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Abstract

Chain-of-thought (CoT) prompting has been001
widely adopted to enhance the reasoning ca-002
pabilities of large language models (LLMs).003
However, the effectiveness of CoT reasoning is004
inconsistent across tasks with different reason-005
ing types. This work presents a novel perspec-006
tive to understand CoT behavior through the007
lens of confirmation bias in cognitive psychol-008
ogy. Specifically, we examine how model in-009
ternal beliefs, approximated by direct question-010
answering probabilities, affect both reasoning011
generation (Q → R) and reasoning-guided an-012
swer prediction (QR → A) in CoT. By decom-013
posing CoT into a two-stage process, we con-014
duct a thorough correlation analysis in model015
beliefs, rationale attributes, and stage-wise per-016
formance. Our results provide strong evidence017
of confirmation bias in LLMs, such that model018
beliefs not only skew the reasoning process but019
also influence how rationales are utilized for020
answer prediction. Furthermore, the interplay021
between task vulnerability to confirmation bias022
and the strength of beliefs also provides expla-023
nations for CoT effectiveness across reasoning024
tasks and models. Overall, this study provides a025
valuable insight for the needs of better prompt-026
ing strategies that mitigate confirmation bias to027
enhance reasoning performance.028

1 Introduction029

Chain-of-thought (CoT) prompting (Wei et al.,030

2022), which explicitly guides the models to gener-031

ate intermediate reasoning steps, is one of the most032

acknowledged prompting strategies for enhancing033

the reasoning capability of large language models034

(LLMs). Aside from its benefits of revealing the035

thinking process in a human-readable format (Joshi036

et al., 2023), it has proven to be significantly ef-037

fective in complex reasoning tasks (Kojima et al.,038

2022; Zhou et al., 2023; Qi et al., 2025).039

To investigate the key factors behind the ef-040

fectiveness of CoT reasoning, prior studies have041

Figure 1: A typical Venn diagram of confirmation bias
in cognitive psychology, using the example of a com-
monsensical question. The agent reinforces its internal
beliefs and skews its reasoning process towards "making
music", while overlooking other relevant facts of play-
ing guitar. Notes that the internal belief is unobserved
but plays a huge role in decision making.

examined both the nature of reasoning problems 042

(Sprague et al., 2025; Feng et al., 2023; Liu et al., 043

2024), the patterns and symbols of the prompts 044

(Madaan et al., 2023), and the attributes of the 045

CoT rationale (Golovneva et al., 2023; Prasad et al., 046

2023). A key finding across multiple studies is that 047

CoT is particularly useful for symbolic and mathe- 048

matics reasoning tasks (Sprague et al., 2025; Feng 049

et al., 2023). In contrast, CoT is less effective for 050

non-symbolic reasoning tasks like commonsense 051

reasoning. Moreover, research (Liu et al., 2024) 052

shows that CoT can even hinder performance in 053

tasks where deliberate reasoning negatively im- 054

pacts human performance. It is also observed 055

that the validity of CoT reasoning contributes only 056

marginally to the CoT performance, whereas query 057

(answer) relevance and reasoning steps ordering 058

play a more important role (Wang et al., 2023). 059

In this work, we offer a novel perspective from 060

cognitive psychology to understand the CoT be- 061

haviors across reasoning tasks. We argue that, like 062
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human beings, LLMs can demonstrate the same063

