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ABSTRACT

This work presents an information-theoretic perspective to group fairness trade-offs
in federated learning (FL) with respect to sensitive attributes, such as gender, race,
etc. Existing works often focus on either global fairness (overall disparity of the
model across all clients) or local fairness (disparity of the model at each client),
without always considering their trade-offs. There is a lack of understanding re-
garding the interplay between global and local fairness in FL, particularly under
data heterogeneity, and if and when one implies the other. To address this gap,
we leverage a body of work in information theory called partial information de-
composition (PID), which first identifies three sources of unfairness in FL, namely,
Unique Disparity, Redundant Disparity, and Masked Disparity. We demonstrate
how these three disparities contribute to global and local fairness using canonical
examples. This decomposition helps us derive fundamental limits on the trade-off
between global and local fairness, highlighting where they agree or disagree. We
introduce the Accuracy and Global-Local Fairness Optimality Problem (AGLFOP),
a convex optimization that defines the theoretical limits of accuracy and fairness
trade-offs, identifying the best possible performance any FL strategy can attain
given a dataset and client distribution. We also present experimental results on
synthetic datasets and the ADULT dataset to support our theoretical findings.1

1 INTRODUCTION

Federated learning (FL) is a framework where several parties (clients) collectively train machine
learning models while retaining the confidentiality of their local data (Yang, 2020; Kairouz et al.,
2021). With the growing use of FL in various high-stakes applications, such as finance, healthcare,
recommendation systems, etc., it is crucial to ensure that these models do not discriminate against any
demographic group based on sensitive features such as race, gender, age, nationality, etc. (Smith et al.,
2016). While there are several methods to achieve group fairness in the centralized settings (Mehrabi
et al., 2021), these methods do not directly apply to a FL setting since each client only has access to
their local dataset, and hence, is restricted to only performing local disparity mitigation.

Recent works (Du et al., 2021; Abay et al., 2020; Ezzeldin et al., 2023) focus on finding models that
are fair when evaluated on the entire dataset across all clients, a concept known as global fairness.
E.g., several banks may decide to engage in FL to train a model that will determine loan qualifications
without exchanging data among them. A globally fair model does not discriminate against any
protected group when evaluated on the entire dataset across all the banks. On the other hand, local
fairness considers the disparity of the model at each client (when evaluated on a client’s local dataset).
Local fairness is important as the models are ultimately deployed and used locally (Cui et al., 2021).

Global and local fairness can differ, particularly when the local demographics at a client differ from the
global demographic across the entire dataset (data heterogeneity, e.g., a bank with customers primarily
from one race). Prior studies have mainly focused on either global or local fairness, without always
considering their interplay. Global and local fairness align when data is i.i.d. across clients (Ezzeldin
et al., 2023; Cui et al., 2021), but their interplay in other scenarios is not well-understood.

1Implementation is available at https://github.com/FaisalHamman/FairFL-PID
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This work aims to provide a fundamental understanding of group fairness trade-offs in the FL setting.
We first formalize the notions of Global and Local Disparity in FL using information theory. Next,
we leverage a body of work within information theory called partial information decomposition (PID)
to further identify three sources of disparity in FL that contribute to the Global and Local Disparity,
namely, Unique Disparity, Redundant Disparity, and Masked Disparity. This information-theoretic
decomposition is significant because it helps us derive fundamental limits on the trade-offs between
Global and Local Disparity, particularly under data heterogeneity, and provides insights on when
they agree and disagree. We introduce the Accuracy and Global-Local Fairness Optimality Problem
(AGLFOP), a novel convex optimization that rigorously examines the trade-offs between accuracy
and both global and local fairness. This framework establishes the theoretical limits of what any FL
technique can achieve in terms of accuracy and fairness given a dataset and client distribution. This
work provides a more nuanced understanding of the interplay between these two fairness notions that
can better inform disparity mitigation techniques and their convergence and effectiveness in practice.

Our main contributions can be summarized as follows:

• Partial information decomposition of Global and Local Disparity: We first define Global
Disparity as the mutual information I(Z; Ŷ ) where Ŷ is a model’s prediction and Z is the sensitive
attribute (see Definition 2). Then, we show that Local Disparity can in fact be represented
as the conditional mutual information I(Z; Ŷ |S) where S denotes the client (see Definition 3).
We also demonstrate relationships between these information-theoretic quantifications and well-
known fairness metrics such as statistical parity (see Lemma 1). Using an information-theoretic
quantification then enables us to further decompose the Global and Local Disparity into three non-
negative components: Unique, Redundant, and Masked Disparity. We provide canonical examples
to help understand these disparities in the context of FL (see Section 3.1). The significance of our
information-theoretic decomposition lies in separating the regions of agreement and disagreement
of Local and Global Disparity, demystifying their trade-offs.

• Fundamental limits on trade-offs between local and global fairness: We show the limitations of
achieving global fairness using local disparity mitigation techniques due to Redundant Disparity
(see Theorem 1) and the limitations of achieving local fairness even if global fairness is achieved
due to Masked Disparity (see Theorem 2). We also identify the necessary and sufficient conditions
under which one form of fairness (local or global) implies the other (see Theorem 3 and 4), as well
as, discuss other conditions that are sufficient but not necessary.

• A convex optimization framework for quantifying accuracy-fairness trade-offs: We present
the Accuracy and Global-Local Fairness Optimality Problem (AGLFOP) (see Definition 4), a novel
convex optimization framework for systematically exploring the trade-offs between accuracy and
both global and local fairness metrics. AGLFOP evaluates all potential joint distributions, thereby
setting the theoretical boundaries for the best possible performance achievable for a given dataset
and client distribution in FL.

• Experimental demonstration: We validate our theoretical findings using synthetic and Adult
dataset (Dua & Graff, 2017). We study the trade-offs between accuracy and global-local fairness by
examining the Pareto frontiers of the AGLFOP. We investigate the PID of disparities in the Adult
dataset trained within a FL setting with multiple clients under various data heterogeneity scenarios.

Related Works. There are various perspectives to fairness in FL (Shi et al., 2021). One definition
is client-fairness (Li et al., 2019), which aims to achieve equal performance across all client de-
vices (Wang et al., 2023b). In this work, we are instead interested in group fairness, i.e., fairness
with respect to demographic groups based on gender, race, etc. Methods for achieving group fairness
in a centralized setting (Agarwal et al., 2018; Hardt et al., 2016; Dwork et al., 2012; Kamishima
et al., 2011; Pessach & Shmueli, 2022) may not directly apply in a FL setting since each client
only has access to their local dataset. Existing works on group fairness in FL generally aim to
develop models that achieve global fairness, without much consideration for the local fairness at
each client (Ezzeldin et al., 2023). For instance, one approach to achieve global fairness in FL
poses a constrained optimization problem to find the best model locally, while also ensuring that
disparity at a client does not exceed a threshold and then aggregates those models (Chu et al., 2021;
Rodrı́guez-Gálvez et al., 2021; Zhang et al., 2020). Other techniques involve bi-level optimization
that aims to find the optimal global model (minimum loss) under the worst-case fairness violation
(Papadaki et al., 2022; Hu et al., 2022; Zeng et al., 2021), or re-weighting mechanisms (Abay et al.,
2020; Du et al., 2021), both of which often require sharing additional parameters with a server.
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Cui et al. (2021) argues for local fairness, as the model will be deployed at the local client level,
and propose constrained multi-objective optimization. While accuracy-fairness tradeoffs have been
examined in centralized settings (Chen et al., 2018; Dutta et al., 2020a; Kim et al., 2020; Zhao &
Gordon, 2022; Liu & Vicente, 2022; Wang et al., 2023a; Kim et al., 2020; Sabato & Yom-Tov, 2020;
Menon & Williamson, 2017; Venkatesh et al., 2021), such considerations, along with the relationship
between local and global fairness, remain largely unexplored in FL. Our work addresses this gap by
examining them through the lens of PID.

Information-theoretic measures have been used to quantify group fairness in the centralized setting in
Kamishima et al. (2011); Calmon et al. (2017); Ghassami et al. (2018); Dutta et al. (2020b; 2021); Cho
et al. (2020); Baharlouei et al. (2019); Grari et al. (2019); Wang et al. (2021); Galhotra et al. (2022);
Alghamdi et al. (2022); Kairouz et al. (2019); Dutta & Hamman (2023). PID is also generating
interest in other ML problems (Ehrlich et al., 2022; Tax et al., 2017; Liang et al., 2024; Wollstadt
et al., 2023; Mohamadi et al., 2023; Pakman et al., 2021; Venkatesh & Schamberg, 2022). Here,
instead of trying to minimize information-theoretic measures as a regularizer, our goal is to quantify
the fundamental trade-offs between local and global fairness in FL and develop insights on their
interplay to better understand what is information-theoretically possible using any technique.

2 PRELIMINARIES

Notations. A client is represented as S ∈ {0, 1, . . . ,K−1}, where K is the total number of federating
clients. A client S=s has a dataset Ds = {(xi, yi, zi)}i=1,...ns , where xi denotes the input features,
yi ∈ {0, 1} is the true label, and zi ∈ {0, 1} is the sensitive attribute (assume binary) with 1 indicating
the privileged group and 0 indicating the unprivileged group. The term ns denotes the number of
datapoints at client S=s. The collective dataset is given by D = ∪K−1

s=0 Ds. When denoting a random
variable drawn from this dataset, we let X be the input features, Z be the sensitive attribute, and Y be
the true label. We also let Ŷ represent the predictions of a model fθ(X) which is parameterized by θ.

Standard FL aims to minimize the empirical risk: minθ L(θ) = minθ
1
K

∑K−1
s=0 αsLs(θ), where

Ls(θ) = 1
ns

∑
(x,y)∈Ds

l(fθ(x), y) is the local objective (or loss) at client s, αs is an importance
coefficient (often equal across clients), and l(·, ·) denotes a predefined loss function. To minimize
the objective L(θ), a decentralized approach is employed. Each client S = s trains on their private
dataset Ds and provides their trained local model to a centralized server. The server aggregates
the parameters of the local models to create a global model fθ(x) (Sah & Singh, 2022). E.g., the
FedAvg algorithm (McMahan et al., 2017) is a popular approach that aggregates the parameters of
local models by taking their average, which is then used to update the global model. This process is
repeated until the global model achieves a satisfactory performance level.

