
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FAST AND SCALABLE INVERSION OF CONVOLUTION
LAYERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data inversion in neural networks allows to map intermediate network variables
to their input source. Inversion of convolutional layers is not straightforward
and is often performed approximately by training additional inversion networks.
Approaching this as a linear operator inversion problem requires extremely large
computational and memory resources, as huge matrices are involved. In this work
we present Scalable TRimmed Iterative Projections (STRIP), a fast and sparse
linear solver dedicated to the convolutional inversion problem.
We take advantage of the neural convolution structure to design a series of very
fast projections (following the block Kaczmarz paradigm). We prove conditions for
convergence for the two-strip case and propose a measure to estimate the rate of
error reduction for the general case. In practice, we show that a single pass over
the inversion matrix by STRIP can almost perfectly solve the inversion problem.
Our algorithm is fast, low on memory and can scale to very large matrices. We do
not have to store the linear matrix to be inverted, hence can surpass by 3 orders of
magnitude linear sparse solvers, such as conjugate gradient. Extensive experiments
demonstrate that our method considerably outperforms the best competing solvers
by both speed and memory footprint. We further show that a single STRIP iteration
is more accurate than transposed convolutions, motivating the use of such methods
in U-Net architectures.

Figure 1: Comparison of our proposed method (STRIP) against classical sparse iterative solvers
on the CelebA-HQ dataset (2562 pixels), for a 16 output channels convolutional layer. The top
row shows reconstructions after a single iteration, with corresponding PSNR values relative to the
ground truth image. The bottom row depicts reconstructions at the first iteration where each baseline
surpasses the PSNR of STRIP after one iteration, along with the required iteration count and runtime.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Convolutional layer inversion is a highly relevant research direction due to its close connection with
widely used encoder-decoder architectures such as U-Net (Ronneberger et al., 2015), which play a
central role in diffusion models during the reverse process. In these architectures, the encoder branch
primarily employs convolutional layers to extract informative image features, while the decoder aims
to accurately reconstruct the original image from these representations. Achieving reliable image
reconstruction therefore requires the ability to effectively invert the operation of convolutional layers.

However, in most cases the encoder-decoder pipeline is trained jointly in an end-to-end manner.
That is, most existing inversion techniques rely on learnable models, often overlooking the inherent
mathematical properties of convolutional operations.

Our approach, a variant of the block Kaczmarz family of methods (Elfving, 1980; Needell & Tropp,
2014), formulates convolutional inversion as a linear system. This perspective enables us to directly
exploit the structural attributes of the convolutional layer’s matrix. By leveraging this structure,
we design a fast-converging iterative inversion algorithm that achieves both efficiency and reliable
reconstruction.

Our work provides mathematically grounded insights and establishes feasible conditions for fast
convergence to the analytic solution, which is the pseudoinverse (PINV).

Our main contributions are:

1. We tackle the problem of convolutional layer inversion in a non-learning setting, relying on
linear algebra fundamentals to derive the solution.

2. Unlike existing block Kaczmarz algorithms, our method is tailored specifically to convolu-
tional layer matrices, enabling us to utilize their structure for an informed strip selection
strategy that accelerates convergence.

3. Our algorithm avoids constructing the full or even sparse representation of the convolutional
matrix, which becomes highly expensive in high dimensional settings - unlike many standard
iterative solvers.

4. We provide a mathematical justification for our strip based partitioning scheme and explain
the reasoning underlying our design choices.

2 RELATED WORK

Neural network inversion has become an active and rapidly evolving area of research. Much of the
recent work focuses on interpretability, aiming to better understand the decision-making process of
neural networks and to reveal their invariances, weaknesses, and blind spots (Rathjens et al., 2024;
Suhail & Sethi, 2024; Zeiler & Fergus, 2014; Fel et al., 2023).

Another prominent line of work addresses deconvolution for tasks such as denoising and deblurring.
It is important to note, however, that the operation of a convolution layer in a neural network differs
from classical convolution. In the classical case, convolution involves flipping the kernel before
computing the weighted sum, while in neural networks the operation corresponds to cross-correlation.
More importantly, neural network convolution layers operate simultaneously across multiple input
channels, whereas classical convolution typically applies to a single channel (or separately across
channels in the multi-channel setting). This distinction explains why classical approaches such as
FFT-based deconvolution (Cooley & Tukey, 1965) or Wiener filtering (Wiener, 1949) are not directly
applicable to convolution layer inversion in neural networks. These methods assume the properties
of classical convolution and therefore fail to capture the multi-channel structure inherent in modern
convolutional layers (for further discussion, see Appendix A.1).

Many inversion approaches rely on learnable models, including neural networks and more recently
diffusion-based methods, to approximate the mapping from outputs back to inputs. While these
approaches have achieved impressive results, they often lack the mathematical grounding that
leverages the forward mapping (input→ output) to explicitly construct the inverse mapping (output
→ input). As a result, they are less adaptive to specific scenarios and entail considerable computational
cost during both training and inference.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

A widely adopted strategy for implementing convolutional layer inversion in a learnable framework
is the use of transposed convolution (or up-convolution) layers (Long et al., 2015). This operation is
most commonly employed in decoder branches of architectures such as U-Net (Ronneberger et al.,
2015), where it serves to progressively reconstruct spatial structure from compressed representations.
Transposed convolutions are also frequently used as standalone inversion modules for intermediate
feature maps in neural networks (Dosovitskiy et al., 2016).These methods can produce strong
reconstruction results. However, they do not constitute a true mathematical inversion. Moreover,
they require a costly training phase prior to deployment, which further limits their efficiency and
adaptability.

When a convolutional layer is viewed as a linear system, one can leverage classical linear solvers:
either by analytically inverting the corresponding convolution matrix, or by computing approximate
solutions through iterative methods, some more traditional including conjugate gradient (Hestenes
et al., 1952), Gauss Seidel (Seidel, 1873), gradient descent (Cauchy et al., 1847), LSMR (Fong &
Saunders, 2011) or LSQR (Paige & Saunders, 1982), and some less familiar such as block Kaczmarz
methods (Elfving, 1980) (more details can be found in Section 3.2). The shortcoming of the former
lies in its massive memory and time requirements, while the latter often suffers from low accuracy in
the early iterations and may demand impractically long runtimes to converge. A key limitation of the
linear system perspective is that it overlooks the specific structure of convolutional layer matrices.

