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ABSTRACT

The promising performances of CNNs often overshadow the need to examine
whether they are doing in the way we are actually interested. We show through ex-
periments that even over-parameterized models would still solve a dataset by reck-
lessly leveraging spurious correlations, or so-called “shortcuts”. To combat with
this unintended propensity, we borrow the idea of printer test page and propose
a novel approach called White Paper Assistance. Our proposed method is two-
fold; (a) we intentionally involves the white paper to detect the extent to which
the model has preference for certain characterized patterns and (b) we debias the
model by enforcing it to make a random guess on the white paper. We show
the consistent accuracy improvements that are manifest in various architectures,
datasets and combinations with other techniques. Experiments have also demon-
strated the versatility of our approach on imbalanced classification and robustness
to corruptions.

1 INTRODUCTION

We don’t see things as they are; we see them as we are.

–An Old Proverb

These words give us insight into the predictable irrationalities of the human mind. Individuals always
create their own “subjective reality” from their perception. Psychological researches (Haselton et al.,
2015; Zhang et al., 2007; Shafer et al., 1984; Kahneman & Tversky, 1996) term this systematic,
irrational, unconscious error that can dramatically alter the way we perceive the world as “cognitive
biases”. Similarly to the behavior of human, convolutional neural networks may also develop their
own biases during training, by learning “shortcuts” (Geirhos et al., 2020)(also known as “spurious
cues” (Hendrycks et al., 2021) or “superficial correlations“ (Jo & Bengio, 2017; Pezeshki et al.,
2020)) which perform well on the existing test data but would fail dramatically under more general
settings.

There is a large volume of published studies describing and analysis this learning dynamic. In this
work, we adopt the gradient starvation hypothesis, proposed in (des Combes et al., 2018; Pezeshki
et al., 2020), that the leading cause for this feature imbalance is that the neural network is biased
towards capturing statistically dominant features in the data so that it starves the learning of other
very informative but less frequent features. With this being considered, a natural question is how
to favor generalizable features over shortcuts? It seems that the most reasonable and direct way
is to identify which features contain shortcuts (like green to frogs) and which features should be
enhanced (like shapes to animals)? Unfortunately, most patterns that CNNs rely on to classify do
not appear in a form amenable to discover. And enhancing specific features requires specific expert
knowledge, let alone extensive manpower and resources.

Luckily, CNNs are not alone with this issue. Very much like the networks submitting to spurious
preference, the printer sometimes may use an unintended color to represent the intended color. In
the real world, we call it color cast problem. When a colored image is fed into a printer, the printer
has to perceive it and then duplicate it using the right color. The color cast problem thereby indicates
the wrong propensity of color using. In practical use, when we suspect that our printers are having
color cast problems, we usually let the printer print a white paper. Once this white paper is printed
into other colors, the color cast is thereby detected and we need to seek corresponding solutions.
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Put another way, the white paper here serves as a prefect indicator of the color cast problem. This
common sense motivates us to exploit the use of white paper to regularize the model.

Intuitively, the white paper does not belong to any classes the model have learned from whichever
benchmark dataset. A idealized model should thereby give an inference result that is almost as if it
makes a random guess, to demonstrate it does not mistake this sample as any class it has learned.
Consequently, when discovering a difference between the intended and actual outcome, we could
know that the model now has some unintended generalization directions, which should be thought
of as a consequence of shortcut learning. Simply put, the white paper could also act like a “test
paper” in detecting dominant patterns. The experimental results in Section 3 will prove that the use
of the white paper is an effective and universal choice, even when compared with some real datasets.

Leveraging the superior ability of the white paper in detecting dominant patterns, we derive an
interesting and effective regularizer called White Paper Assistance, which alleviates the excessive
reliance of these dominant features by repeatedly enforcing the model to make a random guess on the
white paper. Our method does not require any further supervision on the bias, such as explicit labels
of misleadingly correlated attributes (Kim et al., 2019; Li & Vasconcelos, 2019; Sagawa et al., 2019),
or domain-specific-bias-tailored training technique (Wang et al., 2019; Geirhos et al., 2019; Li et al.,
2020). Moreover, despite the simplicity of implementation of the white paper, our method can
effectively improve the model’s generalization ability and help produce better performance. Since
the whole algorithm does not entail any modification on model architectures and any interference
to original training, it can be easily assembled into various CNNs as “plug-and-play” components,
which significantly promotes its value in practice.

Here we summarize our contributions:

• We propose a novel method called White Paper Assistance to alleviate the shortcut learning.
Our method does not require modifying the network and is easily implementable on any
modern neural architecture.

• We show the superior ability of the white paper in detecting dominant patterns.

• We experiment with various architectures, different benchmark datasets, different combi-
nations of techniques to show the wide applicability and compatibility of our method.

• We test our method in imbalanced classifications and robustness against corruptions to
demonstrate the versatility.