Background on Partial Information Decomposition. PID decomposes the mutual information
I(Z;A,B) about a random variable Z contained in the tuple (A,B) into four non-negative terms:

I(Z;A,B) = Uni(Z:A|B) + Uni(Z:B|A) + Red(Z:A,B) + Syn(Z:A,B) (1)

Here, Uni(Z:A|B) denotes the unique information about Z that is present only in A and not in
B. E.g., shopping preferences (A) may provide unique information about gender (Z) that is not
present in address (B). Red(Z:A,B) denotes the redundant information about Z that is present in
both A and B. E.g., zipcode (A) and county (B) may provide redundant information about race.

Figure 1: PID of
I(Z;A,B).

Syn(Z:A,B) denotes the synergistic information not present in either A or
B individually, but present jointly in (A,B), e.g., each individual digit of
the zipcode may not have information about race but together they provide
significant information about race.

Numerical Example. Let Z=(Z1, Z2, Z3) with each Zi∼ i.i.d. Bern(1/2).
Let A = (Z1, Z2, Z3 ⊕ N), B = (Z2, N), N ∼ Bern(1/2) is independent
of Z. Here, I(Z;A,B) = 3 bits. The unique information about Z that
is contained only in A and not in B is effectively in Z1, and is given by
Uni(Z:A|B) = I(Z;Z1) = 1 bit. The redundant information about Z
that is contained in both A and B is effectively in Z2 and is given by
Red(Z:A,B) = I(Z;Z2) = 1 bit. Lastly, the synergistic information about Z that is not contained
in either A or B alone, but is contained in both of them together is effectively in the tuple (Z3⊕N,N),

3



Published as a conference paper at ICLR 2024

and is given by Syn(Z:A,B)=I(Z; (Z3 ⊕N,N)) = 1 bit. This accounts for the 3 bits in I(Z;A,B).
Here, we include a popular definition of Uni(Z:A|B) from Bertschinger et al. (2014).
Definition 1 (Unique Information). Let ∆ be the set of all joint distributions on (Z,A,B) and ∆p

be the set of joint distributions with the same marginals on (Z,A) and (Z,B) as the true distribution,
i.e., ∆p = {Q∈∆ : PrQ(Z=z,A=a)=Pr(Z=z,A=a) and PrQ(Z=z,B=b) = Pr(Z=z,B=b)}.
Then, Uni(Z:A|B) = minQ∈∆p IQ(Z;A|B), where IQ(Z;A|B) is the conditional mutual informa-
tion when (Z,A,B) have joint distribution Q and PrQ(·) denotes the probability under Q.

Defining any one of the PID terms suffices to obtain the others. Red(Z:A,B) is the sub-volume
between I(Z;A) and I(Z;B) (see Fig. 1). Hence, Red(Z:A,B) = I(Z;A) − Uni(Z:A|B) and
Syn(Z:A,B) = I(Z;A,B)−Uni(Z:A|B)−Uni(Z:B|A)− Red(Z:A,B) (from Equation 1).

3 MAIN RESULTS

We first formalize the notions of Global and Local Disparity in FL using information theory.
Definition 2 (Global Disparity). The Global Disparity of a model fθ with respect to Z is defined as
I(Z; Ŷ ), the mutual information between Z and Ŷ (where Ŷ = fθ(X)).

This is related to a widely-used group fairness notion called statistical parity. Existing works (Agarwal
et al., 2018) define the Global Statistical Parity as: Pr(Ŷ = 1|Z = 1) = Pr(Ŷ = 1|Z = 0). Global
Statistical Parity is satisfied when Z is independent of Ŷ , which is equivalent to zero mutual
information I(Z; Ŷ ) = 0. To further justify our choice of I(Z; Ŷ ) as a measure of Global Disparity,
we provide a relationship between the absolute statistical parity gap and mutual information when
they are non-zero in Lemma 1 (Proof in Appendix B).

Lemma 1 (Relationship between Global Statistical Parity Gap and I(Z; Ŷ )). Let Pr(Z=0) = α.

The gap SPglobal = |Pr(Ŷ = 1|Z = 1)− Pr(Ŷ = 1|Z = 0)| is bounded by
√

0.5 I(Z;Ŷ )
2α(1−α) .

A critical observation that we make in this work is that: local unfairness can be quantified
as I(Z; Ŷ |S), the conditional mutual information between Z and Ŷ conditioned on S. This
is motivated from Ezzeldin et al. (2023) which defines Local Statistical Parity at a client s as:
Pr(Ŷ=1|Z=1, S=s) = Pr(Ŷ=1|Z=0, S=s).

Definition 3 (Local Disparity). The Local Disparity is the conditional mutual information I(Z; Ŷ |S).

Lemma 2. I(Z; Ŷ |S)=0 if and only if Pr(Ŷ=1|Z=1, S=s)=Pr(Ŷ=1|Z=0, S=s) at all clients s.

The proof (see Appendix B) uses the fact that I(Z; Ŷ |S) =
∑K−1

s=0 Pr(S=s)I(Z; Ŷ |S = s) where
I(Z; Ŷ |S = s) is the Local Disparity at client s, and Pr(S=s) = ns/n, the proportion of data points
at client s. Similar to Lemma 1, we can also get a relationship between SPs and I(Z; Ŷ |S = s)
when they are non-zero (see Corollary 1 in Appendix B). We can also define other fairness metrics
similarly. For instance, Global Equalized Odds can be formulated in terms of the conditional mutual
information, denoted as I(Z; Ŷ |Y ) and Local Equalized Odds as I(Z; Ŷ |Y, S).

3.1 PARTIAL INFORMATION DECOMPOSITION OF GLOBAL AND LOCAL DISPARITY

We provide a decomposition of Global and Local Disparity into three sources of unfairness: Unique,
Redundant, and Masked Disparity, and provide examples to illustrate and better understand these
disparities in the context of FL.
Proposition 1. The Global and Local Disparity in FL can be decomposed into non-negative terms:

I(Z; Ŷ ) = Uni(Z:Ŷ |S) + Red(Z:Ŷ , S). (2)

I(Z; Ŷ |S) = Uni(Z:Ŷ |S) + Syn(Z:Ŷ , S). (3)

We refer to Fig. 2 for an illustration of this result. Equation 2 follows from the relationship between
different PID terms while Equation 3 requires the chain rule of mutual information (Cover, 1999).
For completeness, we show the non-negativity of PID terms in Appendix C.
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The term Uni(Z:Ŷ |S) quantifies the unique information the sensitive attribute Z provides
about the model prediction Ŷ that is not provided by client label S. We refer to this
as the Unique Disparity. The Unique Disparity contributes to both Local and Global Dis-
parity, highlighting the region where they agree. Red(Z:Ŷ , S) quantifies the information
about sensitive attribute Z that is common between prediction Ŷ and client S. We call
this the Redundant Disparity. The Unique and Redundant Disparities together make up the
Global Disparity I(Z; Ŷ ). Syn(Z:Ŷ , S) represents the synergistic information about sensitive

Figure 2: Venn diagram of PID for
Global & Local Disp. with agree-
ment and disagreement regions.

attribute Z that is not present in either Ŷ or S individually, but
is present jointly in (Ŷ , S). We refer to this as the Masked
Disparity, as it is only observed when Ŷ and S are considered
together. Redundant and Masked Disparities cause disagree-
ment between global and local fairness.

Canonical Examples. We now examine a loan approval
scenario featuring binary-sensitive attributes across two
clients, i.e., Ŷ , Z, S ∈ {0, 1}. Here, I(Z; Ŷ , S)=H(Z) −
H(Z|Ŷ , S)≤H(Z)=1, i.e., the maximum disparity is 1 bit.

Example 1 (Pure Uniqueness). Let Ŷ = Z and Z ⊥⊥ S. The
men (Z = 1) and women (Z = 0) are identically distributed
across the clients. Suppose, the model only approves men but rejects women for a loan across both
clients. This model is both locally and globally unfair, I(Z; Ŷ ) = I(Z; Ŷ |S) = 1. This is a case of
purely Unique Disparity since all the information about gender is derived exclusively from the model
predictions; the client S has no correlation with gender Z. Both Global and Local Disparities are in
agreement. Here, Uni(Z:Ŷ |S) = 1, Red(Z:Ŷ , S) = 0, and Syn(Z:Ŷ , S) = 0.
Example 2 (Pure Redundancy). The client S = 0 has 90% women, while client S = 1 has 90% men.
So, there is a correlation between the clients and gender. Suppose, the model approves everyone from
client S = 1 while rejecting everyone in S = 0 (i.e., Ŷ = S). Such a model is locally fair because
men and women are treated equally within a particular client, and I(Z; Ŷ |S) = 0. However, the
model is globally unfair since I(Z; Ŷ ) = 0.53. This is a case with pure Redundant Disparity since
information about Z is derived from both Ŷ and S. Global and Local Disparities are in disagreement.
Here, Uni(Z:Ŷ |S) = 0, Red(Z:Ŷ , S) = 0.53, and Syn(Z:Ŷ , S) = 0.

In general, pure Redundant Disparity is observed when Z and Ŷ are correlated and Z − S − Ŷ form
a Markov chain, i.e., Ŷ = S and S = g(Z) for some function g.

Example 3 (Pure Synergy). Let Ŷ = Z ⊕ S and Z ⊥⊥ S. The model approves men (Z = 1) from
client S = 0 and women (Z = 0) from client S = 1, while others are rejected. Such a model is
locally unfair, as it singularly prefers one gender within each client with I(Z; Ŷ |S) = 1. However, it
is globally fair since it maintains an equal approval rate for both men and women with I(Z; Ŷ ) = 0.
This is a case with pure Masked Disparity as information about Z that is not observable in either Ŷ or
S individually is present jointly. Here, Uni(Z:Ŷ |S) = 0, Red(Z:Ŷ , S) = 0, and Syn(Z:Ŷ , S) = 1.

