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ABSTRACT

Masked Diffusion Models (MDMs) offer flexible, non-autoregressive generation,
but this freedom introduces a challenge: final output quality is highly sensitive to
the decoding order. We are the first to formalize this issue, attributing the variabil-
ity in output quality to the cumulative predictive uncertainty along a generative
path. To quantify this uncertainty, we introduce Denoising Entropy, a computable
metric that serves as an internal signal for evaluating generative process. Lever-
aging this metric, we propose two algorithms designed to optimize the decoding
path: a post-hoc selection method and a real-time guidance strategy. Experiments
demonstrate that our entropy-guided methods significantly improve generation
quality, substantially boosting accuracy on challenging reasoning, planning, and
code benchmarks. Our work establishes Denoising Entropy as a principled tool
for understanding and controlling generation, effectively turning the uncertainty in
MDMs from a liability into a key advantage for discovering high-quality solutions.

1 INTRODUCTION

In language modeling, Masked Diffusion Models (MDMs) (Austin et al., 2021a; Lou et al., 2023;
Sahoo et al., 2024) are rapidly emerging as powerful counterparts to the dominant Auto-Regressive
Models (ARMs). Unlike ARMs rely on the next-token prediction paradigm and are constrained to a
fixed left-to-right generation path (Bengio et al., 2003; Sutskever et al., 2014), MDMs learn to denoise
sequences via random-order masking, enabling them to construct sequences in any order in principle.
Each unique sequence construction process can be viewed as a decoding path, and different paths
typically entail varying generation difficulty that shapes the final output. The generation flexibility of
MDMs thus has a theoretical potential: within the vast space of possible decoding paths, there must
exist an optimal path that yields a results no worse than the single, rigid sequential path of ARMs.

However, this theoretical potential often remains untapped in practice, as MDMs always underperform
compared to ARMs (Feng et al., 2025). Beyond the model capability, decoding strategy acts as a
critical bottleneck determining the path taken (Kim et al., 2025). The default random-order strategy,
for instance, treats all paths as equally probable (Austin et al., 2021a), reducing the search for an
optimal path to mere chance. More sophisticated approaches employ greedy token-level heuristics,
such as unmasking the token with the highest confidence (Chang et al., 2022), but are still myopic: a
sequence of locally optimal steps provides no guarantee of a globally optimal path. The fundamental
limitation underlying these strategies is their lack of a global perspective, as they operate without a
mechanism to assess the quality of the overall generative path.

We draw inspiration from uncertainty quantification in ARMs, where metrics like entropy reliably link
predictive uncertainty to generative quality (Xu et al., 2020; Kuhn et al., 2023), and uncertainty-aware
decoding has shown effect for enhancing global coherence (Arora et al., 2023; Zhu et al., 2024).
Adapting this insight to MDMs, we formalize Path Uncertainty: MDM’s cumulative predictive
uncertainty along a complete decoding path, capturing the global quality of the entire generative
process. We attribute MDM quality variability to path uncertainty. High cumulative uncertainty
harms output consistency, while low uncertainty indicates reliable paths.

We introduce Denoising Entropy, a novel and internally computable metric designed to quantify
the inherent uncertainty of generative paths in MDMs. As illustrated in Figure 1, Denoising Entropy
comprises two complementary variants: State Entropy (hDE), which captures uncertainty at a single
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Figure 1: Quantifying Path Uncertainty in MDMs with Denoising Entropy. Left: State Entropy (hDE)
measures per-state uncertainty, computed as the mean Shannon Entropy over the predictive distributions for all
masked positions. hDE is then aggregated over the entire path to form the Path Entropy (HDE). Right: Decoding
process shows how different paths yield outputs of varying quality. Our key insight is that the lower HDE

indicates path yeilding better output, providing a potent internal signal for generation quality.

decoding state, and Path Entropy (HDE), which integrates this uncertainty across an entire trajectory
to measure cumulative generative uncertainty. This formulation provides a principled framework for
evaluating the reliability of different generative paths.

Minimizing Denoising Entropy offers a powerful new objective for steering MDM decoding towards
more reliable outcomes. We operationalize this principle through two search algorithms: a post-hoc
selection method that reranks sampled paths to find the one with the minimum Path Entropy (HDE),
and a real-time guidance method that uses State Entropy (hDE) to actively steer generation towards
lower-uncertainty regions of the state space. By shifting the focus from myopic, token-level decisions
to holistic, path-level optimization, our approach significantly boosts the performance of MDMs on
complex open-ended generation and reasoning tasks. We summarize our key findings below:

• Formalizing Path Uncertainty (Section 3.1): We identify and formalize Path Uncertainty, the
cumulative predictive uncertainty of a MDM along a single decoding path, which drives the
variability in output quality.

• Denoising Entropy as Uncertainty Proxy (Section 3.2): We introduce two novel and computable
metrics, hDE(t) and HDE, as a theoretically-grounded toolkit to evaluate entire generative states and
paths, providing signals for path-aware guidance.

• Path Search Algorithms (Section 3.3): We propose two path search algorithms, Entropy-based
Best-of-N and Entropy-guided Sequential Monte Carlo, that leverage Denoising Entropy as an
internal signal to optimize the decoding process and improve the quality of generated sequences.

2 PRELIMINARIES

Let V be a vocabulary of size K, and consider a sequence of L tokens x0 = (x1
0, . . . , x

L
0 ). For

any position ℓ ∈ {1, . . . , L}, the token xℓ
0 is represented by a one-hot vector xℓ

0 ∈ {0, 1}K , whose
component corresponding to the index of xℓ

0 is 1.

2.1 FORWARD PROCESS AND TRAINING OBJECTIVE

The training of MDMs relies on a continuous-time forward corruption process. For any time
t ∈ [0, 1], a latent variable zt is generated from x0. This is achieved probabilistically: each token
xℓ
0 is independently replaced by a special [MASK] token with probability 1 − αt, and remains

unchanged with probability αt. αt ∈ [0, 1] is a strictly decreasing noise schedule with α0 ≈ 1 and
α1 ≈ 0 (Sahoo et al., 2024). LetMt be the set of indices that are masked at time t.

An MDM with denoising network pθ, parameterized by θ, is trained to reverse this process. Given
the corrupted sequence zt and the time t, the MDM predicts the probability distribution p̂0 for each
token in the original sequence as an estimate of x0:

p̂ℓ
t = pθ(X

ℓ
t |zt, t) ∈ ∆K , ∀ℓ ∈ {1, . . . , L} , (1)
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where Xℓ
t is the random variable for the token at position ℓ and time t, ∆K is the K-simplex.

