORL techniques, specifically
the Convex Hull Value Iteration (CHVI) algorithm [Barrett
and Narayanan, 2008], to this setting. Beyond handling the
normative dynamics addressed by NRBs, our framework ef-
fectively resolves conflicts between norms having differing
priorities, and supports norm updates. Moreover, it provides
formal guarantees that optimal policies minimize norm viola-
tions with respect to the defined ordering.

Related Work. Reinforcement learning has emerged as a
promising method for teaching autonomous agents norma-
tive behaviour (although, most approaches, while amenable
to other kinds of norms, focus on ethical norms), e.g. [Abel et
al., 2016]. Top-down approaches (cf. [van Rysewyk and Pon-



tier, 2015]), which begin with given norms/values and design
reward functions reflecting them, include [Rodriguez-Soto et
al., 2021; Rodriguez-Soto et al., 2022; Ecoffet and Lehman,
2021; Neufeld, 2024; Neufeld et al., 2024]. In [Rodriguez-
Soto et al., 2021; Rodriguez-Soto et al., 2022] (and then with
multiple values in [Rodriguez-Soto et al., 2023]), though the
ethical reward functions are specified manually, a method is
provided to ensure that what they call an “ethical policy” is
learned. The goal is to allow the agent to learn the defined
ethical behaviour while still accomplishing a non-ethical ob-
jective; this multi-objective problem is converted to a single-
objective problem through linear scalarization of the agent’s
value functions with a vector of weights, and the minimum
weights needed to guarantee that the agent’s behaviour is eth-
ical are computed via CHVI [Barrett and Narayanan, 2008].
Even with the automatic weight selection, manually speci-
fying the ethical reward function still allows for human er-
ror. A common way to avoid this (especially in safe RL)
is to utilize LTL(f) specifications. One approach to learn-
ing under LTL constraints is known as shielding, originating
in [Alshiekh et al., 2018], and later expanded to model-free
RL [Jansen et al., 2020]; inspired by this approach and par-
tially based on the framework in [De Giacomo et al., 2019]
is [Varricchione et al., 2024], designed for safe RL. Another
approach (closer to learning with RBs [De Giacomo et al.,
2019]) involves learning to maximize the probability of sat-
isfying an LTL(f) formula, e.g. [Ding et al., 2011b; Ding et
al., 2011a]; although this technique cannot handle norms (see
e.g. [Neufeld et al., 2022]), the modification in [Kasenberg
and Scheutz, 2018] does and can also deal with norm conflicts
— yet, it does not mention CTDs or permissions. Subsequent
approaches also include [Kasenberg et al., 2020] (which em-
ploys a preference ordering) and [Li et al., 2023]; however,
like [Kasenberg and Scheutz, 2018], these only accommo-
date model-based RL. [De Giacomo et al., 2023; De Gia-
como et al., 2024] both discuss learning optimal behaviour in
an MDP with multiple objectives, including maximizing the
probability of satisfying an LTLf formula. These approaches
do not reward LTLf specifications individually (which is pre-
cisely what makes the restraining bolt suitable for dealing
with norms), and are all model-based. [Hahn et al., 2021;
Hahn et al., 2023] employ lexicographic Büchi automata to
learn over lexicographic orderings on ω-regular objectives;
however, they do not deal with normative reasoning.

2 Background
Reinforcement Learning. Model-free RL problems consist
of an agent interacting with an unknown environment; this en-
vironment is modelled as a Markov decision process (MDP):

Definition 1 (Labelled MDP). An MDP is a tuple

⟨S,A, Pr, L,R⟩

where S is a set of states, A is a function A : S → 2Act from
states to sets of possible actions (Act is the set of all actions
available to the agent), Pr : S×Act×S → [0, 1] is a function
that gives the probability Pr(s, a, s′) of transitioning from
state s to state s′ after performing action a, L : S × Act →
2AP is a labelling function from state-action pairs to sets of

atomic propositions, andR : S×Act→ R is a scalar reward
function over states and actions.

The goal of RL is to find a policy π : S → Act which
designates optimal behaviour; this optimality is determined
with respect to a value function defined as:

V π(s) = E

[ ∞∑
t=0

γtR(st+i, π(st+i))
∣∣∣si = s

]
which represents the expected accumulated value onward
from state s if policy π is followed. In the above function,
γ ∈ [0, 1] is a discount factor (so that rewards in the future
do not have as much weight as the current reward). We can
similarly define a Q-function:

Qπ(s, a) = E

[ ∞∑
t=0

γtR(st+i, at+i)
∣∣∣si = s, ai = a

]
which predicts the expected cumulative reward from R given
that the agent is in state s taking action a.

The goal of RL is to find an optimal policy π∗ such that

V π∗
(s) = max

π∈Π
V π(s)

where Π is the set of all policies over the MDP. This is
accomplished by learning a Q-function s.t. V π∗

(s) =
maxa∈A(s)Q

π∗
(s, a) and π∗(s) ∈ argmaxa∈A(s)Q

π∗
(s, a).