Merits of PID. These canonical examples demonstrate scenarios with pure uniqueness, redundancy,
and synergy. In practice, there is usually a mixture of all of these disparities. i.e., non-zero Unique,
Redundant, and Masked Disparities. In these scenarios, PID serves as a powerful tool that can disen-
tangle the regions of agreement and disagreement between Local and Global Disparity, particularly
when data is distributed non-identically across clients (also see experiments in Section 4). In contrast,
traditional fairness metrics lack the granularity to capture these nuanced interactions, making PID an
essential asset for a more comprehensive understanding and mitigation of disparities. Using PID, we
can uncover the fundamental information-theoretic limits and trade-offs between Global and Local
Disparities, which we will examine in greater depth next.

3.2 FUNDAMENTAL LIMITS ON TRADEOFFS BETWEEN LOCAL AND GLOBAL DISPARITY

We examine the use of local fairness to achieve global fairness, or scenarios where a model is trained
to achieve local fairness and subsequently deployed at the global level. Since clients have direct
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access only to their data, implementing local disparity mitigation techniques at the individual client
level is both practical and convenient. Studies such as Cui et al. (2021) argue that local fairness is
important as models are deployed at the local client level. However, this raises a critical question
about the impact on global fairness. In Theorem 1, we formally demonstrate that even if local clients
are able to use some optimal local mitigation methods and model aggregation techniques to achieve
local fairness, the Global Disparity may still be greater than zero.
Theorem 1 (Impossibility of Using Local Fairness to Attain Global Fairness). As long as Redundant
Disparity Red(Z:Ŷ , S) > 0, the Global Disparity I(Z; Ŷ ) > 0 even if Local Disparity goes to 0.

In order to achieve local fairness, Unique and Masked Disparities must be reduced to zero. The proof
leverages Proposition 1, particularly relying on non-negativity of Unique and Redundant Disparities
(see Appendix D). Recall, Example 2 (Pure Redundancy), where the Local Disparity was zero, but the
Global Disparity was 0.53 as a result of the Redundant Disparity. This is not uncommon in real-world
scenarios. Sensitive attributes like race or ethnicity may be correlated with location. For instance,
one hospital may mainly cater to White patients, whereas another could predominantly serve Black
patients. A model may be trained to achieve local fairness but would fail to be globally fair due to a
non-zero Redundant Disparity, highlighting the region of disagreement (see Fig. 2).

We now consider the scenario where a model is able to achieve global fairness and is subsequently
deployed at the local client level.
Theorem 2 (Global Fairness Does Not Imply Local Fairness). As long as Masked Disparity
Syn(Z:Ŷ , S)>0, local fairness will not be attained even if global fairness is attained.

To achieve global fairness, the Unique and Redundant Disparities must reduce to zero. Recall
Example 3 (Pure Synergy), where the model accepts men from client S = 0 and women from
client S = 1, while rejecting all others. While this model is globally fair, it is not locally fair. This
demonstrates that while it is possible to train a model to achieve global fairness, it may still exhibit
disparity when deployed at the local level due to the canceling of disparities between clients. This
effect is captured by the Masked Disparity.

We now discuss the necessary and sufficient conditions to achieve global fairness using local fairness.
Theorem 3 (Necessary and Sufficient Condition to Achieve Global Fairness Using Local Fairness). If
Local Disparity I(Z; Ŷ |S) goes to zero, then Global Disparity I(Z; Ŷ ) also goes to zero, if and only
if the Redundant Disparity Red(Z:Ŷ , S)=0. A sufficient condition for Red(Z:Ŷ , S)=0 is Z⊥⊥S.

Theorem 3 suggests that if the sensitive attributes is uniformly distributed across clients the Redundant
Disparity will reduce to zero (see proof in Appendix D). Hence, when the Local Disparity goes to
zero, the Global Disparity will also decrease to zero. However, in practice, this proportion is fixed
since the dataset at each client cannot be changed, i.e., I(Z;S) is fixed. Therefore, we examine
another more controllable condition to eliminate Redundant Disparity even when I(Z;S) > 0.

One might think that a potential solution to have Red(Z:Ŷ , S) = 0 is to enforce independence
between Ŷ and S, i.e., the model should make predictions at the same rate across all clients. However,
interestingly, the PID literature demonstrates counterexamples (Kolchinsky, 2022) where this does
not hold. We show that an additional condition of Syn(Z:Ŷ , S) = 0 is required.

Lemma 3. A sufficient condition for Red(Z:Ŷ , S) = 0 is Syn(Z:Ŷ , S) = 0 and Ŷ ⊥⊥ S.

Remark 1. It is worth noting that the independence between Ŷ and S can be approximately achieved
if the true Y and S are independent, as Ŷ is an estimation of Y . The mutual information I(Y ;S)

can provide insights into the anticipated value of I(Ŷ ;S), as FL typically aims to also achieve a
reasonable level of accuracy. However, it is often the case that I(Ŷ ;S) is fixed due to the fixed nature
of datasets at each client. It may even be possible to enforce Ŷ ⊥⊥ S at the cost of accuracy.

Lastly, we examine conditions to attain local fairness through global fairness.
Theorem 4. Local disparity will always be less than Global Disparity if and only if Masked Disparity
Syn(Z:Ŷ , S) = 0. A sufficient condition is when Z − Ŷ − S form a Markov chain.
Remark 2 (Extension to Personalized Federated Learning Setting). Interestingly, our results extend
to the personalized FL setting, where client s can tailor the final global model Ŷ = f(X) into a
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personalized version to improve local performance, Ŷ = fs(X). In this case, we can define the
global model as a random variable Ŷ = g(X,S) and all of the propositions would hold.

3.3 AN OPTIMIZATION FRAMEWORK FOR EXPLORING THE ACCURACY FAIRNESS TRADE-OFF

We investigate the inherent trade-off between model accuracy and fairness in the FL context. We
formulate the Accuracy and Global-Local Fairness Optimality Problem (AGLFOP), an optimization
to delineate the theoretical boundaries of accuracy and fairness trade-offs, capturing the optimal
performance any model or FL technique can achieve for a specified dataset and client distribution.

Let ∆ be the set of all joint distributions defined for (Z, S, Y, Ŷ ). Let ∆p be a set of all joint
distributions Q ∈ ∆ that maintain fixed marginals on (Z, S, Y ) as determined by a given dataset and
client distribution, i.e., ∆p = {Q ∈ ∆ : PrQ(Z=z, S=s, Y=y) = Pr(Z=z, S=s, Y=y),∀z, s, y}.
Definition 4 (Accuracy and Global-Local Fairness Optimality Problem (AGLFOP)). Let IQ(Z; Ŷ )

and IQ(Z; Ŷ |S) be Global and Local Disparity under distribution Q. Then, the AGLFOP for a
specific dataset and client distribution is an optimization of the form:

argmin
Q∈∆p

err(Q) subject to IQ(Z; Ŷ ) ≤ ϵg, IQ(Z; Ŷ |S) ≤ ϵl, (4)

where err(Q)=
∑

z,s,y,ŷ PrQ(Z=z, S=s, Y=y, Ŷ=ŷ)I(y ̸= ŷ), the classification error under dis-
tribution Q (I(·) denotes the indicator function). err(Q) ∈ [0, 1] quantifies the proportion of incorrect
predictions, calculated as the summation of the probabilities of misclassifying the true labels. The
complement of the classification error, 1− err(Q), quantifies the accuracy.

Theorem 5. The AGLFOP is a convex optimization problem.

The AGLFOP is a convex optimization problem (see proof in Appendix E) that evaluates all potential
joint distributions within the set ∆p which includes the specific dataset and how they are distributed
across clients. The true distribution of this given dataset across clients is Pr(Z = z, S = s, Y = y).
This makes it an appropriate framework for investigating the accuracy-fairness trade-off. The Pareto
front of this optimization problem facilitates a detailed study of the trade-offs, showcasing the
maximum accuracy that can be attained for a given global and local fairness relaxation (ϵg, ϵl).

The set ∆p can be further restricted for specialized applications, e.g., to constrain to all derived
classifiers from an optimal classifier (Hardt et al., 2016). We can restrict our optimization space ∆p

to lie within the convex hull derived by the False Positive Rate (FPR) and True Positive Rate (TPR)
of an initially trained classifier. This would characterize the accuracy-fairness tradeoff for all derived
classifiers from the original trained classifier. The convex hall characterizes the distributions that can
be achieved with any derived classifier. The constraints of AGLFOP can also be expressed using PID
terms, offering intriguing insights that we will examine in the following section. The AGLFOP can
be computed in any FL environment. Specifically, their computation necessitates the characterization
of the joint distribution Pr(Z=z, S=s, Y=y) = Pr(S=s) Pr(Z=z|S=s) Pr(Y=y|Z=z, S=s),
which can be readily acquired by aggregating pertinent statistics across all participating clients.
Remark 3 (Broader Potential). The AGLFOP currently focuses on independence between Z and
Ŷ , but can be adapted to explore other fairness notions. It can also be used to study optimality in
situations where different clients have varying fairness requirements, e.g., adhering to statistical parity
globally while upholding equalized odds at the local level. Moreover, variants of this optimization
problem can be developed to penalize only the worst-case client fairness scenarios.

4 EXPERIMENTAL DEMONSTRATION

In this section, we provide experimental evaluations on synthetic and real-world datasets to validate
our theoretical findings.2 We investigate the PID of Global and Local Disparity under various
conditions. We also examine the trade-offs between these fairness metrics and model accuracy.

Data and Client Distribution. We consider the following: (1) Synthetic dataset: A 2-D feature
vector X=(X0, X1) has a distribution, i.e., X|Y=1∼N ((2, 2), [ 5 1

1 5 ]), X|Y=0∼N ((−2,−2), [ 10 1
1 3 ]).

