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Abstract

Accurately annotated image datasets are essential components for studying animal
behaviors from their poses. Compared to the number of species we know and may ex-
ist, the existing labeled pose datasets cover only a small portion of them, while building
comprehensive large-scale datasets is prohibitively expensive. Here, we present a very
data efficient strategy targeted for pose estimation in quadrupeds that requires only a
small amount of real images from the target animal. It is confirmed that fine-tuning a
backbone network with pretrained weights on generic image datasets such as ImageNet
can mitigate the high demand for target animal pose data and shorten the training time
by learning the the prior knowledge of object segmentation and keypoint estimation in
advance. However, when faced with serious data scarcity (i.e., < 102 real images), the
model performance stays unsatisfactory, particularly for limbs with considerable flexibil-
ity and several comparable parts. We therefore introduce a prior-aware synthetic animal
data generation pipeline called PASyn to augment the animal pose data essential for ro-
bust pose estimation. PASyn generates a probabilistically-valid synthetic pose dataset,
SynAP, through training a variational generative model on several animated 3D animal
models. In addition, a style transfer strategy is utilized to blend the synthetic animal
image into the real backgrounds. We evaluate the improvement made by our approach
with three popular backbone networks and test their pose estimation accuracy on publicly
available animal pose images as well as collected from real animals in a zoo1.

1 Introduction
The research on animal pose estimation has grown in recent years, covering 2D/3D pose es-
timation, animal model recovery, and multi-animal pose estimation [13, 15, 16, 27, 29]. The
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1The SynAP dataset and PASyn code is available at https://github.com/ostadabbas/Prior-aware-Synthetic-Data-
Generation-PASyn-.

Citation
Citation
{Li and Lee} 2021

Citation
Citation
{Mathis, Biasi, Schneider, Yuksekgonul, Rogers, Bethge, and Mathis} 2021

Citation
Citation
{Mu, Qiu, Hager, and Yuille} 2020

Citation
Citation
{Yu, Xu, Zhang, Zhao, Guan, and Tao} 2021

Citation
Citation
{Zuffi, Kanazawa, Berger-Wolf, and Black} 2019

https://github.com/ostadabbas/Prior-aware-Synthetic-Data-Generation-PASyn-
https://github.com/ostadabbas/Prior-aware-Synthetic-Data-Generation-PASyn-


2 JIANG ET AL.,: PRIOR-AWARE SYNTHETIC DATA TO THE RESCUE

Figure 1: The outcome samples show the effect of model trained with or without synthetic
animal pose (SynAP) dataset. The left side is the pose estimation results based on the
DeepLabCut [15] pre-trained on ImageNet and fine-tuned by 99 real animal images and
the right side shows the results of the same model when trained on the same amount of real
images in addition to our SynAP dataset. Wrong predictions are marked by red cross.

makeup of the available training sets for the animal pose estimation models divides the study
into two branches. The first proposes training the model with significant amounts of labeled
real data of a single species. The other one is based on a small amount of real data of a target
animal and more data from other adjacent domains to make up for the data scarcity of the
target animal. Current data scarcity solution is centered around learning animals’ common
prior knowledge from large amounts of real data of similar species or even humans. Previ-
ous research has shown that quadrupeds, including humans, have similar appearances and
skeletons, and that knowledge can be shared [2, 17, 20]. This method is easier to implement
after the largest labeled dataset for general animal pose estimation, AP10K [27], was made
publicly available in 2021. However, there are restrictions imposed by pose label divergence
and the high cost of customization in the existing datasets. In contrast to human, there are
huge varieties between animals with different length of bones, number of joints, and extra
body parts. Large animal datasets with uniform labeling may leave out the special needs of
researchers looking for creatures with unique physical traits.