2 RELATED WORK

With the emergence of deep learning, numerous astonishing stories (He et al., 2016; Chen et al.,
2017; Yun et al., 2019; Radosavovic et al., 2020) about tremendous performances of CNNs have
rapidly spread all over the field. However, despite the ever-increasing pace, CNNs share the same
vulnerability as the human cognitive system, bias. It has been demonstrated that models may learn
spurious shortcut correlations, which may be sufficient to solve a training task but are clearly lack
of generalization utility. For example, a model would identify cows in “common” (e.g. pastures)
contexts correctly but fail to classify cows in “uncommon” (e.g. beach) contexts (Beery et al.).
Standard ImageNet-trained models prefer to label a cat image with elephant skin texture as elephant
instead of cat (Geirhos et al., 2019). Such phenomenons (Nguyen et al., 2014; Wichmann et al.,
2010; Ribeiro et al., 2016) highly exemplify the contradiction between the shortcut correlations and
the human-intended generalization.

As an active line of research, numerous studies have provided different explanations for this phe-
nomenon (Nasim et al., 2019; Xu et al., 2019; Parascandolo et al., 2020). For example, Valle-Perez
et al. (2019) suggests that the parameter-function map of networks would bias towards simple func-
tions. Kalimeris et al. justifies the simplicity bias further by showing that SGD learns functions of
increasing complexity. Hermann & Lampinen (2020) demonstrates the model being “lazy” that it
would favor the easier-to-extract feature over a more predictive feature. In this paper, we follow the
explanation proposed in (des Combes et al., 2018; Pezeshki et al., 2020) and argue that the rationale
behind this learning proclivity for shortcuts is the propensity of the model to capture statistically
dominant features in the data, rendering failure on discovering other predictive features.
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Recently studies that relates to shortcut removal usually requires extra supervision (Kim et al., 2019;
Sagawa et al., 2019). Li & Vasconcelos (2019) explicitly add color bias as side information to an
unbiased dataset of grayscale images. Geirhos et al. (2019) use style transfer to synthesize data to
help generate a more preferable shape-based representation. Li et al. (2020) further provide super-
visions from both shape and texture when generating cue conflict images and lead to better feature
representations. Instead of leveraging laborious and expensive supervision, our method utilizes the
common sense by leveraging the white paper to detect the dominant patterns.

3 OUR METHOD

The algorithm we propose is a conceptually simple and plug-and-play method that can be easily
integrated into various CNN models without changing the learning strategy. The pseudo-code of the
White Paper Assistance is shown in Algorithm 1. Generally speaking, the aim of this algorithm is
to detect and conquer.

Detect: For certain epoch from training iteration, the probability to conduct White Paper Assistance
is P , and 1 − P if otherwise. Once applying it, a batch of white paper will be fed into the model
and we can obtain the normalized output distribution (using “softmax”) p. The distribution here
represents the perception of the model for this white paper and, more importantly, the model’s
propensity for unintended patterns.

Conquer: As we’ve discussed before, since the white paper does not belong to any class the model
has learned, it should give an inference result that is almost as if it makes a random guess, to demon-
strate it is not biased towards any pattern. In the case of the multi-class classification withN classes,
the ideal prediction probability distribution for the white paper would be q = [ 1N ,

1
N ,

1
N , ...,

1
N ].

Hence to measure the match of these two predictions p and q, we adopt the Kullback-Leibler Diver-
gence:

Lwp = λ ∗DKL(p‖q) (1)

where λ denotes the strength of the White Paper Assistance. Then we repeat this process for M
iterations in the hope of alleviating this unintended propensity. 1

Algorithm 1 Pseudo-code of the White Paper Assistance
1: for each epoch do
2: Real Images training using original loss function
3: Update model parameters
4: initialize p← Rand(0, 1) . White Paper Assistance starts here.
5: if p < P then
6: for each iteration ∈ [1,M ] do
7: Generate a batch of white picture W
8: p←Model(W ) . White paper training.
9: Update model parameters by Eq. (1)

10: end for
11: end if . White Paper Assistance ends here.
12: end for

There are two important questions for designing above Algorithm:

Q1. Does the White Paper Assistance indeed alleviate the shortcut learning?

Q2. Why choose using the white paper?

To answer the first question, we evaluated our method in a controlled experimental setup, by adding
synthetic shortcuts to the data. Specifically, we added a 4×4 black square block on the top left
corner of each training and testing sample of the first class (apple) of CIFAR100 (We refer to this
modified dataset as Shortcut-CIFAR100). When trained on Shortcut-CIFAR100, this small block
allows a network to achieve a negligible loss by only learning to discriminate this block on the
same position while ignoring other information. Therefore, after training on Shortcut-CIFAR100,

1We explain the reason for repeating in Appendix. B.
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(a) (b)

Figure 1: Conceptual experiments: (a) Illustration of Shortcut-CIFAR100 and CIFAR99. On
Shortcut-CIFAR100, all the samples of “apples” are modified, including training and testing sam-
ples. On CIFAR99, all the testing samples except for samples of “apples” are modified. (b) Class
activation mapping (CAM) visualizations of models trained on Shortcut-CIFAR100 on samples with
synthetic shortcuts. While other models fixate on added blocks, WP(be short for White Paper As-
sistance) successfully alleviates the excessive reliance of the model on shortcuts and help it capture
more informative features. We provide more visualizations in Appendix. A.1.