2Implementation is available at https://github.com/FaisalHamman/FairFL-PID
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Figure 3: AGLFOP Pareto Frontiers for Synthetic and Adult Datasets with PID. (first column) shows
maximum accuracy (1− err) that can be achieved on a dataset and client distribution for a given
global and local fairness relaxation (ϵg, ϵl). Synthetic data in scenario 1 (first row) is characterized
by Unique Disparity. Local and global fairness agree, and accuracy trade-offs are balanced between
them. Synthetic data in scenario 2 with α = 0.9 (second row) is dominated by Redundant Disparity
with trade-offs mainly between global fairness and accuracy (an accurate model could have zero
Local Disparity but be globally unfair). Synthetic data in Scenario 3 (third row) is characterized by
Masked Disparity with trade-offs mainly between local fairness and accuracy (an accurate model
could have zero Global Disparity but be locally unfair). Adult data with heterogeneous split (fourth
row; details in Appendix F), displaying predominantly Masked Disparity but notable presence of
Redundant Disparity, capturing more complex relationships and trade-offs.

Assume binary sensitive attribute Z=1 if X0>0 and 0 otherwise to encode a dependence; and (2)
Adult dataset (Dua & Graff, 2017) with gender as sensitive attribute. We consider three cases for
partitioning the datasets across clients: (Scenario 1) sensitive-attribute independently distributed
across clients, i.e., Z ⊥⊥ S, (Scenario 2) high sensitive-attribute heterogeneity across clients, i.e.,
Z = S with probability α, and (Scenario 3) high sensitive-attribute synergy level across clients, i.e.,
Y = Z ⊕ S. Further details are described in Appendix F.

Experiment A: Accuracy-Global-Local-Fairness Trade-off Pareto Front. To study the trade-
offs between model accuracy and different fairness constraints, we plot the Pareto frontiers for
the AGLFOP. We solve for maximum accuracy (1 − err) while varying global and local fairness
relaxations (ϵg, ϵl). We present results for synthetic and Adult datasets as well as PID terms for
various data splitting scenarios across clients.3 The three-way trade-off among accuracy, global, and
local fairness can be visualized as a contour plot (see Fig. 3).

Interestingly, PID allows us to quantify the agreement and disagreement between local and global
fairness. In scenarios characterized by Unique Disparity, local and global fairness agree, and accuracy
trade-offs are balanced between them. In cases characterized by Redundant Disparity, the trade-off is
primarily between accuracy and global fairness (the accuracy changes along the horizontal axis (ϵl)
seemingly nonexistent given (ϵg)). In contrast, scenarios with Masked Disparity exhibit a trade-off
that is primarily between accuracy and local fairness (the trade-off is across the vertical axis).

3We use Python dit package (James et al., 2018) for PID computation and cvxpy for convex solvers.
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Figure 4: (left) Plot demonstrating scenarios with Unique, Redundant, and Masked Disparities
for the Adult dataset (model trained using FedAvg). Unique Disparity when sensitive attributes are
equally distributed across clients. Redundant Disparity when there is a dependency between clients
and sensitive attributes (scenario 2; α = 0.9). Masked Disparity is dominant with high sensitive
attribute synergy level across clients. (middle) Illustrates PID for varying levels of sensitive attribute
heterogeneity (α; see details in Appendix F.2). When α is close to 0.3, the data is split evenly across
clients (note Pr(Z=0)=0.33 for the Adult dataset), resulting in a higher level of Unique Disparity.
As α deviates from 0.3, i.e., higher dependency between Z and S, the Unique Disparity decreases
while Redundant and Masked Disparity increases. (right) Illustrates relationship between the synergy
level (λ; see details in Appendix F.2) and global and local fairness. As the synergy level increases,
the Masked and Local Disparity increases as expected.

Experiment B: Demonstrating Disparities in Federated Learning Settings. In this experiment,
we investigate the PID of disparities on the Adult dataset trained within a FL framework. We employ
the FedAvg algorithm (McMahan et al., 2017) for training and analyze:

• PID Across Various Splitting Scenarios. We partition the dataset among clients based on Scenarios
1-3, utilize FedAvg for model training in each case, and examine the PID of both Local and Global
Disparities (see Fig. 4). For each scenario, we also evaluate the effects of using a local disparity
mitigation technique. This is achieved by incorporating a statistical parity regularizer at each client.
The results and implementation details are presented in Table 1 in Appendix F.2.

• PID Under Varying Sensitive Attribute Heterogeneity Level. We partition the dataset across two
clients with varying levels of sensitive attribute heterogeneity. We use α = Pr(Z = 0|S = 0) to
control the sensitive attribute heterogeneity level across clients. Our results are summarized in
Fig. 4 and Table 2 in Appendix F.2.

• Observing Levels of Masked Disparity. We partition the dataset with varying sensitive attribute
synergy levels across clients to study the impact on the Masked Disparity. The synergy level λ ∈
[0, 1] measures how closely the true label Y aligns with Z ⊕ S (see Definition 10 in Appendix F.2).
Results are summarized in Fig. 4 and Table 3 in Appendix F.2.

• Experiments Involving Multiple Clients. We experiment with multiple clients K = 5 and K = 10.
Our findings are presented in Fig. 6, Fig. 5 and Table 4 in Appendix F.2.

Discussion. Our information-theoretic framework provides a nuanced understanding of the sources
of disparity in FL, namely, Unique, Redundant, and Masked disparity. Our experiments offer insights
into the agreement and disagreement between local and global fairness under various data distributions.
Our experiments and theoretical results show that depending on the data distribution achieving one
can often come at the cost of the other (disagreement). The nature of the data distribution across
clients significantly impacts the disparity that dominates. Our optimization framework establishes the
accuracy-fairness tradeoffs for a dataset and client distribution.

Importantly, our research can: (i) inform the use of local disparity mitigation techniques and their
convergence and effectiveness when deployed in practice; and (ii) also serve as a valuable tool for
policy decision-making, shedding light on the effects of model bias at both the global and local
levels. This is particularly relevant in the expanding field of algorithmic fairness auditing (Hamman
et al., 2023; Yan & Zhang, 2022). Future studies could also investigate how this approach could
be extended to more sophisticated fairness measures. The estimation of PID terms largely depends
on (i) the empirical estimators of the probability distributions; and (ii) the efficiency of the convex
optimization algorithm used for calculating the unique information. As the number of clients or
sensitive attributes increases, the computational cost may rise accordingly. Future work could explore
alternative efficient PID computation techniques (Belghazi et al., 2018; Venkatesh & Schamberg,
2022; Pakman et al., 2021; Kleinman et al., 2021).
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A RELEVANT BACKGROUND ON INFORMATION THEORETIC MEASURES

We outline key information-theoretic measures pertinent to this paper’s discussions.

Definition 5 (Entropy). Entropy quantifies the uncertainty or unpredictability of a random variable
Z. It is mathematically defined by the equation:

H(Z) = −
∑
z

Pr(Z = z) log Pr(Z = z). (5)

Definition 6 (Mutual Information). Mutual Information, I(Z; Ŷ ), quantifies the amount of informa-
tion obtained about random variable Z through Ŷ . Specifically, it measures the degree of dependence
between two variables, Z and Ŷ , capturing both linear and non-linear dependencies:

I(Z; Ŷ ) =
∑
z,ŷ

Pr(Z = z, Ŷ = ŷ) log
Pr(Z = z, Ŷ = ŷ)

Pr(Z = z) Pr(Ŷ = ŷ)
. (6)
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Definition 7 (Conditional Mutual Information). The conditional mutual information, I(Z; Ŷ |S),
measures the dependency between Z and Ŷ , conditioned on S:

I(Z; Ŷ |S) =
∑
s,z,ŷ

Pr(S = s, Z = z, Ŷ = ŷ) log
Pr(Z = z, Ŷ = ŷ|S = s)

Pr(Z = z|S = s) Pr(Ŷ = ŷ|S = s)
, (7)

or alternatively,

I(Z; Ŷ |S) =
∑
s

Pr(S = s)I(Z; Ŷ |S = s). (8)

Mutual Information as a Measure of Fairness. Mutual information can be used as a measure of
the unfairness or disparity of a model. Mutual Information has been interpreted as the dependence
between sensitive attribute Z and model prediction Ŷ (captures correlation as well as all non-linear
dependencies). Mutual information is zero if and only if Z and Ŷ are independent. This means that if
the model’s predictions are highly correlated with sensitive attributes (like gender or race), that’s a
sign of unfairness. Mutual information has been explored in fairness in the context of centralized
machine learning in Kamishima et al. (2011); Cho et al. (2020); Kang et al. (2021).

In recent work, Venkatesh et al. (2021) provides another interpretation of mutual information I(Z; Ŷ )

in fairness as the accuracy of predicting Z from Ŷ (or the expected probability of error in correctly
guessing Z from Ŷ ) from Fano’s inequality. Even in information bottleneck literature, mutual
information has been interpreted as a measure of how well one random variable predicts (or, aligns
with) the other (Goldfeld & Polyanskiy, 2020).

For local fairness, we are interested in the dependence between model prediction Ŷ and sensi-
tive attributes Z at each and every client, i.e., the dependence between Ŷ and Z conditioned on
the client S. For example, the disparity at client S = 1 is I(Z; Ŷ |S = 1) (the mutual informa-
tion (dependence) between model prediction and sensitive attribute conditioned on client S = 1
(considering data at client S = 1). Our measure for Local Disparity is the conditional mutual
information (dependence) between Z and Ŷ conditioned on S, denoted as I(Z; Ŷ |S). Local disparity
I(Z; Ŷ |S) =

∑
s p(s)I(Z; Ŷ |S = s), is an average of the disparity at each client weighted by the

p(s), the proportion of data at client S = s. The Local Disparity is zero if and only if all client has
zero disparity in their local dataset.

B ADDITIONAL RESULTS AND PROOFS FOR SECTION 3

Lemma 1 (Relationship between Global Statistical Parity Gap and I(Z; Ŷ )). Let Pr(Z=0) = α.