Parameters θ are optimized by minimizing the Negative Evidence Lower Bound (NELBO)(Lou et al.,
2023; Shi et al., 2024; Sahoo et al., 2024). This objective simplifies to an integral of the weighted
negative log-likelihood over the masked tokens:

L(θ) = Ex0∼q(x0)

[∫ 1

0

w(t)Ezt|x0

[ ∑
ℓ∈Mt

− log pθ(x
ℓ
0|zt, t)

]
dt

]
, (2)

where q(x0) is the posterior data distribution, 1 − αt is the unmasking probability at time t and
w(t) =

∣∣dαt

dt

∣∣ 1
1−αt

is the weighting function.

2.2 REVERSE PROCESS FOR GENERATION

The inference process generates a sequence x0 by iteratively denoising from a fully masked sequence.
The procedure starts with z1, where all tokens are [MASK]. It then proceeds backward in time along
a discrete schedule 1 = tN > tN−1 > · · · > t0 = 0.

At each step i (from N down to 1), the MDM pθ takes the current state zti and time ti as input to
predict the original token probability distribution p̂ℓ

0 for each position ℓ. Then, the next state zti−1

is sampled from the reverse transition kernel p(zti−1 |zti). This distribution allows a masked token
to either be unmasked to a content token (sampled according to p̂ℓ

0) or to remain masked, governed
by the noise levels αti and αti−1

. This iterative refinement continues until t0 = 0, yielding the final
generated sequence.

3 MODELING PATH UNCERTAINTY WITH DENOISING ENTROPY

3.1 PATH UNCERTAINTY

A decoding path τ = (ztN , . . . , zt0) is a sequence of latent states traversed during the generative
process, guided by a decoding strategy π. The strategy π determines the transition from zti to zti−1

at each step, based on the model transition kernel p(·|·).
We define Path Uncertainty as the model cumulative predictive uncertainty along a single decoding
path τ , which reflects how confident the model is throughout the entire generation of a sequence.

3.2 DENOISING ENTROPY

To quantify path uncertainty, we introduce Denoising Entropy. We first define State Entropy to
measure instantaneous predictive uncertainty at any given state. Its integral across the entire path
then yields Path Entropy, which quantifies the cumulative uncertainty of the generative process.

Definition 1 (State Entropy) . For a given latent sequence zt at time t ∈ [0, 1], State Entropy
(hDE) is defined as the average Shannon entropy of the model predictive distributions over the set
of masked positionsMt:

hDE(zt) ≜
1

|Mt|
∑

ℓ∈Mt

H
(
pθ(X

ℓ
0|zt, t)

)
, (3)

where H(·) denotes the Shannon entropy and the definition is valid for |Mt| > 0.

Definition 2 (Path Entropy) . Path Entropy (HDE) provides measure for the total uncertainty of a
denosing process with a decoding path τ . It is the integral of the hDE over the generation time. In
a discrete-time setting with N steps, it can be approximated by averaging the hDE across all steps:

HDE(τ) ≜
∫ 1

0

hDE(zt)dt ≈
1

N

N∑
i=1

hDE(zti) . (4)
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Figure 2: An overview of our entropy-guided decoding algorithms. While standard inference in subfigure
(1) generates a single decoding path, our methods explore multiple candidate paths guided by Denoising
Entropy. E-BON in subfigure (2) performs post-hoc selection, choosing the best path from multiple independent
candidates based on path entropy HDE. E-SMC in subfigure (3) provides real-time guidance, iteratively pruning
high-entropy paths and replicating low-entropy ones based on state entropy hDE of partial solutions.

3.3 ENTROPY-GUIDED DECODING

A decoding strategy π induces a distribution P (τ |π) over paths and their corresponding path entropies
HDE(τ). This implies two properties: (i) a single stochastic strategy yields a variance in path
uncertainty, Vτ∼P (·|π)[HDE(τ)] > 0; and (ii) distinct strategies, πa and πb, produce different expected
uncertainties, Eπa [HDE(τ)] ̸= Eπb

[HDE(τ)].

Hypothesizing that low path uncertainty lead to higher-quality outputs (Xu et al., 2020), generative
decoding can be framed as an optimization problem. For a generative task, the objective is to find an
optimal strategy π⋆ that minimizes the expected path entropy:

π⋆ = argmin
π

Eτ∼P (·|π)[HDE(τ)] . (5)

While finding the globally optimal strategy π⋆ is intractable due to the vast search space, we introduce
two algorithms that leverage denoising entropy as an active guidance signal: (i) a post-hoc selection
method, Entropy-based Best-of-N (E-BON), and (ii) a real-time path optimization strategy, Entropy-
guided Sequential Monte Carlo (E-SMC), both designed to effectively approximate this objective.
Figure 2 provides a conceptual overview E-BON, E-SMC, and standard single-path inference.

3.3.1 ENTROPY-BASED BEST-OF-N

HDE can be used for post-hoc selection from a set of candidates. E-BON formalizes this principle.
Given a population of M candidate decoding paths, {τ (1), . . . , τ (M)}, E-BON identifies the single
best path with minimum HDE:

τ⋆ = argmin
m∈{1,...,M}

HDE(τ
(m)) . (6)

E-BON is straightforward, requiring the full generation of M samples before selection. However, it
expends the full computational budget uniformly across all paths, without any mechanism to redirect
resources during generation (Chatterjee & Diaconis, 2018).

3.3.2 ENTROPY-GUIDED SEQUENTIAL MONTE CARLO

To actively optimize the decoding path in real-time, we introduce E-SMC, a variant of Sequential
Monte Carlo (Doucet et al., 2001) adapted for MDM reverse process (Singhal et al., 2025). E-SMC
employs a guidance mechanism that operates on M parallel particles. By evaluating each partial
path via State Entropy hDE, E-SMC can dynamically reallocate computational budget and prune
high-entropy paths while replicating low-entropy ones. This iterative search process is structured
around three steps: Propagation, Evaluation, and Resampling:

• Propagation. At each reverse step i ∈ {N, . . . , 1}, we advance each particle z
(m)
ti in the set Zti

to a new state z
(m)
ti−1

by sampling from the proposal distribution given by MDM reverse kernel,

z
(m)
ti−1
∼ p(·|z(m)

ti ). This process generates the subsequent particle population Zti−1 .
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Algorithm 1 Entropy-guided Sequential Monte Carlo

1: Input: MDM θ, number of particles M , temperature λ, resampling interval ∆ir.
2: Initialize: Sample initial particle set ZtN = {z(m)

tN }
M
m=1 where z

(m)
tN ∼ p(ztN ).