3 PRELIMINARIES

3.1 SETTING AND NOTATIONS

We focus on the problem of inverting a convolutional layer in a neural network. A natural way to
formulate this inversion is as a linear system of equations. By explicitly constructing the matrix
representation of the convolutional layer, we can regard it as a matrix A, leading to the system:

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm. (1)

The setting of interest in our work is the overdetermined regime (m > n), where the system Eq.
(1) has typically 0 solutions. The solution x∗ we strive to find is a solution of the least-squares
optimization problem:

x∗ = argminx∥Ax− b∥2 = A†b, (2)
where A† denotes the Moore-Penrose (MP) inverse (or pseudoinverse, denoted as PINV) of A. For
an invertible ATA we have a closed form expression:

A† = (ATA)−1AT . (3)

When the system is underdetermined (∞ solutions), for an invertible AAT we get:

A† = AT (AAT)−1. (4)

This scenario frequently arises in practical neural networks where an input is mapped to a higher
number of channels to form richer feature maps. This situation is particularly relevant in architectures
such as U-Net, where a more efficient alternative to learned transposed convolution layers is desirable
for the decoding stage.

We can also define through the PINV the space of solutions by using the matrix kernel. Let the
null-space of A be

N (A) := {x ∈ Rn | Ax = 0}, (5)
where 0 is the zero vector of length n. We define the following kernel matrix K,

K = I −A†A, (6)

where I is the identity matrix. Then K is the orthogonal projection onto the null-space of A.

Active Columns: Let Ai ∈ Rmi×n be a submatrix of A, that is obtained by selecting mi rows of A.
The set of active columns of Ai is those columns that contain at least one nonzero entry. The trimmed
matrix, denoted by Ãi, consists of only the active columns of Ai.

Idempotency: Let A be a square matrix. This matrix is idempotent if A2 = A. The eigenvalues of
this kind of matrix are either zero or one.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Illustration of our method on a two-dimensional toy problem. In the general case (left),
the iterations gradually approach the solution x∗ , requiring multiple updates for convergence. In
contrast, in the orthogonal case (right), a single full sweep over the matrix is sufficient to reach the
solution. The notation follows the update rules given in Eq. (9) and Eq. (10).

3.2 BLOCK KACZMARZ

A central challenge in higher dimensions is that explicitly constructing the full matrix A is very
expensive in terms of memory. To address this, iterative methods have been proposed, among which
the block Kaczmarz (BK) algorithm is especially appealing. Instead of inverting the full matrix, BK
operates by selecting one block of rows of A at each iteration, solving the corresponding subproblem.
The method is closely related to alternating projections (von Neumann, 1933; Bregman, 1965), where
the original problem is decomposed into smaller subproblems - each corresponding to a subspace
defined by a block of A - where a solution is reached by iterative projections across subspaces.

Formally, for the system in Eq. (1), let Ait ∈ Rmit×n denote a block of rows of A that is selected
for the t‘th iteration and bit ∈ Rmit the respective block of the right-hand side. The index i is a
partition of A, and the subindex t indicates iteration. In the general case, the partition can change
each iteration. At iteration t, the BK update is given by

x(t+1) = x(t) +A†
it

(
bit −Aitx

(t)
)
, (7)

where A†
it

denotes the PINV of the block Ait .

4 METHOD

Our method decomposes the convolutional system into strips and iteratively integrates their solutions
to approximate the PINV. Unlike the general-purpose BK algorithm, our variant exploits the convolu-
tional structure to achieve major gains: (i) compute the PINV only in active columns and update the
corresponding entries of x; (ii) select maximally orthogonal strips to obtain a near-idempotent block
operator K, accelerating convergence; and (iii) align strip lengths with the cyclic structure so that all
strips share active columns, allowing reuse of PINV - especially simple in the valid convolution case.

Consider a convolution layer with kernel k ∈ RCout×Cin×Hk×Wk , where Cout is the number of filters
(output channels), each of dimension RCin×Hk×Wk . The kernel has stride and padding; in our case
we set padding = 0 for a valid convolution.

The kernel operates on a batch of input images X ∈ RB×Cin×Hin×Win , which we reshape into
row-major vectors x ∈ RCinHinWin×B . The corresponding output is b ∈ RCoutHoutWout×B . Defining
n := CinHinWin, m := CoutHoutWout, we have x ∈ Rn×B and b ∈ Rm×B .

We denote by A ∈ Rm×n the matrix representation of the convolution layer, so that applying the
kernel k to X is equivalent to the multiplication Ax. The matrix A is formed by concatenating Cout
blocks of identical shape (see Figure 7 in Appendix A.2). The number of rows in each block is
r =

⌊
Hin+2·padding−Hk

stride

⌋
+1 ×

⌊
Win+2·padding−Wk

stride

⌋
+1. A sketch of the convolution layer operation

as a linear equation system is shown in Figure 7.

In the BK method we have large degrees of freedom in selecting the sub-linear systems to be
solved iteratively. For general matrices, random selection is often used. However, in our case we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 STRIP - Scalable TRimmed Iterative Projections

Input: hb selection which determines S, kernel k, number of iterations T
1: Initialize: x(0)

0 = 0
2: for t = 0, 1, . . . , T do
3: for s = 1, 2, . . . , S do
4: rs ← select rows(kernel = k, start idx = s ∗ hb, num rows = hb)
5: As ← extract conv mat rows(kernel = k, selected rows = rs)
6: cs ← columns of As with nonzero elements - ”active columns”
7: if s = 0 and t = 0 then
8: Ã← As[:, cs]

9: Ã† ← pinv(Ã)

10: K̃ ← I − Ã†Ã
11: end if
12: bs ← b[rs, :]

13: x
(t)
s ← x(t)[:, cs]

14: x
(t)
s ← K̃x

(t)
s−1 + Ã†bs

15: end for
16: end for
Output: Approximate solution x(T)

Figure 3: Matrix trimming. After rows are selected for the strip, most of the columns are trimmed,
producing a tiny trimmed matrix Ã. The active columns of both blue and red strips contain the same
elements, both producing Ã. This allows to compute the PINV only once for all strips!

show performance greatly improves by a methodological deterministic selection. These are the
considerations and solutions we propose:

1. Inter-block orthogonality: Preserve orthogonality by selecting the same contiguous row
indices from each block. Partition A into S equal-sized strips, each formed from identical
row ranges across all blocks (Figure 5, STRIP division).

2. Equal-sized strips: Ensure the strip size evenly divides r. For each strip, choose a row
count per block hb such that hb | r, giving total strip height of h := hb · Cout.

3. Alignment of active columns: To guarantee common active columns for all strips, use valid
convolution and select rows proportional to row-major shifts (Figure 3). This requires hb to
divide or multiply l :=

⌊
Win+2·padding−Wk

stride

⌋
+ 1, while still dividing r.

4. Computational efficiency: For each strip, row indices rs and nonzero columns cs are
extracted. Since the trimmed matrix Ã is identical across strips (Section 3.1), we compute
Ã, Ã† (Eq. (4)), and K̃ (Eq. (6)) once and reuse them, enabling efficient updates of x.

