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Abstract

We introduce the attention-indexed model (AIM), a theoretical framework for
analyzing learning in deep attention layers. Inspired by multi-index models, AIM
captures how token-level outputs emerge from layered bilinear interactions over
high-dimensional embeddings. Unlike prior tractable attention models, AIM allows
full-width key and query matrices, aligning more closely with practical transform-
ers. Using tools from statistical mechanics and random matrix theory, we derive
closed-form predictions for Bayes-optimal generalization error and identify sharp
phase transitions as a function of sample complexity, model width, and sequence
length. We propose a matching approximate message passing algorithm and show
that gradient descent can reach optimal performance. AIM offers a solvable play-
ground for understanding learning in self-attention layers, that are key components
of modern architectures.

1 Introduction
The transformer architecture [1] has transformed machine learning, achieving state-of-the-art results
in natural language processing [2, 3], computer vision [4], and beyond. Its core innovation—the self-
attention mechanism—enables models to capture long-range dependencies between tokens. Despite
their empirical success, transformers remain poorly understood theoretically, especially regarding
how data structure, attention bias, and training dynamics interact in finite-sample regimes. While
mechanistic interpretability has shed light on trained models, the learning process itself—what is
statistically and computationally learnable from limited data—remains unexplained. A common
strategy toward progress is to study simplified models in high-dimensional regimes, where the
blessing of dimensionality [5] can yield tractable characterizations of learning. A key ingredient in
this approach is a synthetic data model that captures salient aspects of real-world structure.

A common feature of natural data is that structure arises from pairwise interactions between elements.
In language, for example, sentence meaning depends on both the semantics of individual words and
their syntactic roles. This can be modeled by assigning each word a semantic embedding x and a
contextual embedding z. For instance, in “Max eats chocolate,” one level of understanding identifies
what each word means (e.g., Max is a person), while another captures grammatical roles (Max is the
subject). These two embeddings are linked: contextual meaning emerges by comparing semantic
content across words. Similar relational patterns occur in images, molecules, and graphs. The
empirical success of transformers suggests that multi-layer self-attention—which performs weighted
pairwise comparisons in a hierarchical way—is a natural mechanism for modeling such interactions.
To analyze this, we construct a synthetic data model that reflects pairwise structure between tokens.

Theoretical understanding of fully connected neural networks has advanced significantly through the
analysis of Gaussian single-index and multi-index models in the high-dimensional limit [6, 7, 8, 9,
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10, 11, 12, 13, 14, 15]. In statistical physics, similar models appear as teacher-student perceptrons
[16, 17, 18, 19] or committee machines [20, 21]. These setups typically assume i.i.d. Gaussian inputs,
with targets depending on a small number of random projections—“indices”—of the input. They
provide a rich theoretical playground for jointly analyzing learning dynamics, generalization, and
architectural biases.

Recent work has extended this framework to model key aspects of transformers, introducing the
sequence multi-index (SMI) model [22, 23, 24]. While insightful, existing SMI models require the
width of the key and query matrices to be much smaller than the token embedding dimension—a
regime where only narrow attention layers can be analyzed. In contrast, practical transformers
typically use key and query widths comparable to the embedding dimension. This motivates our
contribution: a high-dimensional yet analyzable model where learnable matrices have extensive rank.
We call this the attention-indexed model.

The attention-indexed model (AIM). We introduce a new class of high-dimensional functions
designed to model pairwise relationships between tokens. Analogous to classical multi-index models,
the attention-indexed model defines outputs y as nonlinear functions of high-dimensional token
embeddings x⊤

a ∈ Rd for a = 1, . . . , T , arranged as rows of the input sequence of tokens X0 ≡ X ∈
RT×d for a = 1, . . . , T . We define L attention indices h(ℓ) ∈ RT×T with components h(ℓ)

ab . The
labels y for each input X ∈ RT×d are generated via a general output function g : RL×T×T → RT×T

h
(ℓ)
ab ≡ x⊤

a Sℓ xb − δab TrSℓ√
d

, y = g
(
{h(ℓ)}Lℓ=1

)
. (1)

Here each Sℓ ∈ Rd×d is a learnable matrix. The diagonal mean is subtracted to avoid divergence as
d → ∞, ensuring the fluctuations of h(ℓ) remain O(1).

While our theory applies to general rotationally invariant Sℓ, a motivating example is when Sℓ ≃
QℓK

⊤
ℓ ∈ Rd×d, as in self-attention [1], with key and query matrices Kℓ, Qℓ ∈ Rd×rℓ . We refer to rℓ

as the width of the ℓth layer; it typically controls the rank of Sℓ, though we also consider rℓ > d. For
analytical simplicity, we assume tied key and query, Qℓ = Kℓ = Wℓ, so that

Sℓ =
1√
rℓ d

WℓW
⊤
ℓ ∈ Rd×d , Wℓ ∈ Rd×rℓ . (2)

Multi-layer attention. A key instance of the output function g arises when contextual embeddings
are built via stacked attention layers. Each layer updates the representation by mixing semantic
embeddings through weighted pairwise interactions. Formally, we define the multi-layer attention
mechanism as:

y = σβ

(
HL(XL−1)

)
, Xℓ =

[
c IT + σβ

(
Hℓ(Xℓ−1)

)]
Xℓ−1 (3)

Hℓ(Xℓ−1) :=
1√
d
Xℓ−1 Sℓ X

⊤
ℓ−1 −

1√
d
Etr[Xℓ−1SℓX

⊤
ℓ−1] (4)

where X0 ∈ RT×d is the input sequence, c is the residual strength, and L is the number of layers.
The function σ : RT×T → RT×T is typically the softmax with inverse temperature β; increasing β
sharpens the focus on dominant pairwise interactions. Finally, the expectation in Hℓ(X) is intended
over the input data X0 (empirical average).

A particularly interesting case is the limit of infinite β, where softmax becomes the hardmax function
that selects the maximum entry in each row of the attention logits. This can be interpreted as enforcing
a sparse, winner-take-all selection among candidate interactions, capturing the case where for each
token only a single other token carries the relevant signal. Such mechanisms are especially relevant
in symbolic, compositional, or relational reasoning, where outputs depend on identifying a unique
best match per query.

This form fits into the attention-indexed framework by choosing the output function g in (1) as:

g({h(ℓ)}Lℓ=1) = σβ

(
BL−1

c (h(1), . . . , h(L−1))h(L) BL−1
c (h(1), . . . , h(L−1))⊤

)
, (5)
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where the recursion is defined by:

B0
c = IT , Bℓ

c =
[
c IT + σβ

(
Bℓ−1

c h(ℓ) Bℓ−1⊤
c

)]
Bℓ−1

c ℓ = 1, . . . , L. (6)

In particular, with this formulation the map in (4) can be rewritten as:

Hℓ(Xℓ−1) =
1√
d
Xℓ−1 Sℓ X

⊤
ℓ−1 −

TrSℓ√
d

Bℓ−1
c Bℓ−1⊤

c = Bℓ−1
c h(ℓ) Bℓ−1⊤

c (7)

This formulation also accommodates sequence-level outputs of the form yXL−1, corresponding to
the output map gBL−1

c . Details of the corresponding mappings are given in Appendix B.

The existence of such mapping, from deep attention to a low-dimensional collection of attention
indices, is a key contribution: it allows information-theoretic and algorithmic results derived for
AIMs to transfer to multi-layer attention. In App. B we extend such mapping to multi-head and
seq2seq variants. Full Transformer blocks (e.g., ViT/LLMs) interleave multi-head self-attention with
token-wise MLPs, and are commonly trained in an auto-regressive fashion; our supervised setup
isolates the attention learning problem, to which our results apply directly.

Our contributions. We initiate a theoretical study of learning from data generated by the attention-
indexed model, without restrictions on the width of the attention matrices Sℓ, in the high-dimensional
limit. Specifically, we consider large embedding dimension d, with attention widths rℓ (or ranks of
Sℓ) scaling proportionally with d, while keeping sequence length T and depth L finite. The number
of samples n scales quadratically with dimension to span the regime where the optimal test error
changes from as bad as a random guess to zero:

d → ∞ , α ≡ n

d2
= Θ(1) , ρℓ ≡

rℓ
d

= Θ(1) , T = Θ(1) , L = Θ(1) . (8)

In this limit, for Gaussian i.i.d. inputs and suitable priors over Sℓ, we analyze the Bayes-optimal esti-
mator—that is, the posterior mean predictor. Concentration of measure allows key observables—such
as the test error—to become deterministic, enabling a description in terms of low-dimensional fixed-
point equations. We derive those equations using tools from statistical mechanics and random matrix
theory. Beyond analytical tractability, this asymptotic setting captures relevant scalings, where model
and data dimensions grow together.

Our analysis uncovers phase transitions in learnability as a function of sample complexity α, sequence
length T , and attention width ρ. We show that attention mechanisms with extensive width can
efficiently recover latent structure, particularly when the target model exhibits sparsity. We further
study the role of the inverse temperature parameter β, contrasting the smooth regime 0 < β < +∞
with the hard assignment case β = +∞, where the task reduces to discrete token association. We
derive an approximate message passing (AMP) algorithm that matches Bayes-optimal performance
in the studied setting. We also show empirically that an averaged version of gradient descent on a
natural loss achieves similar optimality, aligning theory with practical training dynamics.

Further related work. The attention-indexed model (AIM) is motivated by a generative perspective,
capturing how structured token-level outputs arise from layered bilinear interactions between high-
dimensional embeddings—mirroring attention computations in transformers. The idea of modeling
learning through such structured synthetic data dates back to the teacher–student setting in the
perceptron literature [16, 17, 20], and more recently to single-index and multi-index models [6, 7, 8,
9, 10, 11, 12, 13, 14, 15].

While many theoretical studies explore simplified transformer variants, most do not rely on or
benefit from the high-dimensional limit. These include works that analyze one-layer attention under
finite embedding dimension [25, 26, 27, 28, 29], or study training dynamics in the linear, kernel,
or random feature regimes [30, 31, 32]. Others use infinite-width approximations without access
to generalization error [33, 34]. By contrast, theoretical analysis of nonlinear attention layers with
trainable key and query matrices in the limit of high embedding dimension—together with sharp
control of generalization—is less explored. As far as we are aware, only a few works address this
regime [23, 22, 35, 36], and they all assume attention matrices of finite width.

Methodologically, our approach builds on techniques from high-dimensional multi-index models,
particularly those developed in [21, 37], and their recent generalizations to sequence learning with
multiple low-width self-attention layers [35]. The main technical challenge addressed in this paper is
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extending these tools to the case where the width r of the attention matrices scales proportionally
with the embedding dimension—i.e., the extensive-width regime—going beyond the key limitations
of prior analyses.

To tackle this, we leverage recent results on the ellipsoid fitting problem [38, 39] and its connection
to two-layer neural networks with quadratic activations and extensive width [40, 41]. Remarkably,
the linear AIM model with T = L = 1 is mathematically equivalent to such quadratic networks,
allowing us to adopt these methods. We generalize this connection to arbitrary T, L. This is enabled
by a central conceptual tool, the AIM index, which disentangles the complexity of deep attention
models. It allows us to split the problem into two subproblems: (i) how structure propagates across
layers and tokens, and (ii) how attention matrices are learned from those structures. This separation
is crucial in extending the theory to multiple layers and tokens.

Finally, we note that we focus here on the tied case Q = K for clarity. The untied setting Q ̸= K is
amenable to similar analysis following [42], and we leave its treatment for future work.

2 Setting
We consider a dataset D = {yµ , Xµ

0 } of n samples indexed by µ, where Xµ
0 = {xµ⊤

a }Ta=1 ∈ RT×d

has rows xµ⊤
a . Each sample consists of the embeddings of T tokens xµ⊤

a ∈ Rd, taken as standard
Gaussian xµ⊤

a ∼ N (0, Id) and of T ×T matching output matrices yµ encoding pair-wise information
on the original tokens. We stress that the Gaussian assumption for the data can be relaxed in the same
spirit as in [41, Assumption 2.2].

We generate yµ using an attention-indexed model as given in (1) with matrices {S∗
ℓ }ℓ=1,...,L that are

symmetric and extracted independently from a rotationally invariant ensemble PS(S) = PS(O
⊤SO)

for any d × d rotation matrix O. We fix the normalizations such that EPS
[TrS] = κ1d and

EPS
[TrS2] = κ2d and with κ1, κ2 = O(1). We assume that the empirical spectral distribution

of S ∼ PS converges to a a distribution µS for d → +∞. This setting can be relaxed in several
directions, allowing for different prior distributions P (ℓ)

S for different layers, as well as considering
non-symmetric matrices [43].

We consider the Bayes-optimal (BO) learning setting: the statistician knows the generative process
of the dataset, i.e. the non-linearity g in (1) and the prior distribution PS , and observes a dataset D
but not the specific set of weights {S∗

ℓ }ℓ=1,...,L used to generate said dataset. The task is then to
optimally estimate either the weights S∗ (estimation task), i.e. find the estimator Ŝ(D) that minimizes

Eest(Ŝ) = ED,S∗
1

d

L∑
ℓ=1

||Ŝ(D)ℓ − S∗
ℓ ||2F , (9)

or the label associated to a new input sample Xnew (generalization task), i.e. find the estimator
ŷ(x,D) that minimizes

Egen(ŷ) = ED,S∗Eynew,Xnew
||ŷ(Xnew,D)− ynew||2F , (10)

where (ynew, Xnew) is a new label-sample pair generated with the weights S∗. We will call the error
achieved by the optimal estimators, respectively, the BO estimation error and BO generalization error.

Both BO estimators can be computed from the knowledge of the posterior distribution, i.e. the
probability that a given set of weights S was used to generate the observed dataset

P (S1, ..., SL|D) =
1

Z(D)

L∏
ℓ=1

PS

(
Sℓ

) n∏
µ=1

δ
(
yµ − g

(
h(1)(S1,x

µ) , ... , h(L)(SL,x
µ)
))

, (11)

where the attention indices h(ℓ) ∈ RT×T were defined in (1) and Z(D) is a normalization factor.
The BO estimator with respect to the estimation error is the mean of the posterior distribution, while
BO estimator with respect to the generalization error is the mean of the predicted label under the
posterior distribution, i.e.

Ŝ = ES∼P (S|D)[S] , ŷ(x) = ES∼P (S|D)

[
g
(
h(1)(S1,x) , ... , h

(L)(SL,x)
)]

. (12)

Under the high-dimensional limit (8), we will show that the estimation/generalization error achieved
by the BO estimators are characterized through the overlaps q,Q defined as

qℓk =
1

d
ES∼P (S|D) [TrSℓS

∗
k ] , Qℓk =

1

d
ES∼PS

[TrS∗
ℓS

∗
k ] . (13)
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3 Statistical and computational limits for AIMs
In this Section we provide results for the information-theoretical and computational limits on attention-
indexed models in a very general setting, which we then specify to the attention models in Section 4.

In order to state our results let us define, for two L× L symmetric positive-definite matrix q, q̂ ∈ S+L

Zin({Yℓ}Lℓ=1; q̂) =

∫ [ L∏
ℓ=1

dSℓ PS(Sℓ)

]
exp
[
−d

4

L∑
ℓ,k=1

q̂ℓk Tr(SℓSk) +
d
2

L∑
ℓ,k=1

√
q̂ℓk Tr(YℓSk)

]
.