Throughout this paper we will be using the predominant
model-free RL technique, Q-learning, to learn Qπ∗

.
MOMDPs. We generalize the notion of an MDP to have in-
stead of a single scalar reward function R, a vector of re-
ward functions R⃗ = [R1, ..., Rn]

T , where each Ri corre-
sponds to an individual objective in a multi-objective MDP
(MOMDP). We can strategically combine reward functions
to learn a policy that prioritizes or balances certain objec-
tives; perhaps the simplest and most common approach is
linear scalarization [Roijers et al., 2013a]. This involves
selecting a vector w⃗ = [w1, ..., wn]

T (where each wi is a
weight for the objective corresponding to Ri) and learning a
Q-function Qi(s, a) for each objective and following the pol-
icy π∗(s) ∈ argmaxa∈A(s)Q⃗(s, a) · w⃗.

LTLf. Linear Temporal Logic (LTL) [Pnueli, 1977] extends
classical propositional logic with two temporal operators. Its
language is given by (letAP be a set of atomic propositions):

φ := ⊥ | p ∈ AP | ¬φ | φ ∨ φ | ◦ φ | φUφ

◦ is the “next” operator (◦φ iff φ is true in the next state),
and U is the “until” operator (φUψ iff φ is true until ψ is
true). We can also define a dual to the until operator, the
“release” operator φRψ ≡ ¬(¬φU¬ψ) (φ releases ψ, or ψ is
true up until φ is true, if ever), as well as the “finally” operator
♢φ ≡ ⊤Uφ (φ is eventually true), and its dual, the “globally”
operator □φ ≡ ¬♢¬φ ≡ ⊥Rφ (φ is always true). ⊤, ∧, →,
and ↔ can be derived in the usual ways.

LTL formulas are interpreted over infinite traces σ ∈
(2AP )ω; LTLf [De Giacomo et al., 2013] differs from LTL
only in that the traces that formulae are interpreted over are
finite, of length λ. We say σ |= φ when σ satisfies φ.



Deterministic Finite Automata (DFAs). These are tuples
A = ⟨Σ,Q, δ, q0, F ⟩ consisting of a finite input alphabet Σ,
a finite set of states Q, a transition function δ : Q× Σ → Q,
an initial state q0 ∈ Q, and a set of final states F ⊆ Q.
We say A accepts a word σ = ⟨σ0, ...σn⟩ ∈ Σ∗ if for the
run q0, q1, ..., qn generated by inputting σ to A (i.e., qi+1 =
δ(qi, σi) for i ∈ {0, ..., n− 1}), qn ∈ F .

LTLf formulas overAP can be transformed into equivalent
DFAs [De Giacomo and Favorito, 2021; De Giacomo et al.,
2015] such that σ |= φ (where Aφ = ⟨2AP ,Q, δ, q0, F ⟩ is
the DFA corresponding to φ) if and only if Aφ accepts σ.
Norms. We are interested in teaching RL agents to comply
with norms that regulate behaviour. These include obligations
(Oα, or “it is obligatory that α”), prohibitions Fα ≡ O¬α
(we refer to obligations and prohibitions both as obligations),
and permissions Pα, which often act as exceptions to obliga-
tions to the contrary (these are only kind of permissions we
will consider here). Norms are often conditional, represented
as O(α|β) (“α is obligatory when β”). We refer to a collec-
tion of such norms as a normative system.

As is well known LTL (and hence LTLf) cannot model
norms explicitly [Governatori, 2015; Neufeld et al., 2022];
i.e., there is no LTL(f) formula φ that faithfully models an
obligation. However, LTL(f) can be used to implicitly repre-
sent norms through modeling the conditions under which they
are complied with or violated, e.g. [Alechina et al., 2018]. In
this paper we will utilize violation specifications (which spec-
ify the violation condition of a norm) to represent obligations.

Using temporal logics to implicitly represent norms allows
us to model also temporal obligations [Governatori et al.,
2007]. Simple, conditional atemporal obligations (punctual
obligations) O(α|β) can be represented through their viola-
tion conditions as ♢(β∧¬α). Permissions P(¬α|β1∧β2) (as
exception to an obligation O(α|β1)) can be represented with
an exception specification ♢(¬α∧β1∧β2). Maintenance obli-
gations OM

δ (α|β) (which demand that upon being triggered
with β, α is obligatory in each state until the deadline δ) can
be modelled as ♢(β ∧ ¬δU¬α). Achievement obligations
OA

δ (α|β) (which state that after the trigger β, it is obligatory
to achieve α before δ) can be modelled as ♢(β ∧ ¬αUδ).

3 Normative Restraining Bolts
A restraining bolt [De Giacomo et al., 2019] is a collec-
tion of LTLf formulae with associated rewards; the idea is
that satisfying a given formula will award the RL agent the
corresponding reward, incentivising the agent to satisfy the
formula, and accommodating the learning of non-Markovian
objectives. In [Neufeld et al., 2024], this technique was
adapted to use LTLf formulae that specify norm violations
rather than compliant behavior, assigning negative rewards
(punishments) to discourage such violations. This ”upside-
down” approach, inspired by the Andersonian reduction of
deontic logic into modal logic [Anderson, 1958], avoids re-
warding the agent for compliance in scenarios where no norm
is triggered; in the case of conditional norms, this prevents the
agent from attempting to extend its runtime solely to continue
reaping rewards for compliance. Below, we present an adap-
tation of the normative restraining bolt NRB, which explic-

itly partitions the violation specifications based on the type of
obligation the specification corresponds to.