The gap SPglobal = |Pr(Ŷ = 1|Z = 1)− Pr(Ŷ = 1|Z = 0)| is bounded by
√

0.5 I(Z;Ŷ )
2α(1−α) .

Proof. Mutual information can be expressed as KL divergence:

I(Z; Ŷ ) = DKL

(
Pr(Ŷ , Z)||Pr(Ŷ ) Pr(Z)

)
. (9)

Using Pinsker’s Inequality (Canonne, 2022),

dTV (Q1, Q2) ≤
√

0.5DKL(Q1||Q2) (10)
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where, dTV (Q1, Q2) is the total variation between two probability distributions Q1, Q2.

dTV

(
Pr(Ŷ , Z),Pr(Ŷ ) Pr(Z)

)
=

1

2

∑
ŷ,z

∣∣∣Pr(Ŷ = ŷ, Z = z)− Pr(Ŷ = ŷ) Pr(Z = z)
∣∣∣

=
∑
z

Pr(Z = z)
∑
ŷ,z

1

2

∣∣∣Pr(Ŷ = ŷ|Z = z)− Pr(Ŷ = ŷ)
∣∣∣

=
1

2
Pr(Z = 1)

[
|Pr(Ŷ = 1|Z = 1)− Pr(Ŷ = 1)|+ |Pr(Ŷ = 0|Z = 1)− Pr(Ŷ = 0)|

]
+

1

2
Pr(Z = 0)

[
|Pr(Ŷ = 1|Z = 0)− Pr(Ŷ = 1)|+ |Pr(Ŷ = 0|Z = 0)− Pr(Ŷ = 0)|

]
=

1

2
α(1− α)|SP1|+ 1

2
α(1− α)|SP0|+ 1

2
α(1− α)|SP1|+ 1

2
α(1− α)|SP0|

= α(1− α)|SP1|+ α(1− α)|SP0| (11)

where Pr(Z = 0) = 1− Pr(Z = 1) = α, and

SPi = Pr(Ŷ = i|Z = 1)− Pr(Ŷ = i|Z = 0) = Pr(Ŷ = i|Z = 1)− Pr(Ŷ = i).

To complete the proof, we show:

SP1 =Pr(Ŷ = 1|Z = 1)− Pr(Ŷ = 1)

=Pr(Ŷ = 1|Z = 1)−
(
1− Pr(Ŷ = 0)

)
=− 1 + Pr(Ŷ = 1|Z = 1) + Pr(Ŷ = 0)

=− Pr(Ŷ = 0|Z = 1) + Pr(Ŷ = 0) = −SP0.

Hence, |SP1| = |SP0|. From Equation 11 we have: 2α(1− α)|SP1| ≤
√
0.5I(Z; Ŷ ).

Remark 4 (Tightness of Lemma 1). Since our proof exclusively utilizes Pinsker’s inequality, their
tightness is equivalent. Given I(Z; Ŷ ) ≤ min{H(Z), H(Ŷ )} ≤ H(Ŷ ) and H(Y ) ≤ 1 in binary
classification. Hence, I(Z; Ŷ ) ≤ 1 which is aligned with the known tight regime of Pinsker’s
inequality (i.e., DKL(P ||Q) ≤ 1) (Canonne, 2022). The inequality is tighter with smaller mutual
information I(Z; Ŷ ) values.

Lemma 2. I(Z; Ŷ |S)=0 if and only if Pr(Ŷ=1|Z=1, S=s)=Pr(Ŷ=1|Z=0, S=s) at all clients s.

Proof. We aim to establish that I(Z; Ŷ |S) = 0 if and only if Pr(Ŷ = 1|Z = 1, S = s) = Pr(Ŷ =
1|Z = 0, S = s) for all clients s. For brevity, we denote Pr(Z = z, S = s, Y = y) = p(z, s, y).

Forward Direction: Assume I(Z; Ŷ |S) = 0.

From Definition 7, we have:

I(Z; Ŷ |S) =
∑
s,z,ŷ

p(s, z, ŷ) log

(
p(z, ŷ|s)

p(z|s)p(ŷ|s)

)
= 0.

This implies that log
(

p(z,ŷ|s)
p(z|s)p(ŷ|s)

)
= 0 for all s, z, ŷ, and consequently p(z,ŷ|s)

p(z|s)p(ŷ|s) = 1 ∀s.

Observing that p(z, ŷ|s) = p(z|s)p(ŷ|z, s), we deduce that p(z|s)p(ŷ|z,s)
p(z|s)p(ŷ|s) = 1.

From this, it directly follows that p(ŷ|z, s) = p(ŷ|s), and thus Pr(Ŷ = 1|Z = 1, S = s) = Pr(Ŷ =
1|Z = 0, S = s).

Reverse Direction: Assume Pr(Ŷ = 1|Z = 1, S = s) = Pr(Ŷ = 1|Z = 0, S = s) for all s.

This implies p(ŷ|s, z) = p(ŷ|s) for all s, z, ŷ. Plugging this into the definition of conditional mutual
information, we find I(Z; Ŷ |S) = 0.
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Thus, both directions of the equivalence are proven, concluding the proof.

Corollary 1. The statistical parity at each client s can be expressed as

|SPs| ≤

√
0.5 I(Z; Ŷ |S = s)

2αs(1− αs)

where, αs = Pr(Z = 0|S = s) = 1− Pr(Z = 1|S = s).

Definition 8 (Difference Between Local and Global Disparity). The difference between Global and
Local Disparity is: I(Z; Ŷ )− I(Z; Ŷ |S) = I(Z; Ŷ ;S). This term is the “interaction information,”
which, unlike other mutual-information-based measures, can be positive or negative.

Interaction information quantifies the redundancy and synergy present in a system. In FL, positive
interaction information indicates a system with high levels of redundancy and Global Disparity, while
negative interaction information indicates a system with high levels of synergy and Local Disparity.
Interaction information can inform the trade-off between Local and Global Disparity.

C PROOF FOR SECTION 3.1

Proposition 1. The Global and Local Disparity in FL can be decomposed into non-negative terms:

I(Z; Ŷ ) = Uni(Z:Ŷ |S) + Red(Z:Ŷ , S). (2)

I(Z; Ŷ |S) = Uni(Z:Ŷ |S) + Syn(Z:Ŷ , S). (3)

Proof. Equation 2 follows directly from the PID terms definition.

Uni(Z:Ŷ |S) + Red(Z:Ŷ , S)= min
Q∈∆p

IQ(Z; Ŷ |S) + I(Z; Ŷ )− min
Q∈∆p

IQ(Z; Ŷ |S) = I(Z; Ŷ ).

Equation 3 follows from PID terms definition and the chain rule of mutual information.

Uni(Z:Ŷ |S) + Syn(Z:Ŷ , S) = min
Q∈∆p

IQ(Z; Ŷ |S) + I(Z; Ŷ , S)− I(Z;S)− min
Q∈∆p

IQ(Z; Ŷ |S)

= I(Z;S) + I(Z; Ŷ |S)− I(Z;S)

= I(Z; Ŷ |S).

Now, we prove the non-negativity property of PID decomposition.

Uni(Z:Ŷ |S) = minQ∈∆p IQ(Z; Ŷ |S) is non-negative since the conditional mutual information is
non-negative by definition.

Syn(Z:Ŷ , S) = I(Z; Ŷ |S)−minQ∈∆p
IQ(Z; Ŷ |S) ≥ I(Z; Ŷ |S)− I(Z; Ŷ |S) = 0

The Redundant Disparity:

Red(Z:Ŷ , S) = I(Z; Ŷ )− min
Q∈∆p

IQ(Z; Ŷ |S) = max
Q∈∆p

IQ(Ŷ ;Z)− IQ(Z; Ŷ |S)

First equality holds by definition. Second equality holds since marginals on (Ŷ , Z) is fixed in ∆p,
hence, maxQ∈∆p IQ(Ŷ ;Z) = I(Ŷ ;Z).

To prove non-negativity of redundant disparity, we construct a distribution Q0 such that:

Pr
Q0

(Z = z, Ŷ = y, S = s) =
Pr(Z = z, Ŷ = y) Pr(Z = z, S = s)

Pr(Z = z)

Next, we show Q0 ∈ ∆p. Recall the set ∆p in Definition 1:

∆p = {Q ∈ ∆ : Pr
Q
(Z = z, Ŷ = y) = Pr(Z = z, Ŷ = y),Pr

Q
(Z = z, S = s) = Pr(Z = z, S = s)}.
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Pr
Q0

(Z = z, Ŷ = y) =
∑
s

Pr
Q0

(Z = z, Ŷ = y, S = s) =
∑
s

Pr(Z = z, Ŷ = y)

Pr(Z = z)
Pr(Z = z, S = s)

=
Pr(Z = z, Ŷ = y)

Pr(Z = z)

∑
s

Pr(Z = z, S = s) = Pr(Z = z, Ŷ = y).

Pr
Q0

(Z = z, S = s) =
∑
ŷ

Pr
Q0

(Z = z, Ŷ = y, S = s) =
∑
ŷ

Pr(Z = z, Ŷ = y) Pr(Z = z, S = s)

Pr(Z = z)

=
Pr(Z = z, S = s)

Pr(Z = z)

∑
ŷ

Pr(Z = z, Ŷ = y) = Pr(Z = z, S = s).

Marginals of Q0 satisfy conditions on set ∆p, hence Q0 ∈ ∆p. Also, note that by construction of Q0,
Ŷ and S are independent conditioned on Z, i.e., IQ0(Ŷ ;S|Z) = 0. Hence, we have:

Red(Z:Ŷ , S)
(a)
= max

Q∈∆p

IQ(Z; Ŷ )− IQ(Z; Ŷ |S)

(b)

≥ IQ0
(Z; Ŷ )− IQ0

(Z; Ŷ |S)
(c)
= HQ0

(Z) +HQ0
(Ŷ )−HQ0

(Z, Ŷ )−HQ0
(Z|S)−HQ0

(Ŷ |S) +HQ0
(Z, Ŷ |S)

(d)
= IQ0

(Ŷ ;S)− IQ0
(Ŷ ;S|Z)

(e)
= IQ0

(Ŷ ;S)
(f)

≥ 0.

