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ABSTRACT

Data inversion in neural networks allows to map intermediate network variables
to their input source. Inversion of convolutional layers is not straightforward
and is often performed approximately by training additional inversion networks.
Approaching this as a linear operator inversion problem requires extremely large
computational and memory resources, as huge matrices are involved. In this work
we present Scalable TRimmed Iterative Projections (STRIP), a fast and sparse
linear solver dedicated to the convolutional inversion problem.

We take advantage of the neural convolution structure to design a series of very
fast projections (following the block Kaczmarz paradigm). We prove conditions for
convergence for the two-strip case and propose a measure to estimate the rate of
error reduction for the general case. In practice, we show that a single pass over
the inversion matrix by STRIP can almost perfectly solve the inversion problem.
Our algorithm is fast, low on memory and can scale to very large matrices. We do
not have to store the linear matrix to be inverted, hence can surpass by 3 orders of
magnitude linear sparse solvers, such as conjugate gradient. Extensive experiments
demonstrate that our method considerably outperforms the best competing solvers
by both speed and memory footprint. We further show that a single STRIP iteration
is more accurate than transposed convolutions, motivating the use of such methods
in U-Net architectures.
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Figure 1: Comparison of our proposed method (STRIP) against classical sparse iterative solvers
on the CelebA-HQ dataset (2562 pixels), for a 16 output channels convolutional layer. The top
row shows reconstructions after a single iteration, with corresponding PSNR values relative to the
ground truth image. The bottom row depicts reconstructions at the first iteration where each baseline
surpasses the PSNR of STRIP after one iteration, along with the required iteration count and runtime.
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1 INTRODUCTION

Convolutional layer inversion is a highly relevant research direction due to its close connection with
widely used encoder-decoder architectures such as U-Net (Ronneberger et al.,2015)), which play a
central role in diffusion models during the reverse process. In these architectures, the encoder branch
primarily employs convolutional layers to extract informative image features, while the decoder aims
to accurately reconstruct the original image from these representations. Achieving reliable image
reconstruction therefore requires the ability to effectively invert the operation of convolutional layers.

However, in most cases the encoder-decoder pipeline is trained jointly in an end-to-end manner.
That is, most existing inversion techniques rely on learnable models, often overlooking the inherent
mathematical properties of convolutional operations.

Our approach, a variant of the block Kaczmarz family of methods (Elfving, |1980; [Needell & Troppl
2014), formulates convolutional inversion as a linear system. This perspective enables us to directly
exploit the structural attributes of the convolutional layer’s matrix. By leveraging this structure,
we design a fast-converging iterative inversion algorithm that achieves both efficiency and reliable
reconstruction.

Our work provides mathematically grounded insights and establishes feasible conditions for fast
convergence to the analytic solution, which is the pseudoinverse (PINV).

Our main contributions are:

1. We tackle the problem of convolutional layer inversion in a non-learning setting, relying on
linear algebra fundamentals to derive the solution.

2. Unlike existing block Kaczmarz algorithms, our method is tailored specifically to convolu-
tional layer matrices, enabling us to utilize their structure for an informed strip selection
strategy that accelerates convergence.

3. Our algorithm avoids constructing the full or even sparse representation of the convolutional
matrix, which becomes highly expensive in high dimensional settings - unlike many standard
iterative solvers.

4. We provide a mathematical justification for our strip based partitioning scheme and explain
the reasoning underlying our design choices.

2 RELATED WORK

Neural network inversion has become an active and rapidly evolving area of research. Much of the
recent work focuses on interpretability, aiming to better understand the decision-making process of
neural networks and to reveal their invariances, weaknesses, and blind spots (Rathjens et al., [2024;
Suhail & Sethi, 2024; Zeiler & Fergus| 2014; Fel et al., 2023)).

Another prominent line of work addresses deconvolution for tasks such as denoising and deblurring.
It is important to note, however, that the operation of a convolution layer in a neural network differs
from classical convolution. In the classical case, convolution involves flipping the kernel before
computing the weighted sum, while in neural networks the operation corresponds to cross-correlation.
More importantly, neural network convolution layers operate simultaneously across multiple input
channels, whereas classical convolution typically applies to a single channel (or separately across
channels in the multi-channel setting). This distinction explains why classical approaches such as
FFT-based deconvolution (Cooley & Tukey, |1965) or Wiener filtering (Wiener, [1949)) are not directly
applicable to convolution layer inversion in neural networks. These methods assume the properties
of classical convolution and therefore fail to capture the multi-channel structure inherent in modern
convolutional layers (for further discussion, see Appendix [A.T).

Many inversion approaches rely on learnable models, including neural networks and more recently
diffusion-based methods, to approximate the mapping from outputs back to inputs. While these
approaches have achieved impressive results, they often lack the mathematical grounding that
leverages the forward mapping (input — output) to explicitly construct the inverse mapping (output
— input). As aresult, they are less adaptive to specific scenarios and entail considerable computational
cost during both training and inference.
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A widely adopted strategy for implementing convolutional layer inversion in a learnable framework
is the use of transposed convolution (or up-convolution) layers (Long et al.,[2015)). This operation is
most commonly employed in decoder branches of architectures such as U-Net (Ronneberger et al.|,
2015)), where it serves to progressively reconstruct spatial structure from compressed representations.
Transposed convolutions are also frequently used as standalone inversion modules for intermediate
feature maps in neural networks (Dosovitskiy et al., 2016).These methods can produce strong
reconstruction results. However, they do not constitute a true mathematical inversion. Moreover,
they require a costly training phase prior to deployment, which further limits their efficiency and
adaptability.

When a convolutional layer is viewed as a linear system, one can leverage classical linear solvers:
either by analytically inverting the corresponding convolution matrix, or by computing approximate
solutions through iterative methods, some more traditional including conjugate gradient (Hestenes
et al.,{1952), Gauss Seidel (Seidel, |1873)), gradient descent (Cauchy et al., |1847), LSMR (Fong &
Saunders, 201 1)) or LSOR (Paige & Saunders, |1982)), and some less familiar such as block Kaczmarz
methods (Elfving), |1980) (more details can be found in Section @]) The shortcoming of the former
lies in its massive memory and time requirements, while the latter often suffers from low accuracy in
the early iterations and may demand impractically long runtimes to converge. A key limitation of the
linear system perspective is that it overlooks the specific structure of convolutional layer matrices.