Definition 2 (Normative Restraining Bolt (NRB)). A NRB is
a tuple RB = ⟨L, {(φi,−ri)}Ni=1⟩, where L : S × Act →
2AP is a labelling function from state-action pairs to sets of
atomic propositions, each ri ∈ R+, and N = n + m. For
i ∈ {1, ..., n}, φi is the violation specification of a punctual
or achievement obligation and for i ∈ {n+1, ..., n+m}, φi

is the violation specification of a maintenance obligation.

Like restraining bolts, NRBs can be combined with a reg-
ular labelled MDP M = ⟨S,A, Pr, L,R⟩ (provided their la-
belling functions are identical) to shape the behaviour of an
agent learning in M. Originally, restraining bolts combined
with MDPs were directly translated into non-Markovian re-
ward decision processes (NMRDPs, i.e. MDPs that at-
tribute a reward to partial traces, instead of single state-action
pairs); this NMRDP was then transformed into an extended
MDP [Brafman et al., 2018] that was equivalent [Bacchus et
al., 1996] to the NMRDP (in that the optimal policy for the
extended MDP would yield an optimal policy in the NRMDP
as well). We will not bring NMRDPs into the picture; instead
we will skip right to a discussion of extended MDPs, which
we will analyse independently of the equivalent NMRDP.

Definition 3 (Extended MDP). Let RB =
⟨L, {(φi,−ri)}Ni=1⟩ be a restraining bolt and
M = ⟨S,A, Pr, L,R⟩ a labelled MDP. Furthermore,
let each Aφi

= ⟨2AP ,Qi, qi,0, δi, Fi⟩ be the DFA corre-
sponding to each φi in RB. Then the extended MDP is
MRB = ⟨S′, A′, P r′, L′, R′⟩, where:

• S′ = Q1 × ...×QN × S and A′(q1, ..., qN , s) = A(s)

• Pr′(q1, ..., qN , s, a, q′1, ..., q
′
N , s

′) ={
Pr(s, a, s′) if ∀i ∈ {1, ..., N} : q′i = q′(qi, s, a)

0 otherwise

where q′(qi, s, a) =
q′i if δi(qi, L(s, a)) = q′i /∈ Fi

qi,0 if i ∈ {1, ..., n} and δi(qi, L(s, a)) ∈ Fi

qi otherwise

• L′(q1, ..., qN , s, a) = L(s, a)

• R′(q1, ..., qN , s, a) =

R(s, a) +

N∑
i=1

−riRφi(q1, ..., qN , s, a) where

Rφi(q1, ..., qN , s, a) =

{
1 δi(qi, L(s, a)) ∈ Fi

0 otherwise

We depart from the definition in [Neufeld et al., 2024]
in two ways. First, we integrate the ad hoc automaton ’re-
setting’ mechanism from their paper into the MDP. This
mechanism handles repeated violations by redirecting tran-
sitions that would be into the final state instead to the ini-
tial state (for achievement and punctual obligations) or the



previous state (for maintenance obligations). Moreover,
[Neufeld et al., 2024] defines the reward function for the ex-
tended MDP associated with a normative restraining bolt as
R′(q1, ..., qN , s, a) = R(s, a) −

∑
i: δi(qi,L(s)∪{a})∈Fi

ri. In
contrast, we split the second term into negatively weighted
characteristic functions for each automaton’s set of final
states, a modification that proves useful in the next section
when converting the problem into an MORL framework.

3.1 Reformulation as a MORL Problem
As it turns out, we can represent learning over MRB as a
MORL problem. Recall that one way to learn an optimal
policy in an MOMDP is to learn a Q-function for each ob-
jective, and select actions based on the inner product of these
Q-functions and a vector of weights, corresponding the op-
timal policy of the scalarized reward function w⃗ · R⃗. Let
R⃗ = [−Rφ1

, ...,−RφN
, R]T and w⃗ = [r1, ...rN , 1]

T ; then
it is easy to see that for s ∈ S′ and a ∈ A′(s):

R′(s, a) = w⃗ · R⃗(s, a)
This describes a scalarized reward function of an MOMDP,
balancing a norm-agnostic objective with normative objec-
tives; we adapt the term “compliance MDP” [Neufeld, 2024]:
Definition 4 (Extended Compliance MDP). We transform the
extended MDP from Definition 3 into a MOMDP:

M′
RB = ⟨S′, A′, P r′, L′, R⃗⟩

where S′, A′, Pr′, L′ are as in Defn. 3 and R⃗ is as above.
Learning over the extended compliance MDP is not dif-

ficult; we can use regular Q-learning over a scalarized vec-
tor of Q-functions Q⃗ = [Qπ

−φ1
, ..., Qπ

−φN
, Q]T associated

with R⃗. At each transition ((q1, ..., qN , s), a, (q
′
1, ..., q

′
N , s

′))

(where a ∈ argmaxa′∈A′(q1,...,qN ,s) w⃗ · Q⃗((q1, ..., qN , s), a
′)

and each q′i = δi(L(s, a), qi)) during training we update Q as
usual withR(s, a) and update eachQπi

−φi
with −1 iff q′i ∈ Fi.