The PINV step in row 9 of Algorithm 1 can be computed using several techniques. We tested multiple
approaches and observed similar results, with a slight advantage for QR decomposition, which was
selected as default.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 MATHEMATICAL ANALYSIS

Our method follows the general BK framework, but introduces a fixed partitioning of the matrix A
into non-overlapping strips that is reused at every iteration. Consequently, the iteration index t and
the partition index i are decoupled, unlike in the original formulation of the algorithm. Following
this decoupling, we show a faster convergence rate in our method. To examine this rate, we use the
criterion of discrete-time dynamical systems.

The BK iterative method (Eq. (7)), in our perspective, can be reformulated as

x
(t+1)
i =

(
I −A†

iAi

)
x
(t)
i +A†

i bi, (8)

where the original equation system in Eq. (1) is split into S subsystems. Then, we apply Eq. (7) to
these S subsystems sequentially, with initial condition x

(0)
0 , to obtain:

x
(t)
1 =

(
I −A†

1A1

)
x
(t)
0 +A†

1b1

x
(t)
2 =

(
I −A†

2A2

)
x
(t)
1 +A†

2b2

...

x
(t)
S =

(
I −A†

SAS

)
x
(t)
S−1 +A†

SbS .

(9)

Now, for the next round, we update the next initial condition as

x
(t+1)
0 = x

(t)
S . (10)

Let the SVD of a matrix A be UΣV T , where U ∈ Rm×r and V ∈ Rn×r have orthonormal columns,
and Σ ∈ Rr×r contains the nonnegative singular values of A. By applying SVD, and the dagger
operator under the assumption that every subsystem is underdetermined (Eq. (4)), the equation system
in Eq. (9) becomes

x
(t)
1 =

(
I − V1V

T
1

)
x
(t)
0 + V1b̂1

...

x
(t)
S =

(
I − VSV

T
S

)
x
(t)
S−1 + VS b̂S ,

(11)

where b̂i = Σ−1
i U−1

i bi. For justification see Eq. (17). The update rule is the same (Eq. (10)). From
Eq. (11) and Eq. (10), one can formulate the relation of x(t)

0 to x
(t+1)
0 as

x
(t+1)
0 = Kx(t)

0 + B (12)

where

K =

S∏
i=1

(
I − ViV

T
i

)
, B =

S∑
j=1

S∏
i=j+1

(
I − ViV

T
i

)
Vj b̂j . (13)

The relation between successive iterations in Eq. (12), which is obtained from BK recurrence, has the
form of a discrete time linear dynamical system. The merits of formulating the recurrence relation as
such are 1) formulating the explicit solution of this recurrence relation and 2) applying the well-known
convergence criteria. In what follows, we discuss the solution and conditions for convergence.

5.1 KACZMARZ RECURRENCE RELATION AS DYNAMICAL SYSTEM

BK recurrence relation in Eq. (12) has the form of a linear difference equation with constant constraint.
Given an initial condition x

(0)
0 , the solution to is

x
(t)
0 = Ktx

(0)
0 +

[
I +K + · · ·+Kt−1

]
B. (14)

The convergence of this solution depends on the spectrum of K and on the respective eigenvectors.
The structure of the matrix K, under some conditions, implies idempotency. Let us define a distance
of the matrix K from idempotency as

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Definition 1 (Distance from Idempotency). The distance from idempotency is∥∥K −K2
∥∥
F

(15)

where K is defined as in Eq. (13).

Let us denote the column space of Vi by Vi. If the subspaces {Vi}Si=1 are orthogonal, the matrix K
would be equal to K⊥ = I −

∑S
i=1 ViV

T
i . The other (correlated) addends are for the dependency

between these subspaces. The matrix K⊥ can be interpreted as the ”idempotent” part of K. The
conditions for convergence are discussed in Appendix E. Our main results are summarized as follows:
Theorem 2. A linear system as expressed by Eq. (12) and Eq. (13) admits the following:

1. The solution converges in one step if K is idempotent and B belongs to its kernel.

2. If Vi ⊥ Vj for all i ̸= j, Eq. (14) converges in one iteration.

3. For S = 2, if Ic < 1 then Eq. (14) converges, and if Id > 1 then Eq. (14) diverges, where
the indicators Ic and Id are defined in Eq. (35) in Appendix E.4.

See proofs in Appendix E.4. Our experiments indicate that the idempotency ofK is a reliable criterion
for strip selection, as shown in Section 6.1.

6 EXPERIMENTAL RESULTS

All experiments were conducted on an NVIDIA GeForce RTX 3090 GPU. To ensure fair time
comparisons, we adapted all competing algorithms to the PyTorch framework. For our inversion
experiments, we employed the ConvNet architecture. See full architecture descriptions and additional
details in Appendix B.

Figure 4: Illustration of different strip arrangements for partitioning a convolution matrix with two
output channels (two kernels) into two strips. Rows assigned to each strip are highlighted in blue and
red, respectively.

Figure 5: Idempotency of strip arrangements measured by ∥K − K2∥F (lower is better) on CelebA
dataset. Smaller values indicate greater inter-strip orthogonality and faster convergence.

Procedure. Each experiment proceeds as follows: 1. Forward a batch of images through the
convolution layers. 2. Add noise at a fraction of each image’s standard deviation. 3. Apply the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of STRIP versus iterative methods across datasets. All methods are evaluated
after a single iteration. Best in bold.

STRIP (Ours) CG GS GD LSQR LSMR RSHK

MSE ↓
MNIST 0 0.468 0.256 0.907 0.746 0.795 0.406
CelebA 0 0.325 ± 0.008 0.273 ± 0.007 0.360 ± 0.007 0.353 ± 0.008 0.356 ± 0.008 0.313 ± 0.008
CelebA-HQ 0 0.312 ± 0.006 – 0.347 ± 0.005 0.336 ± 0.006 0.337 ± 0.009 –

PSNR [dB] ↑
MNIST 42.776 ± 0.018 3.318 5.923 0.423 1.281 1.004 3.947
CelebA 36.547 ± 0.113 5.247 ± 0.115 6.105 ± 0.133 4.742 ± 0.100 4.839 ± 0.106 4.786 ± 0.108 5.417 ± 0.120
CelebA-HQ 40.500 ± 0.085 5.349 ± 0.089 – 4.842 ± 0.078 4.998 ± 0.083 4.985 ± 0.082 –

SSIM ↑
MNIST 0.998 0.270 0.495 0.098 0.077 0.038 0.357
CelebA 0.991 0.051 ± 0.002 0.153 ± 0.005 0.100 ± 0.002 0.015 ± 0.003 0.007 ± 0.001 0.081 ± 0.003
CelebA-HQ 0.991 0.072 ± 0.004 – 0.006 0.031 ± 0.002 0.026 ± 0.003 –

Runtime [sec] ↓
MNIST 0.039 ± 0.009 0.096 ± 0.026 0.085 ± 0.031 0.098 ± 0.033 0.101 ± 0.023 0.092 ± 0.002 0.122 ± 0.005
CelebA 0.091 ± 0.016 0.109 ± 0.025 23.956 ± 0.783 0.112 ± 0.037 0.118 ± 0.025 0.111 ± 0.002 0.592 ± 0.029
CelebA-HQ 1.258 ± 0.090 264.953 ± 0.043 – 264.849 ± 0.032 265.016 ± 0.008 265.019 ± 0.002 –

Memory [MB] ↓
MNIST 0 0 0 0 0 0 0
CelebA 0.100 ± 0.316 0 0 0 0 0 0
CelebA-HQ 0 19.981 – 19.981 19.981 19.981 –

Table 2: Comparison of STRIP versus iterative methods across datasets. Each method is evaluated at
the point where it matches STRIP’s single iteration PSNR performance. Best in bold.