Iin(q̂) = lim
d→∞

1

d2

∫
DY1 . . . DYL Zin(Y1, . . . , YL; q̂) logZin(Y1, . . . , YL; q̂)

(14)

where DY stands for integration over a GOE(d) (Wigner) matrix Y , and

Zout(y, ω, V ) =

∫  T∏
a≤b

dLhab N (hab;ωab;Vab)

 δ
(
y − g({h(ℓ)

ab /
√
2− δab}Lℓ=1)

)

Iout(q) =

∫ T∏
a,b=1

dyab

∫
Dη1 . . .DηL Zout(y, ω, V ) logZout(y, ω, V )

with: ω
(ℓ)
ab =

L∑
k=1

√
2qℓk η

(k)
ab , V (ℓk) = 2(Qℓk − qℓk)

(15)

where Dη stands for integration over a L× T × T tensor symmetric in the token indices and with
independent entries N (0, 1). Moreover, let us define

gout(y, ω, V ) = ∂ω lnZout(y, ω, V ) , gin(Y |q̂) = ∂q̂1/2Y lnZin(q̂) . (16)

Our first result provides a description of the error in the high dimensional d → ∞ limit, with finite
sample complexity α = n/d2, number of tokens T and number of layers L.
Result 3.1 (Performance of information-theoretically optimal estimators). Consider the extremization
problem

inf
q̂∈S+L

sup
q∈S+L

{
−Tr qq̂

4
+ Iin(q̂) + αIout(q)

}
(17)

where Iin(q̂) and Iout(q) are defined in (14) and (15), Call (q∗, q̂∗) the global extremizer of (17).
Then, in the high dimensional limit (8), the BO estimation error is given by

lim
d→∞

Eest(ŜBO) = ∥Q− q∗∥2F , (18)

while the BO generalization error is given by

Egen = Eη,ξ

∥∥∥∥∥∥g
{ ω

(ℓ)
ab√

2− δab

}T,L

a≤b,ℓ=1

− g

({
h(ω(ℓ), V (ℓk))ab√

2− δab

}T,L

a≤b,ℓ=1

)∥∥∥∥∥∥
2

F

, (19)

where ξ a L× T × T tensor symmetric in the token indices and with independent entries N (0, 1)

and ω, V, η are defined in (15). Finally h(ω(ℓ), V (ℓk)) = ω(ℓ) +
∑L

k=1

√
V ℓk ξ

(k).

These expressions provide a prediction for the information-theoretically optimal estimation and
generalization errors, and as such they constitute a sharp information theoretical bound on the
performance of any algorithm. We derive Result 3.1 in Appendix C using the heuristic replica method,
but believe that a rigorous treatment is possible by adapting [41] to the case of multiple attention
indices L > 1 and multiple tokens T > 1.

In our next result we provide an efficient polynomial-time approximate message passing (AMP)
algorithm that in the high-dimensional limit saturates this bound under the condition that there is a
unique local extremizer of (17) (if multiple extermizers are present, computational-to-statistical gaps
may arise [44]).
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Algorithm 1: AMP

Result: The estimators Ŝℓ

Input: Observations yµ ∈ RT×T and “sensing matrices”
Zµ
ij,ab ≡ (xµ

i,ax
µ
j,b + xµ

j,ax
µ
i,b − 2δijδab)/

√
2d(1 + δab) ∈ R;

Initialize Ŝt=0
ℓ ∼ PS and Ĉt=0 = 2(κ2 − κ2

1)IL;
while not converging do

• Estimation of the variance and mean of Tr[Zµ
abSℓ];

V t = 2Ĉt and ωt
µ, ab = Tr[Zµ

abŜ
t]− (1− δ0t)gout(y

µ, ωt−1
µ , V t−1)abV

t ∈ RL ;
• Variance and mean of Sℓ estimated from the “output” observations;

q̂tℓk =
4α

n

n,T,T∑
µ,a≤b

gout(y
µ, ωt

µ, V
t)

(ℓ)
ab gout(y

µ, ωt
µ, V

t)
(k)
ab and

Rt
ij = Ŝ t

ij + (q̂t)−1 2

d

n,T,T∑
µ,a≤b

gout(y
µ, ωt

µ, V
t)abZ

µ
ij,ab ∈ RL;

• Update of the estimation of S with the “input” information;

Ŝt+1
ℓ = gin

(
Rt, q̂t

)
ℓ

and Ĉt+1
ℓk =

1

d2
∇Rk

· gin
(
Rt, q̂t

)
ℓ
;

t = t+ 1;
end

Result 3.2 (State evolution of AMP). Call Ŝt
ℓ the time-t iterate of the AMP algorithm 1. In the high

dimensional limit (8) of large d and for a finite number of iterations, we have that

1

d
Tr[Ŝt

ℓŜ
t
k] → qtℓk ,

1

d
Tr[Ŝt

ℓS
∗
k ] → qtℓk , (20)

where

q̂t+1
ℓk = 4αEξ,η

T∑
a≤b

gout

(
g

({
h(ωt, V t)ab√

2− δab

})
, ωt, V t

)(ℓ)

ab

× gout

(
g

({
h(ωt, V t)ab√

2− δab

})
, ωt, V t

)(k)

ab

,

qt+1
ℓk = lim

d→+∞

1

d
ES,Y Tr

[
gin(Y (S, q̂t+1), q̂t+1)ℓgin(Y (S, q̂t+1), q̂t+1)k

]
,

(21)

with V t = 2(Q− qt) and ωt
ℓ =

∑L
k=1(

√
2qt)ℓk ηk, where (a, b) are token and (ℓ, k) layer indices

and with ηℓ a standard Gaussian in every component. h(ωt, V t), η and ξ are defined as in Result 3.1.
Finally we have Y (S,∆)ℓ = Sℓ +

∑L
m=1

√
∆ℓmΞm, all Ξm are GOE(d) and all Sℓ ∼ PS .

Result 3.2 (which we derive in Appendix C) is a classic statement in the theory of AMP, that here we
adapt to take into account multiple attention indices and multiple tokens. We remark that even though
the denoiser gin in (16) is a complicated non-separable function, state evolution still holds [45, 46].
Additionally, we show in Appendix C that the fixed point of (21) are the extremisers of (17). The
AMP algorithm 1 is thus both a tool that gives us theoretical guarantees though (21) and a practical
algorithm that can be efficiently implemented and run on a machine. We discuss the implementation
in Appendix C.

The prior-related elements Iin and gin of (14) and (21) require discussion. Both of them involve
integrals in dimension O(Ld2) whose large d asymptotics is highly non-trivial.

This is due to the prior PS on the weights being non-separable, and crucially to the coupling between
weights of different layers caused by the non-diagonal matrix q̂ in (14) and (21). We remark that for a
generic number of layers L > 1, the evaluation of these two equations is equivalent to the evaluation
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in the high-dimensional limit of the free entropy and of the Bayes-optimal estimator for the following
L-wise matrix denoising problem

Yℓ = Sℓ +

L∑
m=1

√
∆ℓmΞm , (22)

where from a heavily correlated set of L noisy observations Yℓ ∈ Rd×d, ℓ = 1, . . . , L, one needs to
estimate back the L independent matrices Sm ∼ PS . Here ∆ ∈ S+L is an L-dimensional symmetric
positive-definite matrix acting as a noise-to-signal ratio, and Ξℓ are independent GOE(d) matrices
acting as noise. To the best of our knowledge, for L > 1 and non-diagonal ∆ this is still a challenging
open problem (in case of diagonal ∆, the problem factorizes in L independent matrix denoising
problems). In practice, one can approximate rotationally-invariant matrix denoisers by low-degree
spectral polynomials, following [47]; this provides a practical route to AMP for multi-layer q̂ when
the exact HCIZ-based denoiser is unavailable [48].

For L = 1, the problem (22) reduces to Bayes-optimal denoising of a rotationally invariant matrix [40,
43]. We start by remarking that for L = 1 the quantities Q, q, q̂ governing the BO performance are
scalar.

For Result (3.1) at leading order in d → ∞ we have

Iin(q̂) =
Q

4
q̂ − 1

4
log q̂ − 1

2
Σ(µ1/q̂)−

1

8
where Σ(µ) = Ex,y∼µ log |x− y| , (23)

and for the AMP algorithm Result (3.2) we have

gin,L=1(X,∆) = O⊤fRIE(Λ,∆)O where fRIE(Λ,∆)i = Λi − 2∆

∫
dµ∆(t)

Λi − t
, (24)

where Q = κ2, µ∆ is the asymptotic spectral density of a matrix X = S +
√
∆Z with S ∼ PS and

Z ∼ GOE(d), and X = O⊤ΛO is the eigen-decomposition of X (see [40] for details).

Similarly, at leading order in d → ∞ we have

1

d2
∇X · gin,L=1(X,∆) = ∆− 4π2∆2

3

∫
dµ∆(t)

3 . (25)

Finally, the state evolution equation for q in (21) reads

q = Q− 1

q̂
+

4π2

3q̂2

∫
dt [µ1/q̂(t)]

3 . (26)

4 Results for single-layer attention
We now apply our general results to the single-layer (L = 1) tied-attention model

yab = σβ

(
x⊤
a S xb − δab TrS√

d

)
= σβ

(
1√
rd
x⊤
a WW⊤ xb − δab Tr

(
1√
rd
WW⊤)

√
d

)
(27)

where we parametrized the weight matrix S as a tied-attention with extensive-width r = ρd and
W ∈ Rd×r has independent entries Wij ∼ N (0, 1). For the activation, we consider the case of
Hardmax σhard and Softmax σsoft, both applied row-wise in (27):

σhard(z1 . . . zT )i = δ(i = argmax
j

xj) , and σsoft(z1 . . . zT )i =
eβzi∑T
j=1 e

βzj
. (28)

We stress that both these tasks are well-defined only for T ≥ 2, as the T = 1 the output of both
activations equals 1 regardless of the input. As discussed in the introduction, the model with hardmax
provides an interesting token-association task.
Hardmax target. The BO treatment of the hardmax activation for generic number of tokens T is
challenging due to the complex form of the state equation for q̂ (21). We provide an explicit solution
in the T = 2 case.
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Result 4.1 (Bayes-optimal errors for hardmax tied-attention, T = 2). Consider the model (27)
with hardmax activation. In the high-dimensional limit (8), the asymptotic BO estimation and
generalization errors are given by (18) and (19), where (q, q̂) is the solution of (26) with Q = 1 + ρ
and

gout(y, ω, V )ab =
1√

6(Q− q)

ϕ(k1, k2, c)

Φ(k1, k2, c)

( √
2s1 −(s1 + s2)

−(s1 + s2)
√
2s2

)
ab

, (29)

where ϕ(k1, k2, c) is the p.d.f. of a bi-variate Gaussian with zero mean, variances 1/(1− c2) and
covariance c/(1 − c2), and Φ(k1, k2, c) is its c.d.f (see Appendix A). Moreover, sa = 2yaa − 1,
ka = sa(

√
2ωaa − ω12)/

√
6(Q− q), c = s1s2/3 and ωab =

√
2q ηab.

We detail the derivation of Result 4.1 in App. C. We plot the estimation error given in Result (4.1) in
Figure 1 left, for several values of the attention width ratio ρ, comparing with runs of the associated
AMP Algorithm 1 at size d = 100.

We observe that for all finite α the estimation error is strictly positive, and that it approaches zero
as α grows with rate compatible with O(1/α). Moreover, as soon as α > 0, we observe that the
estimation error is smaller than 1, i.e. the value achieved in the absence of data. Intuitively, the
hardmax output function enforces discrete token association per row. This is akin to a multiclass
classification target, which explains the lack of a finite strong-recovery threshold and the observed
power-law decay at large α (Fig. 1, left).

In the limit of small width Result 4.1 simplifies. Notice that in this limit the correct sample scale
is given by ᾱ = α/ρ = n/(dr), as the matrix to infer is not extensive-width anymore. In this limit
there appears a so–called weak recovery threshold, a value of sample complexity below which the
estimator reaches the same performance as if there were no data. We characterize it as follows.

Corollary 4.2 (Small width limit for hardmax activation). Consider the model (27) with hardmax
activation and T = 2. In the high-dimensional limit (8), the equation for q of Result 3.1 simplifies
to q = [max(1− t, 0)]2 under the rescaling α = ᾱρ and q̂ = tρ. In particular, the BO error is the
same as that of the data-less estimator for all ᾱ < ᾱhardmax

weak where

ᾱhardmax
weak =

1

4Ey,ω

[∑T=2
a≤b gout(y(ω, V ), ω, V )⊗2

ab

]
q=0,Q=1

≈ 0.563 . (30)

Corollary 4.2 follows by combining Result 4.2 with the small-width analysis of [40]. We remark that
(30) holds for all activation (using the appropriate gout function) and all values of T ≥ 2. We plot the
analytical prediction for the BO estimation error given in Corollary 4.2 in Figure 1 right.

Softmax target. We now discuss the target function that uses a softmax non-linearity (28). This
choice of activation allows for an analytic treatment for any number of tokens T ≥ 2, and any finite
value of the softmax inverse temperature β ∈ R+.

Result 4.3 (Bayes-optimal errors for softmax tied-attention, T ≥ 2). Consider the model (27) with
softmax activation, T ≥ 2 and inverse temperature β ∈ R+. In the high-dimensional limit (8), the
asymptotic BO estimation and generalization errors are given by (18) and (19), where (q, q̂) ∈ R2

+ is
the solution of (26), Q = 1 + ρ and q̂ = α(T 2 + T − 2)/(Q− q).

We plot the BO estimation error given in Result 4.3 in Figure 2 left, and observe that contrary to the
hardmax case, the BO estimation error vanishes at a finite value of α (the so-called strong recovery
threshold). Interestingly, the BO errors given in Result (4.3) is independent of the value of the inverse
temperature β and reduces to the case of a single-token model with linear activation [40], modulo a
rescaling of the sample ratio α to 2α/(T 2 + T − 2) (notice that the rescaling is not just given by the
total number unordered couples of tokens T (T + 1)/2, as it would be in the case of a multi-token
case with bijective activation, see App. C). The softmax activation is almost invertible, meaning that
given the output, the input is fully determined apart for a common additive shift (acting as a noise
correlated with the data), and is additionally constrained by the symmetry of the attention matrix.
Result (4.3) precisely quantifies the amount of samples required to estimate this undetermined shift.
More precisely, fix a given estimation error. Then, achieving this error with the BO estimator in the
softmax case with T ≥ 2 requires a factor 1 + 2/(T (T + 1)) more samples than the case of a fully
bijective activation.
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Figure 1: (Left) The Bayes optimal-error for the single-layer attention-indexed model with T = 2
tokens and hardmax activation for and several values of the width ratio ρ (Result (4.1)). The log-log
scale highlights a large α power-law decay of the BO estimation error, strikingly different from
the softmax behaviour (see Figure 2). We also plot the corresponding errors achieved by the AMP
algorithm (dots) at d = 100, averaged over 16 realizations of the data and teacher weights. Error bars
are computed with respect to the mean. We find a good agreement even for such a moderate size.
(Right) Focus on the small width Bayes-optimal error case (Corollary (4.2)) of the same model. We
rescale the sample complexity to ᾱ = α/ρ, and we highlight the theoretical prediction of the weak
recovery thresholds (gray vertical line).

On the other hand, we remark that the AMP algorithm for the softmax activation at T ≥ 2 is not
a simple rescaling of the AMP for the single-token linear-activation case given in [40]. The AMP
output function gout is given by

gout,ab = − τab
T 2V

[ T∑
c≤d

[τ2cdϕTc−τcdωcd]+

T−1∑
c≤d

τ2cdϕcd

]
+
τabϕTa − ωab + (1− δbT )ϕabτab

V
, (31)

where τab =
√
2− δab, ϕ(y)ab = β−1 log(yab/yaT ) and ω, V defined in (15). Thus, AMP processes

the data in a non-trivial, optimal way to perform this effective inversion of the softmax activation.
We plot experiments for AMP at d = 100 in the T = 2, 3 case in Figure 2 right (purple and blue
dots, to be compared with the prediction of Result (4.3) given by the black line), and observe a nice
agreement. We also remark that while the BO performance is independent of the inverse temperature
β, as long as it is finite, again AMP output function is not.