This approach of rewriting MRB as the MOMDP M′
RB

has several advantages. Firstly, it becomes more clear what
we are learning; namely that we are dealing with a multi-
objective problem in which R defines one objective (with
weight 1), and visiting the final states of each Aφi as few
times as possible is another. It also opens the possibility to
accommodate norm changes; provided we have learned a Q-
function for an individual norm with violation specification
φi in a given environment, we can temporarily add (by main-
taining the associated ri in w⃗) or remove (by replacing ri with
0) this norm from consideration in the final policy.

Most importantly, framing our problem in this way intro-
duces the potential to leverage MORL techniques, such as
algorithms that elucidate the correct rewards (weights) ri to
be associated with each φi, ensuring that specific behaviours
are prioritized. In particular, [Rodriguez-Soto et al., 2021]
(and subsequent works by the same authors) utilize convex
hull value iteration (CHVI) [Barrett and Narayanan, 2008]
and linear programming to identify the minimal weights re-
quired to learn what they call an “ethical policy”.

Finally, this MORL framing allows us to define what we
are trying to learn precisely — a maximally compliant policy:

Definition 5 (Maximally Compliant Policy). Let Π be the set
of all policies over the extended compliance MDP M′

RB . A
policy π∗ ∈ Π is maximally compliant iff it is optimal w.r.t.
the value functions V π

−φi
corresponding to each −Rφi

. That
is, π∗ is maximally compliant for M′

RB iff for all s ∈ S′:

∀i ∈ {1, ..., N} : V π∗

−φi
(s) = max

π∈Π
V π
−φi

(s) (1)

Note that such a policy exists only if there are no dilemmas
(cases where obeying one norm requires violating another);
however, these cases can be addressed by imposing a priority
structure over conflicting norms. In the next section, we will
explore how to apply an approach like [Rodriguez-Soto et al.,
2023] for this solution. For simplicity, for now we consider
sets of norms that do not result in dilemmas. We will elabo-
rate on this below, but first we take a closer look at what we
actually achieve by learning in an extended compliance MDP.

Theorem 1. For the extended compliance MDP M′
RB =

⟨S′, A′, P r′, L′, R⃗′⟩ where R⃗ = [−Rφ1 , ...,−RφN
, R]T , any

maximally compliant policy minimizes the discounted count
of violations of the norm associated with the violation speci-
fication φi for each i ∈ {1, ..., N}.

Proof. Recall that maximally compliant policies are policies
π∗ such that Equation 1 holds. Let V π

φi
and V π

−φi
be the value

functions associated with Rφi
and with the objective defined

by −Rφi
, respectively. Then, if we have a maximally com-

pliant policy π∗, for each individual objective corresponding
to an individual violation specification φi:

∀s ∈ S′ : V π∗

−φi
(s) = max

π∈Π
V π
−φi

(s)

= max
π∈Π

E

[ ∞∑
t=0

−γtRφi
(st, π(st))|s0 = s

]

= max
π∈Π

−E

[ ∞∑
t=0

γtRφi
(st, π(st))|s0 = s

]

= −min
π∈Π

E

[ ∞∑
t=0

γtRφi(st, π(st))|s0 = s

]
= −minV π

φi
(s)

by the linearity of conditional expectation. Hence the optimal
policy π∗ for each violation specification φi is a policy s.t.:

∀s ∈ S′ : V π∗

φi
(s) = min

π∈Π
V π
φi
(s)

Then, since V π
φi
(s) is the expected discounted count of visi-

tations of the final states of Aφi
(recall, Rφi

yields a count of
1 when a final state is reached), which only occurs when φi

is momentarily satisfied and thus the associated norm is vio-
lated, the discounted count of violations is minimized.

To ensure that we learn a maximally compliant policy
(Defn. 5), we need the following condition to hold:



Condition 1. Given an extended compliance MDP with a re-
ward vector R⃗ = [−Rφ1

, ...,−Rφn
, R]T with associated op-

timal Q-functions Qπ1
−φ1

, ..., QπN
−φN

. Then:

∀s ∈ S′ :
⋂

1≤i≤N

argmax
a∈A(s)

Qπi
−φi

(s, a) ̸= ∅

In other words, among the possible optimal behaviours
available for each φi, there is always an action that is opti-
mal for all of them; we can also call this the “no dilemmas
condition”, demanding that there are no conflicting norms.
So long as this condition holds, we can prove:
Theorem 2. For any compliance MDP M′

RB for which Con-
dition 1 holds, there is a maximally compliant policy.

Proof. ∀i ∈ {1, ..., N} there exists at least one policy πi s.t.