Synthetic data is another potential choice of adjacent domain for the target animal when
aiming for both "inexpensive" and "personalization" aspects. Once the synthetic animal
model is built, the label can be defined on the target model and annotating pose data becomes
considerably faster and less expensive. In addition to synthetic data, previous works [14,
27] have proven that the backbone networks pre-trained on large general datasets such as
ImageNet [6] will gain the prior of object segmentation and keypoint prediction. Thus,
training even with few frames from the target leads to a high precision pose prediction.
However, when there are far fewer images of the target available (e.g. less than 100), the
size of the training set is insufficient for a robust model fine-tuning. The accuracy of the
model would decrease significantly when facing more actions from free-ranging behaviors,
more self or environmental occlusions, and changes in the environment, textures, and shapes.
Fig. 1 shows that how EfficientNet-B6 [15] pre-trained on ImageNet and fine-tuned by 99
real animal images is error prone when tested on the images in the wild.

To account for severe data scarcity and guarantee a high degree of label personalization,
we present a cost-effective and generic prior-aware synthetic data generation pipeline, called
PASyn, for animals pose estimation tasks. In short, this paper contributions are: (1) design-
ing a novel variational autoencoder (VAE)-based synthetic animal data generation pipeline
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to generate probabilistically-valid pose data and verifying its performance on several animal
pose test sets; (2) blending the synthetic animal images into real backgrounds through style
transfer to mitigate the inconsistency between synthetic and real domains; and (3) building
a synthetic animal pose (SynAP) dataset through PASyn, containing 3,000 zebra images and
extending it with the 3,600 images of six common quadrupeds including, cows, dogs, sheep,
deer, giraffes, and horses to make SynAP+ dataset; and (4) releasing a new pose-labeled
dataset of mountain zebras in zoo.

2 Related Works

It has been almost ten years since the early animal pose estimation work introduced in [23].
Yet, the performance of these models is still far inferior to the human pose estimation in
terms of accuracy, cross-domain adaptation, and model robustness. This is mainly due to a
lack of real-world data, which is the challenge for almost all animal pose estimation work.

2.1 Animal Pose Estimation with Label Scarcity

The most common statement in animal pose estimation articles is the lack of labeled dataset
for training, which has been mentioned in many works [2, 9, 13, 14, 16, 26]. Numerable
variety of species and subspecies, and considerable differences in physical characteristics
and behavior patterns between them cause it difficult to form a labeled dataset with adequate
samples. The cross-domain adaptation challenge exacerbates the situation. For each new
animal, it is necessary to collect data from scratch and label them, since it is insufficient to
learn the prior knowledge exclusively from the data of other animals. [2] proposed a cross-
domain adaptive method and a large multi-species dataset, Animal-Pose [12] to learn the
shared feature space between human and animals, in order to transfer the prior knowledge
between them. [27] built their own large multi-species dataset, called AP10k [27] in order to
train a robust and cross-domain model. However, both models are still unable to achieve the
same level of pose prediction as animals in-domain when facing unseen species.

2.2 Animal Pose Estimation with Synthetic Data

Synthetic data is a promising substitute for real data in previous works. Coarse prior can be
learnt and then it would be used to build pseudo-labels for enormous amounts of unlabeled
real animal data [13, 16]. The fly in the ointment is that works such as [13, 16] still use
significant amounts of real data (such as TigDog dataset [19]) in training, which may not
be possible to access for the unseen species. The work in [28], which focuses on animal
model recovery, also gives an extraordinary hint on this problem. It purposed a general 3D
animal model (called SMAL) by learning the animal toys’ scan, and use the SMAL model
and a few real pictures to generate a large amount of realistic synthetic data by adjusting the
model’s texture, shape, pose, background, camera, and other parameters. They also trained
an end-to-end network [29] using only synthetic Grevy’s zebra data, which came from direct
reconstruction from animal 2D images. However, their results are much worse than the
current state-of-the-art in terms of 2D animal pose estimation.
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Figure 2: An overview architecture of our prior-aware synthetic data generation (PASyn)
pipeline, composed of three parts: pose augmentation, domain transfer and dataset genera-
tion. The PASyn pipeline leads to generation of our probabilistically-valid synthetic animal
pose (SynAP) dataset.