patterns of confirmation bias (Nickerson, 1998)064

that affects the reasoning process. Confirmation065

bias (Figure 1) refers to the tendency to selec-066

tively retrieve and interpret information in the man-067

ner that reinforces preexisting beliefs (Nickerson,068

1998). It is often more pervasive in tasks that re-069

quire subjective interpretation and prior knowledge070

compared to those involving formal logic and ob-071

jective correctness (Berthet et al., 2024). From072

this perspective, we seek to answer two questions:073

1. How does confirmation bias affect CoT behav-074

ior? and 2. Why does its influence vary across075

questions, reasoning types, and LLMs? We begin076

by approximating internal beliefs using the direct077

question-answering probabilities, and the answer078

confidence as an indicator of beliefs strength. To079

enable a fine-grained analysis, we decompose CoT080

reasoning into two stages of reasoning generation081

(Q → R) and reasoning-guided answer prediction082

(QR → A). We then perform correlation analysis083

between beliefs, rationale attributes, and stage-wise084

performance to explore patterns of confirmation085

bias across reasoning tasks and LLMs.086

Notably, our experiments reveal patterns of con-087

firmation bias in CoT. The strength of internal be-088

liefs is found to significantly influence CoT perfor-089

mance at both reasoning stages through variations090

in rationale presentation and how rationale is uti-091

lized for answer prediction. The extent of CoT092

improvement also aligns well with the degree to093

which reasoning tasks are prone to confirmation094

bias. In addition, we find that "debiasing" inter-095

nal beliefs becomes even more challenging when096

they are stronger. This provides a different view of097

why CoT prompting is most effective in symbolic098

reasoning tasks (e.g., mathematical reasoning) com-099

pared to non-symbolic reasoning tasks, which rely100

more on contextual and implicit knowledge rather101

than formal rules for problem-solving. It also sheds102

light on when CoT can be more reliably trusted.103

In summary, we offer a novel perspective from104

cognitive psychology in undersanding CoT behav-105

ior, showing that patterns of confirmation bias can106

influence CoT performance across questions, rea-107

soning types, and LLMs. We also propose a new108

framework for analyzing CoT behavior, which in-109

cludes the decomposition of the end-to-end accu-110

racy into the performance of Q → R and QR → A,111

along with a stratified correlation analysis that112

connects model internal beliefs with rationale at-113

tributes and stage-wise CoT performance.114

2 Preliminary 115

Chain-of-thought In the conventional chain-of- 116

thought (CoT) (Wei et al., 2022) formulation, a 117

reasoning chain R is explicitly decomposed into 118

intermediate steps [r1, r2, . . . , rT ] given a question 119

Q, leading to the final prediction A. In conven- 120

tion, each sentence is treated as a reasoning step. 121

Notably, we can factorize CoT into a two-stage 122

process as, 123

P (A,R|Q) = P (A|Q,R)P (R|Q) 124

where the P (R|Q) indicates the reasoning genera- 125

tion stage (Q → R), and P (A|Q,R) corresponds 126

to the stage of reasoning-guided answer prediction 127

(QR → A). Examining the performance at each 128

stage provides a more fine-grained CoT evaluation. 129

Confirmation bias In cognitive psychology, con- 130

firmation bias (Nickerson, 1998) is the tendency 131

to seek and interpret information in a way that 132

confirms preexisting beliefs. It is especially per- 133

vasive in reasoning processes that rely on subjec- 134

tive interpretation, prior knowledge, and heuris- 135

tic decision-making (Berthet et al., 2024). In 136

a question-answering setup, beliefs B are often 137

associated with Q and influence the decision as 138

P (A|Q,B). This can be further extended using 139

the CoT formulation: 140

P (A,R|Q,B) = P (A|Q,R,B)P (R|Q,B) 141

which suggests that prior beliefs B may affect both 142

reasoning stages. 143

3 Evaluation Methods 144

Several challenges exist for exploring confirmation 145

bias in CoT reasoning of LLMs. Firstly, beliefs B 146

are often internal and unobserved. For LLMs, the 147

beliefs associated with a question may come from 148

the prior exposure to question-related content dur- 149

ing training, making them hard to measure. Second, 150

end-to-end accuracy alone is insufficient for ana- 151

lyzing the effects of B at different stages. A fine- 152

grained correlation analysis requires a stage-wise 153

performance measure, as well as the quantification 154

of R’s attributes given B. Third, since we hypothe- 155

size that B is a strong prior factor that influences 156

all aspects, it is crucial to develop a method to con- 157

trol its effects in certain analysis. We address each 158

of these challenges in the following sections. We 159

primarily focus on multiple-choice QA questions 160

in this work. 161
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3.1 Internal Beliefs Quantification162