Table 1: Proof of concept: Top-1 accuracy(%) on Shortcut-CIFAR100 and CIFAR99. All the
models(ResNet-56) were trained on Shortcut-CIFAR100.

Model Shortcut-CIFAR100 CIFAR99

ResNet-56 62.46 39.95
ResNet-56 w/ WP 66.80 46.88
ResNet-56 w/ SD (Pezeshki et al., 2020) 63.41 7.77
ResNet-56 w/ LfF (Nam et al., 2020) 63.11 42.09

the network would exhibit a strong propensity to identify a picture that has a small black block on
its top left corner as “apple”, if it suffers from shortcut learning. We then designed a new testing
scenario where we extracted all the testing samples from the other 99 classes(except apple) and then
added a small black block on the same position on each of them (We then term this as CIFAR99).
Since on CIFAR99, only the remaining 99 classes were modified. Once the network excessively
relies on the decision rule that connects “images with a black block” with the class “apple”, it would
demonstrate a strong propensity to identify the samples on CIFAR99 with “apple”, which would
result in lower accuracy. Shortly speaking, the performance on CIFAR99 actually reveals how well
the model could resist the propensity of shortcut learning.

Table 1 presents the performance of models which were trained on Shortcut-CIFAR100 and tested
on both Shortcut-CIFAR100 and CIFAR99. As we can see, WP improves the model’s generalization
ability on Shortcut-CIFAR100 as usual. We want to highlight the huge improvement WP achieves
on CIFAR99, where models without WP demonstrate a strong propensity to misidentify the images
when these images exhibit similar patterns as those in other classes. To verify that WP is indeed
learning to recognize more informative features, we visually plot the activation maps of all the
models trained on Shortcut-CIFAR100. Figure 1 (b) provably demonstrates the effectiveness of
WP in combating shortcut learning. After training on Shortcut-CIFAR100, the model without WP
would drawn in the small block in the upper left corner while applying WP helps the model focus
on more discriminative features. We also include spectral decoupling regularization (Pezeshki et al.,
2020) and LfF (Nam et al., 2020) as comparisons. Both SD and LfF could improve the model’s
generalization ability (higher accuracy on Shortcuf-CIFAR100), but SD fails dramatically on getting
over shortcut decision rule. 2 In short, these results of this conceptual experiment answer the first
question positively and manifest the ability of WP to restrain the excessive reliance on dominant
patterns when classifying.

2We hypothesis that such phenomenon would be relieved if we use the advanced variant of SD that im-
poses penalty separately for each class. But in this case(100 classes), it would entails a massive increase of
hyperparameters (at least 100).
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Regarding the second question, it is tempting to expect that there would be one or more ideal images
that not only do not belong to the distribution of training data, but also are able to detect all the
unintended dominant patterns. Alas, to precisely find such images require us knowing which patterns
CNNs rely on, which is hard because patterns do not appear in a form amenable to discover . . .
so, not a viable option. Intriguingly, over all the alternative option, the solution with the white
paper works best. As in Figure 2, four candidates were evaluated, namely “Gaussian Noise”, “Ice-
cream”, “CIFAR-10”, and “White Paper”. We keep all the other implementation details unchanged
and merely modified the images while training ResNet-56 on CIFAR-100. Specifically, “Gaussian
Noise” experiments represent that we changed the white papers into images sampled from a standard
normal distribution. “Ice-cream” denotes the whole ice-cream class of images from ImageNet while
“CIFAR-10” denotes that all the images from CIFAR-10 were used for detection. Extensive details
to facilitate replication are provided in the Appendix.C

73.0 73.5 74.0 74.5 75.0
Top-1 Accuracy(%)

White Paper

CIFAR10

Ice-cream

Gaussian Noise

Vanilla

Figure 2: Effects of different types of
images used in our scheme. The white
paper outperforms the other solutions.

Even with noise-generated images, there is still a performance
boost over the vanilla model. Then with the increasing num-
ber of real-world images, the performances get higher. But
white paper outperforms all the other solution. A possible ex-
planation for this might be that the uninformative nature of
the white paper seems to make it more suitable for detect-
ing spurious dominant patterns, since the lack of semantics
itself means no bias towards any pattern. Just like coloring
on this white paper, the extent to which some pattern plays a
dominant role for a class will be shown on the output distri-
bution of the white paper. We also want to note that all the
alternatives outperform the vanilla setting, indicating that the
effectiveness of the whole detect-and-conquer practice.

4 HOW DOES WHITE PAPER ASSISTANCE WORK?

After introducing our method, we then move on to a series of experiments used to glean insights on
the behavior of the White Paper Assistance.