2.3 Domain Gap between Real and Synthetic
Although synthetic data has advantages in terms of cost, it still faces the problem of fatal
domain gap with the real data, which is even challenging to alleviate by current domain
adaptation methods [8]. Pasting synthetic animal directly to the real background will re-
sult in the strong incongruity, mainly from the difference in projection, brightness, contrast,
saturation, etc., between the two images. This incongruity can lead to excessive domain
differences between synthetic and real data. Besides, to increase the texture diversity of syn-
thetic animals to enhance the appearance robustness of the model, a common approach is to
assign the synthetic data random textures from ImageNet. However, this further increases
the discrepancy between synthetic and real domains and thus weakens the improvement of
synthetic data in joint training of pose estimation tasks. The approach to increase model
robustness and reduce domain variance by style transfer has been applied in medicine [25],
monocular depth estimation [1], person re-identification [4]. We, therefore, adopt style trans-
fer to alleviate the domain gap between the synthetic animal and the real background while
increasing the texture diversity of the synthetic animal.

3 PASyn Pipeline: Prior-Aware Synthetic Data
Generation

Our proposed prior-aware synthetic data generation (PASyn) pipeline enables robust animal
pose estimation under severe data scarcity and label divergence. The architecture of PASyn
is shown in Fig. 2, where we employ a graphic engine (i.e., Blender) to render the 3D animal
mesh into synthetic images. PASyn pipeline is composed of 3 key components: (1) pose data
augmentation, (2) synthetic data stylization, and (3) synthetic animal pose image dataset
generation. The details are presented in the following subsections. This paper presents
PASyn with a working example of zebra as its target animal for pose estimation.

3.1 Capturing Animal Pose Prior
The sample results in Fig. 1 show that when the real data of the target animal is insufficient,
the prior knowledge of their pose can be learned from an ingeniously designed synthetic
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Figure 3: General quadruped armature. (a) shows the real skeletons of horse (bottom) and
dog (top) respectively. (b) shows the artificially designed animal skeleton based on the real
one. The red box marks the skeleton of limbs which we are interested in. (c) shows the
skeleton of limbs. In (d), v1 and v2 represent the spatial orientation of two adjacent bones.
The angle between the vectors is the angle between the two bones.

dataset. To learn the animal pose priors, we refer to the variational autoencoder (VAE)
framework. VAE has already been proven to be conducive to human pose priors learning
[18], when it is trained on large-scale 3D human pose datasets. However, appropriate 3D
datasets cannot be easily obtained for animal pose studies. Therefore, we feed several ani-
mated low-poly 3D animal models (inexpensively purchased from the CGTrader [3]) to the
VAE to learn the probabilistic distribution of the feasible poses. Then, the trained VAE serves
as a generative model to create thousands of new poses which are used to rig the template
animal meshes in Blender. As seen in Fig. 3(a), the quadrupeds like horses and dogs are
similar in their skeleton. Due to the similarity across quadrupeds, the structure Fig. 3(b) is
applicable to learning general animal pose priors. Also, considering legs’ considerable flex-
ibility, we only focus on learning the priors of the legs in this work to simplify the model. In
order to minimize the influence of skeleton sizes or bone lengths on training, angles between
neighboring bones (12 of them) shown in Fig. 3(c) are chosen as primary data for training
animal leg pose priors.

Our network follows the basic VAE process, including input, encoder, random sampling,
decoder, and output as demonstrated in Fig. 4. A ∈ R36 is a 1× 36 vector containing the
angles between 12 pairs of adjacent bones, and each space angle is decomposed into three
directions, and Â is a vector of the same shape representing the generated angles as the model
output. The role of the encoder which is composed of dense layers with rectified linear
unit (ReLU) activations is to calculate the mean µ and variance σ of the network input.
We use the reparameterization trick to randomly sample z in latent space Z ∈ R16, where
z = µ + ε ×σ and e satisfies the distribution in the shape of N (0, I). Finally, the decoder
which has a mirror structure of encoder is used to reconstruct the set of space angle, and make
the reconstruction results Â as close to A as possible. Considering that one infeasible angle
can ruin an entire pose, during the pre-test, we first assign random sampling from a normal
distribution to the variable z, and then we create the histograms of the 12 joint angles with
enough Â (≈10,000 poses). Based on the statistical results, we can establish the sampling
range for each angle. Each range is designed to remove the small amount of angles, which
are far from the mean value, and all of the ranges are recorded. After the pre-test, when we
generate the new poses, a ‘pose filter’ serves to remove the pose Â as long as one of the 12
angles is outside these specified ranges and finally produce the refined poses Â′. We can also
obtain poses with higher diversity by increasing the variance of the sampling distribution

