Reproducibility Companion Paper:
Focusing on Persons: Colorizing Old Images Learning from Modern Historical Movies

ABSTRACT
In this paper we reproduce experimental results presented in our earlier work titled "Focusing on Persons: Colorizing Old Images Learning from Modern Historical Movies" that was presented in the course of the 29th ACM International Conference on Multimedia. The paper aims at verifying the soundness of our prior results and helping others understand our software framework. We present artifacts that help reproduce results that were included in our earlier work. Specifically, this paper contains the technical details of the package, including dataset preparation, source code structure and experimental environment. Using the artifacts we show that our results are reproducible. We invite everyone to use our software framework going beyond reproducibility efforts.

CCS CONCEPTS
• Computing methodologies → Image segmentation;

KEYWORDS
Fine grained semantic parsing, Colorization, HistoryNet, MHMD, Reproducibility

ACM Reference Format:

1 CONTRIBUTION SUMMARY
In order to achieve fine grained colorization of historical photos, we propose a new network architecture called HistoryNet and a new dataset called MHMD[4]. MHMD full name is Modern Historical Movies Dataset, which contains about 1.2 million images and 42 labels of eras, nationalities and garment types for automatic colorization from 147 historical movies or TV series made in modern time. Based on the proposed dataset, we design a colorization network. We use generative adversarial network as the main colorization network. We use generative adversarial network as the main colorization network. In order to match the classification labels in MHMD, we have designed classifier subnetwork. Info information of classifier subnetwork and classification labels jointly achieve HistoryNet colorization accuracy and classification labels more precise. We also propose semantic parsing subnetwork can accurately obtain the semantic information of various parts of persons, which makes human semantic information colorization and image colorization boundary more accurate.

2 ARTIFACTS DESCRIPTION
The artifacts mainly include dataset, source code and experimental environment settings. For reproducibility, we will introduce these parts in details one by one.

2.1 Dataset Preparation
MHMD obtains about 1.2 million images, including 1147517 images in training dataset and 100000 images in testing dataset. The classification label sign.txt is also included in each dataset folder.
Besides, we also take Deeplab-v3[2] as the groundtruth of segmentation subnetwork in HistoryNet. The datasets are available from Baidu Netdisk:
https://pan.baidu.com/s/19SIR9vMeYI9M0l1hgZd5kGQ (code: 1ejn)
We have compressed them in .tar format. The detailed description of the dataset is as follows. The dataset file should be placed in the "DATASET" folder under the root directory, with at least 50GB disk space.

• dataset_train: The training dataset.
• dataset_train_seg: The segmentation groundtruth in the course of training.
• dataset_test: The testing dataset.
• Quantitative_comparison: Quantitative comparison experimental testing datasets, including original images and colorization effect images of six methods: HistoryNet, Iizuka et al.[3], Larsson et al.[5], Deoldify[1], ChromaGAN[7] and Su et al.[6].
• Ablation_Experiments: Ablation comparison experiments testing datasets.

Note there are two RAR packages which are dataset_train.part1.rar and dataset_train.part2.rar in dataset_train folder. They need to be decompressed at the same time.

2.2 Source Code Structure
Our source codes include 5 folders under the root directory. You can obtain codes by Github repository: https://github.com/BestiVictory/HistoryNet.

• HistoryNet: including HistoryNet.py, which trains HistoryNet network model.
• Baseline: including Baseline.py, which trains baseline model in ablation experiments.
- **HistoryNet_Parsing**: including HistoryNet_Parsing.py, which trains a model without classifier subnetwork in HistoryNet structure.
- **HistoryNet_Classifier**: including HistoryNet_Classifier.py, which trains a model without segmentation subnetwork in HistoryNet structure.
- **Util**: working to calculate PSNR, SSIM and LPIPS indices.
- **Visio**: We provide the Visio format of the comparison diagrams in our original paper [4].

Except for the main file, each folder also contains three python scripts: dataclass.py, colorization.py and config.py.
- **dataclass.py**: setting the input and output of the network structure.
- **config.py**: configuration information during model training process.
- **HistoryNetPrint.py**: coloring the images with the existing model.

The parameters in config.py are defined as follows:
- **BATCH_SIZE**: Training batch size.
- **NUM_EPOCHS**: Total training epochs.
- **PRETRAINED**: If you want to color the images with colorization.py, specify the colorization model here.
- **OUT_DIR**: The storage path of the colorization effect of the testing dataset.
- **MODEL_DIR**: The storage path of the generated models during the training process.
- **LOG_DIR**: The storage path of the logs during the training process.
- **TRAIN_DATA**: The storage path of the training dataset.
- **TEST_DATA**: The storage path of the testing dataset.
- **TEST_DIR**: If you want to color the images with colorization.py, you need to place the images here.
- **RESULT_DIR**: The colorization results of the images under TEST_DIR.

The codes in util folder are used to calculate metrics.
- **compute_ssim_psnr.py**: working to calculate PSNR and SSIM indices.
- **lpips_2dirs.py**: working to calculate LPIPS indice.