3 PRELIMINARIES

3.1 SETTING AND NOTATIONS

We focus on the problem of inverting a convolutional layer in a neural network. A natural way to
formulate this inversion is as a linear system of equations. By explicitly constructing the matrix
representation of the convolutional layer, we can regard it as a matrix A, leading to the system:

Arx=b, AcR™"™ zecR" beR™ )]

The setting of interest in our work is the overdetermined regime (m > n), where the system Eq.
has typically O solutions. The solution x* we strive to find is a solution of the least-squares
optimization problem:

z* = argming| Az — bl = ATb, 2)
where A denotes the Moore-Penrose (MP) inverse (or pseudoinverse, denoted as PINV) of A. For
an invertible A” A we have a closed form expression:

AT = (AT A)71 AT, 3)
When the system is underdetermined (oo solutions), for an invertible AAT we get:
AT = AT(AAT)L, “

This scenario frequently arises in practical neural networks where an input is mapped to a higher
number of channels to form richer feature maps. This situation is particularly relevant in architectures
such as U-Net, where a more efficient alternative to learned transposed convolution layers is desirable
for the decoding stage.

We can also define through the PINV the space of solutions by using the matrix kernel. Let the
null-space of A be

N(A) :={z e R" | Az = 0}, 5)
where O is the zero vector of length n. We define the following kernel matrix K,
K=1-—AA, (6)

where [ is the identity matrix. Then K is the orthogonal projection onto the null-space of A.

Active Columns: Let A; € R"*™ be a submatrix of A, that is obtained by selecting m,; rows of A.
The set of active columns of A; is those columns that contain at least one nonzero entry. The trimmed
matrix, denoted by A;, consists of only the active columns of A;.

Idempotency: Let A be a square matrix. This matrix is idempotent if A> = A. The eigenvalues of
this kind of matrix are either zero or one.
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General Case Orthogonal Case

Figure 2: Illustration of our method on a two-dimensional toy problem. In the general case (left),
the iterations gradually approach the solution x* , requiring multiple updates for convergence. In
contrast, in the orthogonal case (right), a single full sweep over the matrix is sufficient to reach the
solution. The notation follows the update rules given in Eq. @) and Eq. @)

3.2 BLOCK KACZMARZ

A central challenge in higher dimensions is that explicitly constructing the full matrix A is very
expensive in terms of memory. To address this, iterative methods have been proposed, among which
the block Kaczmarz (BK) algorithm is especially appealing. Instead of inverting the full matrix, BK
operates by selecting one block of rows of A at each iteration, solving the corresponding subproblem.
The method is closely related to alternating projections (von Neumann) |1933}; [Bregman, [1965)), where
the original problem is decomposed into smaller subproblems - each corresponding to a subspace
defined by a block of A - where a solution is reached by iterative projections across subspaces.

Formally, for the system in Eq. , let A;, € R™#*" denote a block of rows of A that is selected
for the ¢°th iteration and b;, € R the respective block of the right-hand side. The index i is a
partition of A, and the subindex ¢ indicates iteration. In the general case, the partition can change
each iteration. At iteration ¢, the BK update is given by

x(t+1) _ J)(t) + AL (bit — Ait,]j(t))’ @)

where A:;rt denotes the PINV of the block A;,.

4 METHOD

Our method decomposes the convolutional system into strips and iteratively integrates their solutions
to approximate the PINV. Unlike the general-purpose BK algorithm, our variant exploits the convolu-
tional structure to achieve major gains: (i) compute the PINV only in active columns and update the
corresponding entries of z; (ii) select maximally orthogonal strips to obtain a near-idempotent block
operator /C, accelerating convergence; and (iii) align strip lengths with the cyclic structure so that all
strips share active columns, allowing reuse of PINV - especially simple in the valid convolution case.

Consider a convolution layer with kernel k& € RCou*CinxHexWk \where (', is the number of filters
(output channels), each of dimension R *Hr*Wk The kernel has stride and padding; in our case
we set padding = 0 for a valid convolution.

The kernel operates on a batch of input images X € REXCnxHnxWi = which we reshape into

row-major vectors x € RCnHaWuxB The corresponding output is b € RCuouWouxB Defining
n = CinHinWin, m 1= CouHouWou, we have z € R"*B and b € R™* B,

We denote by A € R™*" the matrix representation of the convolution layer, so that applying the
kernel & to X is equivalent to the multiplication Az. The matrix A is formed by concatenating Cly
blocks of identical shape (see Figure [7]in Appendix [A.Z)). The number of rows in each block is

r= \‘Hi,,+2~paddmg—HkJ +1 x Win+2-padding— Wy,

Siride sride J + 1. A sketch of the convolution layer operation

as a linear equation system is shown in Figure([7]

In the BK method we have large degrees of freedom in selecting the sub-linear systems to be
solved iteratively. For general matrices, random selection is often used. However, in our case we
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Algorithm 1 STRIP - Scalable TRimmed Iterative Projections

Input: A, selection which determines S, kernel &, number of iterations T’
1: Initialize: x(()o) =0
2: fort=0,1,...,7 do
3: fors=1,2,...,5do

4: rs < select_rows(kernel = k, start_ide = s * hy, num_rows = hy)
5: Ag + extract_conv_mat_rows(kernel = k, selected_rows = ry)
6: ¢s < columns of A, with nonzero elements - "active columns”

7: if s =0and? = 0 then

8: A — Agl:, ¢

9: AT <« pinv(A)

10: K« 1—-AtA

11: end if

12: bs < b[rs, 1]

13: M 2® [, ¢s]

14: M f(:ci?l + Atb,

15: end for

16: end for

Output: Approximate solution (7
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Figure 3: Matrix trimming. After rows are selected for the strip, most of the columns are trimmed,
producing a tiny trimmed matrix A. The active columns of both blue and red strips contain the same
elements, both producing A. This allows to compute the PINV only once for all strips!

show performance greatly improves by a methodological deterministic selection. These are the
considerations and solutions we propose:

1. Inter-block orthogonality: Preserve orthogonality by selecting the same contiguous row
indices from each block. Partition A into S equal-sized strips, each formed from identical
row ranges across all blocks (Figure[5] STRIP division).

2. Equal-sized strips: Ensure the strip size evenly divides r. For each strip, choose a row
count per block hy, such that h;, | 7, giving total strip height of h := hy - Coy.