Here, (a) hold from definition of Red(Z:Ŷ , S), (b) hold since Q0 ∈ ∆p, (c)-(d) holds from expressing
mutual information in terms of entropy, (e) hold since IQ0

(Ŷ ;S|Z) = 0, (f ) holds from non-negativity
property of mutual information.

D ADDITIONAL RESULTS AND PROOFS FOR SECTION 3.2

Theorem 1 (Impossibility of Using Local Fairness to Attain Global Fairness). As long as Redundant
Disparity Red(Z:Ŷ , S) > 0, the Global Disparity I(Z; Ŷ ) > 0 even if Local Disparity goes to 0.

Proof. For completeness, we have provided a detailed proof that demonstrates the non-negativity
property of the terms involved.

Uni(Z:Ŷ |S) = minQ∈∆p IQ(Z; Ŷ |S) is non-negative since the conditional mutual information is
non-negative by definition.

Syn(Z:Ŷ , S) = I(Z; Ŷ |S)−minQ∈∆p
IQ(Z; Ŷ |S) ≥ I(Z; Ŷ |S)− I(Z; Ŷ |S) = 0.

The Redundant Disparity:

Red(Z:Ŷ , S) = I(Z; Ŷ )− min
Q∈∆p

IQ(Z; Ŷ |S) = max
Q∈∆p

IQ(Ŷ ;Z)− IQ(Z; Ŷ |S)

First equality holds by definition. Second equality holds since marginals on (Ŷ , Z) is fixed in ∆p,
hence, maxQ∈∆p IQ(Ŷ ;Z) = I(Ŷ ;Z).

To prove non-negativity of redundant disparity, we construct a distribution Q0 such that:

Pr
Q0

(Z = z, Ŷ = y, S = s) =
Pr(Z = z, Ŷ = y) Pr(Z = z, S = s)

Pr(Z = z)

Next, we show Q0 ∈ ∆p. Recall the set ∆p in Definition 1:

∆p = {Q ∈ ∆ : Pr
Q
(Z = z, Ŷ = y) = Pr(Z = z, Ŷ = y),Pr

Q
(Z = z, S = s) = Pr(Z = z, S = s)}.
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Pr
Q0

(Z = z, Ŷ = y) =
∑
s

Pr
Q0

(Z = z, Ŷ = y, S = s) =
∑
s

Pr(Z = z, Ŷ = y)

Pr(Z = z)
Pr(Z = z, S = s)

=
Pr(Z = z, Ŷ = y)

Pr(Z = z)

∑
s

Pr(Z = z, S = s) = Pr(Z = z, Ŷ = y).

Pr
Q0

(Z = z, S = s) =
∑
ŷ

Pr
Q0

(Z = z, Ŷ = y, S = s) =
∑
ŷ

Pr(Z = z, Ŷ = y) Pr(Z = z, S = s)

Pr(Z = z)

=
Pr(Z = z, S = s)

Pr(Z = z)

∑
ŷ

Pr(Z = z, Ŷ = y) = Pr(Z = z, S = s).

Marginals of Q0 satisfy conditions on set ∆p, hence Q0 ∈ ∆p. Also, note that by construction of Q0,
Ŷ and S are independent conditioned on Z, i.e., IQ0

(Ŷ ;S|Z) = 0. Hence, we have:

Red(Z:Ŷ , S)
(a)
= max

Q∈∆p

IQ(Z; Ŷ )− IQ(Z; Ŷ |S)

(b)

≥ IQ0
(Z; Ŷ )− IQ0

(Z; Ŷ |S)
(c)
= HQ0

(Z) +HQ0
(Ŷ )−HQ0

(Z, Ŷ )−HQ0
(Z|S)−HQ0

(Ŷ |S) +HQ0
(Z, Ŷ |S)

(d)
= IQ0

(Ŷ ;S)− IQ0
(Ŷ ;S|Z)

(e)
= IQ0

(Ŷ ;S)
(f)

≥ 0.

Here, (a) hold from definition of Red(Z:Ŷ , S), (b) hold since Q0 ∈ ∆p, (c)-(d) holds from expressing
mutual information in terms of entropy, (e) hold since IQ0

(Ŷ ;S|Z) = 0, (f ) holds from non-negativity
property of mutual information.

Hence, from proposition 1, we prove Theorem 1.

As Local Disparity I(Z; Ŷ |S) → 0, then Uni(Z:Ŷ |S) → 0 and Syn(Z:Ŷ , S) → 0, therefore the
Global Disparity I(Z; Ŷ ) → Red(Z:Ŷ , S) ≥ 0.

Theorem 2 (Global Fairness Does Not Imply Local Fairness). As long as Masked Disparity
Syn(Z:Ŷ , S)>0, local fairness will not be attained even if global fairness is attained.

Proof. Proof requires the non-negativity property of PID terms (follows similarly from proof of
Theorem 1). The argument then goes as follows:

As Global Disparity I(Z; Ŷ ) → 0, then Uni(Z:Ŷ |S) → 0 and Red(Z:Ŷ , S) → 0, therefore the
Local Disparity I(Z; Ŷ |S) → Syn(Z:Ŷ , S) ≥ 0.

Theorem 3 (Necessary and Sufficient Condition to Achieve Global Fairness Using Local Fairness). If
Local Disparity I(Z; Ŷ |S) goes to zero, then Global Disparity I(Z; Ŷ ) also goes to zero, if and only
if the Redundant Disparity Red(Z:Ŷ , S)=0. A sufficient condition for Red(Z:Ŷ , S)=0 is Z⊥⊥S.

Proof. From the PID of Local and Global Disparity,

I(Z; Ŷ ) = Uni(Z:Ŷ |S) + Red(Z:Ŷ , S),

I(Z; Ŷ |S) = Uni(Z:Ŷ |S) + Syn(Z:Ŷ , S).

Therefore if, I(Z; Ŷ |S) = 0, then Uni(Z:Ŷ |S) = 0. Hence,

I(Z; Ŷ ) = Red(Z:Ŷ , S)
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I(Z; Ŷ ) = 0 ⇐⇒ Red(Z:Ŷ , S) = 0.

To prove the sufficient condition, we leverage the PID of I(Z;S) and the non-negative property of
the PID terms:

I(Z;S) = Uni(Z:S|Ŷ ) + Red(Z:Ŷ , S)

I(Z;S) ≥ Red(Z:Ŷ , S).

Hence, Z ⊥⊥ S =⇒ Red(Z:Ŷ , S) = 0.

Lemma 3. A sufficient condition for Red(Z:Ŷ , S) = 0 is Syn(Z:Ŷ , S) = 0 and Ŷ ⊥⊥ S.

Proof. Interaction information expressed in PID terms (see Definition 8):

I(Z; Ŷ ;S) = I(Z; Ŷ )− I(Z; Ŷ |S) = Red(Z:Ŷ , S)− Syn(Z; Ŷ , S).

If Masked Disparity Syn(Z; Ŷ , S) = 0, we have:

I(Z; Ŷ ;S) = I(Z; Ŷ )− I(Z; Ŷ |S) = Red(Z:Ŷ , S) ≥ 0

Since the interaction information is positive and symmetric,

I(Ŷ ;S) ≥ I(Ŷ ;S)− I(Ŷ ;S|Z) = Red(Z:Ŷ , S).

Therefore, Ŷ ⊥⊥ S =⇒ Red(Z:Ŷ , S) = 0.

Theorem 4. Local disparity will always be less than Global Disparity if and only if Masked Disparity
Syn(Z:Ŷ , S) = 0. A sufficient condition is when Z − Ŷ − S form a Markov chain.

Proof. By leveraging the PID of I(Z;S|Ŷ ),

I(Z;S|Ŷ ) = Uni(Z:S|Ŷ ) + Syn(Z:Ŷ , S).

Markov chain Z − Ŷ − S implies, I(Z;S|Ŷ ) = 0. Hence, Syn(Z:Ŷ , S) = 0.

Rest of proof follows from nonnegative property of PID terms:

I(Z; Ŷ |S) = Uni(Z:Ŷ |S) ≤ Uni(Z:Ŷ |S) + Red(Z:Ŷ , S) = I(Z; Ŷ ).

E PROOFS FOR SECTION 3.3

Definition 9 (Convex Function). A function f : Rn → R is said to be convex if, for all x1, x2 ∈ Rn

and for all λ ∈ [0, 1], the following inequality holds:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). (12)

Lemma 4 (Log Sum Inequality). The log-sum inequality states that for any two sequences of
non-negative numbers a1, a2, . . . , an and b1, b2, . . . , bn, the following inequality holds:

n∑
i=1

ai log

(
ai
bi

)
≥

(
n∑

i=1

ai

)
log

(∑n
i=1 ai∑n
i=1 bi

)
. (13)

Theorem 5. The AGLFOP is a convex optimization problem.

Proof. The set ∆p is a convex set, since for any two points Q1, Q2 ∈ ∆p, their convex combination
also lies in ∆p (probability simplex). To prove AGFOP is a convex optimization problem, we show
each term is convex in Q using the definition of a convex function (see Definition 9).

Let Q ∈ ∆p denote the joint distribution for (Z, S, Y, Ŷ ). For brevity, we denote Pr(Z = z, S =
s, Y = y) = p(z, s, y), the fixed marginals on (Z, S, Y ). Additionally, we denote PrQ(Z = z, S =

s, Y = y, Ŷ = ŷ) = Q(z, s, y, ŷ) as the probability under distribution Q.
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To prove that err(Q) is convex, we need to show: err(Qλ) ≤ λerr(Q1) + (1− λ)err(Q2), where
Qλ = λQ1 + (1− λ)Q2, ∀Q1, Q2 ∈ ∆p, and λ ∈ [0, 1].