Direct answer prediction as B The actual163

internal beliefs B are impossible to measure, as164

they are unobserved and inherently tied to the165

model’s exposure to question-related content166

during training. However, we argue that the167

zero-shot answering probability P (Ai|Q) =168

softmax( 1
T ′

∑T ′

t=1 logP (ait |ai1:t−1 , Q)), where169

Ai denote the ith answer choice given question Q170

and T ′ represents the number of tokens in Ai, can171

serve as a proxy. A higher probability indicates172

that B is more favored towards Ai given Q.173

Entropy as strength of B We then measure the174

strength of B by the model’s confidence over the175

answer prediction. We leverage the entropy of176

P (Ai|Q) as the measure, where a lower entropy177

corresponds to higher confidence:178

− 1

C

n∑
i=1

P (Ai|Q) logP (Ai|Q)179

where C = log(n) is the normalization factor that180

scales the entropy between 0 and 1. This nor-181

malization enables confidence comparisons across182

datasets. While entropy is limited to white-box183

LLMs, we argue that token-level log probabili-184

ties provide a direct and clearer reflection of the185

model’s belief towards the information.186

Empirical difficulty as B against A∗ To further187

measure B against the correct answer A∗, we com-188

pute the log probability difference between A* and189

the highest scored answer choice excluding A∗:190

max
Ai ̸=A∗

logP (Ai|Q)− logP (A∗|Q)191

We also term this as the empirical difficulty of a192

question. Large negative value means that model193

is confidently correct about the question (low dif-194

ficulty), whereas large positive value means the195

model is confidently incorrect, requiring more ef-196

forts to correct B (i.e., greater difficulty). For sim-197

plicity, both "entropy" and "empirical difficulty"198

will only refer to the measures from the direct an-199

swering setting in the following sections.200

3.2 Chain-of-Thought Evaluation201

To analyze the effect of internal beliefs in CoT202

generation, we evaluate CoT using multiple met-203

rics: (1) Length computes the number of tokens204

in the rationale. (2) Relevance (Wang et al., 2023)205

measures the degree to which the rationale merely206

explains the question or the predicted answer given 207

the question. (3) Explicitness captures whether at 208

least one reasoning step is explicitly conclusive 209

(e.g., "... is the most appropriate answer."). We ob- 210

serve it has a strong influence on subsequent reason- 211

ing if presented in the middle steps and the final pre- 212

diction (Appendix A.4); (4) Informativeness, based 213

on the point-wise mutual information (Bosselut 214

et al., 2020; Holtzman et al., 2021), measures how 215

much additional information the rationale provides 216

to improve the CoT prediction; (5) Sufficiency eval- 217

uates whether the rationale contains enough infor- 218

mation to answer the question without the presence 219

of the question. We also include (6) RelevanceNeg 220

and (7) ExplicitnessNeg, with focuses on how ratio- 221

nale excludes alternative answers. Detailed com- 222

putations are included in Appendix Table S3. All 223

metrics are hypothesized to correlate with CoT per- 224

formance. 225

Since errors can arise at both reasoning stages, it 226

would be insufficient to solely rely on end-to-end 227

performance, PerformanceE2E, to conduct the anal- 228

ysis. We thereby extract Ainter as the intermediate 229

answer supported by the rationale. It is obtained 230

via majority voting from the predicted answers of 231

four advanced LLMs (Appendix A.2.2). It is used 232

to evaluate the stage-one beliefs consistency (8) 233

ConsistencyInter = I (argmaxiP (Ai|Q) = Ainter), and 234

the stage-two performance (9) PerformanceInter = 235

I (argmaxiP (Ai|Q,R) = Ainter). 236

3.3 Stratified Correlation Analysis 237

Based on the quantification of B and the measured 238

attributes of R, we perform a correlation analysis 239

to explore patterns of confirmation bias within CoT. 240

Directly applying correlation analysis to the data 241

has several issues. First, the target factor values 242

may be unevenly distributed, leading to correlation 243

analysis that are biased towards the examples with 244

dominant values. For instance, in our experiments, 245

Mistral-7B (Jiang et al., 2023) has exhibited high 246

confidence (i.e., low entropy) to a large number 247

of questions in CommonsenseQA (Talmor et al., 248

2019). Analysis involving entropy may overlook 249

patterns for high entropy questions. Second, the 250

question itself is a confounding factor that affects 251

the attributes of R, adding noise to the correlation 252

analysis involving R. Third, since we hypothe- 253

size that the strength of B (i.e. entropy) may be 254

a dominant factor influencing both R’s attributes 255

and performance, directly examining correlations 256

among factors other than entropy could introduce 257
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Datasets
Mistral-7B Llama3-8B OLMo2-7B