3. Alignment of active columns: To guarantee common active columns for all strips, use valid
convolution and select rows proportional to row-major shifts (Figure [3)). This requires h;, to

Win+2-padding— W, . . C g
TJ + 1, while still dividing 7.

divide or multiply [ := {

4. Computational efficiency: For each strip, row indices r; and nonzero columns ¢, are
extracted. Since the trimmed matrix A is identical across strips (Section , we compute
A, At (Eq. ), and K (Eq. (@)) once and reuse them, enabling efficient updates of x.

The PINV step in row 9 of Algorithm|[T|can be computed using several techniques. We tested multiple
approaches and observed similar results, with a slight advantage for QR decomposition, which was
selected as default.
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5 MATHEMATICAL ANALYSIS

Our method follows the general BK framework, but introduces a fixed partitioning of the matrix A
into non-overlapping strips that is reused at every iteration. Consequently, the iteration index ¢ and
the partition index ¢ are decoupled, unlike in the original formulation of the algorithm. Following
this decoupling, we show a faster convergence rate in our method. To examine this rate, we use the
criterion of discrete-time dynamical systems.

The BK iterative method (Eq. (7)), in our perspective, can be reformulated as
a = (1= AfA) o + by, ®)

where the original equation system in Eq. (I is split into S subsystems. Then, we apply Eq. (7)) to
these S subsystems sequentially, with initial condition xéo), to obtain:
2P = (I - A{Al) 29+ Alpy

23! = (1 - Afaz) 2" + af,

9
Now, for the next round, we update the next initial condition as
2t = 20, (10)

Let the SVD of a matrix A be USVT, where U € R™*" and V' € R"™*" have orthonormal columns,
and X € R"*" contains the nonnegative singular values of A. By applying SVD, and the dagger
operator under the assumption that every subsystem is underdetermined (Eq. (@)), the equation system
in Eq. (9) becomes

2 = (1 =V 2l + iy
: (11)
2$) = (1= VsVE) 2l | + Vibs,

where b; = X LU1b;. For justification see Eq. . The update rule is the same (Eq. ). From
Eq. and Eq. , one can formulate the relation of xét) to l‘(()H_l) as

2 = kol + B (12)
where
S S S R
K=]10-vvih), B=% ]I (1-vivi)vib,. (13)
=1 j=li=5+1

The relation between successive iterations in Eq. , which is obtained from BK recurrence, has the
form of a discrete time linear dynamical system. The merits of formulating the recurrence relation as
such are 1) formulating the explicit solution of this recurrence relation and 2) applying the well-known
convergence criteria. In what follows, we discuss the solution and conditions for convergence.

5.1 KACZMARZ RECURRENCE RELATION AS DYNAMICAL SYSTEM

BK recurrence relation in Eq. (I2) has the form of a linear difference equation with constant constraint.

Given an initial condition x(()o) , the solution to is

) = K'al) + [[+ K+ + K7 B. (1

The convergence of this solution depends on the spectrum of K and on the respective eigenvectors.
The structure of the matrix C, under some conditions, implies idempotency. Let us define a distance
of the matrix /C from idempotency as
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Definition 1 (Distance from Idempotency). The distance from idempotency is

K- K2 (15)

I
where K is defined as in Eq. (T3).

Let us denote the column space of V; by V;. If the subspaces {V;}5_, are orthogonal, the matrix
would be equal to K+ = T — Zle V;V.T'. The other (correlated) addends are for the dependency

between these subspaces. The matrix K can be interpreted as the “idempotent” part of . The
conditions for convergence are discussed in Appendix [E} Our main results are summarized as follows:

Theorem 2. A linear system as expressed by Eq. ({I2)) and Eq. (I3) admits the following:

1. The solution converges in one step if K is idempotent and B belongs to its kernel.
2. IfV; LV foralli # j, Eq. (|7_Z|) converges in one iteration.

3. For S =2, if I, < 1then Eq. (I4) converges, and if I; > 1 then Eq. (I4) diverges, where
the indicators I, and I, are defined in Eq. (33) in Appendix|E.4)

See proofs in Appendix [E-4] Our experiments indicate that the idempotency of K is a reliable criterion
for strip selection, as shown in Section[6.1]

6 EXPERIMENTAL RESULTS

All experiments were conducted on an NVIDIA GeForce RTX 3090 GPU. To ensure fair time
comparisons, we adapted all competing algorithms to the PyTorch framework. For our inversion
experiments, we employed the ConvNet architecture. See full architecture descriptions and additional
details in Appendix [B]

SR S A A
0 k;l) kﬁl) 0 kgl)
0o 0o o KV P

STRIP (Ours) Interleaved  Standard Randomized

Figure 4: Illustration of different strip arrangements for partitioning a convolution matrix with two
output channels (two kernels) into two strips. Rows assigned to each strip are highlighted in blue and
red, respectively.

STRIP (Ours) Interleaved Standard Randomized

reconstructions

PSNR [dB] 36.45 10.05 7.63 7.12

Idempotency 0.326 24.258 30.416 31.689

Figure 5: Idempotency of strip arrangements measured by ||KC — k2| (lower is better) on CelebA
dataset. Smaller values indicate greater inter-strip orthogonality and faster convergence.

Procedure. Each experiment proceeds as follows: 1. Forward a batch of images through the
convolution layers. 2. Add noise at a fraction of each image’s standard deviation. 3. Apply the
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Table 1: Comparison of STRIP versus iterative methods across datasets. All methods are evaluated
after a single iteration. Best in bold.

STRIP (Ours) CG GS GD LSQR LSMR RSHK
MNIST 0 0.468 0.256 0.907 0.746 0.795 0.406
MSE | CelebA 0 0.325 +£0.008  0.273 £ 0.007  0.360 & 0.007 0.353 £ 0.008 0.356 4= 0.008  0.313 £ 0.008
CelebA-HQ 0 0.312 £ 0.006 - 0.347 4 0.005 0.336 £ 0.006 0.337 £ 0.009 -
MNIST 42.776 £ 0.018 3.318 5.923 0.423 1.281 1.004 3.947
PSNR [dB] 1 CelebA 36.547 £ 0.113 5247 £0.115  6.105+£0.133 4742+ 0.100  4.839 £0.106  4.786 4+ 0.108 5.417 £ 0.120
CelebA-HQ 40.500 + 0.085  5.349 + 0.089 - 4.842 +0.078 4.998 + 0.083 4.985 + 0.082 -
MNIST 0.998 0.270 0.495 0.098 0.077 0.038 0.357
SSIM 1 CelebA 0.991 0.051 4 0.002  0.153 4+ 0.005  0.100 £ 0.002 0.015 4 0.003 0.007 4 0.001  0.081 =+ 0.003
CelebA-HQ 0.991 0.072 £ 0.004 - 0.006 0.031 £ 0.002 0.026 £ 0.003 -
MNIST 0.039 +0.009  0.096 4+ 0.026  0.085 4 0.031  0.098 & 0.033 0.101 £ 0.023 0.092 4 0.002  0.122 £ 0.005
Runtime [sec] | CelebA 0.091 +0.016  0.109 4 0.025 23.956 £ 0.783  0.112 & 0.037 0.118 4 0.025 0.111 £ 0.002  0.592 + 0.029
CelebA-HQ  1.258 £ 0.090  264.953 £ 0.043 - 264.849 +0.032  265.016 £ 0.008 265.019 £ 0.002 -
MNIST 0 0 0 0 0 0 0
Memory [MB] | CelebA 0.100 &+ 0.316 0 0 0 0 0 0
CelebA-HQ 0 19.981 - 19.981 19.981 19.981 -