3: for i = N,N − 1, . . . , 1 do
4: Propagate: For each particle m ∈ {1, . . . ,M}, sample z

(m)
ti−1
∼ pθ(·|z(m)

ti ).
5: if (N − i+ 1) (mod ∆ir) = 0 and i > 1 then
6: Evaluate: For each particle m, compute potential G(m) ← Φ(z

(m)
ti−1

;λ).

7: Normalize to get probabilities: w(m) ← G(m)
/∑M

j=1 G
(j) for all m.

8: Resample: Draw ancestor indices {a(m)}Mm=1 where a(m) ∼ Categorical({w(j)}Mj=1).

9: Update particle set: Zti−1
← {z(a

(m))
ti−1

}Mm=1.
10: end if
11: end for
12: Return: Final population Zt0 .

• Evaluation. To actively guide the search, evaluation are performed periodically at fixed intervals of
∆ir steps. During evaluation, each particle z

(m)
ti−1

in current set Zti−1
is assessed using a potential

function Φ(z;λ). Φ is designed to assign a higher score to particles with lower hDE(z). Temperature
λ modulates the sharpness of the resulting score distribution. Φ is detailed in Appendix A.

• Resampling. Potential scores computed during evaluation are normalized to form a categorical
distribution over the current particle set Zti−1

. This distribution assigns a selection probability
w(m) to each particle. A new population is formed by drawing M particles with replacement from
Zti−1

according to w(m). Resampling mechanism prunes high-entropy paths while replicating
low-entropy ones, steering search towards more promising path space (Moral, 2004). Full process
is detailed in Algorithm 1.

3.4 THEORETICAL JUSTIFICATION FOR DENOISING ENTROPY

The effectiveness of E-BON and E-SMC, is predicated on Denoising Entropy being a indicator for
generation quality. This section validates the use of this metric as a decoding objective by establishing
its theoretical basis through two key properties. First, we prove that State Entropy hDE is a computable
upper bound on the ideal, yet intractable, joint entropy of the masked tokens (Proposition 1). Second,
we relate hDE directly to the model’s training objective, showing it serves as a close proxy for the
instantaneous loss (Proposition 2). Together, these results justify minimizing Denoising Entropy as
a principled strategy for guiding the generative process toward more consistent and higher-quality
outputs. We also provide a further analysis of Denoising Entropy properties in Appendix B.3.

hDE as a bound on ideal uncertainty. hDE is a well-posed measure of uncertainty by relating it to
an ideal but intractable metric, Oracle State Uncertainty Horacle, defined as the joint entropy over all
[MASK] tokens. hDE serves as a computable upper bound to this oracle.

Proposition 1 (hDE as an upper bound) . Oracle State Uncertainty Horacle(zt) is upper-bounded
by the sum of marginal entropies, which is directly proportional to State Entropy hDE(zt):

Horacle(zt) ≤
∑

ℓ∈Mt

H
(
pθ(X

ℓ
0|zt, t)

)
= |Mt| · hDE(zt) . (7)

Proof relies on the subadditivity of Shannon entropy (Shannon, 1948). hDE sums the uncertainty of
each masked token independently, thereby ignoring contextual constraints that tokens impose on each
other and forming a valid upper bound. Definition of Horacle(zt) and proof of this proposition are
provided in Appendix B.1.

hDE as a proxy for MDM loss. hDE acts as a direct proxy for the instantaneous training loss.

5
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(a) Trend of HDE vs. ln(PPL) with Denoising Steps.

3 4 5 6
Log Perplexity

4

5

6

7

8

Pa
th

 E
nt

ro
py

Step 16
Step 32
Step 64
Step 128
Step 256
Step 512
Step 1024

(b) Per-sample correlation between HDE and ln(PPL).

Figure 3: Empirical validation of Path Entropy (HDE) as an internal proxy for generation quality. The
aggregate trend in (a) shows that a more refined generation process reduces both the model’s internal uncertainty
(HDE, red) and the output perplexity (ln(PPL), blue). (b) provides a per-sample analysis, revealing a strong
positive linear correlation between HDE and ln(PPL). Details in Appendix C.3.

Proposition 2 (Approximation of normalized loss by hDE) . For a well-trained MDM, hDE(zt)
provides a direct approximation to the instantaneous, per-token normalized training loss:

1

|Mt|
∑

ℓ∈Mt

(
− log pθ(x

ℓ
0|zt, t)

)
≈ hDE(zt) . (8)

This shows that a state with high hDE is one that the model itself would find difficult or surprising,
assigning it a high loss during training. Detailed proof in Appendix B.2. With hDE established as a
sound measure of instantaneous difficulty, HDE extends by integrating the difficulty over the entire
path, yielding a measure of total generative challenge.

4 EXPERIMENTS

This section empirically studies Path Uncertainty and Denoising Entropy in MDMs through three
stages: (i) validating Denoising Entropy as a quality-aligned internal metric on MDMs; (ii) improving
generation by using E-BON and E-SMC to optimize decoding paths; (iii) scaling our method to
larger models and complex reasoning and planning tasks.

4.1 VALIDATING DENOISING ENTROPY AS A QUALITY METRIC

We study whether the internal metric HDE, computed online during generation as a proxy for path
uncertainty, aligns with external text quality evaluations.

Experimental setting. We use a MDLM trained on OpenWebText (Gokaslan et al., 2019) with
approximately 130 million non-embedding parameters for evaluation (Sahoo et al., 2024). The
MDLM generates sequences of length 1,024 under random-order unmasking. We vary the number of
denoising steps S = 2i for i ∈ [5, 10] and use GPT2-Large (Radford et al., 2019), a substantially
larger model than the MDLM we used, as ARM evaluator to compute Perplexity (PPL). Perplexity
is a standard evaluation metric for generative uncertainty and text quality quantification. For each
generated sample, we record HDE and ln(PPL).

Results. Across thousands of unconditional generations, we observe a clear, near-linear rela-
tionship between HDE and ln(PPL) as shown in Figure 3. Lower HDE aligns with lower perplexity,
indicating outputs with higher quality. Both HDE and ln(PPL) decrease as the number of denoising
steps S increases, reflecting a reduction in path uncertainty and a improvement in sample quality.
We use this case to show that HDE is a reliable internal proxy for MDM-generated text quality: from
its own denoising dynamics, MDM can anticipate whether it is on a high- or low-quality path.

6
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4.2 IMPROVING GENERATION BY USING DENOISING ENTROPY TO GUIDE PATH SEARCH

Building upon finding that HDE serves as a internal proxy for text quality, we now investigate whether
Denoising Entropy can be actively employed to mitigate Path Uncertainty and improve generation.

