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Max-Margin Multiattribute Learning
With Low-Rank Constraint

Qiang Zhang, Lin Chen, Student Member, IEEE, and Baoxin Li, Senior Member, IEEE

Abstract— Attribute learning has attracted a lot of interests in
recent years for its advantage of being able to model high-level
concepts with a compact set of midlevel attributes. Real-world
objects often demand multiple attributes for effective modeling.
Most existing methods learn attributes independently without
explicitly considering their intrinsic relatedness. In this paper,
we propose max margin multiattribute learning with low-rank
constraint, which learns a set of attributes simultaneously, using
only relative ranking of the attributes for the data. By learning
all the attributes simultaneously through low-rank constraint, the
proposed method is able to capture their intrinsic correlation
for improved learning; by requiring only relative ranking, the
method avoids restrictive binary labels of attributes that are often
assumed by many existing techniques. The proposed method is
evaluated on both synthetic data and real visual data including
a challenging video data set. Experimental results demonstrate
the effectiveness of the proposed method.

Index Terms— Multi-task learning, relative attribute, low rank,
attribute learning, surgical skill.

I. INTRODUCTION

IN VISUAL computing tasks involving modeling of visual
objects, such as image-based object class recognition, it

has been recognized that some mid-level visual properties, or
“attributes”, of the objects are not only helpful but even critical
to solving the problem [1], [2]. Attributes of a visual object
(or object class) characterize the object (or the class) in terms
of semantically meaningful features such as “being blue in
color”, “having long legs” etc., and thus effectively help to
bridge the gap between low-level visual features and high-
level concepts like the object class. Learning classifiers based
on such attributes has the potential advantage of being able
to model a large number of categories using a compact set
of attributes. Further, a well-defined attribute set may also be
applied to unseen categories.

In practice, obtaining sufficient amount of labeled data
for attribute learning is challenging, especially since many
intuitively useful attributes are often subjective in nature. For
example, for an attribute concerning the size of the bear in
Fig. 1(a) (even if it is for a binary property of being big or
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Fig. 1. Describing the objects in the images with attributes: they are both
animals; they both have four legs; (a) is larger than (b); (a) is more dangerous
than (b); b is more likely to be found around human; etc.

small), there may not exist a single “correct” ground-truth
label. Several recent efforts have attempted to address this
issue. In [3], the concept of relative visual attributes was intro-
duced to allow learning with only relative labels, which are
presumably easier to obtain. Similar ideas have been applied
to other applications such as distance metric learning [4], face
verification [5], and human-machine interaction [6].

For properly modeling objects in real-world problems,
we typically need more than one attribute. For example,
for images of animals illustrated in Fig. 1, we may utilize
attributes concerning questions like, “is it an animal?”,
“is it wild?”, “is it dangerous?”, etc. There may be intrin-
sic relatedness among the attributes used to describe the
same object if the attributes are indeed properties of the
underlying object. For example, “being dangerous” is usually
(negatively) correlated with “found around people”. Learning
these attributes independently, as is done in most existing
work, cannot capture such intrinsic relatedness. We hypoth-
esize that considering correlations among the attributes may
contribute to improving the individual attribute learners.

In this paper, we explore approaches to learning multiple
attributes jointly. We propose a novel formulation termed
Max-Margin Multi-attribute Learning with Low-rank
Constraint and develop an algorithm for obtaining a solution
under this model. The proposed approach learns a set
of attributes simultaneously under the multi-task learning
framework, where learning each attribute is viewed as one
task. By learning all the attributes simultaneously with
low-rank constraint, the proposed approach is able to capture
the intrinsic relatedness of the attributes. It also makes the
proposed methods more robust when there are outliers or no
sufficient data for certain attributes. In addition, instead of
requiring absolute labeling of the training data, the proposed
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method utilizes the relative rankings between pairs of the
inputs, which are more flexible and effective for describing
the data. For evaluation, we first design synthetic experiments
to systematically evaluate the model and the algorithm, and
then perform experiments with two image datasets and one
video dataset. The video dataset was from surgical training,
which is a challenging example of intricate relatedness
among attributes describing the object of interest. Improved
performance of the proposed method over alternative solutions
suggests that it is a promising solution to multi-attribute
learning.

The key contribution of the work lies in the novel for-
mulation of learning a set of attributes simultaneously only
based on the relative ranking of the data and the proposed
algorithm for obtaining solutions under the formulation. The
rest of this paper is organized as follows: we first briefly review
some related work in Section II; then Section III presents
the proposed methods; the experimental results are described
in Section IV; and the paper concludes with discussion in
Section V. In this paper, we will use upper case bold font
(e.g., X) for matrices and lower case bold font (e.g., x) for
vectors.

II. RELATED WORK

In this section, we briefly review some related work on
multi-task learning and (relative) attribute learning. There is
a huge amount of relevant work in the literature and our
review focuses only on those we deem as closely related to
the proposed method.

Multi-task learning, in which a set of tasks are learned
simultaneously, has been applied in many applications includ-
ing Web page categorization [7], Web image and video
search [8], face verification [9] and disease prediction [10].
A typical multi-task learning method can be formulated as
follows:

min{ ft }
1

T

T∑

t

1

nt

nt∑

i

l( ft (Xit ), Lit )+ λ�({ ft }) (1)

where ft is a classifying/regression function, l(·) a loss
function (e.g., squared error), Lit the ground truth response
for data Xit (e.g., data labels), and �(·) a penalty term for
encouraging common structures of ft ’s.