What does the training with White Paper Assistance look like? Analysis on the trend of train-
ing and testing accuracy is of vital importance to understand the effect of a method. Figure 3 (a)
and (b) characterize the change of training and testing accuracy across epochs during training with
and without WP. Note that we set P = 1, namely WP was steadily conducted after each epoch of
real images training. Compared with its counterpart, training with WP exhibits a slower increasing
trend on training accuracy, demonstrating that our approach helps suppress model from overusing
shortcuts that could rapidly improve the generalization on training data otherwise. Even though the
training error can both reach zero regardless of the use of our approach, training with WP achieves
a significant performance boost on testing data, demonstrating better generalization ability. Not
only that, the use of WP on the later stage of training can still provide further improvement with
the model, as evident from the fact that training with WP achieves its best performance after epoch
225.3

It is still worth noting that after each time we conducted multiple iterations of white paper training,
the testing accuracy would fall dramatically to around 1%. It is as if the model was guessing wildly
at all the testing data. But when we moved on and fed real images, both the training and testing
accuracy would restore and continue to rise (as seen from the continuous curves of both training and
testing accuracy in Figure 3 (a) and (b)), as if the model was not affected by what just happened.
Does the state of model performing random guess is a bad sign? Does this mean that White Paper
Assistance is harmful? What happened with the model? Why would the accuracy could be restored?
We will devote the next part to analyse the causes of it.

Is white paper training harmful to the model? The ultimate goal of training is to find better
parameters of the model. To delve deeper into WP, we turn our attention to parameter changes.

3In this case, we decay the learning rate by factor 0.1 at epochs 150, 225. The training after epoch 225 often
suffers from severe overfitting so that it fails to achieve further improvement.
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Figure 3: Behavior of White Paper Assistance: (a, b) The evolution of training/testing accuracy
when training ResNet-110 with and without WP. (c) Changes in parameters of real images training
and white paper training. We use L1 distance to measure the changes of parameters on the final
convolutional layer of ResNet-110 when training WP with P = 1. (d) Parameter distributions before
and after White Paper Assistance was conducted. This change happened on the final convolutional
layer of ResNet-110 at epoch 100. More results of changes or distributions on other layers are
present in Appendix.D.

First, we need to figure out which part of the model is more affected. A trained ResNet-56 F(θ) that
has achieved 73.51% accuracy on CIFAR-100 was picked. We use C and f to denote the parameters
of the projection head (i.e. all the convolutional layers) and the classification head (i.e. the last fully-
connected layer) at this moment, respectively. Then, WP was applied on F(θ) and we observed the
performance dropping to 1%. Let F(θ̃), C̃ and f̃ to denote the parameters of the whole network,
the projection head and the classification head at this moment, respectively. To determine which
part is more affected, we combined C with f̃ and combined C̃ with f . As shown in Figure 4, for
F(θ), if we replaced its classification head, the accuracy changed little (73.51%→ 73.4%), whereas
the accuracy would drop dramatically (73.51%→ 1%) when we replaced its projection head. These
observations suggest that the modifications of WP mainly happen on the projection head, rather than
the classification head. Similar conclusion could be drawn from F(θ̃).

Figure 4: Illustration of how we determine which part is more affected by WP. We also extend this
experiment to other models in Appendix.D.

Then we turn to quantitatively measure the changes of parameters due to our method. Since white
paper training and real images training alternately appear when P = 1, we plot the changes of
parameters using L1(mean absolute error) distance with respect to the epoch. In Figure 3 (c), we
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observe that changes brought by white paper training are smaller compared to real images training.
Figure 3 (d) depicts the distributions of the last convolutional layer’s parameter of ResNet-110 before
and after the white paper training at certain epoch. It can be seen that our approach is actually
disturbing rather than devastating the distributions of parameters. We believe the fact that the model
has not been completely devastated proves that White Paper Assistance does not damage the model,
and could explain why the accuracy could be rapidly restored. In addition, these results are strong
proof that CNNs are vulnerable – slight perturbations of parameters could bring down the whole
generalization ability of the model, or at least it seems that way.

5 DOES WHITE PAPER ASSISTANCE PERFORM BETTER?

The section below shows the experimental results to prove that applying White Paper Assistance
results in better performance. All experiments are implemented using Pytorch on 4×GTX1080Ti. If
not specified, all experimental results reported are averaged over 4 runs. Being limited to the space,
we supplement the implementation details in Appendix.E.

5.1 CLASSIFICATION

White Paper Assistance performs better across different model architectures. As discussed
before, White Paper Assistance enjoys a “plug-and-play” property, namely it can be directly amend-
able to almost any CNNs without any changes needed on the network architecture. To prove it from
an empirical standpoint, several different architectures were used to evaluate the effectiveness of our
approach, namely, ResNet (He et al., 2016), SeNet (Hu et al., 2018), Wide ResNet (Zagoruyko & Ko-
modakis, 2016), PyramidNet (Han et al., 2017), DenseNet (Huang et al., 2017), and ResNext (Xie
et al., 2017). All the experiments were performed on CIFAR-100 (Krizhevsky, 2012), one of the
most extensively studied classification benchmark tasks. In Table 2, we observe that White Pa-
per Assistance consistently outperforms the baseline scheme. For example, our approach achieves
76.35% accuracy when applying Resnet-110 model, which is a 2% improvement over vanilla train-
ing. This wide applicability significantly promotes its value in practice and implies, once again,
that learning shortcut cues is a common problem that CNNs cannot easily get rid of without special
treatment like White Paper Assistance.