MNIST CelebA CelebA-HQ
Method Iter Runtime [sec] Memory [MB] Iter Runtime [sec] Memory [MB] Iter Runtime [sec] Memory [MB]

STRIP (Ours) 1 0.039 ± 0.009 0 1 0.091 ± 0.011 0.100 ± 0.316 1 1.258 ± 0.090 0
CG 22 0.114 ± 0.034 0 50 0.194 ± 0.027 0 32 265.981 ± 0.043 19.981
GD 95 0.370 ± 0.018 0 125 0.627 ± 0.048 0 900 356.911 ± 0.733 19.981
LSMR 215 0.729 ± 0.087 0 2100 48.773 ± 0.062 0.184 ± 0.390 555 312.230 ± 0.729 19.981
RSHK 90 4.333 ± 0.577 0 750 314.136 ± 3.557 0 – – –

inversion method to the noisy inputs. 4. Compare recovered outputs to the analytic PINV solution (or
to the original images for CelebA-HQ when PINV is intractable).

Default Parameters. Unless noted otherwise: ConvNet Cout = 8; Additive noise 1% of input std.;
Single iteration; Strip size h = r, with hb = r/Cout rounded to satisfy all the required constraints.
We used a batch size of 200 images, and each reported score is the mean and standard deviation
computed over 10 independent runs.

6.1 IDEMPOTENCY CHECK

We aim to evaluate the compliance of our method with the idempotency measure introduced in
Equation (15), expecting potentially lower values with respect to different division methods. The
results on CelebA are shown in Figure 5, and the results on MNIST are shown in Figure 11.

6.2 COMPARISON WITH ITERATIVE METHODS

We wanted to evaluate our performance versus other iterative methods. The other methods are more
general, and are applicable for any linear equation system, not designed to convolution layers like
STRIP. For algorithms with native sparse matrix support - Conjugate Gradients (CG), Gauss Seidel
(GS), Gradient Descent (GD), LSQR, and LSMR - we implemented functions that accept sparse ma-
trices as input and operate directly on PyTorch tensors. We also tested block Kaczmarz (BK) variants
- GBK (Niu & Zheng, 2020), RSHK (Wang & Yin, 2023), RSHEK (Zhang et al., 2024), ADBK
(Tan et al., 2025), and FDBK (Chen & Huang, 2022). Because our BK implementations operate on
explicit convolution matrices, they are feasible only in lower-dimensional settings. RSHK consistently
outperformed the other BK variants, so we include only RSHK in the primary comparisons.

Table 3: Comparison of STRIP versus UPCONV. Best in bold.

Method MSE ↓ PSNR [dB] ↑ SSIM ↑ Runtime [sec] ↓ Memory [MB] ↓

STRIP (Ours) 0.0001 40.5512 ± 0.0296 0.9916 1.8275 ± 0.0980 0
UPCONV 0.0034 25.2383 ± 0.0001 0.9533 0.0033 ± 0.0061 0

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: STRIP vs. UPCONV: Reconstruction comparison on a synthetic smiley. Top: outputs and
PSNR; bottom: difference images (reconstruction - PINV). Zoom-ins show UPCONV suffers from
edge blurring, while STRIP preserves sharper boundaries.

In Table 1, our method consistently surpasses all baselines after a single iteration, yielding lower
error, faster runtime, and minimal memory usage. For sparse methods, the main cost arises from
converting convolution kernels into sparse matrices, with CelebA-HQ exhibiting the sharpest increase
due to larger image sizes. Computing the analytic PINV is even more demanding - for example,
CelebA requires 2.363±0.105 [sec] and 1441.633±0.575 [GB]. As shown in Table 2, other methods
need many iterations to match STRIP’s one-step performance, gaining significant runtime overhead.
Results missing from CelebA-HQ correspond to methods infeasible within reasonable time. We
denote 0.000± 0.000 as 0.

6.3 COMPARISON WITH TRANSPOSED CONVOLUTION

We benchmark STRIP against a trained UPCONV inverter on CelebA-HQ test set (Table 3). STRIP
consistently achieves lower reconstruction error. UPCONV errors are primarily localized around
sharp boundaries, often leading to blurred reconstructions, as illustrated in Figure 6 (an OOD example
not included in the training or test sets) and in the difference image of Figure 12. While UPCONV
also produces edge artifacts, STRIP consistently outperforms it even when such boundary effects
are mitigated, demonstrating that STRIP’s advantage extends beyond the correction of edge artifacts.
While UPCONV offers much faster inference, it requires costly retraining for each dataset, whereas
STRIP is training free and directly applicable.

7 DISCUSSION AND CONCLUSION

This paper introduced STRIP, an iterative algorithm for convolutional layer inversion. Our method
leverages the structure of the convolutional layer matrix by partitioning it into strips in a way that
promotes their inter orthogonality. The strips are inverted independently without constructing the full
matrix. This design yields reconstructions that are both accurate and efficient, significantly reducing
time and memory requirements compared to conventional approaches.

IMPACT STATEMENT

The superior reconstruction achieved by our method with respect to transposed convolutions, com-
bined with the fact that it is not a learnable layer and therefore requires no retraining across networks,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

suggests that it can be deployed in practical scenarios. For example, it can serve as a replacement for
up-convolutions in architectures such as U-Net.

REPRODUCIBILITY

We provide detailed descriptions of theoretical assumptions, proofs, and experimental protocols.
Datasets (MNIST (LeCun et al., 1998), CelebA (Liu et al., 2015), and CelebA-HQ (Karras et al.,
2018)) are publicly available. Architectures, hyperparameters, and training settings are fully specified
(Section 6, Appendix B), and code for experiments will be released to ensure reproducibility.

REFERENCES

Stanisław M. Bregman. The method of successive projection for finding a common point of convex
sets. Soviet Mathematics Doklady, 6:688–692, 1965.

Augustin Cauchy et al. Méthode générale pour la résolution des systemes d’équations simultanées.
Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

Jia-Qi Chen and Zheng-Da Huang. On a fast deterministic block kaczmarz method for solving
large-scale linear systems. Numerical Algorithms, 89(3):1007–1029, 2022.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297–301, 1965.

Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox.
Inverting visual representations with convolutional networks. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 4829–4837, 2016. URL https:
//www.cv-foundation.org/openaccess/content_cvpr_2016/papers/
Dosovitskiy_Inverting_Visual_Representations_CVPR_2016_paper.pdf.

Tommy Elfving. Block-iterative methods for consistent and inconsistent linear equations. Numerische
Mathematik, 35(1):1–12, 1980.

Thomas Fel, Thibaut Boissin, Victor Boutin, Agustin Picard, Paul Novello, Julien Colin, Drew
Linsley, Tom Rousseau, Rémi Cadène, Lore Goetschalckx, et al. Unlocking feature visualization
for deep network with magnitude constrained optimization. Advances in Neural Information
Processing Systems, 36:37813–37826, 2023.

David Chin-Lung Fong and Michael Saunders. Lsmr: An iterative algorithm for sparse least-squares
problems. SIAM Journal on Scientific Computing, 33(5):2950–2971, 2011.

Semen Aronovich Gershgorin. Über die abgrenzung der eigenwerte einer matrix. Izvestiya Rossiiskoi
Akademii Nauk. Seriya Matematicheskaya, 7(6):749–754, 1931.

Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving linear systems.
Journal of research of the National Bureau of Standards, 49(6):409–436, 1952.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. In International Conference on Learning Representations
(ICLR), 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015. URL https://arxiv.org/abs/
1412.6980.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 3730–3738,
2015.

10

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Dosovitskiy_Inverting_Visual_Representations_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Dosovitskiy_Inverting_Visual_Representations_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Dosovitskiy_Inverting_Visual_Representations_CVPR_2016_paper.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015.

Deanna Needell and Joel A Tropp. Paved with good intentions: analysis of a randomized block
kaczmarz method. Linear Algebra and its Applications, 441:199–221, 2014.

Yu-Qi Niu and Bing Zheng. A greedy block kaczmarz algorithm for solving large-scale linear systems.
Applied Mathematics Letters, 104:106294, 2020. doi: 10.1016/j.aml.2020.106294.

Christopher C Paige and Michael A Saunders. Lsqr: An algorithm for sparse linear equations and
sparse least squares. ACM Transactions on Mathematical Software (TOMS), 8(1):43–71, 1982.

Lawrence Perko. Differential Equations and Dynamical Systems. Texts in applied mathematics.
Springer Nature, Netherlands, 2nd ed. edition, 2012. ISBN 9781468402490.

Jan Rathjens, Shirin Reyhanian, David Kappel, and Laurenz Wiskott. Inverting visual representations
with detection transformers. arXiv e-prints, pp. arXiv–2412, 2024.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Philipp Ludwig Seidel. Ueber ein verfahren, die gleichungen, auf welche die methode der kleinsten
quadrate führt, sowie lineäre gleichungen überhaupt, durch successive annäherung aufzulösen,
volume 11. Verlag d. Akad., 1873.

Pirzada Suhail and Amit Sethi. Network inversion of convolutional neural nets. arXiv preprint
arXiv:2407.18002, 2024.

Longze Tan, Xueping Guo, Mingyu Deng, and Jingrun Chen. On the adaptive deterministic block
kaczmarz method with momentum for solving large-scale consistent linear systems. Journal of
Computational and Applied Mathematics, 457:116328, 2025.

John von Neumann. Über adjungierte funktionaloperatoren. Annals of Mathematics, 33(2):294–310,
1933. doi: 10.2307/1968537.

Ze Wang and Jun-Feng Yin. A surrogate hyperplane kaczmarz method for solving consistent linear
equations. Applied Mathematics Letters, 144:108704, 2023.

Norbert Wiener. Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With
Engineering Applications. The MIT Press, 08 1949. ISBN 9780262257190. doi: 10.7551/mitpress/
2946.001.0001. URL https://doi.org/10.7551/mitpress/2946.001.0001.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Ke Zhang, Xiang-Xiang Chen, and Xiang-Long Jiang. A residual-based surrogate hyperplane
extended kaczmarz algorithm for large least squares problems. Calcolo, 61(3):51, 2024.

11

https://doi.org/10.7551/mitpress/2946.001.0001

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PROOFS AND ADDITIONAL THEORETICAL BACKGROUND

A.1 FREQUENCY-DOMAIN METHODS

Classical frequency domain deconvolution methods, such as FFT based inverse filtering and Wiener
deconvolution, are fundamentally ill suited for inverting multichannel convolutional layers in neural
networks. These approaches rely on the assumption of a scalar convolution model, where deconvo-
lution reduces to elementwise division in the frequency domain. In contrast, convolutional layers
implement tensor contractions in which each output channel aggregates information from all in-
put channels. This interchannel coupling cannot be decomposed into independent per frequency
operations, violating the core premise of classical methods.

The mismatch becomes even more pronounced in the overdetermined setting (Cout > Cin), where
spatial locality and the inherent sparsity of convolutional kernels are destroyed in the frequency
domain. The resulting systems are often ill conditioned, leading to substantial noise amplification.
Furthermore, FFT and Wiener based methods neglect the non Gaussian statistics induced by nonlinear
activations and the data dependent nature of learned feature representations.

As a result, while mathematically tractable in simplified scenarios, classical frequency domain
approaches fail to exploit the structural properties of CNN transformations and provide limited
practical utility for accurate or efficient inversion.

A.2 CONVOLUTION LAYER AS A LINEAR EQUATION SYSTEM

Figure 7: The structure of the convolution matrix, for the simple case of one input channel (grayscale
image). Each kernel/output channel corresponds to different block Ai of the full matrix A, and
effects only the output elements of bi. For illustration, the division into strips is standard, where each
strip corresponds to the convolution matrix of one kernel, as demonstrated in Figure 4. In practice,
however, strips can be organized in more general ways, potentially combining noncontiguous rows or
rows belonging to different blocks.

B EXPERIMENTS ADDITIONAL MATERIAL

We use a lightweight convolutional network consisting of a single convolution layer with 3×3 kernels
(stride 1), followed by a LeakyReLU activation (slope = 0.5), a 2× 2 average pooling layer, and a
fully connected linear layer. The input image of size (Hin,Win) is reduced to feature maps of size
((Hin/2)− 1)× ((Win/2)− 1), which are then flattened and mapped to the output classes.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 8: MNIST deconvolution after a single iteration - 8 convolution channels. Leftmost
column: PINV reference. Odd rows show reconstructions; even rows show error maps (result - PINV).
One iteration of our method is a full sweep of the convolution matrix (31 substeps), thus comparable
to 31 iterations of the other block Kaczmarz baselines.