Given different loss functions and penalty terms, many mod-
els have been proposed for multi-task learning. In [11] it was
assumed that the classifying functions are close to each other,
and thus hinge loss was used for the loss function, and the
deviations of the classification functions from their means were
used as the penalty. Although being intuitive, this assumption
is too restrictive and may not be valid for real-world problems.
In [12] the l1/lq mixture norm was used as the penalty term,
where for q ≤ 2, the sets of regression functions exhibit group
sparsity, i.e., the regression functions will select a common
sets of features. In real applications, different tasks would have
their task-specific components besides the shared components,
and thus [13] proposed to decompose the regression functions
into two components, where the task-specific component is
assumed to be sparse and regularized by a l1 norm, and

the shared common component is regularized by the l1/lq

mixture norm. Similar idea was proposed in [14], where the
l1 norm was replaced by lq /l1 mixture norm to capture the
irrelevant tasks. The relatedness among the tasks could also be
captured by a low-rank structure. For example, [15] assumed
the regression functions were linearly dependent and the trace
norm was used as the penalty term. The trace norm has been
also used in [16]–[18]. However, these methods require ground
truth labeling (e.g., binary labels, real-valued scores) for the
training data, which may be difficulty to obtain in many real-
world applications.

Attribute learning has seen increasing application in visual
processing in recent years, which is especially useful for large-
scale dataset, where learning classifiers for data of each cate-
gory is not practical [19]. In addition, often the attributes can
be transferred to unseen categories, different datasets or even
different applications (e.g., zero-shot learning [20]). However,
most existing work utilizes binary labels or categorical labels,
which is not only too restrictive but also unnatural. As a result,
relative learning has been proposed. For example, in [4] the
relative ranking of data points was used for learning a distance
metric function, and the relative rank of some facial attributes
was used for face verification in [5]. In [3], the ranking
functions were learned from relative ranking of images and
then used to describe the images; and in [6] a subject provides
relative ranking as feedback to improve the performances of
classifiers. There are also efforts on automatically extracting
attributes [21]–[24]. However, most existing work learns each
attribute independently, ignoring their intrinsic relatedness,
which may be extremely helpful especially if the labeling is
sparse.

The proposed method attempts to alleviate the requirement
of knowing exact labels (through using only relative rankings
in learning) while explicitly modeling intrinsic relatedness of
the attributes in the learning task (through a multi-task learning
framework with a low-rank constraint). As a result, the method
achieves a few desired benefits that are not available in existing
methods. Such benefits are demonstrated in experiments with
both synthetic data and real images/videos, with comparison
to typical existing solutions.

III. PROPOSED METHOD

The proposed method is capable of learning a set of
attributes from only relative rankings. Given the ranking
information Et and Ft , where Et is the set of pairs (i, j) that
Data i is better than Data j for Attribute t , and Ft for the
set of pairs being similar for Attribute t , we want to learn a
classifier Wt , such that,

WT
t (Xit − X j t) ≥ 1 ∀(i, j) ∈ Et

|WT
t (Xit − X j t )| ≈ 0 ∀(i, j) ∈ Ft

where Xit is the representation of Data i for Attribute t .
In many scenarios, e.g., image classification, we may need

to learn multiple attributes and those attributes are likely
to be correlated, as illustrated in the examples in Fig. 1.
Conventional attribute learning approaches learn these
attributes independently, and thus their intrinsic relatedness is
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not utilized. We propose to learn the attributes simultaneously
under the multi-task learning framework. One popular multi-
task learning model assumes that the classifiers of different
tasks are similar and their differences to their mean are small.
By combining this idea with relative learning, we obtain
a baseline approach termed Multi-Task Relative Learning
(MTRL), which is formally defined as

minW,ε,γ

T∑

t

1

2
|Wt |22 +

λ

2
|Wt − 1

T

∑

τ

Wτ |22

+ρ1

∑

(i, j )∈Et

εt
i j + ρ2

∑

(i, j )∈Ft

γ t
i j

s.t. WT
t (Xit − X j t )+ εt

i j ≥ 1

−γ t
i j ≤WT

t (Xit−X j t) ≤ γ t
i j ε

t
i j ≥ 0; γ t

i j ≥ 0 (2)

where Xit is the representation of ith data for Task t , Wt is
the tth column of W (i.e., classifier of Task t) and |Wt |22 is
related to the margin of the classifier for Tasks t . This problem
can be solved by quadratic programming in its dual form, and
the details are included in Appendix A.

In the above baseline approach, the usage of a common
component has limited the form of correlation that the for-
mulation could model (e.g., when the two tasks are neg-
atively correlated). To this end, we model the correlation
among the tasks by linear dependence, which is more flexible
than MTRL. If we put the classifiers into the columns of
a matrix, the resultant matrix would be low-rank, i.e., its
nuclear norm would be small. Thus, we can formulate this new
solution as

minW,ε,γ λ|W|∗ +
T∑

t

1

2
|Wt |22 + ρ1

∑

(i, j )∈Et

εt
i j + ρ2

∑

(i, j )∈Ft

γ t
i j

s.t. WT
t (Xit − X j t)+ εt

i j ≥ 1

−γ t
i j ≤WT

t (Xit − X j t ) ≤ γ t
i j ε

t
i j ≥ 0; γ t

i j ≥ 0 (3)

where | · |∗ is the nuclear norm or the sum of singular values
of the matrix for casting the low-rank constraint. We refer the
proposed solution in Eqn. 3 as Max-Margin Multi-Attribute
Learning with Low-Rank Constraint.