V πi
−φi

(s) = max
π∈Π

V π
−φi

(s) for all s. Also note that

V πi
−φi

(s) = max
a∈A(s)

Qπi
−φi

(s, a)

The Condition 1 implies that for each s ∈ S′, there exists
an a ∈ A(s) such that ∀i ∈ {1, . . . , N}

a ∈ argmax
a∈A(s)

Qπi
−φi

(s, a).

Equivalently, there exists an a s.t. Qπi
φi
(s, a) = V πi

φi
(s) for

each i. Then the policy π∗(s) 7→ a is optimal for all φi; i.e.,
V π∗

−φi
(s) = maxπ∈Π V

π
−φi

(s),∀i ∈ {1, . . . , N}.

4 Leveraging MORL
Framing learning with NRBs as an MORL problem has sev-
eral advantages. Besides clarifying the nature of the problem
as multi-objective, this framing yields a more modular agent,
where individual norms can be removed or reintroduced as
objectives after an optimal Q-function has been learned. Most
importantly, it allows us to use MORL techniques like CHVI
to determine the weights needed to learn a maximally compli-
ant policy. We can further extend our framework to encom-
pass normative systems capable of handling (potential) norm
conflicts by defining a priority relation among them. This ap-
proach allows us to omit Condition 1 and utilize a combina-
tion of CHVI and linear programming to compute the weights
required to enforce the specified priority relation. We will for-
malize this enhancement of NRBs as ordered NRBs.

4.1 Ordered Normative Restraining Bolts
Even if we select a reward ri > 1 corresponding to φi, it
may be the case that the agent does not prioritize avoiding
satisfying φi over its main objective, described by R — in
fact, it likely won’t. Especially in cases where obeying a norm
results in penalties fromR, or two norms conflict and we want
to prioritize one over another, we will need to adjust ri so that
the expected value of undesirable behaviour is offset by the
value of the correct choices. However, rather than knowing
which weights will lead us to a maximally compliant policy,
it is more likely we will have some notion of what norms we
want to prioritize. This leads us to define:

Definition 6 (Ordered Normative Restraining Bolts (ON-
RBs)). An ONRB is a tuple Φ = ⟨L, {φi}Ni=1, >Φ⟩, where
each φi is a violation specification and >Φ is a total order-
ing1 over the set {φi}Ni=1.

Note that from a regular labelled MDP and the ordered nor-
mative restraining bolt Φ we can also get an extended com-
pliance MDP M′

Φ. With ONRBs, our goal becomes finding
a prioritized compliance policy:
Definition 7 (Prioritized Compliance Policy). Let
[V1, ..., VN ]T be the value functions of each −Rφi

or-
dered according to >Φ, and let Π1 be the set of all policies
over the extended compliance MDP M′

Φ. Then a prioritized
compliance policy π∗ is a policy such that for all s ∈ S′:

V π∗

i (s) = max
π∈Πi

V π
i (s), where

for i ∈ {2, ..., N}, Πi =
⋂
s∈S′

argmax
π∈Πi−1

V π
i−1(s)

The above expression defines a lexicographic ordering over
value functions (as done in [Rodriguez-Soto et al., 2023]),
where we first select policies optimal for the highest-ranked
normative objective, then from among those policies we take
those optimal for the second highest, and so on.
Theorem 3. For the extended compliance MDP M′

Φ with the
associated ordered normative restraining bolt Φ there exists
a prioritized compliance policy.

Proof. By induction on the size of the ordered normative re-
straining bolt (i.e., the number of violation specification N ).

If there is only one violation specification φ1 in Φ, the PCP
is simply the optimal policy π∗ such that

V π∗

1 (s) = max
π∈Π

V π
1 (s)

where Π is the set of policies over M′
Φ. Now suppose there

is a PCP for M′
Φ defined over value functions [V1, ..., VN ]T .

Consider an ONRB Φ′ = Φ ∪ {φN+1} where φi >Φ′ φN+1

for all i ∈ {1, ..., N}. Let ΠN+1 ⊆ Π1 be the reduced policy
set defined recursively in Definition 7, then we know there is
a π∗ such that
V π∗

N+1(s) = maxπ∈ΠN+1
V π
N+1(s), making π∗ a PCP.

Learning a PCP requires applying Q-learning as seen be-
fore to an extended compliance MDP M′

Φ — via linear
scalarization — by converting >Φ into a weight vector w⃗.

4.2 Implementing ONBRs
We cannot learn compliant behaviour directly from an ONRB
paired with an MDP via linear scalarization, as demonstrated
in the previous section; we need to retrieve the weights neces-
sary to get the prioritized compliance policy, transforming the
ONRB into a regular NRB in order to construct an extended
compliance MDP. To do this, we employ a weight function.
Definition 8. The weight function wΦ : LLTLf → R maps
an LTLf specification φi associated with an ONRB Φ to the
minimum weight ri that ensures that we learn a prioritized
compliance policy.

1The framework can be extended to support some partial orders.