Direct CoT Direct CoT Direct CoT
CommonsenseQA (Talmor et al., 2019) 0.711 0.690 0.705 0.742 0.623 0.766
SocialIQA (Sap et al., 2019) 0.651 0.653 0.564 0.631 0.542 0.643
PIQA (Bisk et al., 2020) 0.804 0.796 0.721 0.757 0.666 0.713
StrategyQA (Geva et al., 2021) 0.594 0.629 0.642 0.668 0.572 0.607
StrategyQA+F (Geva et al., 2021) 0.734 0.808 0.760 0.817 0.712 0.738
AQuA (Ling et al., 2017) 0.217 0.343 0.291 0.480 0.244 0.528

Table 1: An overview of chain-of-thought improvement. The underlined scores represent cases where the CoT
improvement is either marginal or negative.

additional confounding effects and lead to a mis-258

guided analysis.259

To approach these issues, we propose to perform260

a stratified correlation analysis. Specifically, the261

factor of interests z is first discretized into k groups262

G with equal-width internal (zmax−zmin)/k. The263

group assignment is defined as g(zi) = j if zi ∈264

Gj . Once the grouping is established, we perform265

either inter-group or intra-group correlation anal-266

ysis. Inter-group analysis mainly tackles the chal-267

lenges of imbalanced factor values and data noise.268

Based on the grouping, factor x are first aggregated269

into group-level features:270

x̄i =
1

|Sj |
∑
i∈Sj

xi271

where Sj = {i | g(zi) = j} is the set of indices272

for observations in group Gj . Aggregation essen-273

tially ensures that the target factor (e.g., entropy)274

becomes more uniformly distributed, thereby re-275

ducing bias from unbalanced data. Additionally, it276

helps smooth out the noise originating from indi-277

vidual questions. To avoid overly smoothing the278

data, we set the number of groups to be sufficiently279

high, such that the average number of data points280

within each group is less than 1%. We then perform281

correlation analysis with respect to factor z using282

the aggregated observations.283

Intra-group analysis focus more on the third chal-284

lenge. Confounding factor z is first discretized285

into k group, and correlation analysis is conducted286

within each subgroup, considering only questions287

with similar z values. This allows for a clearer ex-288

amination of the relationship between key factors,289

while minimizing the influence of z. It also enables290

us to further investigate how correlation patterns291

evolve across different levels of z.292

4 Experimental Setup 293

4.1 Datasets 294

We experiment with five datasets of varying reason- 295

ing types: CommonsenseQA (Talmor et al., 2019), 296

SocialIQA (Sap et al., 2019), PIQA (Bisk et al., 297

2020), StrategyQA (Geva et al., 2021), and AQuA 298

(Ling et al., 2017). We also evaluate StrategyQA+F, 299

where the implicit facts to solve the question are 300

given. Hypothetically, explicitly providing factual 301

knowledge to the models will mitigate confirma- 302

tion bias from implicit knowledge retrieval, hence 303

leading to larger CoT improvement. 304

4.2 LLMs 305

We choose Mistral-7B (Jiang et al., 2023), Llama3- 306

8B (Grattafiori et al., 2024), and OLMo2-7B 307

(OLMo et al., 2025), three of the most popular 308

and advanced white-box LLMs, for CoT Analysis. 309

4.3 QA Details 310

To compute the direct question-answering predic- 311

tion, we first apply the softmax function to the 312

average log probability of the answer tokens given 313

the question as P (A|Q). We then select the an- 314

swer with the highest probability as the predic- 315

tion. For the CoT prediction, we first generate 316

the rationale from P (R|Q). The zero-shot CoT 317

prompt used in this work is adapted from Fu 318

et al. (2023) (Appendix A.2.1). We then compute 319

P (A|Q,R) in the same manner and extract the 320

CoT prediction. The end-to-end accuracy, denoted 321

as PerformanceE2E, measures whether the predic- 322

tion matches A∗. Additionally for CoT evalua- 323

tion, we measure whether the prediction aligns with 324

AInter (i.e., the intermediate answer extracted from 325

the rationale), regardless of whether it matches 326

A∗. This serves as the stage-two accuracy (i.e., 327

PerformanceInter) of the model’s ability to faithfully 328

follow the rationale. 329
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Figure 2: Shift in PerformanceE2E from direct to CoT
prediction in relation of entropy and empirical difficulty.