This problem is equivalent to the following problem by
introducing a slack variable Z, which separates the low-rank
constraint from the others:

min
W,ε,γ

λ|Z|∗ +
T∑

t

1

2
|Wt |22 + ρ1

∑

(i, j )∈Et

εt
i j + ρ2

∑

(i, j )∈Ft

γ t
i j

s.t. WT
t (Xit − X j t )+ εt

i j ≥ 1− γ t
i j ≤WT

t (Xit − X j t) ≤ γ t
i j

εt
i j ≥ 0; γ t

i j ≥ 0 W = Z (4)

By applying the Augmented Lagrange Multiplier
(ALM) method to the equality constraint W = Z,
we have:

minW,ε,γ L(Z, W, b, γ , ε, μ, Y)

s.t. WT
t (Xit − X j t)+ εt

i j ≥ 1

−γ t
i j ≤WT

t (Xit−X j t ) ≤ γ t
i j εt

i j ≥ 0; γ t
i j ≥ 0 (5)

Algorithm 1 Max-Margin Multi-Attribute Learning With
Low-Rank Constraint

with

L(Z, W, b, ε, γ, μ, Y) = λ|Z|∗ + 〈Y, W− Z〉
+μ

2
|W− Z|2F +

1

2

∑

t

|Wt |22 + ρ1

∑
εt

i j + ρ2

∑
γ t

i j (6)

where Y is the Lagrange multiplier, 〈·, ·〉 is the inner product
and μ is related to the Lipschitz constant of the primal problem
f (Z, W, b, ε) = λ|Z|∗ + 1

2

∑
t |Wt |22 + ρ1

∑
εt

i j + ρ2
∑

γ t
i j .

The problem in Eqn. 5 can be solved via block coordinate
descent, by considering the following two sub-problems:
Low-rank problem: fix W, b, ε, γ , μ and Y to solve Z, i.e.,

min
Z

λ|Z|∗ + 〈Y, W− Z〉 + μ

2
|W− Z|2F (7)

Ranking problem: fix Z, μ and Y to solve W, b, ε and γ , i.e.,

minW,ε,γ
μ

2
|W− Z|2F + 〈Y, W− Z〉 +

T∑

t

1

2
|Wt |22

+ρ1

∑

(i, j )∈Et

εt
i j + ρ2

∑

(i, j )∈Ft

γ t
i j

s.t. WT
t (Xit − X j t)+ εt

i j ≥ 1

−γ t
i j ≤WT

t (Xit−X j t ) ≤ γ t
i j εt

i j ≥ 0; γ t
i j ≥ 0 (8)

In summary, the overall algorithm for solving the problem
of Eqn. 3 can be described in Algorithm 1.

In the following subsections, we will present specific meth-
ods for solving the two sub-problems of Eqn. 7 and 8., and
then analyze the overall algorithm. The convergence analysis
of the algorithm is included in Appendix B, where we show
the proposed problem is convex and the proposed algorithm
will converge to its global optimum.

A. Solving the Low-Rank Problem

For the low-rank problem, we want to find the opti-
mal Z for Eqn. 7, which is a convex problem. It has
been shown in [25] that the optimal solution to the prob-
lem minX λ|X|∗ + 1

2 |X−W|2F can be computed via a sin-
gular value thresholding algorithm, i.e., USλ(�)VT , where
U�VT ← svd(W) is the singular value decomposition and
S·(·) is the thresholding operator:

Sa(b) =
⎧
⎨

⎩

b − a b ≥ a
0 a ≥ b ≥ −a
b + a otherwise

(9)
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Thus the optimal solution to Eqn. 7 is Z∗ = US λ
μ
(�)VT,

where U�VT ← svd(W+ 1
μY).

B. Solving the Ranking Problem

By recognizing |W − Z|2F = ∑
t |Wt − Zt |22 and

〈Y, W− Z〉 = ∑
t 〈Yt , Wt − Zt 〉, the problem in Eqn. 8

can be decomposed into T independent smaller problems,
where each smaller problem is associated with only one
attribute/task:

minW,ε,γ
μ

2
|Wt − Zt |2F + 〈Yt , Wt − Zt 〉 + 1

2
|Wt |22

+ ρ1

∑

k

εkt + ρ2

∑

l

γlt

s.t. WT
t Ekt + εkt ≥ 1

− γlt ≤WT
t Flt ≤ γlt εkt ≥ 0; γlt ≥ 0 (10)

where we use Ekt = Xit − X j t∀(i, j) ∈ Et , Flt = Xit −
X j t∀(i, j) ∈ Ft , k, l to re-index (i, j) ∈ Et and (i, j) ∈ Ft .
By applying the Lagrange multipliers, for Eqn. 10 we can
have:

max
α,β,δ,η,ζ

min
w,ε,γ

μ

2
|Wt − Zt |2F 〈Yt , Wt − Zt 〉

+1

2
|Wt |22 +

∑

k

ρ1εk + αk(1− εk −WT
t Yk)− ηkαk

+
∑

l

ρ2γl + βl(WT
t Zl − γl)+ δl(−WT

t Zl − γl)− ζlγl

s.t. α, β, δ, η, ζ ≥ 0 (11)

By checking the gradients, we have:

Wt = μZt − Yt +∑
k αkt Ekt +∑

l (δlt − βlt )Flt

1+ μ
(12)

0 ≤ αkt ≤ ρ1 (13)

0 ≤ βlt + δlt ≤ ρ2 (14)