Citation
Citation
{Pavlakos, Choutas, Ghorbani, Bolkart, Osman, Tzionas, and Black} 2019

Citation
Citation
{CGTrader} 2022



6 JIANG ET AL.,: PRIOR-AWARE SYNTHETIC DATA TO THE RESCUE

Figure 4: An overview architecture of our VAE-based animal pose generative model, com-
posed of two main parts: training (blue-dot box) and test (green-dot box). Before we run
“test” to generate new poses, pre-test (brown-dot box) should be performed independently
to specify the sampling value ranges for each angles in the ‘pose filter’.

after determining the pose filter. The training loss of the VAE is:

Ltotal = w1LKL +w2Lrec,

LKL = KL(q(z|A)||N (0, I)), and Lrec = ∥A− Â∥2
2, (1)

where wi is the weight of each loss term. The Kullback-Leibler term, LKL, represent the
divergence between the encoder’s distribution q(z|A) and N (0, I)). Lrec is the reconstruction
term. LKL encourages a normal distribution noise while Lrec, in contrast, encourages to
reconstruct the A without any divergence.

3.2 Stylization: Blending into the Background

As shown in Fig. 2, we use the large number of new synthetic poses obtained through VAE
to rig the 3D zebra meshes and enrich synthetic data through changing the ambient light and
camera angles. Then, we assign a real (and context-related) background to each rendered
zebra. To alleviate the domain gap between the background image Isty (style) and synthetic
animal image Icont (content), while increasing the texture diversity of the synthetic animal we
employ a style transfer technique. Unlike common convolution-only style transfer methods,
we adopt an innovative image style transfer method, called StyTr2 [7] based on multi-layer
transformers. The Isty and Icont images are segmented into patches to generate feature embed-
ding and eventually formed encoded content sequence by adding positional embedding for
each patch. This process is calculated through the content-aware positional encoding based
on the semantics of the image content, thereby eliminating the negative effect of scaling on
the spatial relationship between patches. Two transformers are applied to encode the content
sequence and style sequence, respectively. Then, a transformer decoder is utilized to de-
code the encoded content sequence according to the encoded style sequence in a regressive
fashion. Finally a convolution-based decoder is used to decode the output sequence, con-
sisting of a linear combination of encoded content and style sequence as well as positional
embedding, to obtain the stylized content image Isty

cont . Due to strong representation ability of
transformers, this method can better capture accurate content representations and avoid loss
of details than classical methods.

However, StyTr2 cannot freely adjust the intensity of style transfer, unlike the adaptive
instance normalization (AdaIN) [11]. Besides StyTr2, we also perform a simple pixel sum-
mation with normalization of the stylized synthetic animal data with the original data to
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control the intensity of style transfer with the fusion rate α . The final stylized synthetic
animal image is formulated as I f inal

cont = (1−α)Icont +αIsty
cont .

3.3 Creating Synthetic Animal Pose (SynAP) Dataset

Synthetic Animal Pose (SynAP) dataset contains 3,000 synthetic zebra images generated by
our prior-aware synthetic animal (PASyn) pipeline. Since zebra was selected as the main
species for quantitative evaluation in this work, we collected 5 zebra toys and textured zebra
3D models and synthesized the images from these models with Blender. 3D synthetic model
generation pipeline (3D-SMG) introduced in [24] was used to reconstruct two models from
zebra toys, while the remaining 3 are adapted from 3D models. In addition to SynAP, which
only contains zebra data, SynAP+ extends the SynAP with 3,600 images of 6 other animals,
including horses, cows, sheep, dogs, giraffes and deer. We purchased one textured 3D model
for each animal from a 3D model website, CGTrader and rendered 600 images for each of
the aforementioned animals. The VAE model generates the animal pose in each image and
300 grass, savanna, and forest real scenes are collected from Internet to stylize the synthetic
animal. The annotations will be automatically created with each image through calculating
the coordinates of each zebra joint in the pose using bone vector transformations.