For all iterative methods, the initialization was set to x(0) = 0. GD was implemented with the Adam
optimizer (Kingma & Ba, 2015), using a learning rate of 10−2 in Table 1 and 10−1 in Tables 2 and 4.
GD, which requires a square system, was applied to the normal equations by solving A⊤Ax = A⊤b
with inputs A⊤A and A⊤b, equivalent to Eq. (1). Memory consumption was measured with the
memory usage function from the memory profiler package, reporting the difference between
maximum and minimum values as the incremental peak memory footprint in megabytes (MB).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 9: CELEBA deconvolution after a single iteration - 8 convolution channels. Leftmost
column: PINV reference. Odd rows show reconstructions; even rows show error maps (result - PINV).
One iteration of our method is a full sweep of the convolution matrix (31 substeps), thus comparable
to 31 iterations of the other block Kaczmarz baselines.

Figure 10: Output channels of convolution result b

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 11: Idempotency of strip arrangements measured by ∥K − K2∥F (lower is better) on MNIST
dataset. Smaller values indicate greater inter-strip orthogonality and faster convergence toward the
PINV solution.

C EXTRA RESULTS

Figure 12: STRIP vs. UPCONV: Comparison of reconstruction quality between the two methods.
The sample is from the CelebA-HQ dataset. For each case, the first row shows reconstructions and
the second row shows difference images (reconstruction - PINV).

D JUSTIFICATION OF EQ. (11)

Equation 11 is based on the SVD of the matrices Ai

Ai = UiΣiV
T
i , A†

i = ViΣ
−1
i U−1

i , A†
iAi = ViV

T
i . (16)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Comparison of STRIP versus iterative methods across datasets with 10% noise. All methods
are evaluated after a single iteration. Best in bold.

OURS CG GS GD LSQR LSMR RSHK

MSE ↓
MNIST 0.005 0.470 0.258 0.764 0.747 0.797 0.408
CELEBA 0.024 ± 0.001 0.326 ± 0.008 0.274 ± 0.007 0.327 ± 0.007 0.354 ± 0.008 0.357 ± 0.008 0.314 ± 0.008
CELEBA-HQ 0.009 0.312 ± 0.006 – 0.347 ± 0.005 0.336 ± 0.006 0.337 ± 0.006 –

PSNR [dB] ↑
MNIST 23.046 ± 0.023 3.303 ± 0.001 5.883 ± 0.002 1.169 ± 0.001 1.270 ± 0.001 0.994 ± 0.001 3.923 ± 0.001
CELEBA 16.571 ± 0.112 5.230 ± 0.114 5.886 ± 0.133 5.185 ± 0.114 4.823 ± 0.107 4.771 ± 0.105 5.398 ± 0.119
CELEBA-HQ 20.486 ± 0.081 5.348 ± 0.089 – 4.841 ± 0.077 4.996 ± 0.083 4.983 ± 0.083 –

SSIM ↑
MNIST 0.927 0.260 0.486 0.049 0.076 0.037 0.347
CELEBA 0.746 ± 0.003 0.047 ± 0.002 0.134 ± 0.005 0.036 ± 0.001 0.014 ± 0.003 0.006 ± 0.001 0.077 ± 0.003
CELEBA-HQ 0.694 ± 0.005 0.070 ± 0.003 – 0.005 0.029 ± 0.002 0.025 ± 0.002 –

Runtime [sec] ↓
MNIST 0.059 ± 0.071 0.110 ± 0.065 0.803 ± 0.056 0.107 ± 0.049 0.103 ± 0.033 0.094 ± 0.008 0.118 ± 0.011
CELEBA 0.113 ± 0.098 0.125 ± 0.055 3.420 ± 0.058 3.192 ± 0.051 0.126 ± 0.033 0.124 ± 0.012 0.742 ± 0.021
CELEBA-HQ 1.641 ± 0.033 605.557 ± 0.054 – 605.167 ± 0.045 605.585 ± 0.058 605.618 ± 0.047 –

Memory [MB] ↓
MNIST 0 0 0 0 0 0 0
CELEBA 0.086 ± 0.273 0 4.284 ± 4.259 0 0 0 0
CELEBA-HQ 0.006 19.981 – 19.981 19.981 19.981 –

Plugging these identities to Equation 9, we get

Ai = UiΣiV
T
i

A†
i = AT

i

(
AiA

T
i

)−1

=
(
UiΣiV

T
i

)T (
UiΣiV

T
i

(
UiΣiV

T
i

)T)−1

= ViΣiU
T
i

UiΣi V
T
i Vi︸ ︷︷ ︸
−I

ΣiU
T
i

−1

= ViΣi U
T
i

(
UT
i

)−1︸ ︷︷ ︸
=I

Σ−2
i U−1

i = ViΣ
−1
i U−1

i

A†
iAi = ViΣ

−1
i U−1

i UiΣiV
T
i

= ViV
T
i

(17)

E CONVERGENCE IN ONE ITERATION – ANALYSIS

BK recurrence relation in Eq. (12) has the form of a linear difference equation with constant constraint.
Given an initial condition x

(0)
0 , the solution to is

x
(t)
0 = Ktx

(0)
0 +

[
I +K + · · ·+Kt−1

]
B. (18)

The convergence of this solution depends on the spectrum of K and the respective eigenvectors.
Based on Definition 1 in Perko (2012) p. 51, we define here the stable, unstable, and center subspaces
of the dynamical system in Eq. (12).

Let wj be a generalized eigenvector associated with the eigenvalue µj of the matrix K. The stable,
center, and unstable subspaces, denoted as Es, Ec, and Eu, are defined as follows:

Es = Span{Re{wj}, Im{wj} | |µj | < 1} (19)
Ec = Span{Re{wj}, Im{wj} | |µj | = 1} (20)
Eu = Span{Re{wj}, Im{wj} | |µj | > 1} (21)

The solution ,Eq. (14), converges if B. The constraint on x
(0)
0 is mitigated. It should also belong to

Es but can have components of eigenvectors with eigenvalue µ = 1. The initial condition is chosen
to be zero, then the only concern is whether B is in Es. Moreover, the fastest convergence occurs
when B belongs to the kernel of K. Let us examine the ith row in Eq. (11), given by,

x
(t)
i = Kix

(t)
i−1 + Vib̂i. (22)

where Ki = I − ViV
T
i . The matrix Vi results from the SVD of Ai, and therefore V T

i Vi = I .
Consequently, the matrix Ki is an idempotent matrix, i.e. K2

i = Ki. Its eigenvalues are either 0 or 1
associated with columns of Vi and the complementary space, respectively.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

If Eq. (22) is the only one in the equation system, we can formulate its solution according to Eq. (14).
The constraint B is Vib̂i and belongs to the kernel of Ki. Therefore, the solution where t approaches
infinity is

xf
i = lim

t→∞
x
(t)
i = Kix

(0)
i + Vib̂i = x

(1)
i . (23)

Consequently, the solution of each row converges in one step, since Ki is an idempotent matrix and
the constraint in each row belongs to the kernel of Ki. This leads us to the following lemma.