Accordingly, we have the dual form for the problem in
Eqn. 11, which is a quadratic programming problem:

min
ut

1

2
uT

t Kt ut + fT
t ut

s.t.lbt ≤ ut ≤ ubt

AT
t ut = 0 (15)

with

ut = [αT , −βT , δT ]T

Kt =
⎡

⎣
ET

t Et ET
t Ft ET

t Ft

FT
t Et FT

t Ft FT
t Ft

FT
t Et FT

t Ft FT
t Ft

⎤

⎦

ft = [ET
t (Yt − μZt )− 1, FT

t (Yt − μZt ), FT
t (Yt − μZt )]T

lbt = [0eT
|Et |, −ρ2eT

|Ft |, 0eT
|Ft |]T

ubt = [ρ1eT
|Et |, 0eT

|Ft |, ρ2eT
|Ft |]T

At = [0|Ft |×|Et |, −I|Ft |×|Ft |, I|Ft |×|Ft |]
bt = ρ2e|Ft |

where en ∈ R
n×1 is a all-1 vector, 0m×n ∈ R

m×n is all-0
matrix, In×n ∈ R

n×n is the identity matrix. Thus the dimension

of the dual form of the ranking problem is |Et | + 2|Ft |. After
we solve the problem in Eqn. 15, we can compute the classifier
according to Eqn. 12.

C. Analysis of the Algorithm

The proposed algorithm involves two major sub-problems.
For the low-rank problem, the most time consuming step is the
singular value decomposition for a matrix of dimension D×T
(D is the input dimension), where the typical complexity for
an exact decomposition is O(min (T D2, T 2 D)). However, we
may not be interested in a full/exact decomposition, but only
the singular vectors whose singular value are sufficiently large
(e.g., PROPACK [26]). For the classification problem, we are
solving T quadratic programming problems of dimension nt ,
with nt the number of data points for the t − th task.

The proposed problem in Eqn. 3 is convex and the proposed
algorithm will converge to its global optimum. The proof is
given in Appendix B. For the stopping criterion, we compute
|W−Z|2F
|W|2F

. If this value is sufficiently small (e.g., 10−6), we will

terminate the optimization. In our experiments, we observed
the convergence was reached within 100 iterations.

There are three parameters required for the proposed
algorithm: λ (controlling the weight of the nuclear norm
term), μ (controlling the weight of the term |W − Z|2F ) and
σ (controlling the increasing speed of μ). The selection of λ
depends on the correlation among the tasks: if high correlation
among the tasks is expected, we should use a large λ (i.e.,
|W|∗ should be small); otherwise, we should set λ to a small
value. When λ = 0, the proposed method is equivalent to the
relative attribute learning method, where each task is solved
independently. For μ, we utilizes the analysis in [27] and set
it to 1.25λ

|W|2 . For ρ, we use ρ = 1.2.

IV. EXPERIMENTAL RESULTS

We evaluated the proposed approach on both synthetic data
(Section IV-A) and real image/video data sets (Section IV-B,
IV-C). The proposed method is compared with the relative
attribute method of [3], where each attribute is learned inde-
pendently, and with the multi-task relative learning method,
where the classifying/ranking functions of the attributes are
assumed to share a common component. Since no validation
set is available for the real datasets (and they are too small to
support creation of a validation set), we did not rely on cross-
validation for parameter tuning. Instead, in the experiments
we used the following fixed parameters for the proposed
method and the multi-task relative attribute learning method:
λ = 10000, ρ1 = 100 and ρ2 = 100. Default parameters were
used for relative attribute learning.

A. Simulated Experiment

In this section, we evaluate the proposed method on
synthetic data. We generate T = 10 tasks and the feature
dimension of each tasks is D = 1000. The ground truth
classification function (or ground truth ranking function) for
Task t is Wt , where Wt is the t − th column of W. W is
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Fig. 2. The result for simulation experiments with varying P (a) (λ = 104)
and λ (b) (P = 100), where the dashed curves correspond to the result of the
proposed method, dot curve for the MTRL and solid curve for the relative
attributes method. We compute accuracy (y axis of red curves) of the learned
ranking functions and the correlation (y axis of green curves) between the
learned ranking functions and ground truth ones. The X axis are the p (a)
and λ (b) accordingly.

generated as:

W0 = rand(D, T )− 0.5

svd(W0) → U�VT

W = U(:, 1 : r)�(1 : r, 1 : r)VT (:, 1 : r)

where r = 2 is the desired rank of W. Note that by
generating the ground truth classification function in this
way, the classifiers are not necessarily similar or to share
a common component. We uniformly draw the data X for
each task, and each set of data contains 1000 data points.
For Task t , we randomly select P pairs as the training pairs,
i.e., (i, j) ∈ E if WT

t Xi − WT
t X j ≥ τ ; or ( j, i) ∈ E if

WT
t Xi − WT

t X j ≤ −τ ; otherwise (i, j) ∈ F, where τ is
the predefined margin. The proposed algorithm is applied
to the training pairs to learn the ranking function for the
tasks, with comparison with the relative attribute (refer as
“Relative”) method and also the baseline (i.e., Multi-Task
Relative Learning or MTRL) method. We also test different
combinations of λ (from 10−4, i.e., low requirement of the

Fig. 3. The result for simulation experiment when the ground truth ranking
functions of the tasks are linear independent. The matrix consisted of ground
truth ranking functions as its columns has maximal singular value 0.7 and
minimal singular value 0.6.

low-rank constraint, to 107, i.e., high requirement on the low-
rank constraint) and P (from 10 to 1000), where the results
are shown in Fig. 2.