4 Experimental Analysis

We first describe implementation details of PASyn pipeline and different backbone models
which we use to prove its effectiveness in animal pose estimation. In order to achieve a
high prediction accuracy on an “unseen” animal in the existing labeled dataset with only a
small amount of real data available, we select zebra as the main animal to verify the general
effect of our PASyn pipeline on different models and quantify the result with the metric,
PCK@0.05. we also perform an ablation study on each part of PASyn pipeline and finally
show our model’s generalization capacity on different species including deer, cows, dogs,
sheep, horses, and giraffes.

4.1 Implementation Details

PASyn Pipeline: We keep the setting in VPoser [18] for training the VAE model. The
learning rate of Adam optimizer is 0.001 and we set w1 and w2 which are the weights of
LKL and Lrec in Equation (1), as 0.005 and 0.01, respectively. The model is trained on 1,000
poses of animated realistic 3D models for 250 epochs with 128 poses in a batch. The training
poses are extracted from the animated horse, dog, sheep, cow, and deer 3D models. Each
of these animals has over 20 common actions designed by 3D animators, such as running,
walking, and jumping. To increase the diversity of the poses, we choose to generate random
samples from a Gaussian distribution N (0,2I). The sampling value range of the pose filter
will be described in the 4.2. For our domain transfer part, we use the pre-trained transformer
decoder provided by [7] and set the fusion rate as 0.5.
Backbone Pose Models: We employ several state-of-the-art pose estimation structures with
varying complexity as our backbone networks, including the ResNet-50 and HRNet-W32
of AP10K [27] and EfficientNet-B6 of DeepLabCut [14] to reflect the general effect of our
PASyn pipeline. All of the backbones are pre-trained on ImageNet [6].
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Figure 5: The histograms of angle values of 12 joints, which are shoulder_right, elbow_right,
front-paw_right, shoulder_left, elbow_left , front-paw_left, hip_right, knee_right, back-
paw_right, hip_left, knee_left , back-paw_left.

4.2 Pose Filter

Based on the Fig. 5, which is made by decoding of 10,000 random samples from a normal
Gaussian distribution, we can set a special sampling range for each joint. The angle value
within this range can be regarded as a valid angle, and the pose that satisfies the twelve
ranges can be seen as an appropriate pose. These ranges are shoulder_right [40, 100], el-
bow_right [-125, 0], front-paw_right [-25, 100], shoulder_left [40, 100], elbow_left [-125,
0], front-paw_left [-25, 100], hip_right [-120, -60], knee_right [0, 80], back-paw_right [-
125, 0], hip_left [-120, -60], knee_left [0, 80], back-paw_left [-125, 0]. In order to increase
the variety of poses and generate more poses with angles near the boundary, we choose to
generate random samples from a Gaussian distribution N (0,2I) after setting the pose filter.
The dropout rate of the pose is 68.0%.

4.3 Evaluation Datasets

Zebra-300 Dataset is the primary test set we use. It contains 40 images from the AP10K
test set, 160 unlabeled images randomly selected from AP10K, and 100 images from the
Grevy’s zebra dataset [29]. We labeled the images of the latter two according to the AP10K
dataset. The images in Zebra-300 dataset are mostly taken in the wild, so the environment
occlusion makes the pose estimation task challenging.
Zoo Zebra Dataset is made up of pictures and videos we took at a zoo. The dataset contains
100 zebra images, including 2 different mountain zebra individuals. We performed manual
animal pose labeling on the cropped and resized images following the label setting of the
AP10K dataset. Each label has 17 key points: nose, eyes, neck, shoulders, elbows, front
paws, hips, knees, back paws and root of tail. The occlusion of barbed wire makes this
dataset more challenging. We will release this dataset along with the paper.
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Table 1: The effect of SynAP with limited real data of pose estimation results of three
common backbones, HRNet-w32 [21], EfficientNet-B6 [22], and ResNet-50 [10] tested on
Zebra-300 (300 real images). The training set contains only 99 real zebra images (from
AP10K) and augmented with SynAP (3000 synthetic zebra images) or SynAP+ (3000 zebra
and 2000 other animal synthetic images). Best results for each backbone are shown in bold.