Table 2: Comparison of STRIP versus iterative methods across datasets. Each method is evaluated at
the point where it matches STRIP’s single iteration PSNR performance. Best in bold.

MNIST CelebA CelebA-HQ
Method Iter ~ Runtime [sec] =~ Memory [MB] Iter Runtime [sec] Memory [MB] | Iter Runtime [sec] Memory [MB]
STRIP (Ours) 1 0.039 + 0.009 0 1 0.091 + 0.011 0.100 £ 0.316 1 1.258 £ 0.090 0
CG 22 0.114 £0.034 0 50 0.194 + 0.027 0 32 265.981 +0.043 19.981
GD 95  0.370 £0.018 0 125 0.627 £ 0.048 0 900  356.911 £ 0.733 19.981
LSMR 215 0.729 £ 0.087 0 2100  48.773 £0.062  0.184 £0.390 | 555 312.230 £ 0.729 19.981
RSHK 90  4.333 £0.577 0 750 314.136 £ 3.557 0 - - -

inversion method to the noisy inputs. 4. Compare recovered outputs to the analytic PINV solution (or
to the original images for CelebA-HQ when PINV is intractable).

Default Parameters. Unless noted otherwise: ConvNet Cy,,, = 8; Additive noise 1% of input std.;
Single iteration; Strip size h = r, with hy, = r/Cyy rounded to satisfy all the required constraints.
We used a batch size of 200 images, and each reported score is the mean and standard deviation
computed over 10 independent runs.

6.1 IDEMPOTENCY CHECK

We aim to evaluate the compliance of our method with the idempotency measure introduced in
Equation (T3], expecting potentially lower values with respect to different division methods. The
results on CelebA are shown in Figure[5} and the results on MNIST are shown in Figure[TT]

6.2 COMPARISON WITH ITERATIVE METHODS

We wanted to evaluate our performance versus other iterative methods. The other methods are more
general, and are applicable for any linear equation system, not designed to convolution layers like
STRIP. For algorithms with native sparse matrix support - Conjugate Gradients (CG), Gauss Seidel
(GS), Gradient Descent (GD), LSOR, and LSMR - we implemented functions that accept sparse ma-
trices as input and operate directly on PyTorch tensors. We also tested block Kaczmarz (BK) variants
- GBK (Niu & Zheng, 2020), RSHK (Wang & Yin, 2023), RSHEK (Zhang et al.| [2024), ADBK
(Tan et al.| 2025), and FDBK (Chen & Huang} 2022). Because our BK implementations operate on
explicit convolution matrices, they are feasible only in lower-dimensional settings. RSHK consistently
outperformed the other BK variants, so we include only RSHK in the primary comparisons.

Table 3: Comparison of STRIP versus UPCONV. Best in bold.

Method MSE | PSNR [dB] 1 SSIM Runtime [sec] | Memory [MB] |
STRIP (Ours) 0.0001 40.5512 + 0.0296 0.9916 1.8275 £ 0.0980 0
UPCONV 0.0034 25.2383 + 0.0001 0.9533 0.0033 + 0.0061 0
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Original STRIP (Ours) UPCONV

/00

SNR: 18.37

Figure 6: STRIP vs. UPCONYV: Reconstruction comparison on a synthetic smiley. Top: outputs and
PSNR; bottom: difference images (reconstruction - PINV). Zoom-ins show UPCONYV suffers from
edge blurring, while STRIP preserves sharper boundaries.

In Table[I] our method consistently surpasses all baselines after a single iteration, yielding lower
error, faster runtime, and minimal memory usage. For sparse methods, the main cost arises from
converting convolution kernels into sparse matrices, with CelebA-HQ exhibiting the sharpest increase
due to larger image sizes. Computing the analytic PINV is even more demanding - for example,
CelebA requires 2.363£0.105 [sec] and 1441.633+£0.575 [GB]. As shown in Tab1e|Z|, other methods
need many iterations to match STRIP’s one-step performance, gaining significant runtime overhead.
Results missing from CelebA-HQ correspond to methods infeasible within reasonable time. We
denote 0.000 = 0.000 as 0.

6.3 COMPARISON WITH TRANSPOSED CONVOLUTION

We benchmark STRIP against a trained UPCONYV inverter on CelebA-HQ test set (Table @) STRIP
consistently achieves lower reconstruction error. UPCONYV errors are primarily localized around
sharp boundaries, often leading to blurred reconstructions, as illustrated in Figure|6|(an OOD example
not included in the training or test sets) and in the difference image of Figure While UPCONV
also produces edge artifacts, STRIP consistently outperforms it even when such boundary effects
are mitigated, demonstrating that STRIP’s advantage extends beyond the correction of edge artifacts.
While UPCONYV offers much faster inference, it requires costly retraining for each dataset, whereas
STRIP is training free and directly applicable.

7 DISCUSSION AND CONCLUSION

This paper introduced STRIP, an iterative algorithm for convolutional layer inversion. Our method
leverages the structure of the convolutional layer matrix by partitioning it into strips in a way that
promotes their inter orthogonality. The strips are inverted independently without constructing the full
matrix. This design yields reconstructions that are both accurate and efficient, significantly reducing
time and memory requirements compared to conventional approaches.

IMPACT STATEMENT

The superior reconstruction achieved by our method with respect to transposed convolutions, com-
bined with the fact that it is not a learnable layer and therefore requires no retraining across networks,
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suggests that it can be deployed in practical scenarios. For example, it can serve as a replacement for
up-convolutions in architectures such as U-Net.