From Fig. 2(a), we can observe that, although the accuracy
and the correlation increase with more training pairs, i.e.,
larger P , the proposed method consistently performs better
than the other two competitors. Especially, when P = 1000,
the correlation between the ranking functions learned by the
proposed method and the ground truth ones is about 0.9,
which is significantly better than 0.68 achieved by the rel-
ative attribute method. The results indicate that the proposed
method is more likely to recover the ground truth ranking
functions than the relative attribute method, when given the
same number of training pairs. The performance of MTRL is
significantly lower. This could be explained by the assumption
made by its formulation: the classification functions of the
tasks should be similar (or share a common component), which
is not always true in the generation of the data (e.g., the clas-
sification functions can be negatively correlated).

Fig. 2(b) illustrates the performance of the proposed
approach with different settings for the parameter λ, which
controls the contribution of the low-rank constraint. From
the plot, we can observe that the performance is stable for a
wide range of λ(λ ∈ [10, 104]) and the best result is obtained
when λ = 104.

We also performed simulations using data whose ground
truth ranking functions are not correlated, i.e., the functions
are linear independent by setting r = 10. The results are shown
in Fig. 3, from which we can find that, the proposed method
(dashed curve) obtained similar results as the relative attribute
learning method (solid curve) in both accuracy and correla-
tion. However, the MTRL (dotted curve) obtained obviously
worse performances in both accuracy and correlation. This
demonstrates that the proposed method is robust to different
correlation levels of the tasks, and its performance is still com-
parable to that of the relative attribute learning method even
when the tasks are totally linear independent. The performance
of MTRL method, however, degrades dramatically when the
assumption about the relatedness of the tasks does not hold.
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Fig. 4. The computation time of the proposed approach given different
number of training pairs, with the comparison to the relative attribute learning
methods and MTRL method. For the time axis (y-axis), we use logarithm.

Fig. 5. The histogram of Pearson’s correlation coefficients among the
tasks for both two datasets. From these histograms, we can observe that the
attributes are correlated, as there are non-trivial mass covering the regions
towards −1 or 1. Note that, Pearson’s correlation coefficient measures only
linear dependency, and thus even if it is low, the tasks could still be highly
dependent.

For understanding the computational efficiency of the pro-
posed method, we note that its formulation as well as solutions
bear similarity to MTRL, which is well-understood to have a
polynomial complexity over the number of constraints. Hence
the proposed method is expected to have the same order of
complexity over the number of training pairs. To empirically
verify this, we use Fig. 4 to depict the running times of the
proposed approach under different numbers of training pairs,
with the comparison to the relative attribute learning method
and the MTRL method. It can be observed that the proposed
method, while being more expensive than the basic relative
attribute learning method, is indeed in par with the MTRL
method in terms of asymptotic time complexity. Note that both
axes of Fig. 4 are with logarithm for better illustration.

B. Learning Attributes for Images

To evaluate the performances of the proposed algorithm
on real data, we utilize two datasets, (1) Outdoor Scene
Recognition (OSR) Dataset [28] containing 2688 images from
8 categories; (2) A subset of the Public Figure Face Database

(PubFig) [5] containing 800 images from 8 random identities
(100 images each). We directly used the processed data1

from [3] and the same experiment settings. To demonstrate
that the attributes in these datasets indeed exhibit correlation,
we first computed the histogram of the pairwise correlation
coefficients among the tasks for each of the datasets, and the
results are shown in Fig. 5. It is evident from these plots
that the tasks are correlated. For example, one can observe
that there is a non-trivial mass covering beyond the interval
[−0.5, 0.5] in either of the plots. Note that, both the rank of
classifier matrix (W) and the correlation coefficients between
the tasks are some measurements of the dependency. For
ideal case (perfectly dependent), the rank should be 1 and the
correlation coefficient should be +/−1 cross different tasks.

Next we report the ranking accuracy of the proposed method
and compare with the relative attribute method (“Relative” in
short) and the multi-task relative attribute learning method
(MT RL in short). All the results on the two datasets are
summarized in Table I. From Table I we can observe that
the proposed method outperforms the other methods in both
cases except that the Relative* row of (A). [3] has an insignif-
icant gain over our method, even with much more training
pairs (see also the caption of the Table). Additionally, we
can observe that the performance gain of our method over
Relative or MT RL (when all trained under the same protocol
with only 5% of the training pairs used in [3]) varies. This
could be explained by possible varying degree of correlation
among the tasks in the two datasets, as alluded by Fig. 5.
However, we note that the correlation coefficient used in Fig. 5
measures only linear dependency and thus it is not proper
to draw any quantitative conclusion. Additionally, the low-
rank constraint would generally work better when there are
many tasks considered jointly (comparing with the feature
dimension) [15]. This is consistent with the results in the
Table (e.g., better gain by the proposed in (B) than in (A)).
The low-rank constraint used in the proposed method is more
flexible than forcing the tasks to share common components
in capturing the intrinsic relatedness of the attributes, which
explains the gain of the proposed over MT RL.