Table 2: Top-1 error rates(%) over different architectures.

Model w/o WP w/ WP

Resnet-110 25.65 ± 0.07 23.65 ± 0.10
Resnet-164 24.26 ± 0.06 22.89 ± 0.08

SeResNet-110 23.36 ± 0.09 22.37 ± 0.04

WRN-28-10 21.18 ± 0.01 19.80 ± 0.04

DenseNet-100-12 22.78 ± 0.07 22.02 ± 0.02

ResNext-29, 8×64 20.68 ± 0.16 19.41 ± 0.12

PyramidNet-110-270 18.62 ± 0.03 17.96 ± 0.08
PyramidNet-200-240 16.77 ± 0.07 16.13 ± 0.12

White Paper Assistance gives better performance on various benchmarks. We next performed
experiments with different benchmark datasets. The following benchmark datasets were used:
SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky, 2012), tiny-ImageNet, CUB-200-2011 (Wah
et al., 2011), StandfordDogs (Khosla et al., 2011), StandfordCars (Krause et al., 2013). As shown in
Table 3, White Paper Assistance leads to better error rates in all the cases. Such wide applicability
to datasets reveals that it is nearly impossible to create a shortcut-free dataset, which further proves
the importance of avoiding reliance on unintended shortcuts.

White Paper Assistance leads to further improvements over other techniques. In practical use,
it is common to use multiple techniques simultaneously in the hope of a higher boost on perfor-
mance. Thus it imposes very high demands in term of compatibility for a technique. With this in
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Table 3: Top-1 error rates(%) on different benchmark datasets.

Dataset Model w/o WP w/ WP

SVHN ResNet-110 3.57 ± 0.02 3.28 ± 0.01

CIFAR-10 ResNet-110 5.61 ± 0.07 4.94 ± 0.04

tiny-ImageNet ResNet-110 37.66 ± 0.18 35.58 ± 0.05

CUB ResNet-50 32.36 ± 0.18 28.65 ± 0.05

Standford Cars ResNet-50 12.12 ± 0.02 9.87 ± 0.12

Standford Dogs ResNet-50 38.79 ± 0.74 34.55 ± 0.82

mind, we then applied White Paper Assistance with several widely used techniques, Mixup (Zhang
et al., 2017), AutoAugment (Cubuk et al., 2018), FastAutoAugment(Lim et al., 2019), and Label
Smoothing (Szegedy et al., 2016) into ResNet-110. The experiments presented here are designed to
pinpoint the compatibility of WP. Consequently, we highlight that achieving state-of-the-art results
is not the objective. As reported in Table 4, our approach consistently makes further improvements,
which is reasonable as the training of white paper is independent of the training process of real
images.

Table 4: Top-1 error rates(%) over different techniques.

Method vanilla w/ WP

+ White Paper Assistance 23.65 ± 0.09 -

+ Mixup 22.13 ± 0.10 21.80 ± 0.23

+ AutoAugment 21.70 ± 0.03 21.12 ± 0.29
+ FastAutoAugment 22.46 ± 0.05 21.73 ± 0.15

+ Label Smoothing 24.68 ± 0.07 23.41 ± 0.07

5.2 IMBALANCED CLASSIFICATION

The benchmark datasets we use above all exhibit roughly uniform distributions of class labels.
But it is always prohibitively expensive to construct a real-world dataset with proper balance
among classes, which explains the long-tailed label distributions that most real-world large-scale
datasets (Cui et al., 2018; Gupta et al., 2019) have. On these datasets, a few dominant classes hold a
large number of samples while a few other classes only possess relatively few samples. Conceivably,
with the severe imbalance among the number of classes comes a severer imbalance among patterns,
where White Paper Assistance can help. To verify our conjecture, we created the long-tailed ver-
sion of CIFAR-10 and CIFAR-100 as (Cao et al., 2019), then validated the performance with and
without our approach. We also include a combination of our approach with two other specialized
approaches, CB-Focal (Cui et al., 2019) and LDAM (Cao et al., 2019). We strictly use the same
parameter settings of (Cao et al., 2019).

We report the top-1 validation errors of various methods and combinations for long-tailed CIFAR-
100 and CIFAR-10 in Table 5. We observe that White Paper Assistance alone can already improve
over the vanilla setting, and the combinations of our approach with CB-Focal and LDAM achieve
better performance gains, demonstrating both the versatility on imbalanced classification and the
compatibility with other techniques. Overall, these observations strengthen the idea that White
Paper Assistance is of great use to solve or alleviate this kind of pattern imbalance problems.