REPRODUCIBILITY

We provide detailed descriptions of theoretical assumptions, proofs, and experimental protocols.
Datasets (MNIST (LeCun et al.| [1998), CelebA (Liu et al., 2015)), and CelebA-HQ (Karras et al.|
2018))) are publicly available. Architectures, hyperparameters, and training settings are fully specified
(Section[6] Appendix [B)), and code for experiments will be released to ensure reproducibility.

REFERENCES

Stanistaw M. Bregman. The method of successive projection for finding a common point of convex
sets. Soviet Mathematics Doklady, 6:688—692, 1965.

Augustin Cauchy et al. Méthode générale pour la résolution des systemes d’équations simultanées.
Comp. Rend. Sci. Paris, 25(1847):536-538, 1847.

Jia-Qi Chen and Zheng-Da Huang. On a fast deterministic block kaczmarz method for solving
large-scale linear systems. Numerical Algorithms, 89(3):1007-1029, 2022.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297-301, 1965.

Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox.
Inverting visual representations with convolutional networks. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 4829-4837, 2016. URL https:
//www.cv—foundation.org/openaccess/content_cvpr_2016/papers/
Dosovitskiy_Inverting_Visual_ Representations_CVPR_2016_paper.pdfl

Tommy Elfving. Block-iterative methods for consistent and inconsistent linear equations. Numerische
Mathematik, 35(1):1-12, 1980.

Thomas Fel, Thibaut Boissin, Victor Boutin, Agustin Picard, Paul Novello, Julien Colin, Drew
Linsley, Tom Rousseau, Rémi Cadeéne, Lore Goetschalckx, et al. Unlocking feature visualization
for deep network with magnitude constrained optimization. Advances in Neural Information
Processing Systems, 36:37813-37826, 2023.

David Chin-Lung Fong and Michael Saunders. Lsmr: An iterative algorithm for sparse least-squares
problems. SIAM Journal on Scientific Computing, 33(5):2950-2971, 2011.

Semen Aronovich Gershgorin. Uber die abgrenzung der eigenwerte einer matrix. Izvestiya Rossiiskoi
Akademii Nauk. Seriya Matematicheskaya, 7(6):749-754, 1931.

Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving linear systems.
Journal of research of the National Bureau of Standards, 49(6):409-436, 1952.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. In International Conference on Learning Representations
(ICLR), 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015. URL https://arxiv.org/abs/
1412.6980.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 3730-3738,
2015.

10


https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Dosovitskiy_Inverting_Visual_Representations_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Dosovitskiy_Inverting_Visual_Representations_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Dosovitskiy_Inverting_Visual_Representations_CVPR_2016_paper.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Under review as a conference paper at ICLR 2026

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic

segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp- 3431-3440, 2015.

Deanna Needell and Joel A Tropp. Paved with good intentions: analysis of a randomized block
kaczmarz method. Linear Algebra and its Applications, 441:199-221, 2014.

Yu-Qi Niu and Bing Zheng. A greedy block kaczmarz algorithm for solving large-scale linear systems.
Applied Mathematics Letters, 104:106294, 2020. doi: 10.1016/j.am1.2020.106294.

Christopher C Paige and Michael A Saunders. Lsqr: An algorithm for sparse linear equations and
sparse least squares. ACM Transactions on Mathematical Software (TOMS), 8(1):43-71, 1982.

Lawrence Perko. Differential Equations and Dynamical Systems. Texts in applied mathematics.
Springer Nature, Netherlands, 2nd ed. edition, 2012. ISBN 9781468402490.

Jan Rathjens, Shirin Reyhanian, David Kappel, and Laurenz Wiskott. Inverting visual representations
with detection transformers. arXiv e-prints, pp. arXiv—2412, 2024.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234-241. Springer, 2015.

Philipp Ludwig Seidel. Ueber ein verfahren, die gleichungen, auf welche die methode der kleinsten
quadrate fiihrt, sowie linedre gleichungen iiberhaupt, durch successive anndherung aufzuldsen,
volume 11. Verlag d. Akad., 1873.

Pirzada Suhail and Amit Sethi. Network inversion of convolutional neural nets. arXiv preprint
arXiv:2407.18002, 2024.

Longze Tan, Xueping Guo, Mingyu Deng, and Jingrun Chen. On the adaptive deterministic block
kaczmarz method with momentum for solving large-scale consistent linear systems. Journal of
Computational and Applied Mathematics, 457:116328, 2025.

John von Neumann. Uber adjungierte funktionaloperatoren. Annals of Mathematics, 33(2):294-310,
1933. doi: 10.2307/1968537.

Ze Wang and Jun-Feng Yin. A surrogate hyperplane kaczmarz method for solving consistent linear
equations. Applied Mathematics Letters, 144:108704, 2023.

Norbert Wiener. Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With
Engineering Applications. The MIT Press, 08 1949. ISBN 9780262257190. doi: 10.7551/mitpress/
2946.001.0001. URL |https://doi.org/10.7551/mitpress/2946.001.0001.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818-833. Springer, 2014.

Ke Zhang, Xiang-Xiang Chen, and Xiang-Long Jiang. A residual-based surrogate hyperplane
extended kaczmarz algorithm for large least squares problems. Calcolo, 61(3):51, 2024.

11


https://doi.org/10.7551/mitpress/2946.001.0001

Under review as a conference paper at ICLR 2026

A PROOFS AND ADDITIONAL THEORETICAL BACKGROUND

A.1 FREQUENCY-DOMAIN METHODS

Classical frequency domain deconvolution methods, such as FFT based inverse filtering and Wiener
deconvolution, are fundamentally ill suited for inverting multichannel convolutional layers in neural
networks. These approaches rely on the assumption of a scalar convolution model, where deconvo-
lution reduces to elementwise division in the frequency domain. In contrast, convolutional layers
implement tensor contractions in which each output channel aggregates information from all in-
put channels. This interchannel coupling cannot be decomposed into independent per frequency
operations, violating the core premise of classical methods.

The mismatch becomes even more pronounced in the overdetermined setting (Cyy > Ciy), where
spatial locality and the inherent sparsity of convolutional kernels are destroyed in the frequency
domain. The resulting systems are often ill conditioned, leading to substantial noise amplification.
Furthermore, FFT and Wiener based methods neglect the non Gaussian statistics induced by nonlinear
activations and the data dependent nature of learned feature representations.