Thanks to the mentioned reduction, one can transfer directly several results from [40] to the case of
softmax tied-attention, including an explicit prediction for the strong recovery threshold (the value of
α after which the BO error is zero), the slope of the error at strong recovery, and the small-width and
large-width limits (see App. D). In particular, the strong recovery threshold satisfies

αsoftmax
recovery =

2

T 2 + T − 2

{
ρ− ρ2/2 if 0 < ρ < 1

1/2 if ρ ≥ 1
. (32)

We remark again that this threshold does not coincide with the naive counting argument, which would
give a factor T (T+1)

2 at denominator instead. In particular, the 2/(T 2+T−2) = T (T+1)
2 − 1 factor

reflects the near-invertibility of the row-wise softmax under a global row-shift, modulo the symmetry
constraint; cf. App. D. Finally, contrarily to hardmax (which implements a discrete winner-takes-all
assignment and exhibits power-law error decay), softmax behaves like a smooth regression target
with a finite strong-recovery threshold (Eq. (32)), see Fig. 1 vs Fig. 2.

We finally remark that our analysis keeps T, L finite while d, n → ∞ with n/d2 = α = Θ(1). The
predictions remain accurate as long as T grows much slower than d; the curves obtained after the
T -dependent rescaling of α (Sec. 4) remain valid for very large T provided T << d.

Finally, we consider the performance of gradient descent minimizing the loss

L(W ) =

n∑
µ=1

T∑
a,b=1

(
yµab − σβ

(
xµ⊤
a WW⊤ xµ

b − δab TrWW⊤
√
r d

))2

, (33)
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Figure 2: (Left) Illustration of the Bayes-optimal estimation error for the softmax tied-attention
model (Result 4.3), eq. (27) for any 0 < β < +∞ and T = 2 tokens, and for several values of the
attention width ratio ρ = r/d. The model reaches zero BO error at finite α depending on ρ (eq. (32)).
(Right) We show, in black dashed lines the theoretical prediction of the BO estimation error computed
for the sample complexity rescaled by the number of tokens α/(T 2 + T − 2) and ρ = 0.5. We show
the performance of the corresponding AMP algorithm for T = 2, 3 tokens, correctly achieving the
BO error. We also compare the BO performance with those of Adam GD and its averaged version
AGD with d = 100. We average each numerical experiment (GD,AGD,AMP) over 16 realizations of
the data and teacher weights. Error bars are the standard deviation on the mean.

with training set generated by Eq. (27) (we optimize using the ADAM optimizer [49]). In line with
previous work [40, 42], we also consider the Averaged GD (AGD) estimator given by

ŜGD,avg =
1

M

M∑
m=1

W final
m (W final

m )⊤√
rd

, (34)

where we average over M initial matrices W (0)
m , and W final

m is the corresponding set of weights at
convergence. We plot the results of our numerical experiments at d = 200 for both GD and AGD in
Figure 2 right. As already observed in [40, 42], AGD reaches performances compatible with the BO
estimation error, while GD has worse error. We remark that both variants seem to achieve perfect
recovery at the BO threshold (32). This phenomenon, at this point well documented within this class
of models, is still not understood.

5 Limitations
The attention-indexed model introduced in this work and its high-dimensional analysis provide
promising stepping stone to the analysis of learning in multi-layer attention. We, however, so far only
analyzed the Bayes-optimal performance and the associated AMP algorithm in the single layer case,
gradient descent was only explored numerically and clearly its theoretical analysis in this class of
models is an interesting topic for future work. While the concept of attention-indexed model captures
multi-layer attention networks, the matrix denoiser (22) needed to study the optimal performance is
a challenging open problem for random matrix theory and thus the analysis of the model for more
than one layer remains open. While out results rely on exact statistical physics tools, mathematically
rigorous proof of the obtained results for T ≥ 2 is an open problem. Future work should also explore
the inclusion of multiple heads and MLP layers to mimic yet closer practicalities of the current
transformer architectures. The structure of the input data considered in this paper is very simple,
future work should also include studied of how the performance depends on the input structure.

Acknowledgments and Disclosure of Funding

We thank Antoine Maillard, Florent Krzakala, Hugo Cui and Yizhou Xu for insightful discussions
related to this work. We acknowledge funding from the Swiss National Science Foundation grants
SNSF SMArtNet (grant number 212049).

10



References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171–4186, 2019.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale, 2021.

[5] David L Donoho et al. High-dimensional data analysis: The curses and blessings of dimension-
ality. AMS math challenges lecture, 1(2000):32, 2000.

[6] Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent
on non-convex losses from high-dimensional inference. Journal of Machine Learning Research,
22(106):1–51, 2021.

[7] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property:
a necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer
neural networks. In Conference on Learning Theory, pages 4782–4887. PMLR, 2022.

[8] Rodrigo Veiga, Ludovic Stephan, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová.
Phase diagram of stochastic gradient descent in high-dimensional two-layer neural networks.
Advances in Neural Information Processing Systems, 35:23244–23255, 2022.

[9] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
Advances in Neural Information Processing Systems, 35:37932–37946, 2022.

[10] Luca Arnaboldi, Ludovic Stephan, Florent Krzakala, and Bruno Loureiro. From high-
dimensional & mean-field dynamics to dimensionless odes: A unifying approach to sgd in
two-layers networks. In The Thirty Sixth Annual Conference on Learning Theory, pages
1199–1227. PMLR, 2023.

[11] Elizabeth Collins-Woodfin, Courtney Paquette, Elliot Paquette, and Inbar Seroussi. Hitting the
high-dimensional notes: An ode for sgd learning dynamics on glms and multi-index models.
Information and Inference: A Journal of the IMA, 13(4):iaae028, 2024.

[12] Alex Damian, Eshaan Nichani, Rong Ge, and Jason D Lee. Smoothing the landscape boosts
the signal for sgd: Optimal sample complexity for learning single index models. Advances in
Neural Information Processing Systems, 36, 2024.

[13] Alberto Bietti, Joan Bruna, and Loucas Pillaud-Vivien. On learning gaussian multi-index models
with gradient flow part i: General properties and two-timescale learning. Communications on
Pure and Applied Mathematics, 78(12):2354–2435, 2025.

[14] Behrad Moniri, Donghwan Lee, Hamed Hassani, and Edgar Dobriban. A theory of non-linear
feature learning with one gradient step in two-layer neural networks. In Proceedings of the 41st
International Conference on Machine Learning, pages 36106–36159, 2024.

[15] Raphaël Berthier, Andrea Montanari, and Kangjie Zhou. Learning time-scales in two-layers
neural networks. Foundations of Computational Mathematics, pages 1–84, 2024.

11



[16] Elizabeth Gardner and Bernard Derrida. Three unfinished works on the optimal storage capacity
of networks. Journal of Physics A: Mathematical and General, 22(12):1983, 1989.

[17] Haim Sompolinsky, Naftali Tishby, and H Sebastian Seung. Learning from examples in large
neural networks. Physical Review Letters, 65(13):1683, 1990.

[18] T.L.H. Watkin, A. Rau, and M. Biehl. The statistical mechanics of learning a rule. Reviews of
Modern Physics, 65(2):499–556, 1993.

[19] Sebastian Goldt, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborová.
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student
setup. Advances in neural information processing systems, 32, 2019.

[20] Andreas Engel. Statistical mechanics of learning. Cambridge University Press, 2001.

[21] Benjamin Aubin, Antoine Maillard, Florent Krzakala, Nicolas Macris, Lenka Zdeborová, et al.
The committee machine: Computational to statistical gaps in learning a two-layers neural
network. Advances in Neural Information Processing Systems, 31, 2018.

[22] Hugo Cui, Freya Behrens, Florent Krzakala, and Lenka Zdeborová. A phase transition between
positional and semantic learning in a solvable model of dot-product attention. Advances in
Neural Information Processing Systems, 37:36342–36389, 2024.

[23] Hugo Cui. High-dimensional learning of narrow neural networks. Journal of Statistical
Mechanics: Theory and Experiment, 2025(2):023402, 2025.

[24] Hugo Cui, Florent Krzakala, and Lenka Zdeborová. Bayes-optimal learning of deep ran-
dom networks of extensive-width. Journal of Statistical Mechanics: Theory and Experiment,
2025(1):014001, January 2025. Publisher: IOP Publishing.

[25] Bingqing Song, Boran Han, Shuai Zhang, Jie Ding, and Mingyi Hong. Unraveling the gradi-
ent descent dynamics of transformers. Advances in Neural Information Processing Systems,
37:92317–92351, 2024.

[26] Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S Du. Scan and snap: Understanding
training dynamics and token composition in 1-layer transformer. Advances in Neural Information
Processing Systems, 36:71911–71947, 2023.

[27] Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Hyeji Kim, Michael
Gastpar, and Chanakya Ekbote. Local to global: Learning dynamics and effect of initialization
for transformers. Advances in Neural Information Processing Systems, 37:86243–86308, 2024.

[28] Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. In Proceedings of the 41st International Conference on Machine Learning,
pages 38018–38070, 2024.

[29] Hongru Yang, Bhavya Kailkhura, Zhangyang Wang, and Yingbin Liang. Training dynamics of
transformers to recognize word co-occurrence via gradient flow analysis. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

[30] Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp
and ntk for deep attention networks. In International Conference on Machine Learning, pages
4376–4386. PMLR, 2020.

[31] Hengyu Fu, Tianyu Guo, Yu Bai, and Song Mei. What can a single attention layer learn? a
study through the random features lens. Advances in Neural Information Processing Systems,
36:11912–11951, 2023.

[32] Yue M Lu, Mary I Letey, Jacob A Zavatone-Veth, Anindita Maiti, and Cengiz Pehlevan.
Asymptotic theory of in-context learning by linear attention. CoRR, 2024.

[33] Blake Bordelon, Hamza Chaudhry, and Cengiz Pehlevan. Infinite limits of multi-head trans-
former dynamics. Advances in Neural Information Processing Systems, 37:35824–35878,
2024.

12



[34] Lorenzo Noci, Chuning Li, Mufan Li, Bobby He, Thomas Hofmann, Chris J Maddison, and Dan
Roy. The shaped transformer: Attention models in the infinite depth-and-width limit. Advances
in Neural Information Processing Systems, 36:54250–54281, 2023.

[35] Emanuele Troiani, Hugo Cui, Yatin Dandi, Florent Krzakala, and Lenka Zdeborova. Fun-
damental limits of learning in sequence multi-index models and deep attention networks:
high-dimensional asymptotics and sharp thresholds. Forty-second International Conference on
Machine Learning, 2025.

[36] Pierre Marion, Raphaël Berthier, Gérard Biau, and Claire Boyer. Attention layers provably
solve single-location regression. arXiv preprint arXiv:2410.01537, 2024.

[37] Emanuele Troiani, Yatin Dandi, Leonardo Defilippis, Lenka Zdeborova, Bruno Loureiro, and
Florent Krzakala. Fundamental computational limits of weak learnability in high-dimensional
multi-index models. In International Conference on Artificial Intelligence and Statistics, pages
2467–2475. PMLR, 2025.

[38] Antoine Maillard and Afonso S Bandeira. Exact threshold for approximate ellipsoid fitting of
random points. arXiv preprint arXiv:2310.05787, 2023.

[39] Antoine Maillard and Dmitriy Kunisky. Fitting an ellipsoid to random points: predictions using
the replica method. IEEE Transactions on Information Theory, 2024.

[40] Antoine Maillard, Emanuele Troiani, Simon Martin, Lenka Zdeborová, and Florent Krzakala.
Bayes-optimal learning of an extensive-width neural network from quadratically many samples.
Advances in Neural Information Processing Systems, 37:82085–82132, December 2024.

[41] Yizhou Xu, Antoine Maillard, Lenka Zdeborová, and Florent Krzakala. Fundamental limits of
matrix sensing: Exact asymptotics, universality, and applications. In Nika Haghtalab and Ankur
Moitra, editors, Proceedings of Thirty Eighth Conference on Learning Theory, volume 291 of
Proceedings of Machine Learning Research, pages 5757–5823. PMLR, 30 Jun–04 Jul 2025.

[42] Vittorio Erba, Emanuele Troiani, Luca Biggio, Antoine Maillard, and Lenka Zdeborová. Bilinear
sequence regression: A model for learning from long sequences of high-dimensional tokens.
Physical Review X, 15(2):021092, 2025.

[43] Emanuele Troiani, Vittorio Erba, Florent Krzakala, Antoine Maillard, and Lenka Zdeborová.
Optimal denoising of rotationally invariant rectangular matrices. In Bin Dong, Qianxiao Li,
Lei Wang, and Zhi-Qin John Xu, editors, Proceedings of Mathematical and Scientific Machine
Learning, volume 190 of Proceedings of Machine Learning Research, pages 97–112. PMLR,
15–17 Aug 2022.

[44] Lenka Zdeborová and Florent Krzakala. Statistical physics of inference: Thresholds and
algorithms. Advances in Physics, 65(5):453–552, 2016.

[45] Raphael Berthier, Andrea Montanari, and Phan-Minh Nguyen. State evolution for approximate
message passing with non-separable functions. Information and Inference: A Journal of the
IMA, 9(1):33–79, 2020.

[46] Cédric Gerbelot and Raphaël Berthier. Graph-based approximate message passing iterations.
Information and Inference: A Journal of the IMA, 12(4):2562–2628, 2023.

[47] Guilhem Semerjian. Matrix denoising: Bayes-optimal estimators via low-degree polynomials.
Journal of Statistical Physics, 191(10):139, 2024.

[48] Joël Bun, Romain Allez, Jean-Philippe Bouchaud, and Marc Potters. Rotational invariant
estimator for general noisy matrices. IEEE Transactions on Information Theory, 62(12):7475–
7490, 2016.

[49] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

13



[50] Hidetoshi Nishimori. Exact results and critical properties of the ising model with competing
interactions. Journal of Physics C: Solid State Physics, 13(21):4071, 1980.

[51] Antoine Maillard, Florent Krzakala, Marc Mézard, and Lenka Zdeborová. Perturbative con-
struction of mean-field equations in extensive-rank matrix factorization and denoising. Journal
of Statistical Mechanics: Theory and Experiment, 2022(8):083301, 2022.

14



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper aims at studying Attention Index Models and its connection with
self attention mechanism. We do so by providing analytical and numerical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We state our limitations in the main.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15



Justification: We presented in this paper exact claims and conjectures based on well-known
analytical methods. Specifically, we developed an application of the so-called replica method
in this new context, so we can think of our results at the level of rigor of theoretical physics.
A fully rigorous derivation of our results is a very technical and lengthy avenue, and is left
for a more suitable mathematical venue.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We release the code and discuss the details of the implementation in the
supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We release the code and the data for reproducing the figures.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, in the supplementary material
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bars in each numerical experiment and explain how they
were constructed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work is theoretical in nature, and we respected the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is theoretical on syntetic data.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work is theoretical in nature and on synthetic data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We use synthetic data.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We use synthetic data that we generate ourself.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We use synthetic data that we generate ourself.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We use synthetic data that we generate ourself.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notations and model description

In this appendix we first remind all the notations and settings of the attention-indexed models. We
then remind mathematical concepts and definitions that are present in the main text.

Throughout this work, we use ℓ, k = 1, . . . , L as the layer index where L is the total number of
layer matrices used, while a, b = 1, . . . , T are the token index and T is the total number of tokens.
Then i, j = 1, . . . , d are the indices for the dimensions and d is the embedding dimension of each
token, and µ = 1 . . . n is the sample index and n is the total number of samples. We will also use
u, v = 0 . . .m as the replica indices from 0 to m.