5.3 ROBUSTNESS

It is well known that the human vision system is not easily fooled by small changes in query images,
whereas existing deep learning models may exhibit dramatic performance decline (Hendrycks et al.,
2021). This proves again that the deep learning vision systems do not actually solve a task in the
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Table 5: Top-1 error rates(%) of ResNet-32 on long-tailed CIFAR-10 and CIFAR-100. The imbal-
ance ratio denotes the ratio between the numbers of samples of the most and least frequent classes.

Long-tailed CIFAR10 Long-tailed CIFAR100

Imbalance Ratio(Nmax/Nmin) 100 50 100 50

CE(Baseline) 28.71 ± 0.71 22.74 ± 0.05 61.24 ± 0.05 56.58 ± 0.09
CE(Baseline) + WP 27.68 ± 0.40 22.04 ± 0.18 60.15 ± 0.07 54.97 ± 0.11

CB-Focal 27.86 ± 0.16 23.34 ± 0.21 61.51 ± 0.20 56.28 ± 0.19
CB-Focal + WP 26.79 ± 0.07 22.26 ± 0.15 60.04 ± 0.04 55.11 ± 0.31

LDAM-DRW 22.59 ± 0.08 18.40 ± 0.15 57.43 ± 0.21 52.89 ± 0.51
LDAM-DRW + WP 21.15 ± 0.21 18.00 ± 0.23 55.13 ± 0.24 51.79 ± 0.09

way we intend them to, hence should be viewed as a symptom of models learning shortcuts. In or-
der to check whether White Paper Assistance alleviates the shortcut learning indeed, we evaluate the
robustness to common corruptions of our approach on tiny-ImageNet-C (Hendrycks & Dietterich,
2019). Specifically, we compare the classifiers’ performance with and without WP across five cor-
ruption severity levels on each type of given corruption. Since each model performs differently on
its own, each result was averaged by four runs. We have written the detailed calculations in the
Appendix.F.

The results are shown in Table 6. As expected, White Paper Assistance clearly improves baseline’s
robustness against all the corruptions universally. These consistent improvements imply the poten-
tial of our approach to generalize to other untested types of corruptions. It’s worth noting again that
these improvements are achieved solely through the help of the white paper, which is uninformative
and has no relationship with these noisy data. This suggests that our approach is indeed able to
improve the robustness, and therefore implies that White Paper Assistance can have an effect on
avoiding the excessive reliance of shortcuts.

Table 6: Corruption errors of tiny-ImageNet-C on different corruptions across five corruption sever-
ity levels. All metrics are top-1 error rates (for corrupted test sets, we average for 5-severity levels
in four runs on ResNet-110. Separate results in each run are provided in Appendix.F.).

NOISE BLUR WEATHER DIGITAL

Method mCE gaussian shot impulse defocus glass motion zoom snow frost fog brightness contrast elastic pixelate jpeg

w/o WP 78.32 83.18 79.62 81.72 86.74 84.27 80.83 84.65 78.12 74.62 74.73 69.86 88.71 75.81 64.44 67.54
w/ WP 75.87 82.12 77.83 80.44 84.29 82.77 78.08 81.87 75.31 72.00 72.23 65.98 87.32 72.82 61.29 63.80

6 CONCLUSION

In this paper, we propose an interesting method, called White Paper Assistance, used to alleviate
the excessive reliance of models on shortcut learning. Inspired by the common sense of the printer
test page, our framework utilizes the white paper to detect the unintended propensity for dominant
features that lack of generalization utility and then “debiases” the model by enforcing the model to
produce a uniform output distribution on the white paper. By adding synthetic shortcuts to the train-
ing data, we ensure that our approach can help remove shortcut features from the data and improve
the generalization ability. Besides, through extensive experiments, our method shows successful
results along three axes: classification, imbalanced classification and robustness. The wide appli-
cability, compatibility and versatility highlight the progress of our method in overcoming shortcut
learning, which thus should be viewed as a step forward towards a shortcut-free training, as we
claimed in the title.

We hope this study could facilitate the awareness for shortcut learning, and more importantly, open
up promising avenues towards fair, robust, trustworthy deep learning.

9
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a pytorch working example source code of our
method in supplementary materials. We will make this project open-source after the whole review
process. We also provide a implementation code of Shortcut-CIFAR100 and CIFAR99 if you are
interested.
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A MORE RESULTS ON CONCEPTUAL EXPERIMENTS

A.1 MORE CAM VISUALIZATIONS

For better understanding, we plot more examples on cam visualization here.

Figure 5: Supplementary cam visualizations on models trained on Shortcut-CIFAR100.

A.2 MORE EXPERIMENTS RESULTS

In the original experiments, we modified the first class in Shortcut-CIFAR100 and modified the other
99 class testing samples in CIFAR99. We extend this experiments by modifying the third class(fish).
Specifically, in the revised Shortcut-CIFAR100, only samples of the third class are modified. In the
revised CIFAR99, we held out the testing sample of the third class and revise all the testing samples
of the remaining 99 classes. The results are presented in the following table.

Table 7: Top-1 accuracy(%) on revised Shortcut-CIFAR100 and revised CIFAR99.