Lemma 3 (Convergence in one step). A dynamical system of the form

yk+1 = ykA+B

converges in one step if A is an idempotent matrix and B belongs to its kernel.

Proof. The solution is given by

yk = Aky0 +
[
I +A+A2 + . . .+Ak−1

]
.B

However, Ak = A for all positive integer k since A is an idempotent matrix and AB = 0 since B
belongs to the kernel space of A. Therefore, yk = y1. Convergence in one step.

Now, we generalize this conclusion to S rows.

The main questions are

1. How far B from the kernel of K? or equivalently, what eigenvalues this constraint invokes
in this dynamical system?

2. How far K from being idempotent?

E.1 ORTHOGONALITY

Let Vi be the column space of Vi which is the kernel space of Ki. From Eq. (13) the vector B belongs
to the union ∪Si=1Vi. Here, we study the relation between the linear dependencies of these subspaces
and the convergence of Eq. (14).

Lemma 4. The solution of Eq. (12) (with the structure dictated by Eq. (13)) converges in one step if
Vi ⊥ Vj , ∀i ̸= j.

Proof. The matrices K and B become

K = I −
S∑

i=1

ViV
T
i , B =

S∑
j=1

Vj b̂j . (24)

since Vi ⊥ Vj , ∀i ̸= j. Hence, K is an idempotent and B belongs to its kernel space. The dynamics
convergence in one step, since the conditions of Lemma 3 hold.

E.2 LINEAR DEPENDENCY

Here, the subspaces Vi are not necessarily orthogonal. We start our investigation for S = 2 and then
try to generalize the conclusions to any S > 2.

E.2.1 CONVERGENCE CONDITION FOR S = 2

Notations for S = 2 The matrix K from Eq. (13) is

K =
(
I − V2V

T
2

) (
I − V1V

T
1

)
= I − V2V

T
2 − V1V

T
1 + V2V

T
2 V1V

T
1

. (25)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Let us denote C2,1 = V T
2 V1. The i, jth entry of that matrix is the cosine of the angle between the ith

column vector of V2 and the jth column vector of V1. If there are m1 columns in V1 and m2 in V2,
one can write C2,1 as

C2,1 =


cos(θ1,1) cos(θ1,2) . . . cos(θ1,m1)
cos(θ2,1) cos(θ2,2) cos(θ2,m1)

...
cos(θm2,1) cos(θm2,2) cos(θm2,m1

)

. (26)

For more compact writing, we denote the ith row in that matrix ci = [cos(θi,1) · · · cos(θi,m1
)]

and the matrix as

C2,1 =

 c1
...

cm2

 . (27)

Note that if we denote V T
1 V 2 as C1,2 then we get C1,2 = CT

2,1 and the matrix C2,1C1,2 is a Gram
matrix and can be formulated as

The matrix C2,1C1,2 is symmetric and Gram, and based on Eq. (26) it can be formulated as

C2,1C1,2 =


∥c1∥2 ⟨c1, c2⟩ . . . ⟨c1, cm2

⟩
⟨c1, c2⟩ ∥c2∥2 . . . ⟨c2, cm2

⟩
...

⟨c1, cm2⟩ ⟨c2, cm2⟩ . . . ∥cm2∥
2

 (28)

Now, we can rewrite the dynamics

K = I − V2V
T
2 − V1V

T
1 + V2C2,1V

T
1 . (29)

Convergence Analysis for S = 2

ANSWER TO QUESTION 1 ”What eigenvalues the constraint B are invoked in this dynamical
system?”

The vector B can be formulated as V1α1 + V2α2 where α1 and α2 are column vectors with the
corresponding dimension.

The eigenvalue/vector admits the following equation,

K(V1α1 + V2α2) = −V1C1,2α2 + V2C2,1C1,2α2 = λ(V1α1 + V2α2) (30)

where λ ∈ C. By applying the method of variation of parameters, the vectors α1 and α2 admit the
following relations

λα2 = C2,1C1,2α2 (31a)
λα1 = −C1,2α2. (31b)

The vector α2 admits the eigenvalue problem of the matrix C2,1C1,2. In other words, the eigenproblem
of K leads us to the eigenproblem of matrix C2,1C1,2.

To recap, the answer to question 1 is: the spectrum B invokes is the spectrum of the matrix C2,1C1,2.

The upper and lower bounds of the eigenvalues can indicate the system converges and in what minimal
pace. The upper bound indicates the slowest pace of convergence of the system, and the lower bound
indicates whether the system diverges. We use Gershgorim theorem and on attributes of Gram matrix
to find these bounds. Recall the theorem of Gershgorim.
Theorem 5 (Gershgorin circle theorem Gershgorin (1931)). Given an n × n matrix A, where
[A]i,j = ai,j , the eigenvalues are in the following domain in C

n⋃
i=1

B

ai,i,

n∑
j=1,j ̸=i

|ai,j |

 (32)

where B(a, r) is a ball in C centered in a with radius r.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

By applying the Gershgorin theorem to C2,1C1,2, the eigenvalues are in the following union
⋃m2

i=1 Bi,
where

Bi = B

∥ci∥2, m2∑
j=1,j ̸=i

|⟨ci, cj⟩|

 . (33)

In addition, the matrix in question is Gram. Its spectrum is real and non-negative. Thus, one can
reformulate the circle of Gershgorin. The spectrum of C2,1C1,2 in the union of the following segments

Bi =

max

{
∥ci∥2 −

m2∑
j=1,j ̸=i

|⟨ci, cj⟩|, 0
}
,

m2∑
j=1

|⟨ci, cj⟩|

 . (34)

Recap: the eigenvalues invoked by B are the eigenvalues of C2,1C1,2 that are contained in
⋃m2

i=1 Bi.
Lemma 6 (Convergence and Divergence for S = 2). A dynamical system of the form of Eq. (29)
converges if Ic < 1 and diverges if Id > 1, where

Ic = max
1≤i≤m2

{ m2∑
j=1

|⟨ci, cj⟩|
}

Id = min
1≤i≤m2

{
∥ci∥2 −

m2∑
j=1,j ̸=i

|⟨ci, cj⟩|
}. (35)

Proof. The constraint B invokes eigenvalues in the union
⋃m2

i=1 Bi where the segment Bi is defined
in Eq. (34). The upper bound of this union is

Ic = max
1≤i≤m2

{ m2∑
j=1

|⟨ci, cj⟩|
}
. (36)

Therefore, if the upper bound is less than one, all the eigenvalues are between zero and one. Therefore,
convergence.

The lower bound of this union is

Id = min
1≤i≤m2

{
∥ci∥2 −

m2∑
j=1,j ̸=i

|⟨ci, cj⟩|
}
. (37)

If Id is larger than one all the eigenvalues are larger than one. Therefore, divergence.