As a result, while mathematically tractable in simplified scenarios, classical frequency domain
approaches fail to exploit the structural properties of CNN transformations and provide limited
practical utility for accurate or efficient inversion.

A.2 CONVOLUTION LAYER AS A LINEAR EQUATION SYSTEM

b
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Figure 7: The structure of the convolution matrix, for the simple case of one input channel (grayscale
image). Each kernel/output channel corresponds to different block A; of the full matrix A, and
effects only the output elements of b;. For illustration, the division into strips is standard, where each
strip corresponds to the convolution matrix of one kernel, as demonstrated in Figure 4] In practice,
however, strips can be organized in more general ways, potentially combining noncontiguous rows or
rows belonging to different blocks.

B EXPERIMENTS ADDITIONAL MATERIAL

We use a lightweight convolutional network consisting of a single convolution layer with 3 x 3 kernels
(stride 1), followed by a LeakyReLU activation (slope = 0.5), a 2 x 2 average pooling layer, and a
fully connected linear layer. The input image of size (H;y,, Wj,,) is reduced to feature maps of size
((Hin/2) — 1) x ((Wiy,/2) — 1), which are then flattened and mapped to the output classes.
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PINV STRIP (Ours) CG GS GD LSQR LSMR RSHK

PSNR: 20.71

of

Figure 8: MNIST deconvolution after a single iteration - 8 convolution channels. Leftmost
column: PINV reference. Odd rows show reconstructions; even rows show error maps (result - PINV).
One iteration of our method is a full sweep of the convolution matrix (31 substeps), thus comparable
to 31 iterations of the other block Kaczmarz baselines.

For all iterative methods, the initialization was set to z(®) = 0. GD was implemented with the Adam
optimizer (Kingma & Bal[2015), using a learning rate of 102 in Table[1]and 10~ in Tables[2]and
GD, which requires a square system, was applied to the normal equations by solving AT Az = ATb
with inputs AT A and ATb, equivalent to Eq. . Memory consumption was measured with the
memory-usage function from the memory_profiler package, reporting the difference between
maximum and minimum values as the incremental peak memory footprint in megabytes (MB).
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LSQR LSMR RSHK

PINV STRIP (Ours) CG
1l' I~

Figure 9: CELEBA deconvolution after a single iteration - 8 convolution channels. Leftmost
column: PINV reference. Odd rows show reconstructions; even rows show error maps (result - PINV).
One iteration of our method is a full sweep of the convolution matrix (31 substeps), thus comparable
to 31 iterations of the other block Kaczmarz baselines.

CelebA MNIST

Channel 1 Channel 2 Channel 3 Channel 4 Channel 1 Channel 2 Channel 3 Channel 4

AL

Channel 5 Channel 6 Channel 7 Channel 8

Figure 10: Output channels of convolution result b

14



Under review as a conference paper at ICLR 2026

STRIP (Ours) Interleaved Standard Randomized

reconstructions

PSNR [dB] 43.78 40.29 35.35 15.49

Idempotency 0.001 0.001 0.495 0.653

Figure 11: Idempotency of strip arrangements measured by ||<C — K2|| 7 (lower is better) on MNIST
dataset. Smaller values indicate greater inter-strip orthogonality and faster convergence toward the
PINV solution.

C EXTRA RESULTS

Original STRIP (Ours) UPCONV

Figure 12: STRIP vs. UPCONYV: Comparison of reconstruction quality between the two methods.
The sample is from the CelebA-HQ dataset. For each case, the first row shows reconstructions and
the second row shows difference images (reconstruction - PINV).

D JUSTIFICATION OF EQ. (TT])
Equation[T1]is based on the SVD of the matrices A;
A =Us VT Al =vsTtust o AlA = vV (16)
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Table 4: Comparison of STRIP versus iterative methods across datasets with 10% noise. All methods
are evaluated after a single iteration. Best in bold.

OURS CG GS GD LSQR LSMR RSHK
MNIST 0.005 0.470 0.258 0.764 0.747 0.797 0.408
MSE | CELEBA 0.024 £ 0.001  0.326 + 0.008  0.274 £ 0.007  0.327 £ 0.007 0.354 4 0.008 0.357 +0.008  0.314 & 0.008
CELEBA-HQ 0.009 0.312 £ 0.006 - 0.347 £ 0.005 0.336 = 0.006  0.337 & 0.006 -
MNIST 23.046 £ 0.023  3.303 £ 0.001  5.883 £0.002 1.169 £ 0.001 1.270 £ 0.001 0.994 £ 0.001  3.923 & 0.001
PSNR [dB] 1 CELEBA 16.571 £ 0.112 5230+ 0.114 5.886 £0.133 5185+ 0.114  4.823 4 0.107 4.771 £0.105  5.398 £ 0.119
CELEBA-HQ 20.486 + 0.081 5.348 £ 0.089 - 4.841 +0.077 4.996 + 0.083 4.983 £ 0.083 -
MNIST 0.927 0.260 0.486 0.049 0.076 0.037 0.347
SSIM 1 CELEBA 0.746 £ 0.003  0.047 £0.002  0.134 £ 0.005  0.036 & 0.001 0.014 £ 0.003 0.006 & 0.001  0.077 £ 0.003
CELEBA-HQ 0.694 + 0.005  0.070 £ 0.003 - 0.005 0.029 +0.002  0.025 £ 0.002 -
MNIST 0.059 £ 0.071  0.110 £ 0.065 0.803 £ 0.056 0.107 +0.049  0.103 £ 0.033 0.094 4 0.008  0.118 £ 0.011
Runtime [sec] | CELEBA 0.113 £ 0.098  0.125+ 0.055 3.420 £ 0.058 3.192 4 0.051 0.126 £ 0.033 0.124 +0.012  0.742 £ 0.021
CELEBA-HQ 1.641 £ 0.033  605.557 £ 0.054 - 605.167 = 0.045  605.585 &= 0.058 605.618 £ 0.047 -
MNIST 0 0 0 0 0 0 0
Memory [MB] | CELEBA 0.086 £ 0.273 0 4.284 £ 4.259 0 0 0 0
CELEBA-HQ 0.006 19.981 - 19.981 19.981 19.981 -

Plugging these identities to Equation[9] we get
Ay =US v
Al = AT (4,407

-1
T T T\ ! T T T
= (U7 (UZinVi (U V) ) — Vs UL | Uz VIV, .U
N——"
7 (17)
— Vs, U () stus = vt
=I
A4, =visTustus T
= ‘/i‘/iT

E CONVERGENCE IN ONE ITERATION — ANALYSIS

BK recurrence relation in Eq. (I2) has the form of a linear difference equation with constant constraint.