We list below the specifics of our model:

• X ≡ X0 ∈ RT×d: The matrix of T tokens (rows), each token of embedding dimension d.
• Sℓ ∈ Rd×d symmetric matrices for ℓ = 1, . . . , L and extracted independently from a

rotationally invariant ensemble PS(S) = PS(O
⊤SO) for any rotation matrix O. We fix the

normalizations such that EPS
[TrS] = κ1d and EPS

[TrS2] = κ2d and with κ1, κ2 = O(1).
Contextually, we assume that the empirical spectral distribution of S will converge to a
well defined measure µS . For the purpose of the analysis, we will specify our general
framework to symmetric matrices of the form Sℓ = W⊤W/

√
rℓd where W ∈ Rd×r with

entries Wij ∼ N (0, 1). We refer to the finite quantities ρl > 0 as the width ratios of each
layer.

• We define the AIM as the following model:

y = g
(
{h(ℓ)}Lℓ=1

)
(35)

with the generic map g : RL×T×T → RT×T which depends on the quadratic preactivations

h
(ℓ)
ab ≡ x⊤

a Sℓ xb − δab TrSℓ√
d

(36)

In the following appendix, we will show the tight link between the generic definition of the
AIM with deep attention networks.

In the rest of this appendix, we recall the definition of the semicircle and Marchenko-Pastur laws in
the context of random matrix theory. In particular

σsc,∆ =

√
4∆− x2

2π∆
I{|x| ≤ 2

√
∆} ,

µMP,ρ(x) =

 (1− ρ)δ(x) + ρ

√
(λ+−x)(x−λ−)

2πx , if ρ ≤ 1

ρ

√
(λ+−x)(x−λ−)

2πx , if ρ > 1

(37)

Finally, we recall the following following definitions.

• Standard normal pdf and cdf

ϕ(z) =
e−z2/2

√
2π

, Φ(z) =

∫ z

−∞
ϕ(t) dt = 1

2

(
1 + erf(z/

√
2)
)

(38)

• Bivariate normal density and cdf with correlation c

ϕ2(u, v; c) =
exp
[
−u2−2cuv+v2

2(1−c2)

]
2π

√
1− c2

, Φ2(u, v; c) =

∫ u

−∞

∫ v

−∞
ϕ2(t1, t2; c) dt2 dt1. (39)

We also remark that we formally define the Dirac delta function δ(x) = limσ→0 N (0, σ)(x) as the
limit to zero variance of a centered Gaussian.

We finally define the row-wise softmax function with inverse temperature β acting on the matrix
h ∈ RT×T matrix:

σβ(hab) = Softmax(βhab) =
exp(βhab)∑
b exp(βhab)

(40)
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B From deep self–attention to the attention-indexed models

In this appendix we highlight the connection between the AIM models defined in Eq. (1) with those
of two crucial architectures employed in the analysis of Large Language Models (LLMs), namely
deep attention networks and their sequence-to-sequence (seq2seq) version. In particular, we show
that both the deep self–attention encoder and its sequence–to–sequence (seq2seq) variant can be
rewritten exactly as an attention-indexed model of the form (1).

We keep the notation of the main text and the previous appendix: tokens are indexed by a, b ∈ [T ],
embeddings by x⊤

a ∈Rd, and every layer l ∈ [L] carries a tied key–query weight matrix1 Sl∈Rd×d

with extensive width rl = ρld and rotationally–invariant prior PS .

Deep encoder. Let X0∈RT×d be the matrix whose rows are the token embeddings, (X0)a : = x⊤a .
A deep self–attention network with a residual (skip) connection and readout strength c ≥ 0 is given
by the recursive formula:

Xℓ =
[
c IT + σβ

(
Hℓ(Xℓ−1)

)]
Xℓ−1, ℓ = 1, . . . , L, (41)

where σ : RT×T → RT×T is the row–wise softmax with inverse temperature β > 0 implicitly
contained in the symbol σ(·). The function Hℓ−1(Xℓ−1) is given by:

Hℓ(Xℓ−1) =
1√
d
Xℓ−1 Sℓ X

⊤
ℓ−1 −

1√
d
Etr[Xℓ−1SℓX

⊤
ℓ−1] (42)

where the expectation is intended over the input data X0. Define the preactivations

h
(ℓ)
ab :=

1√
d
x⊤
a Sℓxb −

1√
d
TrSℓ δab, ℓ = 1, . . . , L, a, b ∈ [T ], (43)

and the sequence of token–space operators

B0
c := IT , Bℓ

c :=
[
c IT + σβ

(
Bℓ−1

c h(ℓ)Bℓ−1⊤
c

)]
Bℓ−1

c , ℓ = 1, . . . , L, (44)

One verifies inductively that
Xℓ = Bℓ

c X0, ℓ = 0, . . . , L, (45)

so that every hidden representation depends on the data only through the collection
{
h(1), . . . , h(ℓ)

}
.

In this way, we can write:

Hℓ(Xℓ−1) =
1√
d
Xℓ−1 Sℓ X

⊤
ℓ−1 −

1√
d
Etr[Xℓ−1SℓX

⊤
ℓ−1] (46)

=
1√
d
Xℓ−1 Sℓ X

⊤
ℓ−1 −

1√
d
Etr[B

ℓ−1
c X0 Sℓ X

⊤
0 Bℓ−1⊤

c ] (47)

=
1√
d
Xℓ−1 Sℓ X

⊤
ℓ−1 −

TrSℓ√
d
Bℓ−1

c Bℓ−1⊤
c (48)

Which is exactly the formula shown in (4). Furthermore, this map does only depend on the preactiva-
tions h(ℓ) in the following way:

Hℓ(Xℓ−1) =
1√
d
(Bℓ−1

c X0)Sℓ (B
ℓ−1
c X0)

⊤ − TrSℓ√
d
Bℓ−1

c Bℓ−1⊤
c (49)

= Bℓ−1
c

( 1√
d
X0SℓX

⊤
0

)
Bℓ−1⊤

c − TrSℓ√
d
Bℓ−1

c Bℓ−1⊤
c (50)

= Bℓ−1
c

(
h(ℓ) +

TrSℓ√
d
IT
)
Bℓ−1⊤

c − TrSℓ√
d
Bℓ−1

c Bℓ−1⊤
c (51)

= Bℓ−1
c h(ℓ) Bℓ−1⊤

c (52)

1For simplicity we restrict to the single–head, tied setting; extending to multi–head merely introduces an
additional block index.
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where we used the definition in (1). This completes our mapping in (7). In particular the deep-attention
output is given by:

y = σβ

(
HL(XL−1)

)
= gdeep

(
h(1), . . . , h(L)

)
∈ RT×T , (53)

with2 gdeep(h
(1), . . . , h(L)) := σβ

(
BL−1

c (h(1:L−1))h(L) BL−1
c (h(1:L−1))⊤

)
. Equation (53) is exact

and has the attention-indexed model structure (1): the whole deep network collapses to a deterministic
multivariate function gdeep of the L bilinear indices h(ℓ)

ab ∼ {x⊤aSℓxb}ℓ,a,b.

Seq2seq variant. If the last layer keeps the token embeddings instead of collapsing them, i.e.

XL = σβ

(
HL(XL−1)

)
XL−1, (54)

with exactly the same algebra

XL = gseq

(
h(1), . . . , h(L)

)
X0, gseq(h

(1:L)) := σβ

(
BL−1

c h(L)BL−1⊤
c

)
BL−1

c . (55)

Thus the seq2seq readout is also an attention-indexed model: a (matrix-valued) function of the same
quadratic statistics, followed by a fixed linear map X0.

Note that in the particular case of just L = 1 layer the seq2seq map simplifies into:

X1 = gseq

(
{h(1)}Ta≤b

)
X0, gseq(h

(1)) = σβ

(
B0

ch
(1)B0⊤

c

)
B0

c = σβ(h
(1)) = gdeep(h

(1)) (56)

From this paragraph we can hence conclude that, as shown in equations (53) and (55), any L-layer
tied self-attention network with extensive-width weights is information-theoretically equivalent to
an attention-indexed model with L indices. Consequently all the Bayes–optimal analysis carried
out in Secs. 2–4 applies verbatim to deep self-attention and to its seq2seq counterpart: learning
the matrices {Sℓ} under the deep architecture is statistically equivalent to learning them under the
attention-indexed model (1).

Multi-head self-attention. Let heads m = 1, . . . ,M with (tied) weights S
(m)
ℓ and per-head

logits H(m)
ℓ (Xℓ−1) =

1√
d
Xℓ−1S

(m)
ℓ X⊤

ℓ−1 − Etr[
1√
d
Xℓ−1S

(m)
ℓ X⊤

ℓ−1]. A standard multi-head layer

computes head-wise weights σβ(H
(m)
ℓ ) and then aggregates (by concatenation or averaging) before

a token-wise linear map; for our purposes, averaging:

Xℓ =
[
c IT +

1

M

M∑
m=1

σβ

(
H

(m)
ℓ (Xℓ−1)

)]
Xℓ−1. (57)

Applying the transport identity headwise and averaging gives

1

M

M∑
m=1

H
(m)
ℓ (Xℓ−1) = Bℓ−1

c

( 1

M

M∑
m=1

h(ℓ,m)
)
Bℓ−1⊤

c . (58)

If we define the quantity h̄(ℓ) = 1
M

∑M
m=1 h

(ℓ,m), hence, the closed recursion is

Bℓ
c =

[
c IT + σβ

(
Bℓ−1

c h̄(ℓ) Bℓ−1⊤
c

)]
Bℓ−1

c , B0
c = IT , (59)

with output
y = σβ

(
BL−1

c h̄(L) BL−1⊤
c

)
, (60)

and the seq2seq variant

XL = σβ

(
BL−1

c h̄(L) BL−1⊤
c

)
BL−1

c X0 . (61)

Finally, also this multi-head variant of the model is again an AIM. Here, the collection of indices is
simply enlarged to {h(ℓ,m)}ℓ=1..L, m=1..M , with each h(ℓ,m) defined as in (1). The extensive-rank
regime corresponds to ranks r(m)

ℓ = ρ
(m)
ℓ d.

2The explicit form of gdeep is obtained by inserting (45) with l = L− 1.
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C Bayes optimal analysis of attention-indexed models (AIM)

We study a model described by the general setting:

yµ ∼ Pout

(xµ⊤
a Sℓ x

µ
b − δab TrSℓ√
d

)a,b=1,...,T

ℓ=1,...,L
(62)

with x⊤
a rows of X ∈ RT×d, Sℓ ∈ Rd×d symmetric and y ∈ RT×T . Indices range from µ = 1 . . . n

samples, with d, n >> 1. Instead the number of tokens and layers T, L << d: we interpret Eq. (62)
as yµ outputs generated by a model of attention from data X that are processed in a bilinear way
through:

yµ = g

(
{x

µ
aSℓ x

µ ⊤
b − δab TrSℓ√

d
}Lℓ=1

)
. (63)

or following Eq. (6):

yµ = gdeep(h
(1), . . . , h(L)) = BL

c

(
{x

µ ⊤
a Sℓ x

µ
b − δab TrSℓ√
d

}ℓ=1...L
a,b=1...T

)
∈ RT×T (64)

and

Pout

(xµ ⊤
a Sℓ x

µ
b − δab TrSℓ√
d

)a,b=1,...,T

ℓ=1,...,L
= δ
(
y −BL

c (
xµ ⊤
a Sℓ x

µ
b − δab TrSℓ√
d

)
)

(65)

In our setting, the matrices Sℓ are symmetrical for each layer ℓ and we consider multiple layers
indices ℓ = 1, . . . , L. x⊤

a is the a-th row of X for a, b = 1, . . . , T . Each row x⊤
a ∈ Rd has i.i.d.

Gaussian entries, so xµ
ai ∼ N (0, 1).

We define the preactivations

h
(ℓ) µ
ab =

xµ ⊤
a Sℓ x

µ
b − δab TrSℓ√
d

(66)

Since the matrices Sℓ are symmetric, so are the preactivations of the model. Finally, for convenience,
we rewrite the preactivations of the model in terms of the symmetrized sensing matrices

Zµ
ij,ab ≡ (xµ

i,ax
µ
j,b + xµ

j,ax
µ
i,b − 2δijδab)/

√
2d(1 + δab) ∈ R (67)

The preactivations of the model can thus be expressed as:√
2− δab h

(ℓ) µ
ab = Tr(SℓZ

µ
ab) = h̃

(ℓ) µ
ab (68)

In the rest of the analysis, we will refer to this equivalent representation of the model by considering
symmetrized data h̃

(ℓ) µ
ab that we will just recall h(ℓ) µ

ab , while incorporating the factor
√
2− δab in

the output function part.

C.1 Replica analysis of AIM and their state evolution

Starting from the posterior distribution of the model:

P (S1, ..., SL|D) =
1

Z(D)

L∏
ℓ=1

PS

(
Sℓ

) n∏
µ=1

δ
(
yµ − g

(
h(1)(S1,x

µ) , ... , h(L)(SL,x
µ)
))

, (69)

the replicated partition function of the model in Eq. (62) is:

〈
Z(D)m

〉
= Ey,X

∫ L∏
ℓ=1

m∏
u=0

dSu
ℓ P0

(
Su
ℓ

) n∏
µ=1

T∏
a≤b

Pout

(
yµ
∣∣∣ { h

(ℓ),µ,u
ab√
2− δab

}
ab

)
δ
(
h
(ℓ),µ,u
ab − Tr(Su

ℓ Z
µ
ab)
)

(70)

where P0(S
u
ℓ ) is the rotational invariant prior distribution of each Sℓ, and h

(ℓ),µ,u
ab are the replicated

preactivations in terms of the symmetrized data as explained in (68). u is the replica index, we work
in a Bayes optimal setting. Above, µ ∈ {1, . . . , n} enumerates data samples, ℓ ∈ {1, . . . , L} indexes
the distinct layers, u ∈ {0, . . . ,m} indexes the replicas, and a, b ∈ {1, . . . , T} are the token indices.
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We compute the expectation with respect to the data exploiting the Gaussian-equivalence principle:

EXδ
(
h
(ℓ),µ,u
ab − Tr(Su

ℓ Z
µ
ab)
)

7→ Ph

(
{h(ℓ),µ,u

ab }ℓ,µ,a,b,u
)
, (71)

where Ph is a joint Gaussian distribution with the means and covariances:

E
[
h
(ℓ),µ,u
ab − Tr(Su

ℓ Z
µ
ab)
]
= 0, Covxµ

(
h
(ℓ) u
a≤b , h

(k) v
c≤d

)
=

1

d
[2 δacδbd] Tr (S

u
ℓ S

v
k) (72)

We introduce the order parameters measuring the Su
ℓ –Sv

k overlaps:

Quv
ℓk :=

1

d
Tr
(
Su
ℓ Sv

k

)
, for ℓ, k = 1, . . . , L, u, v = 0, . . . ,m. (73)

We enforce the definitions of the overlaps by inserting δ-functions:
L∏

ℓ,k=1

m∏
u≤v=0

δ
(
d2 Quv

ℓk − d Tr
[
Su
ℓ Sv

k

])
, (74)

and introduce the corresponding conjugate fields Q̂uv
ℓk . We insert

δ
(
d2 Quv

ℓk − dTr[Su
ℓ Sv

k ]
)
=

∫
dQ̂uv

ℓk exp
{
i
Q̂uv

ℓk

2

(
d2 Quv

ℓk − d Tr[Su
ℓ Sv

k ]
)}

. (75)

Hence the replicated partition function can be schematically written:〈
Z(D)m

〉
=

∫ (∏
u,ℓ

dSu
ℓ P0(S

u
ℓ )
)∫ ( ∏

u≤v,ℓ,k

dQuv
ℓk dQ̂uv

ℓk

)
× exp

[ i
2

∑
u≤v,ℓ,k

Q̂uv
ℓk

(
d2 Quv

ℓk

)]
× exp

[
− i d

2

∑
u≤v,ℓ,k

Q̂uv
ℓk Tr(Su

ℓ S
v
k)
]

×
n∏

µ=1

[∫ ∏
u,ℓ

dh
(ℓ),µ,u
ab Ph

(
h(ℓ),µ,u

) ∏
u,ℓ,a≤b

Pout(y
µ
ab | {

h
(ℓ),µ,u
ab√
2− δab

}ab)
]
, (76)

In a replica-symmetric (RS) scenario, we let

Quv
ℓk =

{
Qℓk, (u = v),

qℓk, (u ̸= v).
(77)

and:

iQ̂uv
ℓk =

{
Q̂ℓk, if u = v

−q̂ℓk, if u ̸= v
(78)

Hence, e.g. the exponent
∑

ℓ,k,u,v i Q̂
uv
ℓ,k d

2 Quv
ℓ,k becomes

i d2
∑
ℓ,k

[ (m+ 1)

2
Q̂ℓk Qℓk − m(m+ 1)

4
q̂ℓk qℓk

]
. (79)

Likewise, −∑ℓ,k,u,v Q̂
uv
ℓkTr(S

u
ℓ S

v
k) can be reorganized in a form that leads in the limit m → 0 to

typical terms Q̂uu
ℓk = 0 or similar. Moreover Q̂uv

ℓk = − q̂ℓk
2 .