The condition Ic < 1 does not guarantee only convergence, but also the bound to the slowest the pace
of convergence. Therefore, the lower Ic, the faster convergence. When Ic = 0 the convergence is the
fastest and the system gets its steady state in one step. In that case, the matrix K is idempotent as
discussed in the orthogonal case (Lemma 4).

ANSWER TO QUESTION 2 ”How far K from being idempotent?”

The attribute of idempotency is crucial for convergence in one step, as discussed in Lemma 3.
Orthogonality and idempotency dictate a special structure for the matrix K, see Lemma 4. Then, our
suggestion is to measure the distance of K from idempotency as follows,∥∥K −K⊥∥∥2

F
(38)

where K is the matrix as in Eq. (29) and K⊥ is the matrix K is if it were an idempotent matrix,
meaning

K⊥ = I −
2∑

i=1

ViV
T
i . (39)

Thus, the distance is defined as, ∥∥K −K⊥∥∥2
F

(40)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Lemma 7 (Distance from idempotency and convergence pace S = 2). Let the dynamics be with two
strips, S = 2. If the distance from idempotency is less than one, the dynamics Eq. (12) converges.

Proof.

∥∥K −K⊥∥∥2
F
=

∥∥∥∥∥
2∏

i=1

(
I − ViV

T
i

)
−

(
I −

2∑
i=1

ViV
T
i

)∥∥∥∥∥
2

F

=

∥∥∥∥∥I −
2∑

i=1

ViV
T
i + V2C2,1V

T
1 −

(
I −

2∑
i=1

ViV
T
i

)∥∥∥∥∥
2

F

=
∥∥V2C2,1V

T
1

∥∥2
F
= Tr

{
V2C2,1V

T
1

(
V2C2,1V

T
1

)T }
(41)

The matrix C2,1C1,2 is diagonalizable with positive eigenvalues. Then, we can write∥∥K −K⊥∥∥2
F
=Tr

{
V2 UΛUT︸ ︷︷ ︸

=C2,1C1,2

V T
2

}
(42)

where V2U is a unitary matrix. Therefore, the trace is∥∥K −K⊥∥∥2
F
=

m∑
i=1

λi. (43)

where m = min{m1,m2}. Hence, if the sum,
∑m

i=1 λi, is less than one, each eigenvalue is less than
one. Then, convergence.

Thus, the linear dependency affects the convergence rate.

E.2.2 GENERALIZATION TO S > 2

The analysis of Kaczmarz dynamics for S = 2 reveals the complexity to derive quantity indications
for pace convergence where S > 2. Even for S = 3, finding the eigenvalues of K is a challenging
task. Therefore, the answer to the Question 1 is not clear.

On the other hand, the generalization of the distance of K from idempotency is almost obvious. Let
us recall the form of the dynamics

K =

S∏
i=1

(
I − ViV

T
i

)
, (44)

and the ”idempotent” part of this matrix as

K⊥ = I −
S∑

i=1

ViV
T
i . (45)

If the subspaces {Vi}Si=1 are orthogonal, the matrix K would be equal to K⊥. The other (correlated)
addends are for the dependency between these subspaces. The lower the linear dependence, the lower
the correlated addends and therefore, the closer K to K⊥. The distance from idempotency is the norm
of the correlated addends in K, or more formally,∥∥∥∥∥

S∏
i=1

(
I − ViV

T
i

)
−

(
I −

S∑
i=1

ViV
T
i

)∥∥∥∥∥
2

F

. (46)

Let us denote the matrix K as follows,

K = K⊥ + [V1 V2 . . . VS]CK [V1 V2 . . . VS]
T (47)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where the matrix CK contains all the correlations between all the possible combinations of the
products in Eq. (44).

∥∥K −K⊥∥∥2
F
=Tr{[V1 V2 . . . VS]CKCSC

T
K [V1 V2 . . . VS]

T }

=Tr{CKCSC
T
K [V1 V2 . . . VS]

T
[V1 V2 . . . VS]}

=Tr{CKCSC
T
KCS}

(48)

where CS = [V1 V2 . . . VS]
T
[V1 V2 . . . VS]. The distance in the general case is not

directly the sum of the eigenvalues of K. However, if Vi ⊥ Vj for all i ̸= j, the distance from
idempotency is zero, and the convergence is achieved in one step.

E.3 CONVERGENCE FOR S > 2

Let us denote the matrix K as follows,

K = K⊥ + [V1 V2 . . . VS]CK [V1 V2 . . . VS]
T (49)

where the matrix CK contains all the correlations between all the possible combinations of the
products in K =

∏S
i=1

(
I − ViV

T
i

)
. Therefore, the distance for the general case is as follows,∥∥K −K⊥∥∥2

F
=
∥∥∥[V1 V2 . . . VS]CK [V1 V2 . . . VS]

T
∥∥∥2
F

=Tr{[V1 V2 . . . VS]CKCSC
T
K [V1 V2 . . . VS]

T }

=Tr{CKCSC
T
K [V1 V2 . . . VS]

T
[V1 V2 . . . VS]}

=Tr{CKCSC
T
KCS}

(50)

where CS = [V1 V2 . . . VS]
T
[V1 V2 . . . VS]. The distance from idempotency is the norm

of the correlated addends in K. The distance in the general case is not directly the sum of the
eigenvalues of K as when S = 2 (see Lemma 7). However, if Vi ⊥ Vj for all i ̸= j, the distance from
idempotency is zero, and the convergence is achieved in one step. The lower the linear dependence,
the lower the correlated addends and therefore, the closer K to K⊥. From our experiments, the lower
the distance the faster the convergence. In most cases, after one iteration the algorithm gets to its
final result. Consequently, the following conjecture is backed up with experiments, however, we did
not find the relation of this distance to eigenvalues of the correlation matrix CK and CS .
Conjecture 8 (Convergence pace and distance from Idempotency). Let the distance from idempotency
be
∥∥K −K⊥

∥∥2
F

. If the distance is zero, the system converges in one step. In addition, the lower the
distance, the faster the convergence rate.

E.4 PROOF OF THEOREM 2

Proof. The proof of Theorem 2 follows from Lemma 3, Lemma 4, Lemma 6, and Lemma 7.

21

	Introduction
	Related Work
	Preliminaries
	Setting and Notations
	Block Kaczmarz

	method
	Mathematical Analysis
	Kaczmarz Recurrence Relation as Dynamical System

	Experimental Results
	Idempotency Check
	Comparison with iterative methods
	Comparison with Transposed Convolution

	Discussion and Conclusion
	Proofs and Additional Theoretical Background
	Frequency-Domain Methods
	Convolution layer as a linear equation system

	experiments additional material
	Extra Results
	Justification of Eq. (11)
	Convergence in One Iteration – Analysis
	Orthogonality
	Linear Dependency
	Convergence Condition for S=2
	Generalization to S>2

	Convergence for S>2
	Proof of Theorem 2