Given an initial condition J:(()O), the solution to is
o) =K + [[+K+---+ K7 B (18)

The convergence of this solution depends on the spectrum of /C and the respective eigenvectors.
Based on Definition 1 in|Perko| (2012) p. 51, we define here the stable, unstable, and center subspaces
of the dynamical system in Eq. (12).

Let w; be a generalized eigenvector associated with the eigenvalue yi; of the matrix K. The stable,
center, and unstable subspaces, denoted as F°, E°, and E*, are defined as follows:

E*® = Span{Re{w;}, Im{w;} | |p;| < 1} (19)
E® = Span{Re{w;}, Im{w;} | ;| = 1} (20)
B = Span{Re{w;}, Tm{uw;}| ] > 1} Q1)

The solution ,Eq. , converges if 3. The constraint on x(()o) is mitigated. It should also belong to
E? but can have components of eigenvectors with eigenvalue ;2 = 1. The initial condition is chosen
to be zero, then the only concern is whether B is in E°. Moreover, the fastest convergence occurs
when B belongs to the kernel of . Let us examine the ith row in Eq. (IT)), given by,

xl(t) = Kil’z('t_)l + Vib;. (22)

where K; = I — ViViT. The matrix V; results from the SVD of A;, and therefore ViTVi = 1.
Consequently, the matrix K is an idempotent matrix, i.e. K? = K. Its eigenvalues are either 0 or 1
associated with columns of V; and the complementary space, respectively.
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If Eq. (22) is the only one in the equation system, we can formulate its solution according to Eq. (T4).

The constraint B is V;b; and belongs to the kernel of K;. Therefore, the solution where ¢ approaches
infinity is
of = 1im 2{? = K;2{% + Vb, = 2V, (23)

t—o0

Consequently, the solution of each row converges in one step, since K; is an idempotent matrix and
the constraint in each row belongs to the kernel of K. This leads us to the following lemma.

Lemma 3 (Convergence in one step). A dynamical system of the form
Yrk+1 = YyrA+ B

converges in one step if A is an idempotent matrix and B belongs to its kernel.

Proof. The solution is given by
yo = Afyo+ [T+ A+ A% +...+ A'].B
However, A¥ = A for all positive integer k since A is an idempotent matrix and AB = 0 since B

belongs to the kernel space of A. Therefore, y; = y1. Convergence in one step. O

Now, we generalize this conclusion to S rows.

The main questions are

1. How far 53 from the kernel of /C? or equivalently, what eigenvalues this constraint invokes
in this dynamical system?

2. How far K from being idempotent?
E.1 ORTHOGONALITY
Let V; be the column space of V; which is the kernel space of K;. From Eq. the vector 3 belongs

to the union Ulev,;. Here, we study the relation between the linear dependencies of these subspaces
and the convergence of Eq. (T4).

Lemma 4. The solution of Eq. (with the structure dictated by Eq. ) converges in one step if
Vi LV, Vi#j.

Proof. The matrices K and B become
s s
K=1-> ViV,  B=>_ V. (24)
i=1 j=1

since V; L V;, Vi # j. Hence, K is an idempotent and B belongs to its kernel space. The dynamics
convergence in one step, since the conditions of Lemmahold. O

E.2 LINEAR DEPENDENCY

Here, the subspaces V; are not necessarily orthogonal. We start our investigation for S = 2 and then
try to generalize the conclusions to any S > 2.

E.2.1 CONVERGENCE CONDITION FOR § = 2
Notations for S =2 The matrix K from Eq. is

K=(I-W)I-wny)

) (25)
=T -V -V + Wiyl
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Let us denote Cy 1 = V2T V1. The i, jth entry of that matrix is the cosine of the angle between the ith
column vector of V5 and the jth column vector of V;. If there are m4 columns in V3 and mo in V5,
one can write C 1 as

cos(61,1) cos(B12) ... cos(b1m,)
cos(f2,1)  cos(f22) cos(02 m, )
Cop = . . (26)
COS(emml) COS(9m2¢2) COS(9m2,m1)
For more compact writing, we denote the ith row in that matrix ¢; = [cos(0;1) -+ c08(0;.m, )]
and the matrix as
&1
02,1 = . 27
Crna

Note that if we denote VlTV2 as C o then we get C o = Cg:l and the matrix Cy 1C1 2 is a Gram
matrix and can be formulated as

The matrix C5 1 C1 2 is symmetric and Gram, and based on Eq. @ it can be formulated as

leal|? <61,C22> ey emy)
<Cl,62> H02|| <02,cm >
CoaCrp=| . ’ (28)
<Clvcm2> <627Cm2> ||Cm2||2
Now, we can rewrite the dynamics
K=1-VaVy —ViViT +VaCo VT (29)

Convergence Analysis for S = 2

ANSWER TO QUESTION ”What eigenvalues the constraint 3 are invoked in this dynamical
system?”

The vector B can be formulated as Vi + Voap where o7 and ap are column vectors with the
corresponding dimension.
The eigenvalue/vector admits the following equation,

K(Viar 4+ Vaan) = =ViCh gan + VoCo 1Ch a0 = A(Viag + Vaas) (30)

where A € C. By applying the method of variation of parameters, the vectors «; and a, admit the
following relations
Aag = C1C1 2000 (31a)
)\Oél = —0172(12. (31b)
The vector co admits the eigenvalue problem of the matrix C3 1 C' 2. In other words, the eigenproblem
of K leads us to the eigenproblem of matrix C 1 C| ».
To recap, the answer to questionis: the spectrum B invokes is the spectrum of the matrix Cs 1C1 2.

The upper and lower bounds of the eigenvalues can indicate the system converges and in what minimal
pace. The upper bound indicates the slowest pace of convergence of the system, and the lower bound
indicates whether the system diverges. We use Gershgorim theorem and on attributes of Gram matrix
to find these bounds. Recall the theorem of Gershgorim.