2.3 Experimental Environment

Our source codes are tested in the following environment.
- **System and Hardware**: We recommend using Ubuntu 16.04.7 system with Intel Core i7-7800X CPU @ 3.50GHz and the graphics processing unit (GPU) NVIDIA TITAN X.
- **CUDA Toolkit and CuDNN**: Tested with CUDA==10.0.130 and CuDNN==7.6.
- **Version and Dependencies**: The tested python version is 3.6.0, and the dependencies of python packages are listed below. To easily install the dependencies, it is recommended to run "pip install -r requirements.txt" in the root folder of the package. We recommend to create a separate python virtual environment.

```
tensorflow==1.14.0
tensorflow-gpu==1.14.0
h5py==2.10.0
```

3 TRAINING DETAILS

In this part, we will train HistoryNet in the original paper[4]. The training program is in the HistoryNet folder and execute the scripts:

```
cd HistoryNet
python HistoryNet.py
```

In the recommended operating system and graphics card environment, each epoch is approximately 28 hours. The models generated during the training process will be available in MODEL folder.

4 EVALUATION EXPERIMENTS

In this section, we will complete two evaluation experiments with three indices SSIM, PSNR and LPIPS. We provide the calculation codes in Util folder. And we provide quantitative comparison experimental testing datasets and ablation experimental testing datasets. We only need to change the paths of the source images and the colorization images in computing_PSNR_SSIM.py to calculate SSIM and PSNR. The method of computing SSIM and PSNR is as follows:

```
python ./Util/computing_PSNR_SSIM.py
```

In order to compute LPIPS, we need to use codes in Github repository: https://github.com/richzhang/PerceptualSimilarity. Clone this repository and execute the script:

```
cd PerceptualSimilarity
pip install -r requirements.txt
```

We place the source images and the colorization images into folder imgs/ex_dir0 and imgs/ex_dir1 respectively. Execute the following codes and you will get the final result.

```
cd PerceptualSimilarity
python lpips_2dirs.py -d0 imgs/ex_dir0 -d1 imgs/ex_dir1
```

We recommend using lpips_2dirs.py changed by us in Util folder to replace original one. New code can compute LPIPS average value.

4.1 Evaluation 1: Quantitative Comparison

We provided quantitative comparison testing datasets with Iizuka et al.[3], Larsson et al.[5], Deoldify[1], ChromaGAN[7] and Su et al.[6]. We can compute SSIM, PSNR and LPIPS of HistoryNet and other colorization methods to contrast. The comparison results are shown in Table 1.

<table>
<thead>
<tr>
<th>Method</th>
<th>LPIPS</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iizuka et al. [3]</td>
<td>0.134</td>
<td>25.779</td>
<td>0.956</td>
</tr>
<tr>
<td>Larsson et al. [5]</td>
<td>0.147</td>
<td>24.506</td>
<td>0.946</td>
</tr>
<tr>
<td>Deoldify[1]</td>
<td>0.127</td>
<td>26.321</td>
<td>0.957</td>
</tr>
<tr>
<td>ChromaGAN[7]</td>
<td>0.076</td>
<td>29.748</td>
<td>0.955</td>
</tr>
<tr>
<td>Su et al. [6]</td>
<td>0.150</td>
<td>24.660</td>
<td>0.936</td>
</tr>
<tr>
<td>HistoryNet</td>
<td>0.074</td>
<td>29.958</td>
<td>0.963</td>
</tr>
</tbody>
</table>
4.2 Evaluation 2: Ablation Experiments

In this part, we also provide ablation experiments codes in Baseline, HistoryNet_Parsing, HistoryNet_Classifier folders. HistoryNet_Parsing only includes segmentation submodule and HistoryNet_Classifier only includes classifier subnetwork. We execute the following scripts:

```
cd Baseline/HistoryNet_Parsing/HistoryNet_Classifier
python Baseline.py/HistoryNet_Parsing.py/HistoryNet_Classifier.py
```

We can get the corresponding models. We can use the testing datasets provided to calculate SSIM, PSNR and LPIPS to contrast. The comparison results are shown in Table 2.

<table>
<thead>
<tr>
<th>Method</th>
<th>LPIPS</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.072</td>
<td>30.097</td>
<td>0.949</td>
</tr>
<tr>
<td>Baseline+Classifier</td>
<td>0.066</td>
<td>31.243</td>
<td>0.960</td>
</tr>
<tr>
<td>Baseline+Parsing</td>
<td>0.065</td>
<td>31.497</td>
<td>0.961</td>
</tr>
<tr>
<td>HistoryNet</td>
<td>0.063</td>
<td>31.717</td>
<td>0.961</td>
</tr>
</tbody>
</table>

5 CONCLUSION

In this paper, we provide the details of the artifacts of the paper "Focusing on Persons: Colorizing Old Images Learning from Modern Historical Movies" for replication. The artifacts contain the dataset and the source code for experiments in the paper. Taking advantage of the source code, the experiments can be operated and customized.

REFERENCES