So finally the replicated partition function, hence, takes the following form:

⟨Z(D)m⟩ =
∫ ∏

u≤v,ℓ,k

dQuv
ℓk dQ̂

uv
ℓk exp

 i

2
d2

∑
u≤v,ℓ,k

Q̂uv
ℓkQ

uv
ℓk

 IinIout (80)

with:

d2Iin(q̂) =

∫ ∏
u,ℓ

dSu
ℓ P0(S

u
ℓ ) exp

− i d

2

∑
u≤v,ℓ,k

Q̂uv
ℓk Tr (Su

ℓ S
v
k)

 , (81)

Iout(q) =

∫ dy

∫ ∏
u,ℓ,a≤b

dh
(ℓ) u
ab P

(
h
(ℓ) u
ab

)∏
u,ℓ

Pout

(
y|
{ h

(ℓ) u
ab√

2− δab

}
ab

)n

. (82)
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The free entropy per degree of freedom of the problem is defined as

Φ = lim
d→∞

1

d2
lim

n→∞
lim
m→0

1

m
ln⟨Zm⟩ . (83)

After introducing n = αd2 data samples, the free entropy decomposes into a prior contribution and
an output contribution:

Φ = extr{q,q̂}

{
−Tr qq̂

4
+ Iin(q̂) + αIout(q)

}
. (84)

Thus obtaining the state equations:
q = 4 ∂q̂Iin(q̂) (85)

q̂ = 4α ∂qIout(q) (86)

C.2 Prior Term Computation

First we compute under the RS ansatz:

− i d

2

m∑
u≤v=0

Q̂uv
ℓk Tr (Su

ℓ S
v
k) = − i d

2

(
m∑

u=0

Q̂ℓk Tr (S
u
ℓ S

u
k ) +

∑
u<v

(−q̂ℓk) Tr (S
u
ℓ S

v)

)
(87)

= − Q̂ℓk d

2

m∑
u=0

Tr (Su
ℓ S

u
k ) +

q̂ℓk d

2

∑
u<v

Tr (Su
ℓ S

v
k) (88)

= −d

2

(
Q̂ℓk +

q̂ℓk
2

) m∑
u=0

Tr (Su
ℓ S

u
k ) +

q̂ℓk d

4

m∑
u,v=0

Tr (Su
ℓ S

v
k) (89)

We remind that each Sℓ is a rank-ρℓd rotationally invariant matrix of order O(d × d). The prior
factor that emerges from the partition function, after decoupling the replica indices by applying a
Hubbard-Stratonovich transformation, reads:

Iin(q̂) =

∫ L∏
ℓ=1

m∏
u=0

dSu
ℓ P0(S

u
ℓ ) exp

{
− i d

2

L∑
ℓ,k=1

m∑
u≤v=0

Q̂
(u,v)
ℓk Tr

(
Su
ℓ S

v
k

)}
(90)

=

∫
dS̄P0(S̄) exp

{
L∑
ℓ,k

−d

2

(
Q̂ℓk +

q̂ℓk
2

) m∑
u=0

Tr (Su
ℓ S

u
k ) +

q̂ℓk d

4

m∑
u,v=0

Tr (Su
ℓ S

v
k)

}
(91)

=

∫
dS̄P0(S̄) exp

{
−

L∑
ℓ,k

∑
u

q̂ℓ,k d

4
Tr(Su

ℓ S
u
k ) +

L∑
ℓk

∑
u,v

q̂ℓkd

4
Tr(Su

ℓ S
v
k)

}
(92)

=

∫
dS̄P0(S̄)D(Y ) exp

{
−

L∑
ℓ,k

∑
u

q̂ℓk d

4
Tr(Su

ℓ S
v
k) +

L∑
ℓ,k

∑
u

√
q̂ℓk d

2
Tr(Su

kYℓ)

}
(93)

=

∫
D(Y )

{∫
dS̄P0(S̄) exp

{
−d

4

L∑
ℓ,k

q̂ℓk Tr(SℓSk) + d

L∑
ℓ,k

√
q̂ℓk
2

Tr(SkYℓ)

}m+1

(94)

where D(Yℓ) are GOE(d) measures ∀ℓ ∈ [L] and Yℓ ∈ Rd×d and also S̄ ∈ [Rd×d]L. In Eq.(78) we
used the identity:

EY∼GOE(d)

[
e

d
2 Tr[SY ]

]
= e

d
4 Tr[S2]

Finally, taking the zero replica m → 0 limit, we can write the prior contribution to the free entropy of
the model as:

Iin(q̂) = lim
d→∞

1

d2

∫
DY1 . . . DYL Zin(Y1, . . . , YL; q̂) logZin(Y1, . . . , YL; q̂)

Zin({Yℓ}Lℓ=1; q̂) =

∫ [ L∏
ℓ=1

dSℓ PS(Sℓ)

]

× exp
[
−d

4

L∑
ℓ,k=1

q̂ℓk Tr(SℓSk) +
d

2

L∑
ℓ,k=1

√
q̂ℓk Tr(YℓSk)

]
.

(95)
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The matrices Yℓ ∈ Rd×d are the auxiliary fields introduced by the Hubbard–Stratonovich transfor-
mation. Notably, they can be interpreted as “noisy measurements” of the Sℓ matrices with coupled
indices. In particular, the denoising problem which is solved by the free-entropy contribution of the
prior is:

Y ij
ℓ =

∑
k

√
q̂ℓk Sij

k + Zij
ℓ ∀i, j, ℓ (96)

with Zℓ GOE(d) matrices and Sℓ ∈ Rd×d rotationally invariant matrices, leading to an exponential
term of the form of − 1

2

∑
ℓ Tr((

∑
k

√
q̂ℓkSk−Yℓ)

2). Such equivalence between the matrix denoising
problem in (96) and (95) is analogous to those of [42, 40].

C.3 Output Channel Computation

Starting from the replicated partition function in Eq. (80), we can see that the output channel
contribution to the free entropy of the model, factorized with respect to the data, is given by:

Iout(q) =

∫ dy

∫ ∏
u,ℓ,a≤b

dh
(ℓ) u
ab P

(
{h(ℓ) u

ab }ab
)∏

u,ℓ

Pout

(
y
∣∣∣ { h

(ℓ) u
ab√

2− δab

}
ab

)n

, (97)

where we consider only the upper triangular token indices a ≤ b.
Ph

(
{h(ℓ),u

ab }ab
)

is a multivariate Gaussian distribution with means and covariance:

E[h(ℓ)
ab ] = 0, Covxµ

(
h
(ℓ) u
a≤b , h

(k) v
c≤d

)
=

1

d
[2 δacδbd] Tr (S

u
ℓ S

v
k) = [2 δacδbd]Q

uv
ℓk . (98)

Under the RS ansatz and in the limit m → 0, we can decouple the replicas through another Hubbard-
Stratonovich transformation. The exponent involving h

(ℓ) u
ab becomes:

−1

2

m∑
u,v=0

∑
a≤b,c≤d

∑
ℓ,k

(
h
(ℓ) u
ab

)(
Σ−1

h

)uv,ℓk
ab,cd

(
h
(k) v
cd

)
. (99)

Substituting back, the output term becomes:

Iout(q) =

∫ dy

∫ ∏
u,ℓ,a≤b

dh
(ℓ) u
ab exp

−1

2

m∑
u,v=0

∑
a,b,c,d

∑
ℓ,k

h
(ℓ) u
ab

(
Σ−1

h

)uv,ℓk
a≤b,c≤d

h
(k) v
cd

∏
u,ℓ

Pout

(
y
∣∣∣ { h

(ℓ) u
ab√

2− δab

}
ab

)n

.

(100)
For a fixed channel ℓ and for each token pair (a, b) with a ≤ b, the covariance in the replica space is
given by

(Σh)
uv,ℓk
a≤b,c≤d = [2 δacδbd] Q

uv
ℓk = [2 δacδbd]

[
(Qℓk − qℓk) δuv + qℓk

]
. (101)

Because of the Kronecker structure δacδbd, the Gaussian law over all {h(ℓ)u
ab }a≤b,ℓ,u factorizes over

token pairs (a, b). Hence it is sufficient to treat one fixed pair (a, b) and then take the product over
a ≤ b. For notational clarity in the next steps, we temporarily fix a pair (a, b) and write h(ℓ)u ≡ h

(ℓ)u
ab .

For this pair, the covariance across replicas and layers reads

E
[
h(ℓ)uh(k)v

]
= 2
[
(Qℓk − qℓk) δuv + qℓk

]
, u, v = 0, . . . ,m, ℓ, k = 1, . . . , L. (102)

We now construct explicitly a family of Gaussian random variables with covariance (102). Introduce
a shared Gaussian vector ω = (ω(1), . . . , ω(L)) with mean zero and covariance

E
[
ω(ℓ)ω(k)

]
= 2qℓk. (103)

For each replica u = 0, . . . ,m, an independent Gaussian vector ξu = (ξ(1)u, . . . , ξ(L)u) with mean
zero and covariance

E
[
ξ(ℓ)uξ(k)v

]
= 2(Qℓk − qℓk) δuv. (104)

ω is independent of all {ξu}mu=0. Define for each replica u and layer ℓ:

h(ℓ)u := ω(ℓ) + ξ(ℓ)u. (105)
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Then, for all ℓ, k and u, v,

E
[
h(ℓ)uh(k)v

]
= E

[
(ω(ℓ) + ξ(ℓ)u)(ω(k) + ξ(k)v)

]
= E

[
ω(ℓ)ω(k)

]
+ E

[
ξ(ℓ)uξ(k)v

]
= 2qℓk + 2(Qℓk − qℓk)δuv = 2

[
(Qℓk − qℓk)δuv + qℓk

]
, (106)

which is exactly (102). Therefore the law of {h(ℓ)u}ℓ,u is exactly the RS Gaussian law.

From (105), conditional on ω the replicas are independent and

{h(ℓ)u}Lℓ=1

∣∣∣ ω ∼ N
(
{ω(ℓ)}Lℓ=1, V

)
, V (ℓk) := 2(Qℓk − qℓk). (107)

Equivalently, for each u,

p
(
{h(ℓ)u}ℓ | ω

)
=

1√
det(2πV )

exp

(
−1

2

L∑
ℓ=1

L∑
k=1

(
h(ℓ)u − ω(ℓ)

)
[V −1]ℓk

(
h(k)u − ω(k)

))
.

(108)
Moreover ω ∼ N (0, 2q), i.e.

p(ω) =
1√

det(2π 2q)
exp

(
−1

2

L∑
ℓ=1

L∑
k=1

ω(ℓ) [(2q)−1]ℓk ω
(k)

)
. (109)

By marginalization over ω, the joint density of {hu}mu=0 is therefore:

p
(
{h(ℓ)u}ℓ,u

)
=

∫
dLω p(ω)

m∏
u=0

p
(
{h(ℓ)u}ℓ | ω

)
. (110)

We now express ω ∼ N (0, 2q) through standard normals. Introduce i.i.d. auxiliary variables
η(1), . . . , η(L) ∼ N (0, 1) and define

ω(ℓ) =

L∑
r=1

(
√
2q)ℓr η

(r), (111)

where (
√
2q) is any matrix square root such that, for all ℓ, k,

L∑
r=1

(
√
2q)ℓr(

√
2q)kr = (2q)ℓk. (112)

Then ω has covariance (103) since

E[ω(ℓ)ω(k)] =
∑
r,s

(
√
2q)ℓr(

√
2q)ks E[η(r)η(s)] =

∑
r

(
√
2q)ℓr(

√
2q)kr = (2q)ℓk. (113)

Consequently, for any function F (ω),∫
dLω N (ω; 0, 2q)F (ω) =

∫ L∏
r=1

dη(r)√
2π

e−(η(r))2/2 F

{∑
r

(
√
2q)ℓrη

(r)

}L

ℓ=1

 . (114)

Restoring the token indices, for each (a, b) we introduce independent η(r)ab ∼ N (0, 1) and define

ω
(ℓ)
ab =

L∑
k=1

(
√
2q)ℓk η

(k)
ab , V (ℓk) = 2(Qℓk − qℓk). (115)

Using (107)–(114), the Gaussian exponent for each replica u and each token pair (a, b) is therefore
exactly

−1

2

L∑
ℓ=1

L∑
k=1

(
h
(ℓ) u
ab − ω

(ℓ)
ab

)
[V −1]ℓk

(
h
(k) u
ab − ω

(k)
ab

)
− 1

2

L∑
r=1

(η
(r)
ab )

2, (116)
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which is the desired form with ω and V identified as in (115).

Define the auxiliary measure

Dη =
∏
a≤b

L∏
ℓ=1

dη
(ℓ)
ab√
2π

exp
[
− (η

(ℓ)
ab )

2

2

]
. (117)

For fixed η, the replicas are independent and identically distributed through the conditional Gaussian
N (hab;ωab, V ) on layers ℓ. Hence, introducing the single-replica output partition function

Zout(y, ω, V ) =

∫ ∏
a≤b

dLhab N (hab;ωab, V ) Pout

(
y
∣∣∣ { h

(ℓ)
ab√

2− δab

}L

a≤b, ℓ=1

)
, (118)

we can write

Iout(q) =

[∫
dy

∫
Dη

(
Zout(y, ω, V )

)m+1
]n

, (119)

where ω and V are the functions of (q,Q) defined in (115). Expanding Eq. (119) for small number
of replicas m → 0 and using Am+1 = Aem lnA = A (1 +m lnA+ o(m)), the contribution to the
free entropy is governed by

Iout(q) =

∫
dy

∫
Dη Zout(y, ω, V ) lnZout(y, ω, V ), (120)

We aim to compute ∂qIout(q) to finally reach the state equation in Eq. (86), namely:

q̂ℓk = 4α

∫
dy

∫
Dη

[
1 + lnZout(y, ω, V )

] ∂Zout(y, ω, V )

∂qℓk
. (121)

It is convenient to rewrite the η-integral as an integral over ω itself. For each token pair (a, b) we
have ωab ∼ N (0, 2q) with independent draws across a ≤ b. Thus we may equivalently write

Iout(q) =

∫
dy

∫ [∏
a≤b

dLωab N (ωab; 0, 2q)
]
Zout(y, ω, V ) lnZout(y, ω, V ), (122)

where ω = {ω(ℓ)
ab }a≤b,ℓ. Now define for each (a, b) and layer ℓ:

(gout(y, ω, V ))
(ℓ)
ab :=

∂

∂ω
(ℓ)
ab

lnZout(y, ω, V ). (123)

In (122), q appears in: (i) in the Gaussian measure ωab ∼ N (0, 2q), and (ii) in V = 2(Q− q) inside
Zout. Let

F (ω, q) :=

∫
dy Zout(y, ω, V ) lnZout(y, ω, V ).