Experimental setting. We evaluate and compare three decoding types: vanilla single path uniform
sampling, with E-BON and E-SMC. Experimental setup remains consistent with Section 4.1, utilizing
the same MDLM and ARM evaluator. We analyze performance measured with perplexity, across
different numbers of denoising steps (S), particles (K), and resampling intervals (∆ir). In detail:

• For E-BON, we generate K independent particles and return the one with the minimum HDE.
• For E-SMC, we steer K particles using weighted resampling with hDE at intervals of ∆ir steps,

and finally return the one with the minimum HDE.

Results. As shown in Table 1, both entropy-guided strategies substantially outperform the vanilla
sampler, confirming the practical utility of Denoising Entropy as a control signal. E-SMC consistently
achieves the best performance, underscoring the benefit of its active, online guidance mechanism.

The results affirm the scalability of our methods, as performance improves directly with the computa-
tional budget. Increasing the number of particles (K) significantly enhances outcomes, particularly
for E-SMC, which better exploits the expanded search space (e.g., perplexity drops from 47.7 to 36.1
as K increases from 4 to 12). Furthermore, for E-SMC, more frequent resampling (a smaller ∆ir)
provides a complementary and computationally efficient lever for improvement by actively pruning
high-uncertainty paths.

4.3 SCALING ENTROPY GUIDANCE TO LARGE-SCALE REASONING TASKS

Table 1: Comparison of decoding strategies via abla-
tion studies on hyperparameters. The table analyzes
the impact of the number of denoising steps (S), number
of particles (K), and resampling interval (∆ir). Lower
perplexity is better. E-SMC consistently achieves the
best performance, demonstrating the effectiveness of
real-time, entropy-guided path optimization.

Configuration Perplexity ↓
S K ∆ir Vanilla E-BON E-SMC

128 4 32 85.3 66.4 63.4
256 4 32 68.5 52.3 47.7

128 4 32 85.3 66.4 63.4
128 8 32 85.3 60.3 56.0

256 2 32 68.5 60.0 55.5
256 4 32 68.5 52.3 47.7
256 8 32 68.5 47.5 40.4
256 12 32 68.5 44.1 36.1

256 4 8 68.5 52.3 43.9
256 4 16 68.5 52.3 45.1
256 4 32 68.5 52.3 47.7
256 4 64 68.5 52.3 50.2
256 4 128 68.5 52.3 53.4

Experiments in Section 4.1 & 4.2 validated De-
noising Entropy as a proxy for generation quality
and demonstrated the efficacy of our proposed al-
gorithms, E-BON and E-SMC, on a small-scale
MDM using perplexity as the evaluation metric.
To assess the generalizability and practical im-
pact of our approach, we now scale to advanced
MDMs and evaluate on a suite of challenging
reasoning benchmarks. This shift enables eval-
uation beyond abstract quality to task-specific
accuracy, testing whether entropy guidance im-
proves problem-solving in large-scale MDMs.

Models and datasets. We conduct exper-
iments on three large MDMs: LLaDA-
8B-Instruct (Nie et al., 2025),
LLaDA-1.5-8B (Zhu et al., 2025), and
Open-dCoder-0.5B (Peng et al., 2025b).
LLaDA models are evaluated across five diverse
benchmarks spanning three reasoning domains:
mathematical reasoning (GSM8K (Cobbe
et al., 2021), MATH500 (Lightman et al.,
2024)), scientific reasoning (GPQA (Rein
et al., 2024)), and planning (Sudoku (Nolte
et al., 2024) and Countdown (Ye et al.,
2025a)). Open-dCoder-0.5B is an MDM for code generation, we evaluate its performance on
HumanEval/HumanEval+ (Chen et al., 2021) and MBPP/MBPP+ (Austin et al., 2021b).

Decoding strategies. We evaluate our path search algorithms with a spectrum of established
MDM decoding strategies. These include the standard uniform sampler (Austin et al., 2021a),
uncertainty-based samplers (e.g., confidence (Chang et al., 2022), entropy (Ben-Hamu et al., 2025),
and margin (Kim et al., 2025)), efficient samplers (Semi-AR (Nie et al., 2025), EB-Sampler (Ben-
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Table 2: Accuracy (%) of our path search algorithms on LLaDA models across five reasoning and planning
benchmarks. When applied to the strong PC-Sampler baseline, both E-BON and E-SMC consistently improve
performance. Gains over the baseline are highlighted in red.

Strategies GSM8K MATH500 GPQA Countdown Sudoku Avg.↑

LLaDA-Instruct-8B

Uniform 48.8 15.0 29.0 14.4 2.2 21.9
Confidence 6.8 3.4 27.9 34.0 23.8 19.2
Entropy 2.2 3.8 28.4 33.8 1.6 14.0
Margin 11.1 1.8 28.4 33.9 26.6 20.4
EB-Sampler 1.6 3.6 29.9 34.1 24.2 18.7
Semi-AR 77.9 27.6 27.7 32.6 0.0 33.2
Fast-dLLM 78.2 28.4 28.6 11.4 0.3 29.4

PC-Sampler 79.3 34.0 28.6 36.3 27.6 41.2
w/ E-BON 0.5 ↑ 1.0 ↑ 0.2 ↑ 5.9 ↑ 0.6 ↑ 1.6 ↑
w/ E-SMC 1.9 ↑ 1.6 ↑ 0.3 ↑ 4.1 ↑ 1.6 ↑ 1.9 ↑

LLaDA-1.5-8B

Uniform 52.7 20.0 28.1 15.8 3.4 24.0
Confidence 19.2 5.4 29.0 33.8 24.8 22.4
Entropy 12.1 5.0 28.8 34.7 0.2 16.2
Margin 27.9 6.4 28.6 31.8 33.6 25.7
EB-Sampler 12.3 4.8 28.6 34.6 1.6 16.4
Semi-AR 80.7 34.2 26.1 32.4 0.0 34.7
Fast-dLLM 80.8 31.2 27.9 32.9 0.4 34.6

PC-Sampler 82.2 37.4 28.8 35.0 33.4 43.4
w/ E-BON 0.7 ↑ 0.8 ↑ 0.1 ↑ 5.2 ↑ 0.8 ↑ 1.5 ↑
w/ E-SMC 1.0 ↑ 1.2 ↑ 0.2 ↑ 4.3 ↑ 0.2 ↑ 1.4 ↑

Hamu et al., 2025), and Fast-dLLM (Wu et al., 2025)), and two recently proposed advanced strategies:
P2 (Peng et al., 2025a) and PC-Sampler (Huang et al., 2025a). A detailed description of each baseline
strategy is provided in Appendix C.1.