C. Evaluating Surgical Skills From Videos

In this experiment, the data were videos collected from
the Fundamentals of Laparoscopic Surgery (FLS) trainer
box (www.flsprogram.org), which is a simulation-based train-
ing platform and has been widely used in many hospitals/
training centers for minimally-invasive surgery training. The
system has an on-board camera capturing a trainee’s operation
inside the box and the video is shown on a monitor. There
are a set of standard operations defined for the FLS training
system. Our experiment was based on data captured from
the “Peg Transfer” operation, as illustrated in Fig. 6. In this
operation, a trainee is required to lift one of the six objects
with a grasper by his non-dominant hand, transfer the object
midair to his dominant hand, and then place the object on a peg
on the other side of the board. Once all six objects have been

1downloaded at http://filebox.ece.vt.edu/~parikh/relative.html#data
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TABLE I

RANKING ACCURACY FOR OSR (A) AND PUBFIG (B) FROM DIFFERENT METHODS. IN [3], OVER 20 , 000 TRAINING PAIRS WERE USED AND THE

RESULTS ARE REPORTED HERE AS “RELATIVE*”. IN OUR EXPERIMENT, WE RANDOMLY PICKED ONLY 5% OF THOSE TRAINING PAIRS FOR

EVALUATING THE THREE METHODS, AS SHOWN IN ROW 2 TO ROW 4 OF EACH TABLE. FOR THE PROPOSED METHOD, WE FIXED λ TO 10000

Fig. 6. Illustrating the FLS system: (a) the FLS system (white), (b) and
(c) frames captured by onboard camera showing the operation within the FLS
trainer box.

TABLE II

PRIMITIVE ACTIONS IN PEG TRANSFER

transferred, the process is reversed from one side to the other.2

The Peg Transfer operation consists of several primitive
actions (or therbligs [31]) as building blocks of manipulative
surgical activities, which are defined in Table II. Ideally,
these primitive actions are all necessary in order to finish one
peg-transfer cycle. Since there are six objects to transfer left-
to-right and then backwards, there are totally 12 cycles in one
training session. Our experiment was based on video record-
ings from the FLS system on-board camera capturing training
sessions of resident surgeons in their different residency years.

2For more details of the FLS trainer box and the “peg transfer” operation,
we refer the readers to [29] and [30].

1) The Attribute-Learning Task: Given a video from an
operation described above, we segment it into multiple clips,
with each clip containing only one primitive action, e.g., lift.
For providing automatic feedback to a trainee, we need to
infer the motion skill from those clips, which is deemed a very
difficult tasks, due to the semantic gap between the low-level
visual feature and the high-level motion skill. We apply the
proposed method to this challenging problem by first defining
a set of attributes (Table III), which are designed accord-
ing to domain knowledge on surgical skill evaluation [32].
These attributes describe varying aspects of motion skill and
are easier to infer from the visual features. With these skill-
defining attributes learned, we can provide a trainee with a
more detailed rating of his/her performance, rather than a
slim score. For example, when they find they have a low
performance in attributes “instrument handling”, they would
spend more time in improving their handling of instruments.

2) Feature Extraction: Based on the attributes defined
above, we design the following feature extraction scheme.
We first utilize random forest (RF, learned from a train-
ing set) to segment the pixels of each frame into “tool”
and “background”, based on the color information. With the
segmentation results, we perform morphological operation and
blob analysis to extract the tool tips and orientations of the
tools controlled by the left and right hands. After that, the
motion features V used for skill attribute (Table III) learning
are generated in 3 steps. In the first step, a few types of motion
information are estimated to represent a trainee’s operation, as
summarized in Table IV. In the second step, we extract motion
signatures from each of the motion features in Table IV.
The motion signatures are 1-dimensional temporal signals
(Table V) to further compact the motion information. In the
last step, final motion features are extracted from each motion
vector and its motion signatures as follows: in the time domain,
we divide a signature into equal temporal bins; and we also
divide the Fourier transform result into equal frequency bins.
In each temporal or frequency bin, the maximal, minimal, and
average values are kept.

3) Experiment Results: We selected 10 representative
videos from trainees of different skill levels, where each video
is a full training session consisting of 12 Peg Transfer cycles,
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TABLE III

THE ATTRIBUTE USED IN THIS PAPER, WHICH ARE DEFINED ACCORDING TO [32]. NOTE, WE ONLY SELECT THE ATTRIBUTES

WHICH ARE RELAVANT TO THE OPERATIONS IN OUR SIMULATED SURGICAL VIDEOS

TABLE IV

MOTION INFORMATION. ROI IS A REGION AROUND GRASPER TIPS

TO INCLUDE OBJECT UNDER OPERATION

TABLE V

MOTION SIGNATURES, WHERE Y (t) REPRESENTS ANY MOTION

INFORMATION IN TABLE IV, E.G., V (t), V̂ (t) AND M(x, t)

which leads to 12 video clips for each therblig. Thus we
have in total 120 clips for each therblig. We manually label
the relative rankings for 150 pairs of clips, following the
guidelines provided by FLS (available on the FLS website).
For each pair of clips, we label the attributes described in
Table III as either “left is better than right”, “right is better than
left” or “unsure”. Then five-fold random split (one fold for
testing and remaining folds for training) is applied to evaluate
the proposed method with the comparison to the other two
methods. Due to space limitation, we only show the results
of two therbligs “lift” and “transfer” in this paper, which are
presented in Table VI.