Then
Iout(q) =

∫ [∏
a≤b

dLωab N (ωab; 0, 2q)
]
F (ω, q). (124)

Now fix a single pair (a, b), under ωab ∼ N (0,Σ) with Σ = 2q, we get the Gaussian identity, for
any smooth G(ωab):

∂

∂Σℓk
Eωab∼N (0,Σ)[G(ωab)] =

1

2
Eωab

[
∂2G(ωab)

∂ω
(ℓ)
ab ∂ω

(k)
ab

]
. (125)

Since Σ = 2q, we have ∂/∂qℓk = 2 ∂/∂Σℓk, hence

∂

∂qℓk
Eωab∼N (0,2q)[G(ωab)] = Eωab

[
∂2G(ωab)

∂ω
(ℓ)
ab ∂ω

(k)
ab

]
. (126)

Applying (126) to (124) (and summing over independent pairs) yields

∂Iout(q)

∂qℓk
=

∫ [∏
a≤b

dLωab N (ωab; 0, 2q)
] ∑

a≤b

∂2F (ω, q)

∂ω
(ℓ)
ab ∂ω

(k)
ab

+
∂F (ω, q)

∂qℓk

∣∣∣
ω

 , (127)
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where ∂F/∂q|ω is the explicit derivative through V = 2(Q− q) at fixed ω.

Since V (rs) = 2(Qrs − qrs), we have ∂V (rs)/∂qℓk = −2δrℓδsk, hence

∂F (ω, q)

∂qℓk

∣∣∣
ω
= −2

∂F (ω, q)

∂V (ℓk)
. (128)

Plugging (128) into (127) gives

∂Iout(q)

∂qℓk
=

∫ [∏
a≤b

dLωab N (ωab; 0, 2q)
] ∑

a≤b

∂2F

∂ω
(ℓ)
ab ∂ω

(k)
ab

− 2
∂F

∂V (ℓk)

 . (129)

Now fix ω, V and define for brevity

Z(y) := Zout(y, ω, V ), g
(ℓ)
ab (y) := (gout(y, ω, V ))

(ℓ)
ab . (130)

Then
F (ω, q) =

∫
dy Z(y) lnZ(y). (131)

We compute the two derivatives in (129) exactly. Since Z is an integral of a Gaussian density
N (hab;ωab, V ), then by definition:

∂Z(y)

∂ω
(ℓ)
ab

= Z(y) g
(ℓ)
ab (y),

∂2Z(y)

∂ω
(ℓ)
ab ∂ω

(k)
ab

= Z(y) g
(ℓ)
ab (y) g

(k)
ab (y) + Z(y)

∂g
(ℓ)
ab (y)

∂ω
(k)
ab

. (132)

Therefore,

∂F

∂ω
(k)
ab

=

∫
dy (1 + lnZ(y))

∂Z(y)

∂ω
(k)
ab

=

∫
dy (1 + lnZ(y))Z(y) g

(k)
ab (y), (133)

∂2F

∂ω
(ℓ)
ab ∂ω

(k)
ab

=

∫
dy
[
Z(y) g

(ℓ)
ab (y) g

(k)
ab (y) + (1 + lnZ(y))

(
Z(y) g

(ℓ)
ab (y) g

(k)
ab (y) + Z(y) ∂

ω
(k)
ab

g
(ℓ)
ab (y)

)]
. (134)

For a Gaussian integral, the derivative of lnZ with respect to V satisfies the identity

∂ lnZ(y)

∂V (ℓk)
=

1

2

(
g
(ℓ)
ab (y) g

(k)
ab (y) +

∂g
(ℓ)
ab (y)

∂ω
(k)
ab

)
, (135)

Using ∂V (ℓk)Z = Z ∂V (ℓk) lnZ and (135), we obtain
∂F

∂V (ℓk)
=

∫
dy (1 + lnZ(y))

∂Z(y)

∂V (ℓk)
=

1

2

∫
dy (1 + lnZ(y))Z(y)

(
g
(ℓ)
ab (y) g

(k)
ab (y) + ∂

ω
(k)
ab

g
(ℓ)
ab (y)

)
. (136)

Subtracting 2 ∂F/∂V (ℓk) from ∂2F/(∂ω
(ℓ)
ab ∂ω

(k)
ab ) using (134) and (136), all terms proportional to

(1 + lnZ)Z(· · · ) cancel exactly, yielding

∂2F

∂ω
(ℓ)
ab ∂ω

(k)
ab

− 2
∂F

∂V (ℓk)
=

∫
dy Z(y) g

(ℓ)
ab (y) g

(k)
ab (y). (137)

Plugging (137) into (129) and summing over a ≤ b gives
∂Iout(q)

∂qℓk
=

∫ [∏
a≤b

dLωab N (ωab; 0, 2q)
] ∑

a≤b

∫
dy Zout(y, ω, V ) (gout(y, ω, V ))

(ℓ)
ab (gout(y, ω, V ))

(k)
ab . (138)

Therefore the output-channel state equation is

q̂ℓk = 4α Eω,y

∑
a≤b

(gout(y, ω, V ))
(ℓ)
ab (gout(y, ω, V ))

(k)
ab

 , (139)

which is equivalent to

q̂ℓk = 4α Eη,y

∑
a≤b

(gout(y, ω, V ))
(ℓ)
ab (gout(y, ω, V ))

(k)
ab

 ,

for ℓ = 1, . . . , L a ≤ b = 1, . . . , T.

(140)
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The expectation E(η,y) is taken over the joint measure

L∏
ℓ=1

Dη(ℓ) (141)

and the output y is drawn from the channel density

Pout

(
y | {h(ℓ)

ab }ℓ
)
, h

(ℓ)
ab ∼ N

(
ω
(ℓ)
ab , V

(ℓk)
ab

)
, (142)

with:
Pout

(
y
∣∣∣ {h(ℓ)

ab }ℓ
)
= δ({yab − g({h(ℓ)

ab }∀ℓ)ab}∀ab), (143)

or particularly, for the deep attention case:

Pout

(
y
∣∣∣ {h(ℓ)

ab }ℓ
)
= δ({yab −BL

c ({h(ℓ)
ab }∀ℓ)ab}∀ab). (144)

C.3.1 Recap of the state equations

In this section we summarize the findings of the previous appendices. We performed the Bayes
optimal analysis of the attention-indexed models (AIM) defined in Eq. (1): we found that the problem
can be split in two components, the former involving the (extensive width) rotationally invariant prior
channel and the latter involving the output channel part of the model. Through a replica analysis, we
found that the prior channel is described by the following function:

Zin({Yℓ}Lℓ=1; q̂) =

∫ [ L∏
ℓ=1

dSℓ PS(Sℓ)

]

× exp
[
−d

4

L∑
ℓ,k=1

q̂ℓk Tr(SℓSk) +
d
2

L∑
ℓ,k=1

√
q̂ℓk Tr(YℓSk)

]
.

(145)

The denoising function associated to the prior channel assumes the form:

gin(Y |q̂) = ∂q̂1/2Y lnZin(Y, q̂) (146)

The free entropy contribution coming from the prior channel is:

Iin(q̂) = lim
d→∞

1

d2

∫
DY1 . . . DYL Zin(Y1, . . . , YL; q̂) logZin(Y1, . . . , YL; q̂) (147)

where DY stands for integration over a GOE(d) (Wigner) matrix Y .

Notably, this problem is equivalently mapped to the same posterior distribution of the following
matrix denoising problem:

Y (S,∆)ℓ = Sℓ +

L∑
m=1

√
∆ℓmΞm, Ξm ∼ GOE(d) Sℓ ∼ PS (148)

On the other hand, the output channel of the model is described by the function:

Zout(y, ω, V ) =

∫  T∏
a≤b

dLhab N (hab;ωab;Vab)

 δ
(
y − g({h(ℓ)

ab /
√

2− δab}Lℓ=1)
)

with: ω
(ℓ)
ab =

L∑
k=1

√
2qℓk η

(k)
ab , V (ℓk) = 2(Qℓk − qℓk)

(149)

The denoising function associated to the output channel takes the form:

gout(y, ω, V ) = ∂ω lnZout(y, ω, V ) (150)

The free entropy contribution coming from the output channel is:

Iout(q) =

∫ T∏
a,b=1

dyab

∫
Dη1 . . .DηL Zout(y, ω, V ) logZout(y, ω, V ) (151)
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where Dη stands for integration over a L× T × T tensor symmetric in the token indices and with
independent entries N (0, 1).

To conclude this section, in the multi-layer setting described by the AIM framework in Eq. (1), we
found the following state equations:

q̂ℓk = 4αEξ,η

L∑
a≤b

gout

(
g

({
h(ω, V )ab√
2− δab

})
, ω, V

)(ℓ)

ab

× gout

(
g

({
h(ω, V )ab√
2− δab

})
, ω, V

)(k)

ab

,

qℓk = lim
d→+∞

1

d
ES,Y Tr [gin(Y (S, q̂), q̂)ℓgin(Y (S, q̂), q̂)k] ,

(152)

where Eη,ξ is intended as the average over L× T × T symmetric in the token indices and Gaussians
with zero mean and unit variance. Moreover, the average ES,Y is with respect to respect to Y as given
in Eq. (148) and S ∼ PS . Finally:

[h(ω, V )ab]
(ℓ) = ω

(ℓ)
ab +

∑
k

√
V

(ℓk)
ξ
(k)
ab (153)

C.4 The fixed point of AMP is described by the state equations

We start by defining a new variable ω∗
µ, ab such that yµ = g({ω∗

µ, ab/
√
2− δab}a≤b), where we can

assume that E[(ω∗
µ, ab)ℓ (ω

∗
µ, ab)k] = 2Qt

ℓk. Our first step is to define the quantities mt and qt on the
iterates of AMP

mt
ℓk = Tr[Ŝt

ℓS
∗
k ]/d , qtℓk = Tr[Ŝt

ℓŜ
t
k]/d . (154)

We now claim, in analogy with [44, 35, 40, 42] that for every sample µ and every couple of tokens
a ≤ b the variables ωt

µ, ab at each time converge to independent centered Gaussian variables with the
following covariances

E[(ωt
µ, ab)ℓ (ω

t
µ, ab)k] = 2qtℓk , E[(ω∗

µ, ab)ℓ (ω
t
µ, ab)k] = 2mt

ℓk , (155)

By Nishimori’s identities [50] we can assume mt = qt. The first equation of (21) is now immediately
recovered (modulo the substitution V → 2(Q− qt) which will come after)

q̂tℓk ≈ 4αEy, ωt

T∑
a≤b

[
gout(y, ω

t, V t)
(ℓ)
ab gout(y, ω

t, V t)
(k)
ab

]
(156)

where

y = g

({
ω∗
ab√

2− δab

}T

a≤b

)
,

(
ωt
ab

ω∗
ab

)
∼ N

(
0 ,

(
2qt 2mt

2mt 2Q

))
(157)

Again as in [44, 35, 40, 42] we will have that in distribution

Rt
ij = S∗

ij + (q̂t)−1Ξt
ij (158)

We are ready to close the circle: going back to the definition of qt we write

qtℓk = ERt Tr
[
gin
(
Rt, q̂t

)
ℓ
gin
(
Rt, q̂t

)
k

]
/d , (159)

which is exactly the second equation in (21). Notice how the expectation is taken over the random
variable Rt

ij in (158). The last step is to notice that

Ĉt
ℓk = Tr[(Ŝt

ℓ − S∗
ℓ )(Ŝ

t
k − S∗

k)]/d
2 = Q− qt (160)

such that V t = 2(Q− qt).
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D The case of L = 1 layer

In this Appendix we restrict the theoretical results derived for an arbitrary number of layers to the
particular case of L = 1 layer. In this particular case, the order parameters q and q̂ become scalar
quantities. Moreover, in the following analysis we specialize to the extensive-rank choice:

S =
1√
rd

WW⊤ ∈ Rd×d W ∈ Rd×r (W )ij ∼ N (0, 1) (161)

with rank ratio ρ = r/d = O(1). Thus, the spectral distribution of the symmetric matrix S is that of
the Marcenko-Pastur law for Wishart matrices described in App. (A).

D.1 Prior channel state equation

Starting from Eq. (95) for L = 1 layer, we get::

Iin(q̂) = lim
d→∞

1

d2

∫
DY Zin(Y ; q̂) logZin(Y ; q̂)

Zin(Y ; q̂) =

∫
dS P0(S) exp

(
−d

2

(
Q̂+

q̂

2

)
Tr
(
STS

)
+

√
q̂d

2
Tr
(
Y TS

))
.

(162)

Again, at the 0-replica order Q̂ = 0 and integrating over Y :∫
DY Zin(Y ; q̂) (163)

=

∫
DY

∫
dS P0(S) exp

(
− q̂d

4
Tr(S⊤S) +

√
q̂d

2
Tr
(
Y ⊤S

)
− 1

4
Tr
(
Y ⊤Y

))
=

∫
dS P0(S) exp

(
q̂d

4
Tr
(
S⊤S

))
exp

(
− q̂d

4
Tr
(
S⊤S

))
=

∫
dS P0(S) = 1 (164)

Now, note that the exponent in Zin(Y ; q̂) can be rearranged as:

− q̂d
4 Tr(STS) +

√
q̂d

2
Tr(STY ) = −d

4
Tr
(
q̂ STS − 2

√
q̂ STY

)
. (165)

Observe

Tr
[
(
√

q̂ S − Y )T (
√

q̂ S − Y )
]
= q̂Tr(STS) − 2

√
q̂ Tr(STY ) + Tr(Y TY ). (166)

Hence

− q̂
4 Tr(S

TS) +

√
q̂

2
Tr(Y TS) = − 1

4 Tr
[
(
√
q̂ S − Y )2

]
+ 1

4 Tr(Y
TY ). (167)

Therefore:

I0(Y ) = exp
[
+ 1

4 Tr(Y
TY )

]
×
∫

dS P0(S) exp
[
− 1

4 Tr
(√

q̂ S − Y
)2]

. (168)

Ignoring the factor exp( 14 Tr(Y
TY )) that is independent of S, we see that∫
dS P0(S) exp

[
−d

4 Tr
(√

q̂ S − Y
)2]

(169)

which plays the role of a posterior density for S given Y =
√
q̂ S + Z with Z a GOE(d) noise.

In the large-d limit, let us parametrize S by its eigenvalues:

S = U ΛUT (170)
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where Λ = diag(λ1, . . . , λd). Then

dS =
[ d∏
i=1

dλi

] ∣∣∆({λi})
∣∣ dU with ∆({λi}) =

∏
1≤i<j≤d

∣∣λi − λj

∣∣, (171)

Then the exponent
Tr
[
− 1

4 (
√

q̂ S − Y )2
]

(172)

becomes
− 1

4 Tr
(√

q̂ U ΛUT − Y
)2

. (173)

We can factor out the integral over U ∈ O(d) and for d large:∫
O(d)

exp
(

q̂ d
2 Tr[ΛUT Y U ]

)
DU ≈ exp

[
d2

2 IHCIZ

(
q̂; µΛ, µY

)]
, (174)

where IHCIZ is an explicit functional in the limit d → ∞ of dimension 2/d2 times the log of that
integral, and µΛ is the limiting spectral distribution of Λ/

√
d.