Model revised Shortcut-CIFAR100 revised CIFAR99

ResNet-56 63.57 25.55
ResNet-56 w/ WP 66.75 29.77
ResNet-56 w/ SD (Pezeshki et al., 2020) 62.76 6.69
ResNet-56 w/ LfF (Nam et al., 2020) 63.29 27.57

B MORE QUESTIONS ON DESIGNING WHITE PAPER ASSISTANCE

Q3. Why repeat the process for multiple iterations?

Regarding this question, we answer it with intuitive reasoning and empirical evidence. Intuitively, a
biased model cannot be perfectly amended with ease. Take “polishing” as a supportive example. The
removal of unintended oxidization requires polishing on the appearance of an item back and forth,
until a smoothing finish is accomplished. To verify the intuition, we conduct a controlled trial that
we kept P = 1 unchanged while modified M from 50 to 500. Aligned with our expectation, more
rounds of schemes lead to a better refinement in learning, which results in a better generalization
performance. Usually, we find that the performances often get the highest whenM is approximately
equal to the times real training images are trained per epoch, namely when the amount of training
on the white paper is compatible with the amount of training on the real images.
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Figure 6: Final test accuracy as a function of iterations that we repeat the process for. The shaded
areas represent the minimum and maximum results from 4 runs. Dashed dotted line denotes the
baseline accuracy. Our approach receives near optimal performances when the amounts of training
on white paper and real images are close to each other(In this case, the times of iteration of real
image training for one epoch are 391).

C EXPLANATIONS ON DIFFERENT TYPES OF IMAGES

Here we provide some further explanations on experiments regarding why choose using the white
paper. In these experiments, we kept all the scheme details unchanged but only modified the images
fed into the model(as in Algorithm 1, line 7).

Vanilla The baseline settings of training ResNet-56 on CIFAR-100.
Gaussian Noise Images randomly sampled from standard normal distribution.
Ice-cream Ice-cream images randomly sampled from ImageNet(Ice-cream class, n07614500).
CIFAR-10 Images sampled from CIFAR-10.

D MORE EXPERIMENTS EXPLORING BEHAVIOR OF WHITE PAPER
ASSISTANCE

To begin with, we extended the experiments in Figure 4 (that determine the part that White Paper
Assistance has more effect on) to other models. Two models were used to further demonstrate that
White Paper Assistance mainly modifies the projection head and has little effect on the classification
head of models(Table 8).

Table 8: Results on other architectures to suggest that the modifications of White Paper Assistance
mainly happens on the convolutional layers.

Model Original After White Paper Training Combination #1 Combination #2
C + f C̃ + f̃ C + f̃ C̃ + f

ResNet-110 74.18% 1.13% 74.26% 1.10%
Pyramid-110-270 81.31% 1.00% 81.30% 1.00%

In Section 5, we still report that White Paper Assistance would incur smaller changes in parameters
and such changes would not devastate the inhere parameter distributions. The observations happen
on the last convolutional layer of ResNet-110. Here we present more results about the changes and
parameter distributions on other layers in Figure 7.

E IMPLEMENTATION DETAILS

We describe the training implementation settings in detail.
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Figure 7: Behavior of White Paper Assistance on other convolutional layer (a,b) Changes in pa-
rameters of real images training and white paper training on other convolutional layers. The shaded
areas indicate the standard deviations across 4 independent trails. (c,d) Parameter distributions be-
fore and after White Paper Assistance conducted on other convolutional layers of ResNet-110 at
epoch 100.

E.1 CLASSIFICATION

CIFAR-100 For ResNet, SeResNet and ResNext, we set the number of training epochs to 300. The
learning rate were set to 0.1 and was decaying by the factor of 0.1 at epoch 150 and 225. We used
SGD optimizer, and the minibatch size, momentum, weight decay were set to 128, 0.9, and 0.0001,
respectively. When training, we set P = 1, λ = 1.

For Wide ResNet, we changed the training epochs to 200. Then the learning rate was decaying by
the factor of 0.2 at epoch 60, 120, 160, respectively. When training, we set P = 1, λ = 0.5.

For DenseNet, we changed the mini-batch size to 64 following the common practice. When training,
we set P = 1, λ = 1.

For PyramidNet, the learning rate rose to 0.25 and we set P = 1, λ = 0.5 when training.

For all the experiments on CIFAR-100, we adopted the standard data augmentation techniques in-
cluding Horizontal Flipping and Random Cropping.

CIFAR-10 We adopted the same training strategy as on CIFAR100.

SVHN We held all the hyper-parameters unchanged but did not adopt any data augmentation
techniques. When training, we set P = 1, λ = 0.1.

tiny-ImageNet We adopted the same training strategy as on CIFAR100 except that we changed the
mini-batch size to 256.
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On fine-grained benchmark datasets, we trained ResNet-50 from scratch and set the training epochs
to 300 to ensure convergence. The learning rate was set to 0.1 and decayed by 0.1 at epoch 150, 225.
The mini-batch size, momentum, and weight decay were set to 16, 0.9, and 0.0001, respectively. The
following contents move on to discuss the data augmentation techniques we used.