5 Results330

Table 1 shows the overall CoT performance. It can331

be seen that the CoT improvement on non-symbolic332

reasoning tasks in general falls far behind its im-333

provement on symbolic reasoning problems like334

AQuA. Mistral-7B even performs worse on Com-335

monsenseQA and PIQA with CoT. This observa-336

tion aligns well with the findings in (Sprague et al.,337

2025) that CoT primarily improves performance on338

symbolic and mathematics reasoning tasks. In the339

following section, we conduct a thorough statistical340

analysis to understand the performance difference.341

The following question will be addressed. RQ1.342

How does confirmation bias affect CoT behavior.343

RQ2. Why does its influence vary across different344

questions, reasoning types, and models?345

5.1 RQ1: Confirmation bias in P (A,R|Q,B)346

To examine internal beliefs in CoT reasoning, we347

first conduct analysis on the end-to-end CoT per-348

formance (PerformanceE2E). In this setting, the349

model is expected to generate both the rationale350

and answer given the question, which is the typical351

CoT setup. We primarily study the CoT behavior352

of Mistral-7B on CommonsenseQA, which serves353

as a typical setting for confirmation bias, which we354

will illustrate in the later section. Additional analy-355

ses on other settings are provided in Appendix A.6,356

which show similar patterns.357

We first visualize the direct PerformanceE2E and358

CoT PerformanceE2E with respect to Entropy and359

question Empirical Difficulty in Figure 2. It is clear360

to see that questions with stronger beliefs B (lower361

entropy) are more likely to retain their correctness362

level regardless of the question difficulty level, sug-363

gesting signs of confirmation bias. This partially364

explains the ineffectiveness of CoT, particularly365

in regions where the model is confidently wrong366

Figure 3: Separation of the PerformanceInter (i.e., perfor-
mance of QR → A) from PerformanceE2E (i.e., perfor-
mance of Q → R and QR → A) with stratified analysis
on empirical difficulty. The grey dashed line represents
the perfect performance.

initially (as indicated by the red dashed circle). In 367

contrast, questions with weaker beliefs are more 368

prone to fluctuations in predictions. We observe 369

that this behavior arises because questions with 370

weaker beliefs B (higher entropy) are more sensi- 371

tive to the quality and structure of the generated 372

reasoning, as we will discuss later. 373

We further separate CoT PerformanceInter from 374

CoT PerformanceE2E and visualize them against 375

the empirical difficulty in Figure 3. As difficulty in- 376

creases, PerformanceE2E exhibits a consistent drop, 377

whereas PerformanceInter remains much more sta- 378

ble. The widening gap between the red and or- 379

ange lines indicates that errors from the first rea- 380

soning stage (Q → R) become more dominant as 381

the model becomes more confidently wrong (i.e., 382

Difficulty↑). The gap between the orange and grey 383

(perfect performance) lines reflects the stage-two 384

errors, where the model mis-predicts despite fol- 385

lowing the "correct" rationale. This is especially 386

true for high entropy questions, as indicated by the 387

red circle. 388

5.2 RQ1: Confirmation bias disentangled 389

To disentangle the impact of confirmation 390

bias, we perform a more detailed analysis 391

of P (A,R|Q,B) = P (A|Q,R,B)P (R|Q,B). 392

Stage 1 analyzes the generated rationale from 393

P (R|Q,B), and stage 2 evaluates the model’s per- 394

formance in faithfully following the generated ra- 395

tionale (PerformanceInter) from P (A|Q,R,B). 396

Stage 1: B in generated rationale To investi- 397

gate how internal beliefs B influence the first stage 398

of P (R|Q,B), we perform the stratified correla- 399

tion analysis between the entropy values (proxy for 400
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Figure 4: Correlation trends of base entropy (proxy for model’s internal beliefs) with CoT Length, ConsistencyInter,
and Sufficiency. (Mistral-7B on CommonsenseQA)

Figure 5: Correlation of Entropy, proxy for strength
of model’s internal beliefs B, with other factors using
behaviors of Mistral-7B on CommonsenseQA.