From Table VI, we can find that, the proposed method
(Col 3) and MTRL (Col 4) obtained significantly better result
than the relative attribute method (Col 5), except for the
attribute “Bimanual dexterity” for therblig “Lift” (Table VI(A)
Row 4) and the attribute “Depth perception” for therblig
“Transfer” (Table VI(B) Row 7). The improvement can be
explained by the explicit consideration of intrinsic relatedness
of those attributes in the proposed method and MTRL. The
proposed method is on average better than MTRL, although
MTRL achieves similar average accuracy in Table VI(B). This
could be due to the fact that both the MTRL constraint and the
proposed low-rank constraint did similarly well in capturing
the correlation among the attributes for that particular action.
However, as discussed earlier, the flexibility of the low-rank
constraint in the proposed method would in general lead to
a better performance, which is also evidenced by the overall

TABLE VI

THE EXPERIMENTAL RESULT IN EVALUATING MOTIONS SKILLS OF

SURGICAL SIMULATIONS: (A) THERBLIG “LIFT” AND (B) THERBLIG

“TRANSFER”. COL 2 IS THE NUMBER OF DISSIMILAR PAIRS; COL 3 IS

THE NUMBER OF SIMILAR PAIR. NOTE FOR ATTRIBUTE R AND I OF

THERBLIGS “TRANSFER”, WE DON’T ENOUGH GROUND TRUTH

TO COMPUTE THE ACCURACY

better performance of the proposed method in Table VI (and
in particular in (A)).

V. DISCUSSION AND CONCLUSION

In this paper we proposed a novel approach Max-Margin
Multi-Attribute Learning with Low-Rank Constraint.
Compared with existing methods in the literature, the
proposed method learns a set of attributes simultaneously so
that the intrinsic relatedness could be captured. In addition,
it only require the relative ranking of the attributes instead
of binary labels, leading to a more flexible solution to many
learning applications in which absolute labels are difficult to
obtain. We evaluated the proposed method on both simulated
data and real image/video data, and compared its performance
with the relative attribute method and the MTRL method,
both being representative of typical alternative solutions. The
experimental results demonstrated that the proposed method
is more effective in capturing the intrinsic correlation among
the tasks (or attributes) and delivers higher accuracy than the
competing methods.

It is worth mentioning that, the proposed method is based
on the assumption that the set of tasks are related. If indeed
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the tasks are related, the proposed method is able to, as shown
in our experiments, outperform the “relative attribute” method
which treats each task independently. However, if the tasks
are independent, the performance of the proposed method
may degrade, as it would force a correlation model on the
independent tasks. However, for real problems with multiple
attributes describing the same underlying object of interest, it
is reasonable to assume that completely independence among
the attributes would be rare, and thus the proposed method
is expected to able to deliver good performance in general.
Nevertheless, it will be an interesting future direction to
explicitly explore possible relationship between the perfor-
mance of the method and the degree of relatedness among
the tasks/attributes. In addition, considering that the current
method relies on only the low-rank constraint, another future
task is to investigate modeling of more complicated intrinsic
relationship among the attributes with outlier handling.

APPENDIX A
ALGORITHM FOR MTRL

According to [11], Eqn. 2 is equivalent to the following
problem with appropriate parameters (λ, ρ1, ρ2):

minW,ε,γ

T∑

t

1

2
|Vt |22 +

λ

2
|W0|22

+ρ1

∑

(i, j )∈Et

εt
i j + ρ2

∑

(i, j )∈Ft

γ t
i j

s.t. (Vt +W0)
T (Xit − X j t )+ εt

i j ≥ 1

−γ t
i j ≤ (Vt +W0)

T (Xit − X j t)

≤ γ t
i j ε

t
i j ≥ 0; γ t

i j ≥ 0 (16)

with Wt = Vt + w0. According to [11], we can also define
the following mapping functions:

�(Xit ) = [
√

1

T λ
Xit , 0, . . . , 0, Xit , 0, . . . , 0] (17)

�(W) = [√Tλw0, V1, . . . , Vt , . . . , VT ] (18)

and get the following formulations:

minW,ε,γ
1

2
|�(W)|22 +

T∑

t

ρ1

∑

(i, j )∈Et

εt
i j + ρ2

∑

(i, j )∈Ft

γ t
i j

s.t. �T (W)�(Xit − X j t )+ εt
i j ≥ 1

−γ t
i j ≤ �T (W)�(Xit − X j t)

≤ γ t
i j ε

t
i j ≥ 0; γ t

i j ≥ 0 (19)

Obviously |�(W)|22 = ∑T
t (|Vt |22 + λ|w0|22) and

�T (W)�(Xit − X j t ) = (Vt +W0)
T (Xit − X j t).

By writing (Xi −X j ) = Yk for (i, j) ∈ E and (Xi −X j ) =
Zl for (i, j) ∈ F and applying Lagrange multipliers we, can
get the dual form of Eqn. 2:

minα,β,λ
1

2
|
∑

k

αk�(Yk)+
∑

l

(δl − βl)�(Zl)|22 −
∑

k

αk

s.t. 0 ≤ βl , δl ≤ ρ2

0 ≤ αk ≤ ρ10 ≤ βl + δl ≤ ρ2 (20)

which can be written as the following quadratic programming
problem:

minu
1

2
uT Ku+ fT u

s.t. lb ≤ z ≤ ub Au ≤ b (21)

with

u = [αT , −βT , δT ]T ∈ R
T (|E|+2|F|)×1

K =
⎡

⎣
K|E|×|E| K|E|×|F| K|E|×|F|
K|F|×|E| K|F|×|F| K|F|×|F|
K|F|×|E| K|F|×|F| K|E|×|F|

⎤

⎦

f = [−eT
|E|, 0eT

|F|, 0eT
|F|]T

lb = [0eT
|E|, −ρ2eT

|F|, 0eT
|F|]T

ub = [ρ1eT
|E|, 0eT

|F|, ρ2eT
|F|]T

A = [0|E|×|E|, −I|F|×|F|, I|F|×|F|]
b = ρ2e|F| ∈ R

T |F|×1

where en ∈ R
n×1 is a all 1 vector, 0m×n ∈ R

m×n is all
0 matrix, In×n ∈ R

n×n is identity matrix, K|E|×|E|(i, t; j, s) =
�T (yit )�(y j s), K|E|×|F|(i, t; j, s) = �T (yit )�(z j s) and
K|F|×|E|(i, t; j, s) = �T (zit )�(z j s). The mapping function
�(·) is defined in Eqn. 17.