Results: path search algorithms enhance decoding strategies. We demonstrate the efficacy of
E-BON and E-SMC through two experiments. First, to establish their maximum potential, we
apply them to PC-Sampler (Huang et al., 2025a) on LLaDA models. This combination sets a new
state-of-the-art, achieving substantial accuracy gains across five challenging benchmarks as shown in
Table 2. Second, to validate their broad applicability, we integrate our methods with five different
baseline samplers on Open-dCoder model. As shown by the average accuracy improvements in
Figure 4, both algorithms consistently boost every tested sampler, confirming they act as versatile
enhancers for a wide array of decoding strategies.

Results: path-level optimization is effective for complex reasoning and planning. The gains
are most pronounced on benchmarks requiring multi-step reasoning and planning. For example, on
LLaDA-Instruct-8B, E-SMC improves GSM8K accuracy from 79.3% to 81.2% (+1.9%) and
the Countdown planning task from 36.3% to 40.4% (+4.1%). These results demonstrate that success
on such tasks hinges on a global perspective of the entire solution. Our path search algorithms provide
this view, leveraging Denoising Entropy to assess the coherence of the entire generation path, not just
a single step.

4.4 OTHER RESULTS AND ABLATION STUDIES

Path, HDE, and accuracy. We validate Denoising Entropy as a proxy for task performance on
Sudoku, a benchmark sensitive to decoding order. We use the PC-Sampler hyperparameter λ to
control decoding sequentiality, thus generating a spectrum of distinct paths. Smaller λ encourage
more random decoding orders, which benefit Sudoku solving, while larger λ values lead to more
sequential decoding, harming performance. Figure 5 reveals a negative correlation between HDE and
final accuracy, confirming that higher entropy signals a lower-quality generation path.
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Figure 4: Average accuracy on code benchmarks. E-BON and
E-SMC consistently enhance performance of various baseline de-
coding strategies, demonstrating their broad applicability.

0.00 0.01 0.02 0.03 0.04 0.05
Path

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

U
nc

er
ta

in
ty

0

5

10

15

20

25

Ac
cu

ra
cy

Figure 5: Relationship between decod-
ing path, path uncertainty, and accuracy
on Sudoku benchmark.

Budget-Efficiency. Under the same computational budget (using LLaDA-Instruct-8B with
5 particles), our entropy-guided methods outperform Majority Vote. Specifically, on the Sudoku
and Countdown task, Majority Vote improves accuracy by (-0.8%, 1.0%), while E-BON and E-SMC
achieve gains of (0.6%, 5.9%) and (1.6%, 4.1%), respectively. These results indicate that the
entropy-guided approach utilizes the sampling budget more effectively than standard ensembling,
suggesting greater potential for scaling.

5 RELATED WORK

Masked Diffusion Models. Recent years have seen the extension of diffusion models, originally
successful in continuous domains (Ho et al., 2020; Song et al., 2020; Dhariwal & Nichol, 2021;
Rombach et al., 2022), to discrete generation (Austin et al., 2021a). A key branch is Masked Diffusion
Models, which was formalized in D3PM (Austin et al., 2021a) and explored in text and sequence
generation in DiffusionBERT (He et al., 2023). The field matured with substantial theoretical progress
simplifying the training objective, making the paradigm more stable and efficient (Zheng et al., 2023;
Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024; Gat et al., 2024). This progress has culminated
in the development of large-scale MDMs (Nie et al., 2025; Zhu et al., 2025; Ye et al., 2025b; Gong
et al., 2025a;b) that achieve performance competitive with autoregressive counterparts, establishing
MDMs as a viable and powerful paradigm for language generation.

Decoding Strategies for Language Models. Decoding strategy is critical for language models.
Unlike ARMs, which only select the next token (Graves, 2012), MDMs face a more complex
two-dimensional problem: choosing both which position to unmask and what token to generate.
Uncertainty-based greedy approaches are most common, where the next position is selected based
on local confidence signals like maximum probability (Chang et al., 2022), minimum entropy (Koh
et al., 2024; Ben-Hamu et al., 2025), or largest margin (Kim et al., 2025), often building upon a
simple random-selection baseline (Austin et al., 2021a). Other approaches impose structure through
a semi-autoregressive block-wise order (Han et al., 2023; Nie et al., 2025; Arriola et al., 2025),
combining positional bias with content-aware confidence scores (Huang et al., 2025a), or explicitly
training a planner (Huang et al., 2025b) to achieve more global control. Some methods improve
flexibility by allowing already-decoded tokens to be remasked (Wang et al., 2025; Peng et al., 2025a).

6 CONCLUSION AND DISCUSSION

Generation uncertainty has remained a critical but unquantified aspect for MDMs. Our work is the
first to address this gap, introducing Denoising Entropy as a metric designed to explicitly quantify
the path-level uncertainty of MDM outputs. We also proposed E-BON and E-SMC, two algorithms
that leverage Denoising Entropy to actively guide the generation process toward paths with lower
uncertainty. Our experiments demonstrate that these methods significantly improve both the general
quality of MDM outputs and performance on challenging benchmarks. Beyond the specific algorithms
proposed, we believe Denoising Entropy serves as a foundational tool for uncertainty quantification
in MDMs, opening directions such as developing more calibrated decoding strategies and providing
internal reward signals for reinforcement learning.
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A E-SMC IMPLEMENTATION DETAILS

This appendix provides specific formulas for the Evaluation step of the E-SMC algorithm, which
were abstracted in the main text for clarity.

Reward Definition. The raw State Entropy, hDE(z) ∈ [0, log2 V ] where V is the vocabulary size,
is first converted into a normalized reward signal r(z) ∈ [0, 1]. This is done by inverting and scaling
the entropy:

r(z) ≜
log2 V − hDE(z)

log2 V
= 1− hDE(z)

log2 V
. (9)

This formulation ensures that a state with minimum entropy (0) receives the maximum reward (1),
and a state with maximum entropy (log2 V ) receives the minimum reward (0).

Potential Function. The reward r(z) is then used to compute the potential score G(z) for each
particle, which determines its fitness for resampling. We employ a Gibbs potential function, controlled
by a temperature parameter λ > 0:

G(z) ≜ exp(λ · r(z)). (10)

The parameter λ controls the selection pressure. A higher λ value more strongly favors particles with
high rewards (low entropy), leading to a more aggressive pruning of undesirable trajectories.

Resampling Probabilities. The probability π(k) of selecting particle z
(k)
ti−1

during the resampling
step is given by its normalized potential score:

π(k) =
G(z

(k)
ti−1

)∑K
j=1 G(z

(j)
ti−1

)
=

exp(λ · r(z(k)ti−1
))∑K

j=1 exp(λ · r(z
(j)
ti−1

))
. (11)

This is equivalent to applying a softmax function to the scaled rewards of all particles in the population.
The new population is then formed by drawing K samples with replacement from the current
population according to these probabilities.