CUB-200-2011 and Standford Cars For these two datasets, we first resized images to 600 × 600
and cropped them to 448× 448. Then we adopted the Random Horizontal Flipping.

Standford Dogs For the Standford Dogs, we resized images to 256 × 256 and cropped them to
224× 224. Then we also adopted the Random Horizontal Flipping.

Combinations on CIFAR-100 When combined with Mixup, we set P = 1, λ = 1. For Au-
toaugment, we adopted the implementation of publicly available code.4. When training, we set
P = 1, λ = 1.5. For FastAutoaugment, we adopted the implementation of publicly available
code 5 and set P = 1, λ = 1. For label smooth, we set the smoothing parameter to 0.1 and set
P = 1, λ = 1.

E.2 IMBALANCED CLASSIFICATION

Both Long-tailed CIFAR-100 and CIFAR-10 follow an exponential decay in sample size across
different clasess. The ratio ρ is used to denote the ratio between sample sizes of the most frequent
and least frequent class. Figure 8 depicts the sample distributions of Long-tailed CIFAR-100.
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Figure 8: Number of training examples per class in Long-tailed CIFAR-100.

For implementation details, we adopted the same setting as those suggested in (Cao et al., 2019).6

F METRICS AND COMPREHENSIVE RESULTS ON ROBUSTNESS

To evaluate the performance of White Paper Assistance on robustness to common corruptions, we
refer to the metrics used in tiny-ImageNet-C. Specifically, when evaluating performances of base-
lines, we took four trained classifiers f trained with vanilla settings. Then we tested the classifier on
each corruption type c at each level of severity s ∈ {1, 2, 3, 4, 5}. We used Ef

s,c to denote the top-1
error rates. Then the average corruption error of all baseline models in corruption c should be:

CEc =
1

4× 5

4∑
f=1

5∑
s=1

Ef
s,c (2)

Then we aggregated all the CEc to compute the mean corruption error values to all the corruption:

mCE =
1

15

15∑
c=1

CEc =
1

4× 5× 15

15∑
c=1

4∑
f=1

5∑
s=1

Ef
s,c (3)

4https://github.com/DeepVoltaire/AutoAugment/blob/master/autoaugment.py
5https://github.com/ildoonet/cutmix/blob/master/autoaug/archive.py
6https://github.com/kaidic/LDAM-DRW
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Here, we report the results of all the models tested in Table 9.

Table 9: Comprehensive corruption error results of baseline and White Paper Assistance on single
model. “Clean” here denote the top-1 error rate of the model on the clean version of tiny-ImageNet.

NOISE BLUR WEATHER DIGITAL

Model Clean avgCE gaussian shot impulse defocus glass motion zoom snow frost fog brightness contrast elastic pixelate jpeg

ResNet-110 37.41 77.29 82.03 77.89 81.07 86.28 83.91 79.92 83.91 77.05 72.83 73.29 69.23 87.70 75.32 62.31 66.68
ResNet-110 37.21 78.41 84.16 80.99 81.85 85.84 83.97 80.27 83.56 78.72 75.51 75.16 69.13 88.97 75.35 64.96 67.75
ResNet-110 37.90 78.76 83.01 79.60 81.85 87.18 84.29 81.52 85.53 78.51 74.85 74.07 70.95 88.56 76.53 66.37 68.63
ResNet-110 38.11 78.81 83.50 79.98 82.10 87.67 84.90 81.60 85.60 78.18 75.28 76.38 70.14 89.60 76.05 64.11 67.08

ResNet-110+WP 35.39 76.01 81.08 76.86 80.00 85.16 82.78 79.41 82.90 74.85 72.31 73.09 66.74 87.63 73.14 60.73 63.44
ResNet-110+WP 35.60 75.66 82.84 78.58 80.38 83.34 82.55 76.86 80.69 75.37 71.43 71.92 66.05 87.65 72.45 61.12 63.70
ResNet-110+WP 35.76 76.28 82.77 78.08 81.56 84.73 83.24 78.36 82.06 76.17 72.73 72.55 65.57 87.12 72.32 61.27 64.64
ResNet-110+WP 35.56 75.55 81.80 77.78 79.81 83.91 82.50 77.67 81.84 74.84 71.54 71.34 65.54 86.88 72.38 62.03 63.41

G EFFECTS OF PARAMETERS

We evaluated the effect of probability P and strength λ when training ResNet-56 in CIFAR-100
using the aforementioned settings. We first inspected the performances for different choices of
P ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}when λ = 1. Specifically, P = 0 denotes the baseline without applying
White Paper Assistance. In Figure 9 (a), we observe that White Paper Assistance consistently
achieves a performance boost even in a small participation rate. Then we turned our attention to
another hyper-parameter λ that also plays an important role during training. Here we tried different
choices with λ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8} while keeping P = 1. Figure 9 (b)
characterizes the evolution of performances on varying λ. The best performance can be achieved
when λ is set to 1.
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Figure 9: Effects of Probability P and Strength λ.
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