ComputingwΦ is in general computationally intensive, (al-
beit fairly trivial in the case studies in Sections 5.2-3). How-
ever, this computation only needs to be performed once, be-
fore training the agent. We outline this ’pre-processing’ step
below, beginning with a review of the notion of a convex hull.

Definition 9. Let Π be the set of all possible policies over a
given MOMDP. The convex hull of Π, CH(Π) is defined as:

CH(Π) = {π ∈ Π | ∃w⃗∀π′ ∈ Π : w⃗ · V⃗ π ≥ w⃗ · V⃗ π′
}

That is, the convex hull represents the subset of policies
whose linearly scalarized values are maximal for some w⃗
[Roijers et al., 2013b]. Following [Rodriguez-Soto et al.,
2023], our implementation uses the partial convex hull P (Π),
which is a subset of CH(Π), containing all policies that are
maximal for a given w⃗ such that ri > 0 for all i ∈ {1, ..., N}
and the weight corresponding to R is 1.

Following [Rodriguez-Soto et al., 2021; Rodriguez-Soto et
al., 2022; Rodriguez-Soto et al., 2023], we have utilized con-
vex hull value iteration (CHVI) to compute the partial convex
hull of the set of policies Π for M′

Φ. For brevity, we omit
the algorithm’s details, noting only that it computes the par-
tial convex hull P (Π), by enhancing value iteration with four
operations — scalarization, translation, merging, and sum-
mation — which akin to the standard value iteration perform
updates on the value function, but operate over entire con-
vex hulls [Barrett and Narayanan, 2008]. These computa-
tions increase the runtime of the standard value iteration al-
gorithm by an exponential factor given by the size of the par-
tial convex hull. As P (Π) includes a point corresponding
to each policy that is optimal for some w⃗, the partial con-
vex hull can reach a size of |Act||S| [Barrett and Narayanan,
2008]. In our implementation, the number of states expands
to |S|

∏N
i=1 ni (where ni is the number of states in the au-

tomaton Aφi ; see Remark 1). Consequently, computing the
partial convex hull introduces an added complexity factor
of O(|Act||S|

∏N
i=1 ni·(⌊N

2 ⌋))[Barrett and Narayanan, 2008].
However, the runtime can be reduced in practice by restricting
|S|

∏N
i=1 ni to reachable state configurations (q1, ...qN , s).

Remark 1. Although the corresponding DFA is double expo-
nential in the LTLf formula’s size [De Giacomo et al., 2015],
the key factors are the number of temporal operators and their
nesting depth. For many norms (including those discussed
in Section 5), the translation and the resulting automata size
remains manageable2, reducing the state space and prepro-
cessing time.

Given CH(Π) (or P (Π) in our case), we can select for
each state the vector of values V⃗ π∗

(s) corresponding to our
PCP π∗ as per Definition 7. Once we pick out the value vector
corresponding to π∗, we can use Linear Programming to dis-
cern the minimum weights necessary to ensure this policy is
followed throughout the trajectory (and indeed in any state).
Following [Rodriguez-Soto et al., 2023] we solve the linear

2Specifically, complex nestings of the U operator are unlikely to
occur in norms, and nested ◦ operators can often be circumvented
through modifications of the labelling function.

program (LP) over w⃗ = [r1, ...rN , 1]
T :

minimize r1 + · · ·+ rN
subject to w⃗ · V⃗ π∗

(s)≥ w⃗ · V⃗ π(s) + ϵ ∀π ∈ P \ {π∗}
s ∈ S′

ri> 0, i ∈ {1, ..., N}

where ϵ ∈ R+, π∗ is the optimal policy, and P the par-
tial convex hull. Note that we modified the linear program
in [Rodriguez-Soto et al., 2023] to reflect that the optimal
value possible for our normative objectives is 0, and ensure
that a PCP (for all states) is learned. The complexity for solv-
ing the LP, retrieving the weight function wΦ, depends on the
choice of algorithm; using the simplex algorithm (efficient in
practice [Spielman and Teng, 2004]), a worst-case exponen-
tial complexity can be reached [Klee and Minty, 1972].

Remark 2. We can reduce the size of the above LP substan-
tially; in practice, we only need the constraints w⃗ · V⃗ π∗

(s) ≥
w⃗ · V⃗ π(s) + ϵ for states s we can actually start from. For
environments with only one single start state s0 (as the one
in Sec. 5) the implementation only needs to use as constraints
w⃗ · V⃗ π∗

(s0) ≥ w⃗ · V⃗ π(s0) + ϵ for all π ∈ P \ {π∗}.

Now that we have computed the weight function wΦ as-
sociated with Φ in the preprocessing step, we can essen-
tially transform Φ into the regular normative restraining bolt
NRB = ⟨L, {(φi, wΦ(φi))}Ni=1⟩ and use the given re-
wards to compute a PCP over the extended compliance MDP
M′

NRB = M′
Φ with the w⃗ associated with NRB.

Theorem 4. Let the associated extended compliance MDP of
an ORNB be M′

Φ = ⟨S′, A′, P r′, L′, R⃗⟩. Every policy π∗

which is optimal for M′
Φ w.r.t. w⃗ = [r1, ..., rN , 1]

T (where
each ri = wΦ(φi)) is a PCP for Φ.