B THEORETICAL ANALYSIS

B.1 PROOF OF PROPOSITION 1

This section provides formal definitions and the complete proof for Proposition 1. We begin by
defining Oracle State Uncertainty, and stating the key property of Shannon entropy.

Definition 3 (Oracle State Uncertainty) . Let XMt
= {Xℓ

0}ℓ∈Mt
be the random vector of the

true tokens at all [MASK] positions. Oracle State Uncertainty is the Shannon entropy of the true
joint posterior distribution over this vector, conditioned on the latent state zt:

Horacle(zt) ≜ H(XMt
|zt). (12)

As the sample mean of marginal entropy over the masked setMt, hDE(zt) is the expected entropy
for a single position ℓ chosen uniformly fromMt:

hDE(zt) ≜
1

|Mt|
∑

ℓ∈Mt

H
(
pθ(X

ℓ
0|zt, t)

)
= Eℓ∼Unif(Mt)

[
H
(
pθ(X

L
0 |zt, t)

)]
.

This establishes hDE as a measure of average uncertainty over masked tokens.

Our proof relies on the subadditivity property of Shannon entropy. We state it here as a lemma.

Lemma 1 (Subadditivity of Conditional Entropy) . For any set of random variables
{Y1, . . . , Yn} and a conditioning variable Z, the joint conditional entropy is bounded by the
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sum of the individual conditional entropy:

H(Y1, . . . , Yn|Z) ≤
n∑

i=1

H(Yi|Z).

Equality holds if and only if the variables {Yi} are conditionally independent given Z.

We now restate and prove Proposition 1.

Proposition 1. Oracle State Uncertainty Horacle(zt) is upper-bounded by the sum of the marginal
entropies, which is directly proportional to State Entropy hDE(zt):

Horacle(zt) ≤ |Mt| · hDE(zt).

Proof. By definition, Horacle(zt) is the conditional joint entropy H(XMt
|zt). We can derive the

bound as follows:

Horacle(zt) = H(XMt |zt) by Definition 3

≤
∑

ℓ∈Mt

H(Xℓ
0|zt) by Lemma 1

=
∑

ℓ∈Mt

H
(
pθ(X

ℓ
0|zt, t)

)
by definition of MDM output

= |Mt| ·

(
1

|Mt|
∑

ℓ∈Mt

H
(
pθ(X

ℓ
0|zt, t)

))
= |Mt| · hDE(zt). by Definition 1

The inequality in the second step is strict if the random variables {Xℓ
0}ℓ∈Mt are not conditionally

independent given the latent state zt. In the context of natural language, where token occurrences are
highly correlated, this condition for strict inequality is almost always met.

B.2 PROOF AND COROLLARY OF PROPOSITION 2

Here, we provide the detailed proof for Proposition 2 and discuss the correlation between negative
evidence lower bound L and HDE.

The proposition states that for a well-trained MDM, the following approximation holds:

1

|Mt|
∑

ℓ∈Mt

(
− log pθ(x

ℓ
0|zt, t)

)
≈ hDE(zt). (13)

The proof relies on the decomposition of cross-entropy loss. We state it as the following
lemma.

Lemma 2 (Decomposition of Cross-Entropy Loss) . Let q(X) be the true data distribution and
pθ(X) be the model’s estimation distribution. For any random variable X , the cross-entropy loss
can be decomposed as:

EXℓ
0∼q(·|zt)[− log pθ(X

ℓ
0|zt, t)] = H(q) +DKL(q ∥ pθ),

where q = q(Xℓ
0|zt) denotes the true posterior distribution, H(·) is the Shannon entropy and

DKL(· ∥ ·) is the Kullback-Leibler divergence.

Proof. For a well-trained model, the KL divergence between the posterior distribution q(xℓ
0|zt) and

the estimation distribution pθ(x
ℓ
0|zt, t) is minimized, giving:

DKL(q ∥ pθ) ≈ 0 and pθ ≈ q. (14)

Thus,
E[− log pθ] ≈ H(q) ≈ H(pθ), (15)
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where H(pθ) = H(pθ(X
ℓ
0|zt, t)).

By the law of large numbers, the loss sample average over masked positions approximates the
expectation:

1

|Mt|
∑

ℓ∈Mt

− log pθ(x
ℓ
0|zt, t) ≈ E[− log pθ]. (16)

Combining these approximations yields:
1

|Mt|
∑

ℓ∈Mt

− log pθ(x
ℓ
0|zt, t) ≈ H(pθ) = hDE(zt), (17)

where the last equality follows from Definition 1.

Justification for the Correlation between L and HDE. The full objective (negative evidence lower
bound, NELBO) L and our metric HDE(τ) are strongly correlated, which is a direct consequence of
Proposition 2.

We begin with the definition of the NELBO objective:

L(x0) =

∫ 1

0

w(t)

[ ∑
ℓ∈Mt

− log pθ(x
ℓ
0|zt, t)

]
dt, (18)

where the weighting function is w(t) = |dαt

dt |
1

1−αt
. By Proposition 2, we have the approximation:∑

ℓ∈Mt

− log pθ(x
ℓ
0|zt, t) ≈ |Mt| · hDE(zt). (19)

Substituting this back into the L(x0):

L ≈
∫ 1

0

w(t) · |Mt| · hDE(zt)dt. (20)

In expectation, |Mt| ≈ L(1− αt), where L is the sequence length. Thus, the term w(t) · |Mt| ≈
L · |dαt

dt | is a strictly positive weighting function of time, let’s call it w′(t).

L ≈
∫ 1

0

w′(t) · hDE(zt)dt. (21)

In parallel, our metric is the unweighted integral:

HDE(τ) =

∫ 1

0

hDE(zt)dt. (22)

Since both L and HDE(τ) are integrals of the same underlying function, hDE(zt), with one being
uniformly weighted and the other weighted by a positive function w′(t), a strong positive correlation
between their values is mathematically expected. This provides the rigorous justification for the
remark.

B.3 THEORETICAL ANALYSIS OF STATE ENTROPY

We present theoretical analysis to verify the validity of the state entropy hDE(zt). We begin by verify-
ing its asymptotic behavior at the diffusion process boundaries. Then, we establish its monotonicity
with respect to context information.