Method Backbone Training Set PCK@0.05 Pose Estimation Accuracy on Zebra-300 Set
Eye Nose Neck Shoulders Elbows F-Paws Hips Knees B-Paws RoT Average

MMPose [5] HRNet-w32
R(99) 97.3 95.8 83.2 78.8 77.1 62.6 86.0 74.9 59.8 82.4 78.7
R(99)+ S(3K) 97.8 98.3 81.1 94.0 93.5 92.0 93.7 93.5 89.0 87.6 92.4
R(99)+ S(5K) 97.5 96.9 81.8 89.6 91.3 90.7 94.1 94.1 90.4 86.0 91.6

DeepLabCut [14] EfficientNet-B6
R(99) 93.7 96.2 82.5 91.4 80.8 67.4 88.1 84.5 71.8 83.2 83.6
R(99)+ S(3K) 95.1 97.9 81.5 90.1 83.3 75.5 93.2 89.3 83.9 86.8 87.6
R(99)+ S(5K) 94.1 92.6 80.8 90.8 87.0 85.7 90.5 93.3 88.3 86.8 89.2

MMPose [5] ResNet-50
R(99) 96.2 96.9 80.8 59.0 71.3 71.2 88.5 78.2 59.3 85.2 76.9
R(99)+ S(3K) 95.6 95.8 69.9 87.3 84.6 84.3 90.8 91.2 84.4 77.2 86.7
R(99)+ S(5K) 97.0 97.9 74.5 85.3 84.2 84.5 94.6 91.4 88.0 85.6 88.4

4.4 Pose Estimation Results
The number of real (R) and synthetic (S) data shown in training set in Table 1 means the total
number of images we used for model training. SynAP and SynAP+ are divided into training
and validation sets with a ratio of 7 to 1 as the AP10K setting. For real data, considering the
data scarcity, we divide it with a ratio of 4 to 1. From Table 1, we can clearly know that only
using 99 images for training is insufficient for any backbone network. The highest prediction
accuracy is 83.2%, reached by EfficientNet-B6. After adding SynAP to the training set,
the prediction results dramatically increase to around 90%. And after adding SynAP+ to
the training set, the accuracy is further improved. Among them, HRNet-w32 achieves the
highest accuracy of 92.4% when trained with SynAP.

Different animals show domain similarity and the possibility of mutual transfer learning,
which is proven in many works [2, 27]. Thus, we want to show that even if we don’t ignore
the existing labeled data, our SynAP dataset can still improve the prediction of the unseen
animals. Table 1 and Table 2 show that training the model with 99 zebra images and 8,000
images of the other animals can increase the average PCK from 78.7% to 91.4%. However,
Table 1 shows that even with only 99 real we are still able to surpass that result and reach
SOTA by adding SynAP and SynAP+. Moreover, Table 2 points that the performance of the
models trained with 8,000 real data in addition to SynAP or SynAP+ is further improved to
93.8% and 94.2%. When there is no target animal (i.e., zebra) in the training set, while the
state-of-the-art model suffers from this situation (accuracy drops to 78.3%), the model can
recover its performance if given the SynAP dataset, as Table 2 shows. This confirms that our
method can achieve high-precision prediction even for the unseen animals.

4.5 Ablation Study
As seen from Table 1, even if it is only trained on a small amount of real data, the model can
accurately predict the keypoints with apparent features and less flexibility, such as nose and
eyes. Various alternative candidate positions and large degrees of freedom of keypoints on
the limbs would considerably affect the prediction results. The main improvement brought
by SynAP and SynAP+ is the significant increase of the prediction of keypoints in animal
limbs. To verify that the VAE, StyTr2 models [7], and the higher variance of VAE sampling
distribution in our PASyn pipeline can mitigate the mismatching prediction of the limbs and
reduce the domain discrepancy between the real (R) and synthetic (S) domains, we test them
on the Zoo Zebra and Zebra-300 datasets. Table 3 shows the outcomes of eight experiments
(a-h) with various training conditions. When the model trained without VAE, we set the
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Table 2: The effect of SynAP with large real data on HRNet-w32 [21] tested on Zebra-300
(300 real images). The training set contains 8000 images from real animals (from AP10K)
and augmented with SynAP (3000 synthetic zebra images) or SynAP+ (3000 zebra and 2000
other animal synthetic images). We tested the results when the 8000 images contain 99 real
zebra inside them and when no zebra images is used. Please note that the HRNet-w32 model
trained on AP10K is the SOTA. Best results are shown in bold.