After we solve the quadratic problem in Eqn. 21
with optimal solution u∗ = [αT ,−βT , δT ]T , we
can compute �(W) = [ 1λWT

0 , VT
1 , . . . , VT

t ]T =∑
t
∑

i αit �(Yit )+∑
j (δ j t − β j t)�(Z j t ) and then recover

classifier of each attribute as Wt =W0 + Vt .
As the proposed method can be formulated into a quadratic

programming problem, the convergence and global optimality
of the solution is guaranteed. The dimension of quadratic
programming problem is T (|E| + 2|F|) × 1 with T as the
number of tasks, |E| and |F| as the number of constraints cast
by relative rankings. The dimension of the problem and the
computational cost could be high, when there are a lot of pairs
of relative rankings. To solve this issue, we could utilize the
idea of active constraints.

APPENDIX B
CONVERGENCE ANALYSIS

We will show that the proposed algorithm (Section III)
will converge. In this section, we will use Yk to represent
the variable Y computed in kth iteration. First, we can easily
identify that, the two sub-problems, “low rank problem” and
“classification” problem are convex. We define the space
� = {Z, W, b, ε, γ |WT

t (Xit − X j t) + εt
i j ≥ 1 & − γ t

i j ≤
WT

t (Xit − X j t) ≤ γ t
i j & εit ≥ 0& γit ≥ 0 ∀i, t}, which is

obvious convex, and the analysis will be within this space.
Lemma 1: Yk is bounded.

Proof: Since Zk+1 is optimal for the low-rank prob-
lem with Wk , bk , εk , γ k , μk and Yk , we have 0 ∈
∂L(Z,Wk ,bk ,εk ,μk ,Yk )

∂Z . That is 0 ∈ ∂‖Z‖∗
∂Z − Yk + μk(Zk −Wk),

so we have Yk+1 ∈ ∂‖Z‖∗
∂Z , where Yk+1 = Yk −μk(Zk −Wk).

According to [27] Theorem 4 and Lemma 1, Yk+1 is bounded.
This ends the proof of Lemma 1.

Lemma 2: the sequences Zk , Wk , bk , εk , μk will converge
to the optimal solution.
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Proof: we define f (W, b, ε) = λ|W|∗ + 1
2

∑
t

|Wt |22 + ρ
∑

i εit as the objective function of the primal
problem (Eqn. 3). We have:

L(Zk+1, Wk+1, bk+1, εk+1, γ k+1, μk, Yk)

= min
Z,W,b,ε

L(Z, W, b, ε, γ, μk , Yk)

≤ min
Z=W,b,ε

L(Z, W, b, ε, γ, μk, Yk)

≤ min
Z=W,b,ε

f (W, b, ε, γ ) = f ∗

As Zk+1 −Wk+1 = 1
μk (Yk+1 − Yk) and the boundedness

of Yk , we have limt→∞ Zk −Wk = 0. Thus (W∗, b∗, ε∗) =
limt→∞ (Wk, bk, εk) is the feasible solution of the primal
problem.

In addition, we have

f (Wk+1, bk+1, εk+1, γ k+1)

= L(Zk+1, Wk+1, bk+1, εk+1, γ k+1, μk, Yk)

− 1

2μk
(|Yk+1|2F − |Yk |2F )+ |Wk+1|∗ − |Zk+1|∗

≤ f ∗ − 1

2μk
(|Yk+1|2F − |Yk |2F )− |Wk+1 − Zk+1|∗

≤ f ∗ − 1

2μk
(|Yk+1|2F − |Yk |2F )− 1

μk
|Yk+1 − Yk |∗

= f ∗ − O(
1

μk
) (22)

where for the last step, we use the boundedness of Yk

(Lemma 1). Thus we have limt→∞ [ f (Wk+1, bk+1, εk+1)] =
limt→∞ f ∗ − O( 1

μk ) = f ∗.
Besides, by |Z|∗ ≥ |W|∗ − |Z−W|∗, we have

f (Wk+1, bk+1, εk+1, γ k+1)

= L(Wk+1, Wk+1, bk+1, γ k+1, εk+1)

≥ L(· · · )− λ|Zk+1 −Wk+1|∗
≥ L(· · · )− λ

μ
|Yk+1 − Yk |∗

≥ L(· · · )− O(
λ

μ
) ≥ f ∗ − O(

λ

μ
) (23)

where we short L(Zk+1, Wk+1, bk+1, εk+1, γ k+1) by L(· · · ).
Combining Eqn. 22 ( f ∗ − f (Wk+1, bk+1, εk+1, γ k+1) ≥

O( 1
μk )) and Eqn. 23 ( f ∗ − f (Wk+1, bk+1, εk+1, γ k+1) ≤

O( λ
μk )), we have | f (Wk+1, bk+1, εk+1)− f ∗| ≤ max ( 1

μk , λ
μk ).

As μk+1 = μk × σ and if we choose σ > 1, we have
limt→∞ | f (Wk+1, bk+1, εk+1)− f ∗| = 0. This proves the
convergence.
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