Theorem 1 (Asymptotic Behavior of state Entropy) . Let p̂θ(·|zt, t) be a denoising model that
approximates the true posterior distribution q(zt|x0). Assume the following limits exist, then the
expected state entropy E[hDE(zt)] satisfies:

(i) Fully-Noised State (t → 1): As t → 1, αt → 0 and z1 becomes independent of the
original sequence x0. The entropy converges to the marginal distribution of tokens in the
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training data, pdata
lim
t→1

Ezt∼q(zt|x0)[hDE(zt)] = H(pdata) (23)

(ii) Noise-Free State (t→ 0): As t→ 0, αt → 1 and the input z0 is the clean data x0. The
model performs reconstruction, and the entropy converges to 0:

lim
t→0

Ezt∼q(zt|x0)[hDE(zt)] = 0 (24)

Proof. The proof examines the two temporal boundaries of the diffusion process.

Asymptotic behavior as t→ 1. As t→ 1, the noise schedule satisfies limt→1 αt = 0. The forward
process marginal, q(zt|x0) = Cat(zt;αtx0 + (1 − αt)m), converges to a categorical distribution
concentrated entirely on the mask token:

lim
t→1

q(zt|x0) = Cat(zt;m), (25)

where Cat(·;π) denotes the categorical distribution with probability vector π, and m is the one-
hot vector representing the [MASK] token. Consequently, z1 = [m, . . . ,m] is deterministic and
independent of x0, with all positions masked (M1 = {1, . . . , L}). For an optimally trained denoising
model, the prediction at every masked position converges to the marginal data distribution:

∀ℓ ∈M1, lim
t→1

mathbfpℓθ(zt, t) = pdata. (26)

The state entropy therefore satisfies:

hDE(z1) =
1

L

L∑
ℓ=1

H(pdata) = H(pdata). (27)

As z1 is a deterministic state, the expectation is equal to the value itself.

Asymptotic behavior as t → 0. In the opposite limit t → 1, αt → 1. The forward process
marginal converges to the clean data:

lim
t→0

q(zt|x0) = Cat(zt,x0), =⇒ z0 = x0 (28)

In this regime, the model has access to nearly the entire ground-truth context. For any masked
position ℓ ∈ Mt where t is small, an optimal model’s prediction pℓθ(x0|zt, t) is conditioned on a
context that is almost entirely the ground truth, {xj

0 | j /∈Mt}. Formally, the predictive distribution
converges to a point mass on the true token:

lim
t→0

p̂ℓ
θ(zt, t) = δk,xℓ

0
. (29)

The Shannon entropy of a Dirac delta distribution is zero:

lim
t→0

H
(
x̂ℓ
θ(zt, t)

)
= H(δk,xℓ

0
) = 0. (30)

As this holds for every masked position, the average entropy hDE(zt) converges to zero. The
convergence of the expectation follows from the deterministic nature of the limit and the boundedness
of the entropy function.

This completes the verification of both asymptotic behaviors.

The asymptotic analysis confirms that hDE behaves intuitively at process boundaries. We now establish
its monotonicity with respect to context information.

Lemma 3 (Concavity of Entropy) . The Shannon entropy H(p) is a concave function on the
probability simplex ∆K−1.

Proof. The entropy function H(p) = −
∑K

i=1 pi log pi is a sum of terms f(pi) = −pi log pi. Since
f ′′(pi) = −1/pi < 0 for pi > 0, each f(pi) is strictly concave. The sum of concave functions
remains concave.
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We now turn to investigating the context-sensitivity property of the state entropy. LetOt ⊆ {1, . . . , L}
denote the set of indices corresponding to unmasked tokens a time t.

Theorem 2 (Context-Sensitivity of State Entropy) . Let zt and z′t be latent variables with
observed(unmasked) position sets Ot and O′

t respectively, where Ot ⊂ O′
t. For any masked

position ℓ /∈ O′
t, revealing additional context does not increase the prediction entropy:

E[H(p̂ℓ
θ(z

′
t, t))] ≤ E[H(p̂ℓ

θ(zt, t))] (31)

Proof. For an optimal denoising model, the prediction p̂ℓθ(zt, t) approximates the true posterior
distribution p(xℓ

0|{x
j
0}j∈Ot

), where Ot is the set of observed indices in zt. Let X = xℓ
0 be the target

token at position ℓ, Y = {xj
0}j∈Ot

be the initial context, and Z = {xj
0}j∈O′

t\Ot
be the additional

context revealed in z′t.

By the information-theoretic property that conditioning reduces entropy:

H(X|Y, Z) ≤ H(X|Y ), (32)

the entropy of an optimal model’s prediction should converge to the true conditional entropy of the
data:

E[H(p̂ℓ
θ(zt, t))]→ H(X|Y ) (33)

E[H(p̂ℓ
θ(z

′
t, t))]→ H(X|Y, Z) (34)

Combining these inequalities yields the desired result Equation 31.

Theorem 2 demonstrates that hDE properly decreases with increasing context information, validating
its use as a measure of uncertainty in masked diffusion models.

C EXPERIMENTS

C.1 DECODING STRATEGIES

Here we provide a detailed description of the decoding strategies we evaluate.

Uniform (Austin et al., 2021a) At each step, this sampler unmasks a fixed number of tokens at
positions chosen uniformly at random from the set of currently masked tokens. This is the vanilla
sampler in MDMs.

Confidence (Chang et al., 2022) Sampler with confidence score selects tokens for positions where
MDM prediction is most confident, defined as the position ℓ that maximizes the probability of the
most likely token, i.e., argmaxℓ∈Mt

max(p̂ℓ
0).

Entropy (Ben-Hamu et al., 2025) Sampler with entropy selects tokens for positions where the
MDM prediction is least ambiguous, defined as the position ℓ that minimizes the Shannon entropy of
the predicted probability distribution, i.e., argminℓ∈Mt H(p̂ℓ

0).

Margin (Kim et al., 2025) Sampler with margin selects tokens for positions with the clearest
distinction between the top two candidates, defined as the position ℓ that maximizes the margin
pℓ(1) − pℓ(2), where pℓ(1) and pℓ(2) are the highest and second-highest probabilities in p̂ℓ

0.

EB-Sampler (Ben-Hamu et al., 2025) Entropy-Bounded sampler is an adaptive method that
unmasks a variable number of tokens, k, at each step. It selects the k tokens with the lowest entropy,
where k is dynamically determined by ensuring the cumulative entropy of the selected tokens remains
bounded by a predefined threshold γ.

Semi-AR (Nie et al., 2025) Semi-AutoRegressive sampler partitions the sequence into contiguous
blocks. It generates tokens within each block in a parallel, non-autoregressive manner, while the
blocks themselves are generated sequentially from left to right.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Fast-dLLM (Wu et al., 2025) This sampler accelerates the generation of each block by adaptively
unmasking a variable number of tokens at each step. The number of tokens is determined based on
whether their prediction confidence exceeds a given threshold, allowing a block to be completed in
fewer steps than prescheduled.