We first express err(Qλ) as:

err(Qλ) =
∑

z,s,y,ŷ

Qλ(z, s, y, ŷ) · I(y ̸= ŷ)

= λ
∑

z,s,y,ŷ

Q1(z, s, y, ŷ) · I(y ̸= ŷ) + (1− λ)
∑

z,s,y,ŷ

Q2(z, s, y, ŷ) · I(y ̸= ŷ)

= λerr(Q1) + (1− λ)err(Q2).

Thus, err(Q) is convex as it satisfies the convexity condition.

To prove convexity of IQ(Z; Ŷ ), we show that ∀Q1, Q2 ∈ ∆p and ∀λ ∈ [0, 1], the following
inequality holds: IQλ

(Z; Ŷ )) ≤ λIQ1(Z; Ŷ ) + (1− λ)IQ2(Z; Ŷ ).

Note that the marginals are convex in the joint distribution, i.e., Qλ(z, ŷ) =
∑

s,y Qλ(z, s, y, ŷ).

This is not necessarily true for conditionals. However, when some marginals are fixed, convexity
holds for some conditionals, i.e., Qλ(ŷ|z) =

∑
s,y Qλ(z, s, y, ŷ)/p(z).

Note that the conditional Qλ(ŷ|z) is convex in the joint distribution Qλ(z, s, y, ŷ).

Qλ(ŷ|z) =
∑
s,y

Qλ(z, s, y, ŷ)/p(z) =
∑
s,y

Qλ(ŷ|z, s, y)p(s, y, z)/p(z)

=
∑
s,y

Qλ(ŷ|z, s, y)p(s, y|z).

Hence, we can show convexity of IQ(Z; Ŷ ) in Qλ(ŷ|z):

IQλ
(Z; Ŷ ) =

∑
z,ŷ

Qλ(z, ŷ) log

(
Qλ(z, ŷ)

Qλ(z)Qλ(ŷ)

)

=
∑
z,ŷ

Qλ(z)Qλ(ŷ|z) log
(
Qλ(ŷ|z)
Qλ(ŷ)

)
(a)
=
∑
z,ŷ

p(z)(λQ1(ŷ|z) + (1− λ)Q2(ŷ|z)) log
(
λQ1(ŷ|z) + (1− λ)Q2(ŷ|z)
λQ1(ŷ) + (1− λ)Q2(ŷ)

)
(b)

≤ λ
∑
z,ŷ

p(z)Q1(ŷ|z) log
(
Q1(ŷ|z)
Q1(ŷ)

)
+ (1− λ)

∑
z,ŷ

p(z)Q2(ŷ|z) log
(
Q2(ŷ|z)
Q2(ŷ)

)
= λIQ1

(Z; Ŷ ) + (1− λ)IQ2
(Z; Ŷ ).

Here (a) holds from expressing the linear combinations. Also note that, Qλ(ŷ) =
∑

z Qλ(ŷ|z)p(z),
which can also be expressed as a linear combination. The inequality (b) holds from the log-sum
inequality (see Lemma 4).

To prove the convexity of IQ(Z; Ŷ |S), we show that ∀Q1, Q2 ∈ ∆p and ∀λ ∈ [0, 1], the following
inequality holds: IQλ

(Z; Ŷ |S) ≤ λIQ1
(Z; Ŷ |S) + (1− λ)IQ2

(Z; Ŷ |S).
Note that the conditional Qλ(ŷ|z, s) is convex in the joint distribution Qλ(z, s, y, ŷ):

Qλ(ŷ|z, s) =
∑
y

Qλ(ŷ, z, s, y)/p(z, s) =
∑
y

Qλ(ŷ|z, s, y)p(y, z, s)/p(z, s)

=
∑
y

Qλ(ŷ|z, s, y)p(y|z, s).
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Hence, we can show convexity of IQ(Z; Ŷ |S) in Qλ(ŷ|z, s):

IQλ
(Z; Ŷ |S) =

∑
z,s,ŷ

Qλ(z, s, ŷ) log

(
Qλ(ŷ|z, s)
Qλ(ŷ|s)

)
(a)
=
∑
z,s,ŷ

p(z, s) (λQ1(ŷ|z, s) + (1− λ)Q2(ŷ|z, s)) log
(
λQ1(ŷ|z, s) + (1− λ)Q2(ŷ|z, s)
λQ1(ŷ|s) + (1− λ)Q2(ŷ|s)

)
(b)

≤ λ
∑
z,s,ŷ

p(z, s)Q1(ŷ|z, s) log
(
Q1(ŷ|z, s)
Q1(ŷ|s)

)
+ (1− λ)

∑
z,s,ŷ

p(z, s)Q2(ŷ|z, s) log
(
Q2(ŷ|z, s)
Q2(ŷ|s)

)
= λIQ1

(Z; Ŷ |S) + (1− λ)IQ2
(Z; Ŷ |S).

The equality (a) holds from linear combinations of Qλ(ŷ|s) =
∑

z Qλ(ŷ|z, s)p(z|s). The inequality
(b) holds due to the application of the log-sum inequality (see Lemma 4).

F EXPANDED EXPERIMENTAL SECTION

This section includes additional results, expanded tables, figures, and details that provide a more
comprehensive understanding of our study.

Dataset. We consider the following datasets:

(1) Synthetic dataset: A 2-D feature vector X = (X0, X1) follows a distribution given by X|Y=1 ∼
N ((2, 2), [ 5 1

1 5 ]), X|Y=0 ∼ N ((−2,−2), [ 10 1
1 3 ]). Assume Z is a binary sensitive attribute such that

Z = 1 if X0 > 0, else Z = 0, to encode dependence of X0 with Z.

(2) Adult dataset: The Adult dataset is a publicly available dataset in the UCI repository based on
1994 U.S. census data (Dua & Graff, 2017). The goal is to predict whether an individual earns more
or less than $50,000 per year based on features such as occupation, marital status, and education. We
select gender as a sensitive attribute, with men as Z=1 and women as Z=0.

Client Distribution. We strategically partition our datasets across clients to examine scenarios
characterized by Unique, Redundant, and Masked Disparities.

Scenario 1: Uniform Distribution of Sensitive Attributes Across Clients. The sensitive attribute Z is
independently distributed across clients, i.e., Z ⊥⊥ S. We randomly distribute the data across clients.

Scenario 2: High Heterogeneity in Sensitive Attributes Across Clients. We split to observe hetero-
geneity in the distribution of sensitive attributes across clients, i.e., Z = S with a probability α. For
instance, when α = 0.9, the client with S = 0 consists of 90% women, while the client with S = 1
is composed of 90% men. For the Adult dataset, we use α = Pr(Z = 0|S = 0) as a parameter to
regulate this heterogeneity.

Scenario 3: High Synergy Level Across Clients. The true label Y ≈ Z ⊕ S. To emulate this scenario,
we partition the data such that client S = 0 possesses data of males (Z = 1) with true labels Y = 1
and females (Z = 0) with true labels Y = 0. Conversely, client S = 1 contains the remaining data,
i.e., males with Y = 0 and females with Y = 1.

We introduce the synergy level (Definition 10) to measure alignment to Y = Z ⊕ S.

Definition 10 (Synergy Level (λ)). The synergy level λ ∈ [0, 1] of a given dataset and client
distribution is defined as the probability that the true label Y is aligned with Z ⊕ S,

λ = Pr(Y = Z ⊕ S),

where λ = 1 implies perfect alignment between Y and Z ⊕ S, and λ = 0 implies zero alignment.

To set λ when splitting data across clients, we first split with perfect XOR alignment and then shuffle
fractions of the dataset between clients.

Adult Heterogeneous Split. In Fig. 3 (fourth row), we split the Adult dataset to capture various
disparities simultaneously. We set the synergy level λ = 0.8 (see Definition 10). Due to the nature
of the Adult dataset, this introduces some correlation between the sensitive attribute Z and client S.
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F.1 EXPERIMENT A: ACCURACY-GLOBAL-LOCAL-FAIRNESS TRADE-OFF PARETO FRONT.

To study the trade-offs between model accuracy and different fairness constraints, we plot the Pareto
frontiers for the AGLFOP. We solve for maximum accuracy (1− err) while varying global and local
fairness relaxations (ϵg, ϵl). We present results for synthetic and Adult datasets as well as PID terms
for various data splitting scenarios across clients. The three-way trade-off among accuracy, global,
and local fairness can be visualized as a contour plot (see Fig. 3).

For the Adult dataset, we restrict our optimization space ∆p to lie within the convex hull derived by
the False Positive Rate (FPR) and True Positive Rate (TPR) of an initially trained classifier (trained
using FedAvg). This characterizes the accuracy-fairness for all derived classifiers from the original
trained classifier (motivated by the post-processing technique from Hardt et al. (2016)). The convex
hall characterizes the distributions that can be achieved with any derived classifier. The convex hull
for each protected group is composed of points, including (0, 0), (TPR,FPR), (TPR,FPR) and
(1, 1), where TPR and FPR denote the true positive and false positive rates of a predictor that
inverts all predictions for a protected group. Future work could explore alternative constraints for
various specialized applications.

F.2 EXPERIMENT B: DEMONSTRATING DISPARITIES IN FEDERATED LEARNING SETTINGS.

In this experiment, we investigate the PID of disparities in the Adult dataset trained within a FL
framework. We employ the FedAvg algorithm (McMahan et al., 2017) for training.

Setup. Our FL model employs a two-layer architecture with 32 hidden units per layer, using ReLU
activation, binary cross-entropy loss, and the Adam optimizer. The server initializes the model
weights and distributes them to clients, who train locally on partitioned datasets for 2 epochs with a
batch size of 64. Client-trained weights are aggregated server-side via the FedAvg algorithm, and this
process iterates until convergence. Evaluation metrics are estimated using the dit package (James
et al., 2018), which includes PID functions for decomposing Global and Local Disparities into Unique,
Redundant, and Masked Disparity, following the definition from Bertschinger et al. (2014).