Proof. Let π∗ be optimal for M′
Φ with respect to w⃗ =

[r1, ..., rN , 1]
T (ri = wΦ(φi)). Then for all s ∈ S′:

w⃗ · V⃗ π∗
(s) = max

π∈Π
w⃗ · V⃗ π(s)

which is equivalent to the conditions in the above LP if we
take ϵ = 0. The policy represented by the value function on
the left hand side of these inequalities (same as our V⃗ π∗

(s))
is by construction a PCP, so our π∗ is as well.

Implementing Norm Change
Each norm having its own Q-function enables the tem-
porary suspension of individual norms. Instead of se-
lecting actions at step t based on Q⃗π∗

(st, at) · w⃗ =
Qπ∗

(st, at) +
∑n

i=1 riQ
π∗

φi
(st, at), we can select actions

based on Qπ∗
(st, at) +

∑n
i=1 rif(φi, t)Q

π∗

φi
(st, at), where

f : LLTLf × N → B, which returns 1 if the norm is in force,
and 0 otherwise. The suspension or re-addition of norms may
require us to solve the LP again (where we set the ri corre-
sponding to each suspended norm to 0), but there is no need
to repeat CHVI.



Figure 1: Agent trajectories demonstrating (a) managing conflicting
norms, (b) CTD obligations, and (c) norm change, after 5k training
episodes (10k for (a)) The plots in (d) depict average rewards (over
50 episodes) for (top) R, (middle) r2Rφ2 , and (bottom) r3Rφ3 .

5 Case Studies
We will showcase ONRBs within an environment that high-
lights how the agent prioritizes adherence to a set of norms,
even when doing so conflicts with its primary objective3.
Despite these constraints, the agent should maintain opti-
mal behaviour within the prescribed boundaries. We uti-
lize the ‘Travelling Merchant’ environment, first introduced
in [Neufeld et al., 2022]. This environment is an elaborate
adaptation of the resource-gathering game from [Barrett and
Narayanan, 2008] (seen again in e.g. [Vamplew et al., 2011]),
which is in turn inspired by various strategy games. It en-
tails an RL agent, a merchant, traversing a map and collect-
ing resources to sell at a market on the other side of the map.
The available resources are wood (extracted from trees, the
green squares in Fig. 1(a-c)) and ore (extracted from rocks,
the light grey squares); to collect a resource, the agent must
perform the action extract in a cell where a resource is sit-
uated. “Dangerous” areas (pink squares) on the map exist
where the agent will be attacked by bandits, at which point the
agent has three choices: it can fight and end the attack, ne-
gotiate (giving up its inventory by using unload, also ending
the attack), or try to escape (which fails with a certain prob-
ability; for the sake of simplicity we have set this to 1). The
agent is rewarded based on how many resources it gathers,
and how many items it unloads at the market; it is punished
when it unloads its resources elsewhere. States are labelled
with the cell type (e.g., at danger), whether or not the agent
is being attacked (attack), whether or not the sun is down
(sundown), and what it has in its inventory (e.g., has ore).

5.1 Managing Conflicting Norms
Suppose the merchant’s highest priority, upon leaving home,
is OA

sundown(at market|at home), that is to visit the market
before sunset; this norm has the violation specification φ1 :=

3Implementation can be found at: https://github.com/lexeree/
ordered-normative-restraining-bolts

The computations above were performed with an AMD Ryzen
7 5800H with Radeon Graphics (8 cores, 3.2 GHz) and 16 GB RAM,
except the computation of wΦ1 , which ran on one core of an AMD
EPYC 9334 (2.7 GHz), taking ∼2.5 hrs and <256 GB RAM.

♢(at home ∧ ¬at marketUsundown). The merchant’s
second priority is to avoid dangerous areas, F(at danger),
which has the violation specification φ2 := ♢(at danger).
Also let >Φ1

= {(φ1, φ2)}. Our ONRB will then be: Φ1 =
⟨L, {φ1, φ2}, >Φ1

⟩, where L is the merchant environment’s
labelling function. Using the preprocessing of the ONRB de-
scribed in Section 4.2, we find that wΦ1

(φ1) = 15.5 and
wΦ1

(φ2) = 57.5 (rounded up).
Figure 1(a) shows that to reach the market (blue square),

the merchant must pass through a dangerous area (leftmost
pink square). With only F(at danger), the agent circles near
its home (yellow square) until the episode times out. How-
ever, since we derived the above based on the priority of the
norm OA

sundown(at market|at home), the agent neverthe-
less passes through the first dangerous area in order to arrive
at the market before sundown, while avoiding the second dan-
gerous area, despite that path leading to more resources.