The prior contribution of the free entropy is given by

Φprior(q̂) = lim
d→∞

1

d2
E
[
ln I0(Y )

]
, (175)

or more explicitly:

Φprior(q̂) = lim
d→∞

1

d2
E
[
ln

∫
P0(S) e

−d
4 Tr(

√
q̂ S−Y )2 dS

]
. (176)

This term can be explicitly computed and mapped to a matrix estimation problem. i.e. a denoising
problem as follows:

Φprior(q̂) = lim
d→∞

1

d2
EY ln I0(Y ) = − q̂ Q

4
+

1

2
IHCIZ

(
q̂;µ0, µ0 ⊞ σsc,1/

√
q̂

)
+ const, (177)

where Q = 1 + ρ.Then, one has the relation from [51]:

−1

2
Σ
(
µq̂

)
+

1

4q̂
Eµq̂

[X2]− 1

2
IHCIZ

(
q̂;µ0, µq̂

)
− 3

8
+

1

4
ln q̂ +

1

4q̂
Eµ0 [X

2] = 0, (178)

where we have defined µq̂ = µ0 ⊞ σsc,1/
√
q̂ and Σ(µ) is the noncommutative entropy:

Σ(µ) =

∫
µ(dx)µ(dy) ln |x− y|.

In our normalization (with Q = 1 + ρ), rearranging yields

1

2
IHCIZ(q̂;µ0, µq̂) = −1

2
Σ(µq̂) +

1

4

[
2Qq̂ + 1

]
− 3

8
− 1

4
ln q̂. (179)

Plugging back into the free entropy, we obtain

Φprior(q̂) = − q̂ Q

4
+

[
−1

2
Σ(µq̂) +

1

4
(2Qq̂ + 1)− 3

8
− 1

4
ln q̂

]
+ const. (180)

Taking the derivative with respect to q̂ yields the “prior state” equation. In fact, differentiating we
obtain

∂Φ

∂q̂
= −q

4
+

Q

4
− 1

4q̂
− 1

2

∂

∂q̂
Σ
(
µq̂

)
= 0. (181)

Using the derivative:
∂

∂q̂
Σ
(
µq̂

)
= −2π2

3q̂2

∫
µq̂(x)

3 dx, (182)

this condition becomes

−q

4
+

Q

4
− 1

4q̂
+

π2

3q̂2

∫
µY (x)

3 dx = 0. (183)
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which is exactly our desired state equation.

To sum up, in the problem

Y =
√
q̂ S + Z, Z ∼ GOE(d), (184)

the law of Y is asymptotically µS ⊞ σsc, 1/
√
q̂. we finally get:

q = Q− 1

q̂
+

4π2

3 q̂ 2

∫ [
µY (x)

]3
dx, (185)

with µY = µS ⊞ σsc, 1/
√
q̂ .

For the computation of µY , we recall that if µY = µS ⊞ σsc,α, we can write

RµY
(z) = RµS

(z) + Rσsc, α
(z). (186)

For the semicircle of radius α, we have Rσsc, α(z) = α2 z. For µS (Marchenko–Pastur distribution
with parameter ρ), we have

RµMP,ρ
(z) =

ρ√
ρ− z

. (187)

In our case α = 1/
√
q̂, then

RµY
(z) =

ρ√
ρ− z

+ α2 z. (188)

From RµY
(z) = g−1

µY
(−z)− 1

z , one obtains an equation for gµY
(z), with:

gµY
(z) =

∫
µY (dx)

x− z
. (189)

So, using the identity z = 1
x +RµY

(x), where x = gµY
(z). So we get

z =
1

x
+

ρ√
ρ− x

+ α2 x. (190)

Hence the final polynomial in x is:

(
1√
ρ
α2)x3 − (

z√
ρ
+ α2)x2 + (z +

1√
ρ
−√

ρ)x− 1 = 0 ⇐⇒ x = gµY
(z). (191)

We look for the solution of this equation with largest imaginary part. Moreover, we compute the
discriminant of this third order equation in order to correctly quantify the edges of the spectral density
we want to numerically compute.

Recalling α2 = 1/q̂, the imaginary part of x yields µY (Stieltjes–Perron inversion), i.e.

µY (x0) = lim
ϵ→0+

1

π
Im gµY

(x0 − i ϵ). (192)

D.2 Small/Large width limit of the prior channel

We recall that the state equations are of the form

Q− q =
1

q̂
− 4π2

3q̂2

∫
dxµ1/q̂(x)

3

q̂ = 2αF (Q− q, q)

(193)

where µ1/q̂ is the spectral distribution of S∗ +
1√
q̂
Z and Q = d−1 Tr(S2

∗). In our examples, S∗ is√
ρ times a standard Wishart, with Q = 1 + ρ.
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D.2.1 Small width limit

We follow [40, Section E.1.1]. Call t = ρ/q̂, and ᾱ = α/ρ. Call ν the distribution of
√
ρ(S∗ +

1√
q̂
Z) =

√
ρS∗ +

√
tZ, i.e.

ν(y) = ρ−1/2µ1/q̂(ρ
−1/2y) . (194)

Notice that this is precisely the ν defined in [40, Eq. 56]. Then we have

Q− q =
1

q̂
− 4π2

3q̂2

∫
dxµ1/q̂(x)

3

=
t

ρ
− 4π2t2

3ρ2
ρ

∫
dy [ρ−1/2µ1/q̂(ρ

−1/2y)]3

=
t

ρ
− 4π2t2

3ρ

∫
dy ν(y)3

=
t

ρ

[
1− 4π2t

3

∫
dy ν(y)3

]
≈
{
t(2− t) if t ≤ 1

1 if t > 1

(195)

where we used [40, Eq. 57 and following] to take the limit of small κ at leading order. Thus, the
equations can be recast to

Q− q =

{
t(2− t) if t ≤ 1

1 if t > 1

t =
1

2ᾱF (Q− q)
.

(196)

In particular, we have a weak recovery threshold. Indeed, as long as

ᾱ <
1

2F (1)
(197)

we have that Q− q = 1, i.e. the same error as the average from the prior (BO estimator with no data).

D.2.2 Large width limit

Recall that Q = 1 + ρ and q ∈ [ρ, 1 + ρ], so that Q− q ∈ [0, 1] even in the ρ → ∞ limit. Then we
have

Q− q =
1

q̂
− 4π2

3q̂2

∫
dxµ1/q̂(x)

3

=
1

q̂

[
1− 4π2

3q̂ρ

∫
dy [

√
ρµ1/q̂(

√
ρy)]3

]
=

1

q̂

[
1− 4π2

3q̂ρ

∫
dy µ1/ρq̂(y)

3

]
≈ 1

q̂

[
1− 1

1 + q̂

]
≈ 1

1 + q̂
,

(198)

where we used [40, Section E.2].

D.3 Output channel state equation

For L = 1 layers we obtain the state equation for the output channel contribution:

q̂ = 4αE(η,y)

[∑
a≤b

(gout(y, ω, V ))2ab

]
(199)
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Where we remind ηab ∼ N (0, 1) with a ≤ b = 1, . . . , T and ωab =
√
2q ηab, V = 2(Q − q),

Q = 1 + ρ. The denoising function is given by:

(gout(y, ω, V ))ab = ∂ωab
lnZout(y, ω, V ) (200)

and:

Zout(y, ω, V ) =

∫ ∏
a≤b

dhabN (hab, ωab, V ) δ
(
y − f(h)

)
(201)

where f(h) depends on the precise choice of the model. In particular, in the following sections we
consider the three cases dealt in the main text. In the following, we first consider a linear output
channel for a generic number of tokens T . This simple case serves as a baseline for the more
interesting case of the softmax channel, namely the self-attention layer for an arbitrary number of
tokens. We also consider the hardmax variant of the model treated in the main text for T = 2 tokens.

D.4 Linear output channel for generic number of tokens

We consider Pout(yab | hab) = δ(yab − hab√
2−δab

). Then

Zout(y, ω, V ) =

∫ [∏
a≤b

N
(
hab;ωab, V

)] ∏
a≤b

δ
[
yab −

hab√
2− δab

]
dh. (202)

Enforcing hab =
√
2− δabyab , this gives directly:

Zout(y, ω, V ) =
∏
a≤b

[ 1√
2π V

exp
(
− (

√
2−δabyab−ωab)

2

2V

)]
. (203)

Hence

lnZout(y, ω, V ) =
∑
a≤b

[
− 1

2 ln(2π V ) − (
√
2− δabyab − ωab)

2

2V

]
. (204)

We recall that ωab(η) depends linearly on ηab, e.g.:

ωab =
√
2q ηab, Vab = 2(Q− q), Q = 1 + ρ. (205)

Then

(gout(y, ω, V ))ab =
∂

∂ωab
lnZout(y, ω, V ) = − ∂

∂ωab

[ (√2− δabyab − ωab(η))
2

2V

]
= +

(
√
2− δabyab − ωab)

V
.

(206)
Thus ∑

a≤b

(gout(y, ω, V ))2ab =
∑
a≤b

(
[
√
2− δabyab − ωab(η) ]

1

2(Q− q)

)2
. (207)

We can compute the expectation:

E
[∑
a≤b

(gout(y, ω, V ))2ab

]
=

∫(∏
a≤b

dηab
e−η2

ab/2

√
2π

) ∫(∏
a≤b

dyab

)
Zout(y, ω, V )

∑
a≤b

(gout(y, ω, V ))2ab.

(208)

We can simply use:∫
dyab

1√
2π V

exp
(
− (

√
2− δabyab − ωab)

2

2V

) [√
2− δabyab − ωab

]2
= V. (209)

Therefore, ∫ (∏
a≤b

dyab

)
Zout(y, ω, V )

∑
a≤b

(gout(y, ω, V ))2ab =
∑
a≤b

[( 1

2(Q− q)

)2
V

]
. (210)
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Figure 3: Illustration of the Bayes-optimal error for the linear output channel baseline in Eq. (202),
for T = 2 tokens and several values of the width ratio ρ = r/d. The model reaches zero BO error at
finite α. The recovery threshold matches perfectly the one find by the simple counting argument in
(215), plotted in short vertical lines.

Thus each term becomes (
1

2(Q− q)

)2

2(Q− q) =
1

2(Q− q)
. (211)

Hence the entire sum is ∑
a≤b

1

2(Q− q)
=

T (T + 1)

4

1

Q− q
. (212)

Notice that this result does not depend on η. Consequently, the outer integral over η becomes 1.Hence
we arrive to the final form of the linear output channel state equation:

q̂ = 4αE(η,y)

[∑
a≤b

(gout(y, ω, V ))2ab

]
= 4α

∑
a≤b

[
E(η,y)gout(y, ω, V ))2ab

]
= 4α

T (T + 1)

4(Q− q)
(213)

which finally simplifies into the output channel state equation:

q̂ =
T (T + 1) α

Q− q
(214)

As an example, in Fig. 3 we show the fixed point solution for the state evolution equations for
the linear output channel. The prior equation (26) remains unchanged, while we use Eq. (213) for
simulating the linear output channel results. We also show in vertical dashed lines the recovery
threshold found by the simple counting problem:

T (T + 1)

2
αcount = ρ− ρ2

2
(215)

The linear output channel matches perfectly the counting recovery threshold, unlike in the softmax
case shown in Eq. (32).

D.5 Softmax output channel for generic number of tokens

We compute the quantity:

Zout(y, ω, V ) =

∫ ∏
a≤b

dhab
1√

2πVab

e
− (hab−ωab)

2

2Vab

∏
a≤b

δ(yab − Softmax{ β√
2− δab

hab}). (216)

where we remind the factor
√
2− δab is present due to the symmetrization of the problem (i.e.

multiply and divide by
√
2− δab), allowing a much simpler treatment of the BO analysis in change

of this slight modification of the output channel.
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From now on, we define the quantity τab =
√
2− δab. We thus aim to compute the quantity:

Zout(y, ω, V ) =

∫ ∏
a≤b

dhabδ(y − σ(
hab

τab
)
∏
a≤b

N (hab, ωab, Vab) (217)

We introduce the variable zab = hab/τab and exploit dhN (h, µ, σ) = dzN (z, µ/τ, σ/τ2), we get:

Zout(y, ω, V ) =

∫ ∏
a≤b

dzab δ
(
y − σ(z)

)∏
a≤b

N
(
zab,

ωab

τab
, Vab

τ2
ab

)
=

=

∫ ∏
a≤b<T

dtab N
(
tab,

ωab

τab
− sa,

Vab

τ2
ab

) T∏
a=1

dsa N
(
sa,

ωaT

τaT
, VaT

τ2
aT

) (218)

where in the last equality we introduced the inverse mapping of the row-wise softmax function,
defined in Eq. (40). In particular, we introduce:

eβtab =
eβzab

eβzaT
=

eβzab∑T
b=1 e

βzab

( eβzaT∑T
b=1 e

βzab

)−1

=
yab
yaT

∀a ≤ b < T (219)

which leads to:
tab =

1

β
log(

yab
yaT

) = ϕab(y) ∀a ≤ b < T (220)

while for b = T :

yTa

yTT
=

eβzTa

eβzTT
=

eβzaT

eβzTT
= eβ(sa−sTT ) → sa = sTT + ϕTa(y) ∀a < T (221)

having introduced the change of variables:

zab → tab = zab − zaT → zab = tab + sa = ϕab + ϕTa + sTT ∀a ≤ b < T (222)

and
zaT → sa = zaT → zaT = sa = sTT + ϕTa ∀a < T (223)

Having this mapping clear and introducing the short-hand notation ω̃ = ω/τ and Ṽ = V/τ2,
sTT = x, we can see that we can reduce the computation of Eq. (218) to that of one simple scalar
integral in the variable x = sT , namely:

Zout(y, ω, V ) =

∫
dxN (x, ω̃TT , ṼTT )

T−1∏
a=1

N (x+ ϕTa(y), ω̃aT , ṼaT )

×
∏

a≤b<T

N (ϕab(y) + ϕTa(y) + x, ω̃ab, Ṽab)

=

∫
dx exp

{
−1

2

[ T∑
a=1

(x+ ϕTa − ω̃aT )
2)

ṼaT

+
∑

a≤b<T

(ϕab + ϕTa + x− ω̃ab)
2

Ṽab

]}
(224)

We thus obtain a simple gaussian integral whose exponential is of the form:

− 1

2

[
x2
(∑
a≤b

Ṽ −1
ab

)
+ 2x

( T∑
a=1

ϕTa − ω̃aT

ṼaT

+
∑

a≤b<T

ϕab + ϕTa − ω̃aT

Ṽab

)

+
( T∑
a=1

(ϕTa − ω̃aT )
2

ṼaT

+
∑

a≤b<T

(ϕab + ϕTa − ω̃ab)
2

Ṽab

)] (225)

Having computed this simple gaussian integral, we can hence compute the quantity of interest:

logZ =
1

2Ṽ

[ T∑
a=1

ϕTa − ω̃aT

ṼaT

+
∑

a≤b<T

ϕab + ϕTa − ω̃aT

Ṽab

]2
− 1

2

[ T∑
a=1

(ϕTa − ω̃aT )
2

ṼaT

+
∑

a≤b<T

(ϕab − ϕTa − ω̃ab)
2

Ṽab

]
+ cost

(226)
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with Ṽ =
∑

a≤b Ṽ
−1
ab and again ϕab(y) =

1
β log yab

yaT
, ω̃ab = ωab√

2−δab
,Ṽab = V ab

2−δab
,ωa =

√
2qηab,

Vab = V = 2(Q− q), h ∼ N (ω̃, Ṽ ), y = σ(h). The constant term contains those terms independent
from ω, as we are finally interested in the denoising function , which is the derivative:

gout(y, ω, V )ab = ∂ωab
logZout(y, ω, V ) (227)

We thus compute the denoising function deriving with quantity logZout(y, ω, V ) with respect to
ω̃, thus computing τij∂ωij

logZout(y, ω, V ) for i ≤ j < T and for j = T . We also consider that∑T
a≤b Ṽ

−1
ab = 1

V

∑T
a≤b(2− δab) =

T 2

V , V = 2(Q− q).