Theorem 5 (Gershgorin circle theorem (Gershgorinl (1931))). Given an n x n matrix A, where
[A]; ; = ai,j, the eigenvalues are in the following domain in C

n

n
UB [ Y laiyl (32)
=1

j=1.j#i

where B(a,r) is a ball in C centered in a with radius r.
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By applying the Gershgorin theorem to C5 1 C} o, the eigenvalues are in the following union | ;"% B;,

where
mo

2
Bi=Bllal® > el |- (33)

j=1,j#i
In addition, the matrix in question is Gram. Its spectrum is real and non-negative. Thus, one can
reformulate the circle of Gershgorin. The spectrum of C5 ; C1 2 in the union of the following segments

B, = max{cnf 3 <ci,cj>|,o},2|<ci,cj>| . (34)
j=1

Jj=1,j#i
Recap: the eigenvalues invoked by B are the eigenvalues of C ; C » that are contained in U?fl B;.

Lemma 6 (Convergence and Divergence for S = 2). A dynamical system of the form of Eq. (29)
converges if I. < 1 and diverges if I; > 1, where

mo
I. = max {Z|c“c] }
1<i<ms
mao :
— 1 . 27 . .
fn= min {lel = Yl

j=1,j#i

35)

Proof The constraint B invokes e1genvalues in the union U" B; where the segment B; is defined
in Eq. (34). The upper bound of this union is

lo=, max, { Z' el (36)

Therefore, if the upper bound is less than one, all the eigenvalues are between zero and one. Therefore,
convergence.

The lower bound of this union is
mo
. 2
I; = min Gl — Ciy Cj
o= i (el = Y Kyl @
Jj=1,j#i

If 1, is larger than one all the eigenvalues are larger than one. Therefore, divergence. O
The condition I. < 1 does not guarantee only convergence, but also the bound to the slowest the pace
of convergence. Therefore, the lower I, the faster convergence. When /. = 0 the convergence is the
fastest and the system gets its steady state in one step. In that case, the matrix KC is idempotent as
discussed in the orthogonal case (Lemma ).
ANSWER TO QUESTION[2] “How far K from being idempotent?”

The attribute of idempotency is crucial for convergence in one step, as discussed in Lemma [3]
Orthogonality and idempotency dictate a special structure for the matrix C, see Lemma] Then, our
suggestion is to measure the distance of IC from idempotency as follows,

e — K- 39

where K is the matrix as in Eq. (29) and ! is the matrix K is if it were an idempotent matrix,
meaning

2
t=1-) viv" (39)
Thus, the distance is defined as,

e 2 (0)
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Lemma 7 (Distance from idempotency and convergence pace S = 2). Let the dynamics be with two
strips, S = 2. If the distance from idempotency is less than one, the dynamics Eq. converges.

Proof.

2
2

i K =

f[[ vivi") - ( ZVVT>

F

2 2 2
i=1 i=1 F
2 T
=[[VaCan V|| = Tr{vzcg,lvlT (VaCaa Vi) }
The matrix C 1 C1 2 is diagonalizable with positive eigenvalues. Then, we can write
112 T T
K- K- :Tr{v2 UAUT 'V, } (42)
2027101,2
where Vo U is a unitary matrix. Therefore, the trace is
9 m
1€ = K4 [m = DA 43)

where m = min{m;, ms}. Hence, if the sum, Z:”:l Ai, 18 less than one, each eigenvalue is less than
one. Then, convergence. O

Thus, the linear dependency affects the convergence rate.

E.2.2 GENERALIZATION TO S > 2

The analysis of Kaczmarz dynamics for S = 2 reveals the complexity to derive quantity indications
for pace convergence where S > 2. Even for S = 3, finding the eigenvalues of K is a challenging
task. Therefore, the answer to the Question|[I]is not clear.

On the other hand, the generalization of the distance of C from idempotency is almost obvious. Let
us recall the form of the dynamics

S
K=[[-wv"), (44)

i=1

and the “idempotent” part of this matrix as
s
t=1-) viv" (45)

If the subspaces {V;}5_, are orthogonal, the matrix &C would be equal to K. The other (correlated)
addends are for the dependency between these subspaces. The lower the linear dependence, the lower
the correlated addends and therefore, the closer K to 1. The distance from idempotency is the norm
of the correlated addends in K, or more formally,

s
[[-vv") - ( ZVVT> (46)
i=1 F
Let us denote the matrix C as follows,
K=Kt+W Vo ... V5]CeVi Vo ... Vg|" (47)
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where the matrix C contains all the correlations between all the possible combinations of the
products in Eq. (44).

K= KH[2 =Tr{Vi Vo ... Vs]CkCsCEWV Vo ... Val'}
=Tr{CxCsCEVi Vo ... Vs|"Vi Va ... Vg|} (48)
=Tr{CxCsCiCs}

where Cg = [Vi Vo ... VS]T [Vi Vo ... Vs|. The distance in the general case is not

directly the sum of the eigenvalues of /. However, if V; L V; for all ¢ # j, the distance from
idempotency is zero, and the convergence is achieved in one step.

E.3 CONVERGENCE FOR S > 2
Let us denote the matrix C as follows,
K=Kt+W Vo ... V5]CeVi Vo ... Vg|" (49)

where the matrix Cc contains all the correlations between all the possible combinations of the
products in K = Hle (I — Vﬂ/iT). Therefore, the distance for the general case is as follows,

-k = v o velokm v VS]THF
=Tr{Vi Vo ... Vs|CxCsCEWi Vo ... Vg|'} (50)
=Tr{CcCsCEVi Vo ... Vs|"Vi Vo ... Vg|}
=Tr{CxCsC{:Cs}
where Cs=[Vi Va2 ... VS]T [Vi Vo ... Vg]. The distance from idempotency is the norm

of the correlated addends in K. The distance in the general case is not directly the sum of the
eigenvalues of /C as when S = 2 (see Lemma . However, if V; L V; for all ¢ # j, the distance from
idempotency is zero, and the convergence is achieved in one step. The lower the linear dependence,
the lower the correlated addends and therefore, the closer K to A+. From our experiments, the lower
the distance the faster the convergence. In most cases, after one iteration the algorithm gets to its
final result. Consequently, the following conjecture is backed up with experiments, however, we did
not find the relation of this distance to eigenvalues of the correlation matrix Cx and Cyg.

Conjecture 8 (Convergence pace and distance from Idempotency). Let the distance from idempotency

2 . . . L
be ||IC - Kt || - If the distance is zero, the system converges in one step. In addition, the lower the
distance, the faster the convergence rate.

E.4 PROOF OF THEOREM 2|

Proof. The proof of Theorem 2] follows from Lemma 3] Lemma4] Lemma[6] and Lemmal[7] O
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