5.2 Contrary-to-duty Obligations
We implement a set of norms already used in [Neufeld et
al., 2024] with the purpose of illustrating the computation of
the exact weights provided by the algorithm in Section 4.2.
For the purposes of CTDs, we apply an option in the en-
vironment to force the agent to move toward the market
(to avoid getting trapped around the home square). The
norms are φ2 (from Section 5.1) and the CTD obligation
O(unload|at danger ∧ attacked) stating that if the agent
enters a dangerous area and is attacked, it must negotiate by
unloading its resources. This norm has the violation specifi-
cation φ3 := ♢(at danger∧attack∧¬unload). The ONRB
is then Φ2 = ⟨L, {φ2, φ3}, >Φ2

⟩ (where the order >Φ2
is ir-

relevant), and when we compute the associated weights, we
get wΦ2

(φ2) = 2.9 and wΦ2
(φ3) = 67.7.

Figure 1(b) shows the agent obeying the CTD when forced
to pass through the first dangerous area, but avoiding the sec-
ond, fulfilling the primary obligation when possible.

5.3 Norm Change
Assume the agent is forbidden from extracting wood,
F(extract|at tree); this norm has the violation specification
φ4 := ♢(at tree ∧ extract). Suppose also the permission
P(extract|at tree ∧ ¬has wood) with the exception speci-
fication4 φ5 := ♢(at tree ∧ ¬has wood ∧ extract) — but
this permission doesn’t come into force until 15 time steps
have passed. The ONRB will be: Φ3 = ⟨L, {φ4, φ5}, >Φ3⟩,
for which we compute wΦ3(φ4) = 88.1, and take the ex-
ception specification to have the same weight, but negative:
wΦ3(φ5) = −88.1, while f(φ5, t) = 0 for all t < 15.

Figure 1(c) shows the agent not extracting from the first
tree, as the permission to extract wood is not yet active; once
it is, the agent exercises it to extract from the second tree, and
thereafter obeys the prohibition on extracting wood.

6 Conclusions
We introduced ordered normative restraining bolts, made pos-
sible by a MORL reformulation of learning with NRBs. Our

4As in [Neufeld et al., 2024] we accommodate permissions by
assigning positive rewards when an exception condition applies.

https://github.com/lexeree/ordered-normative-restraining-bolts
https://github.com/lexeree/ordered-normative-restraining-bolts


framework eliminates the need to manually assign punish-
ments to violation specifications by allowing explicit order-
ings over norms and providing an algorithm to derive pun-
ishments that enforce these lexicographically ordered norms.
Like NRBs, ONRBs handle CTD obligations, selected per-
missions, and temporal obligations, while also addressing
conflicts between prioritized norms and norm changes. Fur-
thermore, it accommodates formal guarantees that optimal
policies minimize norm violations w.r.t. the defined ordering.

Nevertheless, the computational cost of the required pre-
processing is steep, and further research to reduce complex-
ity is needed; using CHVI with linear scalarization is only
one way to implement the multi-objective problem we have
defined, and there are other MORL-based avenues we can ex-
plore. This would enable experimentation in more complex
environments. However, tabular Q-learning is unsuitable for
complex scenarios, and so extending our technique to Deep
RL would be a major step forward.
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Sanchez, and Ann Nowé. Multi-objective reinforcement
learning for guaranteeing alignment with multiple values.

In 2023 Adaptive and Learning Agents Workshop at AA-
MAS, 2023.

[Roijers et al., 2013a] Diederik M Roijers, Peter Vamplew,
Shimon Whiteson, and Richard Dazeley. A survey of
multi-objective sequential decision-making. Journal of Ar-
tificial Intelligence Research, 48:67–113, 2013.

[Roijers et al., 2013b] Diederik M Roijers, Peter Vamplew,
Shimon Whiteson, and Richard Dazeley. A survey of
multi-objective sequential decision-making. Journal of Ar-
tificial Intelligence Research, 48:67–113, 2013.

[Singh et al., 2022] Bharat Singh, Rajesh Kumar, and
Vinay Pratap Singh. Reinforcement learning in robotic ap-
plications: a comprehensive survey. Artificial Intelligence
Review, 55(2):945–990, 2022.

[Spielman and Teng, 2004] Daniel A Spielman and Shang-
Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. Journal
of the ACM (JACM), 51(3):385–463, 2004.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G.
Barto. Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press, 1998.

[Vamplew et al., 2011] Peter Vamplew, Richard Dazeley,
Adam Berry, Rustam Issabekov, and Evan Dekker. Em-
pirical evaluation methods for multiobjective reinforce-
ment learning algorithms. Machine learning, 84(1):51–80,
2011.

[van Rysewyk and Pontier, 2015] Simon van Rysewyk and
Matthijs Pontier. A hybrid bottom-up and top-down ap-
proach to machine medical ethics: Theory and data. 2015.

[Varricchione et al., 2024] Giovanni Varricchione, Natasha
Alechina, Mehdi Dastani, Giuseppe De Giacomo, Brian
Logan, and Giuseppe Perelli. Pure-past action masking.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 38, pages 21646–21655, 2024.


	Introduction
	Background
	Normative Restraining Bolts
	Reformulation as a MORL Problem

	Leveraging MORL
	Ordered Normative Restraining Bolts
	Implementing ONBRs
	Implementing Norm Change


	Case Studies
	Managing Conflicting Norms
	Contrary-to-duty Obligations
	Norm Change

	Conclusions