PC-Sampler (Huang et al., 2025a) Positional-Confidence sampler selects tokens based on a
score that combines a confidence measure (derived from the cross-entropy against a background
token distribution) with an exponentially decaying positional bias, thus prioritizing tokens that are
confidently predicted and appear earlier in the sequence.

P2 (Peng et al., 2025a) This is a multi-stage sampler that employs a self-correction mechanism.
It first generates a high-proportion draft of the sequence by filling the most confident positions. It
then enters an iterative refinement phase, where in each step it identifies the least confident generated
tokens, re-masks them, and immediately re-predicts their content based on the updated context. This
process allows MDM to revise and improve its initial predictions.

C.2 EXPERIMENTAL CONFIGURATIONS

Here we provide a detailed description of the configurations for each experiment. Table 3 summarizes
the hyperparameters used for experiments on LLaDAmodel. Table 4 summarizes the hyperparameters
used for experiments on Open-dCoder model.

Note on Selection Temperature Parameter. LLaDA experiments utilize a selection temperature
parameter (Tsel = 0.1) while Open-dCoder experiments do not require this parameter. This
difference is because of the generation temperature settings and their impact on path diversity.

In LLaDA experiments, generation temperature is set to 0, making the token prediction process
deterministic. Under such deterministic conditions, multiple runs would yield identical paths,
preventing path exploration for E-BoN and E-SMC algorithms. The selection temperature introduces
controlled randomness during the position selection phase of decoding strategies.

Specifically, when selecting the next k positions to unmask based on confidence scores s =
[s1, s2, . . . , sn], the selection temperature modifies the standard top-k selection through stochas-
tic sampling:

Top-2k candidates: stop = topk(s, 2k) (35)

Temperature-scaled probabilities: pi =
exp(si/Tsel)∑

j∈top-2k exp(sj/Tsel)
(36)

Stochastic selection: positions ∼ Multinomial(p, k) (37)

where Tsel controls the randomness level: lower values favor high-confidence positions (approaching
deterministic top-k as Tsel → 0), while higher values increase selection diversity.

Open-dCoder experiments use a generation temperature of 0.8, which introduces stochasticity in
the token prediction process and the generation process already satisfies the diversity requirements
for path search algorithms.

C.3 RESULTS

In this section, we present supplementary experimental results that provide further details supporting
the findings discussed in the main text.

Table 5 reports the complete raw data from Figure 3.

Table 6 provides the detailed numerical values underlying Figure 4.

Figure 6 visually illustrates the evolution of state entropy across different particles throughout the
decoding process.
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Table 3: Experimental Configurations for Different Tasks of LLaDA models.

Parameter GSM8K MATH500 GPQA Countdown Sudoku

Task

Few-shot examples 4 4 5 3 5

Generation

Generation length 256 1024 256 128 128
Steps 256 1024 256 128 128
Block length 256 1024 256 128 128
Temperature 0 0 0 0 0
CFG scale 0 0 0 0 0

PC-Sampler

λ 0.25 0.25 0.25 0.5 0.0
α 10 10 10 10 10

E-BoN & E-SMC

Number of particles 5 5 5 5 5
λweight 5.0 5.0 5.0 10.0 5.0
Selection temperature 0.1 0.1 0.1 0.1 0.1

E-SMC

Resample interval 64 256 64 32 32

Table 4: Experimental Configurations for Different Tasks of Open-dCoder model.

Parameter HumanEval HumanEval+ MBPP MBPP+

Generation

Generation length 128 128 128 128
Steps 128 128 128 128
Block length 128 128 128 128
Temperature 0.8 0.8 0.8 0.8

E-BoN & E-SMC

Number of particles 5 5 5 5
λweight 5.0 5.0 5.0 5.0

E-SMC

Resample interval 32 32 32 32

Table 5: Mean HDE, Mean Log PPL, and their Correlation at different steps.

Step Mean HDE Std HDE Mean Log PPL Correlation
16 6.8080 0.4320 5.731 0.891
32 6.1183 0.3927 5.083 0.863
64 5.7352 0.3887 4.661 0.852
128 5.5242 0.3823 4.396 0.853
256 5.3815 0.4018 4.176 0.851
512 5.2318 0.3891 3.951 0.847

1024 5.1197 0.3924 3.729 0.854
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Table 6: Comparison of Sampling Strategies with E-BON and E-SMC on Code Generation Benchmarks with
Open-dCoder.

Strategies HumanEval HumanEval+ MBPP MBPP+ Avg.↑

P2 19.3 17.0 16.3 23.7 19.1
w/ E-BON 0.4 ↑ 0.9 ↑ 0.5 ↑ 0.2 ↑ 0.5 ↑
w/ E-SMC 0.2 ↑ 0.7 ↑ 0.4 ↑ 0.3 ↑ 0.4 ↑

Uniform 2.7 2.6 1.1 1.6 2.0
w/ E-BON 2.2 ↑ 1.6 ↑ 1.3 ↑ 1.5 ↑ 1.7 ↑
w/ E-SMC 1.8 ↑ 1.3 ↑ 1.5 ↑ 1.3 ↑ 1.5 ↑

Confidence 7.0 6.3 2.9 5.9 5.5
w/ E-BON 3.4 ↑ 2.7 ↑ 2.2 ↑ 3.8 ↑ 3.1 ↑
w/ E-SMC 3.1 ↑ 2.4 ↑ 2.1 ↑ 4.0 ↑ 2.9 ↑

Entropy 7.6 6.4 6.1 7.5 6.9
w/ E-BON 3.4 ↑ 3.8 ↑ 2.7 ↑ 2.4 ↑ 3.1 ↑
w/ E-SMC 3.7 ↑ 4.2 ↑ 3.0 ↑ 2.6 ↑ 3.4 ↑

Margin 4.3 3.5 2.2 3.9 3.5
w/ E-BON 3.7 ↑ 3.3 ↑ 2.1 ↑ 2.3 ↑ 2.8 ↑
w/ E-SMC 3.3 ↑ 3.2 ↑ 2.2 ↑ 2.0 ↑ 2.7 ↑

Figure 6: Paths of state entropy over denoising steps for 8 particles, where different colors represent distinct
particles. It visually illustrates how the state entropy evolves across each particle throughout the decoding
process.
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D USE OF LARGE LANGUAGE MODELS

Large language models were used solely as a tool to assist in the writing and polishing of this
manuscript. They were occasionally employed for tasks such as: i) refining sentence structure for
better readability; ii) correcting grammatical errors and typos; and iii) polishing the phrasing of
certain paragraphs. The core intellectual content, including research ideas, analyses, experimental
designs, and results, did not involve the use of LLMs.
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