the strength of B) and R’s attributes. As shown401

in Figure 5, the correlation matrix reveals that the402

Entropy exhibit strong correlations with six out of403

eight factors. For questions with strong beliefs (low404

entropy), models tend to generate shorter reason-405

ing steps, focusing more on explaining the interme-406

diate answer Ainter (Relevance↑) while providing407

fewer justifications for rejecting alternative choices408

(RelevanceNeg↓). Rationale also tends to be more409

explicitly conclusive (Explicitness↑) for low en-410

tropy (strong beliefs B) questions, and more likely411

to explicitly rule out options (ExplicitnessNeg↓) as412

B weaken. The negative correlation with Suffi-413

ciency may result from the confounding effects of414

other factors, suggesting that B also affects the415

overall quality of R. We also visualize the dis-416

tribution of the top three correlated attributes in417

Figure 4.418

Another key observation is that CoT is more419

likely to reinforce its original prediction for low420

entropy questions (ConsistencyInter↑). This pro-421

vides strong evidence of confirmation bias, where422

prior beliefs affect reasoning outcomes. This may423

also explain why CoT prompting is more helpful424

in math reasoning compared to tasks requiring im-425

plicit knowledge retrieval (Sprague et al., 2025),426

as internal belief plays a more significant role in427

the latter. In order to improve CoT reasoning per-428

formance, mitigating the effects of internal belief429

becomes a crucial problem.430

(a) Correlation of Informativeness with other factors.

(b) Evolutionary correlation patterns of Informativeness with
other factors across different Entropy groups.

Figure 6: Correlation analysis of the role of B in the
second reasoning stage of P (A|Q,R,B), using behav-
iors of Mistral-7B on CommonsenseQA.

Stage 2: B in rationale-guided answering In 431

this stage, we primarily study the role of B in influ- 432

encing PerformanceInter. We use Informativeness 433

as the main performance metric for the stratified 434

correlation analysis, as it provides a continuous as- 435

sessment of models’ ability to faithfully following 436

R for predictions. We first examine the general 437
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correlation between rationales’ attributes and In-438

formativeness. As shown in Figure 6a, Informa-439

tiveness appears to be particularly correlated with440

Relevance and Explicitness on CommonsenseQA441

by Mistral-7B, which is expected. However, as we442

already know that entropy (i.e., strength of B) also443

has huge impact on these attributes, we cannot dis-444

entangle the effects of R and B in P (A|Q,R,B)445

from this result.446

To address this issue, we conduct the intra-group447

stratified correlation analysis, where the primary448

grouping is based on Entropy values. For each sub-449

group, we perform the inter-subgroup analysis on450

Informativeness. The correlation matrix is shown451

in Figure 6b, where each row represents the corre-452

lation between Informativeness and other factors453

among questions that share similar levels of En-454

tropy. The side column displays the Entropy distri-455

bution within each subgroup. One key observation456

is that the importance of reasoning Relevance, Ex-457

plicitness, and Sufficiency consistently increases458

for improved Informativeness as B weaken (ques-459

tions with higher Entropy). In other words, the460

model tends to overlook the presentation of the461

rationale for questions of high confidence, but re-462

lying more on its internal beliefs B to infer the463

answer. The other factors (Length, RelevanceNeg,464

ExplicitnessNeg), on the other hand, do not show465

clear evolutionary patterns, and are consistently466

less important. The correlation between Infor-467

mativeness and PerformanceInter is lower for low-468

entropy questions, which results from the cases469

where high Informativeness is still insufficient to470

correct an initially confident but incorrect answer.471

5.3 RQ2: Confirmation Bias Across Settings472

In this section, we provide a comprehensive ex-473

planation in why confirmation bias affects CoT474

performance differently across reasoning types and475

LLMs. Based on the task subjectivity level and476

the amount of implicit knowledge required for477

problem-solving, we rank the datasets based on478

their vulnerability to confirmation bias as: Com-479

monsenseQA > SocialIQA ≫ PIQA ≈ Strate-480

gyQA > StrategyQA+F ≫ AQuA, where the left481

represents the highest vulnerability (Appendix A.1).482

The CoT improvement of Mistral-7B strictly fol-483

lows this pattern. In addition, the difference in484

CoT improvement between StrategyQA and Strate-485

gyQA+F further highlights the presence of con-486

firmation bias, such that the removal of poten-487

tially biased process of implicit knowledge retrieval488

leads to greater CoT improvement. Even though 489

the performance of Llama3-8B and OLMo2-7B 490

does not seem to follow the vulnerability hypoth- 491

esis, this can be explained by the belief differ- 492

ences across models. Since entropy alone can- 493

not distinguish between equally likely and equally 494

unlikely options, we use log-sum-exp (LSE = 495

log
(∑

i e
logP (Ai|Q)