Finally, we obtain the final form of the denoising function of the softmax output channel in Eq. (27)
for an arbitrary number of tokens, substituting back the original V and ω:

V (gout)ij = − τij
T 2

[ T∑
a≤b

τ2abϕTa−
T∑

a≤b

τabωab+

T−1∑
a≤b

τ2abϕab

]
+τijϕTi−ωij+δ(j < T )ϕijτij (228)

which is exactly the same form appeared in the main text in Eq. (31).

We now complete this appendix by computing the quantity Eη,y

∑
a≤b(gout)

2
ab . To do so, we exploit

the following relations:

ϕab = hab − haT h ∼ N (ω̃, Ṽ ) → τabhab =
√
2q ηab +

√
V ξab a ≤ b ≤ T (229)

with ηab, ξab ∼ N (0, 1) and

ϕTa = hTa − hTT = haT − hTT (230)

We thus substitute these relationships inside Eq. (228) and finally compute Eη,ξ

∑
a≤b(gout)

2
ab. After

a long but simple algebraic calculation, it is possible to show that the denoiser function reduces to
simply:

V (gout)ij = = τij
√
V ξTT − τij

T 2

T 2∑
a≤b

τab
√
V ξab +

τij
τiT

√
V ξiT

− τij
τTT

√
V ξTT + δ(j < T )

√
V ξij − δ(j < T )

τij
τiT

√
V ξiT

= − τij
T 2

T 2∑
a≤b

τab
√
V ξab +

√
V ξiT δ(j = T ) + δ(j < T )

√
V ξij

= − τij
T 2

T 2∑
a≤b

τab
√
V ξab +

√
V ξij

(231)

which finally gives:

Eη,ξV

T∑
i≤j

(gout)
2
ij =

T (T + 1)

2
− 2

T 2

T∑
i≤j

T∑
a≤b

τijτabEξijξab

+
1

T 4

T∑
i≤j

T∑
a≤b

T∑
c≤d

τ2ijτabτcdEξabξcd

=
T (T + 1)

2
− 2

T 2

T∑
i≤j

τ2ij +
1

T 4

T∑
i≤j

T∑
a≤b

τ2ijτ
2
ab

=
T 2 + T − 2

2

(232)

Hence, we can finally conclude that the output channel state equation we obtain for a self-attention
layer with an arbitrary number of tokens is:

q̂ = 4αEη,ξ

T∑
i≤j

(gout)
2
ij =

4α(T 2 + T − 2)

2V
=

α(T 2 + T − 2)

Q− q
(233)
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Figure 4: Comparison between the fixed points solutions of the state equations for a softmax output
channel in Eq. (26) and Eq. (233) for T = 4, 5 tokens. We compare the theoretical solution with their
corresponding AMP algorithm run over 16 different realizations and with d = 120. The error bars in
the AMP dots are computed with respect to the mean value.
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Figure 5: Low width limit of the self-attention model for L = 1 layer and T = 2 tokens in Eq. (27).
We rescale the sample ratio as ᾱ = n/dr and we plot several values of the width ratio ρ = r/d. We
correctly predict the weak recovery threshold in Eq. (197).

which is the result presented in the main text in Eq. (32). We highlight this final result holds for
any value of the softmax inverse temperature 0 < β < +∞. In Fig. 4 we show for completeness
the state equations for the softmax output channel described by (216) for T = 4, 5 tokens and its
corresponding AMP run for 16 different realizations and with d = 120. The error bars in the AMP
dots are computed with respect to the mean value. We find a good agreement also in this case. In
Fig. 5 we plot the low width behavior of the self-attention model for L = 1 layer and T = 2 tokens
in Eq. (27), for which we recover the simple output channel state equation in Eq. (233), thus giving:

F (Q− q, q) =
T 2 + T − 2

2(Q− q)
(234)

Regarding the large width result in Eq. (198) in this softmax output channel case, we get the equation:

q̂ =
α(T 2 − T + 2)

Q− q
= α(T 2 − T + 2)(1 + q̂) (235)

so we get

q̂ =
α(T 2 − T + 2)

1− α(T 2 − T + 2)
(236)

which gives the large ρ result:

MMSE =
1

1 + q̂
= 1− α(T 2 − T + 2) . (237)
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D.6 Hardmax output channel for 2 tokens

We now discuss the hardmax output channel case, in the special case of T = 2 tokens. Following
Eq. (28) in the main text, we need to compute the quantity:

Zout(y, ω, V ) =

∫ ∏
a≤b

dhab
1√

2πVab

e
− (hab−ωab)

2

2Vab

∏
a≤b

δ(yab − σhard({
1√

2− δab
hab}a)b. (238)

with:
σhard(z1 . . . zT )i = δ(i = argmax

j
xj) (239)

In this setting, in particular when T = 2, the output label of e.g. y11 becomes

y11 = Θ(h11 − h12) (240)

and similarly for the other labels. Here Θ(u) is the Heaviside function:

Θ(u) =

{
1, u > 0,

0, u < 0.
(241)

For the computation of the quantity in Eq. (238), it is convenient to make a change of variables by
introducing the differences:

u = h11 −
h12√
2
, v = h22 −

h12√
2
. (242)

We can thus rewrite in the case of T = 2 tokens:

Iout(η, y) =

∫
dh12 N (h12;ω12, V12)

{∫
u∈R(y11)

du N (u+
h12√
2
;ω11, V11)

}

×
{∫

v∈R(y22)

dv N (v +
h12√
2
;ω22, V22)

}
,

(243)

where the integration ranges are defined by the hard–threshold:

R(y11) =

{
{u > 0}, if y11 = 1,

{u < 0}, if y11 = 0,
R(y22) =

{
{v > 0}, if y22 = 1,

{v < 0}, if y22 = 0.

Now, by shifting the Gaussian factors we have

N (u+ h12;ω11, V11) = N (u; ω11 −
h12√
2
, V11), (244)

and similarly for the v–integral. Thus, the expression becomes

Zout(y, ω, V ) =

∫
dh12 N (h12;ω12, V12) F11(

h12√
2
;ω) F22(

h12√
2
;ω) , (245)

with

F11(
h12√
2
;ω) =

∫
u∈R(y11)

du N (u; ω11 −
h12√
2
, V11) = Φ

(
s11

ω11 − h12√
2√

V11

)
, (246)

F22(
h12√
2
;ω) =

∫
v∈R(y22)

dv N (v; ω22 −
h12√
2
, V22) = Φ

(
s22

ω22 − h12√
2√

V22

)
, (247)

where Φ(z) is the standard Gaussian CDF and

s11 = 2y11 − 1 =

{
+1, y11 = 1,

−1, y11 = 0,
s22 = 2y22 − 1 =

{
+1, y22 = 1,

−1, y22 = 0.

Thus, in the hard–threshold limit the output channel integral is given by:

Zout(y, ω, V ) =

∫ +∞

−∞
dh12 N (h12;ω12, V12) Φ

(
s11

ω11 − h12√
2√

V11

)
Φ
(
s22

ω22 − h12√
2√

V22

)
(248)
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We can further manipulate this expression.

Writing h12 = ω12 +
√
V12 Z with Z ∼ N (0, 1); then, using independence,

Zout(y, ω, V ) = EZ

[
Φ
(
u1 − λ1Z

)
Φ
(
u2 − λ2Z

)]
, (249)

where

u1 = s11

√
2ω11 − ω12√

2V11

, u2 = s22

√
2ω22 − ω12√

2V22

, (250)

λ1 = s11

√
V12

2V11
, λ2 = s22

√
V12

2V22
. (251)

A classical identity for jointly Gaussian variables gives

EZ

[
Φ(a+ bZ) Φ(c+ dZ)

]
= Φ2

(
a√
1+b2

, c√
1+d2

; bd√
(1+b2)(1+d2)

)
. (252)

Where Φ2 is the cdf of the bivariate normal density defined in Appendix (A). Applying this relation
to our model yields:

Zout(y, ω, V ) = Φ2

(
κ1, κ2; c

)
(253)

with the compact parameters

κ1 = s11

√
2ω11 − ω12√
2V11 + V12

, κ2 = s22

√
2ω22 − ω12√
2V22 + V12

, (254)

c = s11s22
V12√

(2V11 + V12)(2V22 + V12)
= s11s22

1

3
(V11 = V22 = V12). (255)

We can hence compute denoising function:

(gout(y, ω, V ))ab =
∂

∂ωab
lnZout(y, ω, V ). (256)

Because Vab is ω-independent, the chain rule gives

∂

∂ω11
Φ2(κ1, κ2; ρ12) =

∂κ1

∂ω11
ϕ2(κ1, κ2; ρ12),

∂κ1

∂ω11
=

√
2s11√

2V11 + V12

. (257)

The four independent derivatives are therefore

gout(y, ω, V )11 =

√
2s11√

2V11 + V12

ϕ2(κ1, κ2; ρ12)

Φ2(κ1, κ2; ρ12)
(258)

gout(y, ω, V )22 =

√
2s22√

2V22 + V12

ϕ2(κ2, κ1; ρ12)

Φ2(κ1, κ2; ρ12)
(259)

gout(y, ω, V )12 = −
( s11√

2V11 + V12

+
s22√

2V22 + V12

) ϕ2(κ1, κ2; ρ12)

Φ2(κ1, κ2; ρ12)
(260)

This expression can be compactly rewritten as:

gout(y, ω, V )ab =
1√

6(Q− q)

ϕ(k1, k2, c)

Φ(k1, k2, c)

( √
2s1 −(s1 + s2)

−(s1 + s2)
√
2s2

)
ab

, (261)

where ϕ(k1, k2, c) is the p.d.f. of a bi-variate Gaussian with zero mean, variances 1/(1 − c2) and
covariance c/(1 − c2), and Φ(k1, k2, c) is its c.d.f (see Appendix A). Moreover, sa = 2yaa − 1,
ka = sa(

√
2ωaa − ω12)/

√
6(Q− q), c = s1s2/3 and ωab =

√
2q ηab. This is precisely the result

shown in the main text in Eq. (29).

We finally compute the state equation corresponding to the output channel, namely:

q̂ = 4αEη,y

∑
a≤b

gout(y, ω, V )2ab (262)

where ηab ∼ N (0, 1) for a ≤ b = 1, . . . , T and y ∼ Zout(y, ω, V ).
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D.7 Generalization error and sequence-to-sequence version of the model

In this section we draw some consideration on the generalization error presented in Eq. (10), in the
setting of a self-attention layer as in (3) and its sequence-to-sequence version as in (54).

In the main text, we showed the expression of the Bayes-optimal estimation error. In the case of one
layer of self-attention this reads:

Eest =
1

d
∥S∗ − Ŝ∥2F = Q− q (263)

Regarding the generalization error, we instead aim to compute and plot the different quantity shown
in Eq. (10), namely:

Egen(ŷ) = ED,S∗Eynew,xnew
||ŷ(xnew,D)− ynew||2F , (264)

with:
ŷBO
D (xtest ) := E [ytest | xtest ,D] =

∫
Ez [fS (xtest )]P(S | D)dS

Recalling the fact that, for one layer of self-attention, we simply have the relation y = σβ(h) =

σβ({hab/
√
2− δab}ab), we can introduce the change of variables hab =

x⊤
a Sxb−δab TrS√

d
and get the

expression:

Egen =
∑
a,b

Exab

∫
dhabdĥab∥σ(

hab√
2− δab

)− σ(
ĥab√
2− δab

)∥2δ(hab −
x⊤
a Sxb − δab TrS√

d
)δ(ĥab −

x⊤
a Ŝxb − δab Tr Ŝ√

d
)

(265)
We now exploit the fact that, as we know, the preactivations concentrate to:

Exab
δ(hab −

x⊤
a Sxb − δab TrS√

d
)δ(ĥab −

x⊤
a Ŝxb − δab Tr Ŝ√

d
) = N

((hab

ĥab

)
,

(
0
0

)
,

(
q q
q Q∗

)
2
)
= P (hab, ĥab)

(266)
Then, the overall generalization error is given by

Egen =

T∑
a,b=1

E(hab,ĥab)∼P (hab,ĥab)

[
σ({ hab√

2− δab
}ab)− σ({ ĥab√

2− δab
}ab)

]2
(267)

which exactly matches the result presented in the main text in Eq. (19), where the extension to the
multi-layer setting is trivial.

Now we slightly modify our model of a self-attention layer by considering its sequence-to-sequence
(seq2seq) version y = σβ({ hab√

2−δab
}ab)x ∈ RT×d. In particular we aim to compute and plot the

generalization error of Eq. (10) in this new setting.

To do so, we define y = Ax and ŷ = Âx with A = σβ(h) and Â = σβ(ĥ) where we leave the factor√
2− δab implicit. We exploit the concentration of our input data, in order to compute the Frobenius

norm of y − ŷ = (A− Â)x. Recalling the fact that the input data are iid with xµ
ai ∼ N (0, 1), we use

the fact that
d∑

i=1

xt′ixt′′i ≈ δtt′ (268)

with high probability when d is large. Hence:

||(A− Â)x||2F =
∑
t,i

[
∑
t′

(Att′ − Âtt′)xt′i]
2 =

∑
t,i

∑
t′,t′′

(Att′ − Âtt)(Att′′ − Âtt′′)xt′,ixt′′,i (269)

but using the concentration property of x we finally get:

||(A− Â)x||2F =
∑
t,i

∑
t′,t′′

(Att′ − Âtt′)(Att′′ − Âtt′′)xt′,ixt′′,i =
∑
t,t′

(Att′′ − Âtt′)
2 = ||A− Â||2F

(270)
We hence have shown that in the case of L = 1 layer, the sequence-to-sequence version of the model
shows the same identical state evolution with respect to a single self-attention layer.
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D.8 Details on the numerical implementation

The code used to produce all the figures and the experiments is available at https://github.com/
SPOC-group/ExtensiveRankAttention. Our gradient descent experiments are done in PyTorch
1.12.1 by minimizing the following loss using Adam

L(W ) =

n∑
µ=1

T∑
a,b=1

(
yµab − σβ

(
xµ⊤
a WW⊤ xµ

b − δab TrWW⊤
√
r d

))2

, (271)

In our implementation we sample both the input data and the weights of the target as standard
Gaussian. Notice that we appropriately adjusted the loss to be consistent with the main test. We
choose a learning rate 0.1 and keep the other hyperparameters at their default parameters and
initializing the weights as a standard Gaussian.

When running the averaged version of the algorithm we run the optimization procedure 32 times for
a fixed experiment, and average the matrix S = WW⊤/

√
rd at the end of training.

Regarding the state equations in the two L = 1 cases of softmax and hardmax output channel: in
the former case, we simply find the fixed points iterations of the state equations in Eq. (26) and
Eq. (233). In the latter case, finally, we compute the expectation in Eq. (262) with Monte-Carlo
over nsamples = 20000 samples. In particular, to allow for more stable results, we iterate the state
equations for T = 150 iterations and we compute the mean overlap over the last 30 iterations of the
state equations.
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