Training Set Real Zebra PCK@0.05 Pose Estimation Accuracy on Zebra-300 Set
Eye Nose Neck Shoulders Elbows F-Paws Hips Knees B-Paws RoT Average

R(8K) (SOTA)
✓

97.5 97.2 79.4 87.8 90.3 93.8 95.3 94.1 89.5 86.4 91.4
R(8K) + S(3K) 97.3 98.3 79.0 93.1 94.9 96.0 95.3 96.7 93.3 89.6 93.8
R(8K) + S(5K) 97.3 97.6 81.1 93.7 95.7 96.0 96.6 96.0 94.3 87.6 94.2
R(8K)

✗
79.7 87.7 37.4 77.6 80.0 87.6 82.0 86.4 81.3 67.2 78.3

R(8K) + S(3K) 94.8 96.2 67.1 90.8 87.9 90.2 87.6 91.6 89.7 77.6 88.2
R(8K) + S(5K) 97.5 96.2 66.1 91.6 89.5 93.8 93.9 93.5 91.1 77.6 90.2

Table 3: Ablation study on two parts of PASyn pipeline, VAE , style transfer and σ2 ran-
dom sampling distribution on two different zebra datasets with resolution of 300×300. The
HRNet-w32 is the backbone here. The training set contains 99 real zebra (from AP10K) and
augmented with SynAP (3000 synthetic zebra images). Best results are shown in bold.

Index Training Set VAE Style Transfer σ2 Zoo Zebra Set Zebra-300 Set
a R(99) ✗ ✗ ✗ 76.0 78.7
b S(3K) ✗ ✗ 2I 38.7 30.0
c S(3K) ✓ ✗ 2I 44.2 36.7
d S(3K) ✓ ✓ 2I 42.9 46.6
e R(99)+S(3K) ✗ ✗ 2I 89.8 88.0
f R(99)+S(3K) ✓ ✗ 2I 90.4 89.8
g R(99)+S(3K) ✓ ✓ I 90.5 91.1
h R(99)+S(3K) ✓ ✓ 2I 91.5 92.4

range according to the animal pose/animation data we have and uniformly sample the pose
data from this range, and conduct randomly sampling, similar to the method used in [16, 29].
We will keep the original texture of the model when StyTr2 is not used. The comparisons
of (b), (c), (d), and (e), (f), (h) clearly reflect that the model trained with both of VAE and
StyTr2 in our PASyn pipeline can achieve obviously higher accuracy than the model trained
without them. Moreover, the comparison of (g) and (h) shows how our designed value range
affects the prediction results. In (g), although VAE is used, we only choose to generate
random samples from a normal distribution N (0, I), and do not use the pose filter. On the
other hand, in (h), we increase the variance of the Gaussian distribution from 1 to 2 to enrich
the generated pose, and at the same time, we use the pose filter to filter out the poses with
extreme angles caused by increasing the variance. The experimental results also prove that
our proposed method is better than the traditional VAE strategy.

5 Conclusion
We presented a cost-effective and general prior-aware synthetic data generation pipeline
(PASyn) for animals pose studies that suffer from a severe data scarcity. A probabilistically-
valid variational generative model as well as a style transfer strategy are introduced to in-
crease the validity of the generated poses and to reduce the domain discrepancy between the
synthetic and real images. The positive effect of our synthetic animal pose dataset SynAP
and its extended version SynAP+ on pose estimation task of animals with a small amount of
real data is verified on different backbones and achieves state-of-the-art performance.
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