We analyze the following scenarios:

PID of Disparity Across Various Splitting Scenarios. We partition the dataset across two clients,
each time varying the level of sensitive attribute heterogeneity (α = Pr(Z = 0|S = 0)). The
Adult dataset exhibits a gender imbalance with a male-to-female ratio of 0.33 : 0.67. Consequently,
Pr(Z = 0) = 0.33, making α = Pr(Z = 0|S = 0) = 0.33 the independently distributed case.

In this first setup, we distribute the sensitive attribute uniformly across clients (splitting scenario
1) and employ FedAvg for training. The FL model achieves an accuracy of 84.45% with a Global
Disparity of 0.0359 bits and a Local Disparity of 0.0359 bits. The PID reveals that the Unique
Disparity is 0.0359 bits, with both Redundant and Masked Disparities being negligible. This aligns
with our centralized baseline, indicating that the disparity originates exclusively from the dependency
between the model’s predictions and the sensitive attributes, rather than being influenced by S.

When the dataset is split to introduce high heterogeneity in sensitive attributes across clients (splitting
scenario 2), the resulting FL model exhibits a Global Disparity of 0.0431 bits and a Local Disparity
of 0.0014 bits. PID reveals a Redundant Disparity of 0.0431 bits and a Masked Disparity of 0.0014
bits, with no Unique Disparity.

Next we split and train according to splitting scenario 3 (λ = 0.9). The trained model reports a Local
Disparity of 0.1761 bits and a Global Disparity of 0.0317 bits. The PID decomposition shows a
Masked Disparity of 0.1761 bits and a Redundant Disparity of 0.0317 bits, with no Unique Disparity
observed. The emergence of non-zero Redundant Disparity is attributable to the data splitting, which
consequently leads to I(Z;S) = 0.2409 bits.

We summarize the three scenarios in Fig. 4. Additionally, we evaluate the effects of using a naive
local disparity mitigation technique on the various disparities present.

Effects of Naive Local Fairness Mitigation Technique. We evaluate the effects of using a naive local
disparity mitigation technique on the various disparities present. This is achieved by incorporating a
statistical parity regularizer to the loss function at each individual client:
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Figure 5: Plot demonstrating scenarios with Unique, Redundant, and Masked Disparities for the
Adult dataset 5 client case. Difficulty in splitting to achieve pure Redundant and Masked Disparity
due to the proportion of labels in the dataset.

client loss = client cross entropy loss + β client fairness loss.

We use an implementation from FairTorch package (Akihiko Fukuchi, 2021). The term β is a
hyperparameter that trades off between accuracy and fairness. We use β = 0.1 to maintain similarly
accurate models. The results are presented in Table 1.

Table 1: Table illustrates the effects of using a naive local disparity mitigation technique on the
various scenarios. It proved efficacious only when Unique Disparity is present (scenario 1). However,
with high redundancy or synergy (scenarios 2 &3), the utilization of the disparity mitigation technique
exacerbated disparities.

Loc. Glob. Uniq. Red. Mas.

Scenario 1 0.0359 0.0359 0.0359 0.0000 0.0000
+ fairness 0.0062 0.0062 0.0062 0.0000 0.0000

Scenario 2 0.0014 0.0431 0.0000 0.0431 0.0014
+ fairness 0.0110 0.0626 0.0000 0.0626 0.0110

Scenario 3 0.1761 0.0317 0.0000 0.0317 0.1761
+ fairness 0.0935 0.0418 0.0053 0.0365 0.0882

PID of Disparity under Heterogeneous Sensitive Attribute Distribution. We analyze the PID
of Local and Global Disparities under different sensitive attribute distributions across clients. We
train the model with two clients, each having equal-sized datasets. We use α = Pr(Z = 0|S = 0)
to represent sensitive attribute heterogeneity. Note that for a fixed α, the proportions of sensitive
attributes at the other client are fixed. For example since Pr(Z = 0) = 0.33 for the Adult dataset,
α = 0.33 results in even distribution of sensitive attributes across the two clients. Our results are
summarized in Fig. 4 and Table 2. We also provide results for 10 federating clients in Table 4.

Table 2: The PID of Global and Local Disparity for varying sensitive attribute heterogeneity α

α I(Z;S) Local Global Unique Redundant Masked I(Ŷ ;S) Accuracy

0.1 0.1877 0.0262 0.0342 0.0000 0.0342 0.0262 0.0080 86.54%
0.2 0.0575 0.0336 0.0364 0.0064 0.0301 0.0273 0.0028 86.95%
0.3 0.0032 0.0363 0.0365 0.0332 0.0032 0.0031 0.0002 86.86%
0.33 0.0000 0.0340 0.0340 0.0340 0.0000 0.0000 0.0000 87.34%
0.4 0.0154 0.0311 0.0319 0.0186 0.0133 0.0125 0.0009 86.70%
0.5 0.0957 0.0368 0.0413 0.0023 0.0390 0.0345 0.0045 86.77%
0.6 0.2613 0.0242 0.0346 0.0000 0.0346 0.0242 0.0104 86.61%
0.66 0.4392 0.0185 0.0325 0.0000 0.0325 0.0185 0.0140 86.36%

Observing Levels of Masked Disparity. We aim to gain a deeper understanding of the circumstances
with Masked Disparities. Through scenario 3, we showed how high Masked Disparities can occur.
However, the level of synergy portrayed in the example may not always be present in practice. We
attempt to quantify this using a metric synergy level. The synergy level (λ) measures how closely the
true labels Y align with the XOR of Z and S (see Definition 10). To achieve a high synergy level, we
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Figure 6: Plot showing the PID of disparities when the data is near i.i.d. among K = 10 clients. All
types of disparities can be observed. The value α = 0.33 represents the case where the data is i.i.d.
and only Unique Disparity is observed.

apply the method outlined in Scenario 3. To decrease λ, we randomly shuffle data points between
clients until the synergy level reaches 0. We conduct experiments with varying levels of synergy to
observe the impact on the Masked Disparity. The results are summarized in Fig. 4 and Table 3.

Table 3: PID of Global and Local Disparity under varying synergy levels λ
λ I(Z;S) Loc. Glob. Uniq. Red. Mas. I(Ŷ ;S) Acc. I(Z; Ŷ |S = 0) I(Z; Ŷ |S = 1)

0 0.0035 0.0402 0.0373 0.0338 0.0035 0.0063 0.0005 85.12% 0.0196 0.0608
0.25 0.0113 0.0486 0.0419 0.0308 0.0111 0.0178 0.0009 85.54% 0.0819 0.0152
0.5 0.0299 0.0536 0.0335 0.0127 0.0208 0.0410 0.0033 85.24% 0.1056 0.0017

0.75 0.0846 0.0932 0.0366 0.0023 0.0343 0.0909 0.0068 85.26% 0.0024 0.1840
1 0.2409 0.1644 0.0149 0.0000 0.0150 0.1644 0.0201 84.30% 0.0839 0.2450

Multiple Client Case. We examine scenarios involving multiple clients. Observations are similar to
the two-client case previously studied. To observe a high Unique Disparity, sensitive attributes need
to be identically distributed across clients. To observe the Redundant Disparity, there must be some
dependency between clients and a specific sensitive attribute, meaning certain demographic groups
are known to belong to a specific client. The Masked Disparity can be observed when there is a high
level of synergy or XOR behavior between variables Z and S. Note that since S is no longer binary,
we can convert its decimal value to binary and then take the XOR.

We experiment with K = 5 clients and examine the three disparities. To observe the Unique Disparity
by randomly distributing the data among clients. For Redundant Disparity, we divide the data such
that the first two clients are mostly females and the remaining three clients are mostly males. For
Masked Disparity, we distribute the data similarly to scenario 3 (see Fig. 5 and Fig. 6).

Additional Insights from Experiments. When data is uniformly distributed across clients, Unique
Disparity is dominant and contributes to both global and local unfairness (see Fig. 4 Scenario 1:
model trained using FedAvg on the adult dataset and distributed uniformly across clients). In the
trade-off Pareto Front (see Fig. 3, row 1), we see that both local and global fairness constraints have
balanced tradeoffs with accuracy. The PID decomposition (Fig. 4, row 1, column 2,3,4) explains this
as we see the disparity is mainly Unique Disparity, with little Redundant or Masked Disparity. The
Unique Disparity highlights where Local and Global Disparity agree.

In the case with sensitive attribute heterogeneity (sensitive attribute imbalance across clients). We
observe mainly Redundant Disparity (see Fig. 4, scenario 2 and middle), this is a globally unfair
but locally fair model (recall Proposition 1). Observe in the tradeoff plot (see Fig. 3, row 2) that the
accuracy trade-off is with mainly global fairness (an accurate model could have zero Local Disparity
but be globally unfair).

In the cases with sensitive-attribute synergy across clients. For example, in a two-client case (one
client is more likely to have qualified women and unqualified men and vice versa at the other client).
We observe that the Mask Disparity is dominant (see Fig. 4, Scenario 3). The trade AGLFOP tradeoff
plot (see Fig. 3, row 3) is characterized by Masked Disparity with trade-offs mainly between local
fairness and accuracy (an accurate model could have zero Global Disparity but be locally unfair). The
Redundant and Masked Disparity highlights where Local and Global Disparity disagree.
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Table 4: PID of Global & Local Disparity for various sensitive attribute distributions across 10 clients.

α Unique Redundant Masked Global Local Accuracy

0.25 0.0219 0.0190 0.0178 0.0409 0.0409 84.85%
0.33 0.0376 0.0000 0.0000 0.0376 0.0376 85.58%
0.4 0.0268 0.0141 0.0137 0.0410 0.0405 84.85%
0.45 0.0107 0.0289 0.0270 0.0390 0.0377 84.85%

The AGLFOP provides the theoretical boundaries trade-offs, capturing the optimal performance any
model or FL technique can achieve for a specified dataset and client distribution. For example, say
one wants a perfectly globally fair and locally fair model, i.e., (ϵg = 0, ϵl = 0). Under high sensitive
attribute heterogeneity (see Fig. 3, row 2), they cannot have a model that does better than 64%.
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