)
) for a finer-grained estima- 496

tion of beliefs B for cross-model comparison. High 497

entropy with high LSE indicates that the model un- 498

certainty is due to all options are plausible, whereas 499

high entropy with low LSE indicates uncertainty 500

because none of the options are plausible. 501

We begin by plotting the Entropy and LSE dis- 502

tribution of the three models against the six rea- 503

soning tasks. As shown in Figure 7, Mistral-7B 504

demonstrates much lower entropy (stronger B) for 505

questions in almost all datasets. In other words, 506

Llama3-8B and OLMo2-7B are inherently less 507

prone to confirmation bias, and are more likely 508

to effectively leverage CoT to improve predictions. 509

This aligns with the correlation results in Figure 5, 510

where Entropy and Informativeness are positively 511

correlated. Another observation is that the En- 512

tropy distribution of all models shift slightly to the 513

right from StrategyQA to StrategyQA+F, support- 514

ing the argument that confirmation bias weakens 515

when implicit knowledge is provided. The reason 516

why OLMo2-7B has marginal CoT improvement 517

on StrategyQA+F can be explained by its LSE dis- 518

tribution. Its overall LSE scale is smaller than that 519

of other models, suggesting that its low confident 520

questions mainly come from equally likely rather 521

than equally unlikely options. This could be an- 522

other factor between confirmation bias and CoT 523

behavior that requires further research. 524

5.4 Cross-model Debiasing 525

Given that different models have different beliefs 526

due to their training processes, another interest- 527

ing experiment is to evaluate how each model per- 528

forms using the CoT generated by others. This 529

can be viewed as one model attempting to "de- 530

bias" the beliefs of another. For convenience, the 531

CoT-generating model is called the author, while 532

the one using the CoT for predictions is called 533

the executor. The CoT formulation then becomes 534

P (A|Q,Rau, Bex)P (Rau|Q,Bau). If the executor 535

has a different and strong belief (Bex) than what 536

the author’s rationale supports (Ainter, au), execu- 537

tor’s prediction will likely to deviate from Ainter, au, 538

even when Rau is claimed to be sufficient. 539
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Figure 7: Comprehensive comparison of the question-answering entropy distribution from P (Ai|Q) across the
Mistral-7B, Llama3-8B, and OLMo-7B models on six reasoning tasks. Mistral-7B exhibits much lower entropy
(stronger beliefs) on large number of questions across nearly all datasets.

Dataset Au Ex
Performance

Strong Neural Weak

CQA
M O 0.5 0.636 0.776
O M 0.510 0.718 0.833

SIQA
M O 0.417 0.425 0.565
O M 0.38 0.567 0.698

Table 2: Performance of Executor using Author’s CoT
response (CQA=CommonsenseQA, SIQA=SocialIQA,
M=Mistral-7B, O=OLMo2-7B).

We first select questions where the zero-shot540

direct prediction of P (Ai|Q,Bex) mismatches541

Ainter, au, and where Rau is deemed sufficient.542

We then group these questions into three con-543

fidence levels based on the executor’s Entropy544

values and compute the average performance,545

I(argmaxiP (Ai|Q,Rau, Bex) = Ainter, au), for546

each group. We use Mistral-7B and OLMo2-7B547

interchangeably as the author and executor, and548

choose CommonsenseQA and SocialIQA as two549

datasets that are most vulnerable to confirmation550

bias. As shown in Table 2, the executor consis-551

tently struggles to follow rationales that contradict552

its internal beliefs, especially when the beliefs are553

strong. Even when internal beliefs are weak, the554

performance still remains suboptimal. This sug-555

gests that "debiasing" internal beliefs may be even556

more challenging than expected.557

6 Related Works558

Chain-of-thought (CoT) prompting (Wei et al.,559

2022) was introduced to enhance multi-step reason-560

ing in LLMs by explicitly guiding them to generate561

intermediate reasoning steps, which is proven to be562

effective in complex reasoning tasks (Kojima et al.,563

2022; Nye et al., 2022; Zhou et al., 2023). Since 564

then, numerous studies have emerged to examine 565

the key factors behind CoT effectiveness. Specifi- 566

cally, researchers (Sprague et al., 2025; Feng et al., 567

2023) found that CoT is particularly useful for sym- 568

bolic and mathematics reasoning tasks, whereas it 569

only improves marginally on non-symbolic tasks 570

like commonsense reasoning. Liu et al. (Liu et al., 571

2024) further drew a parallel between CoT and 572

human performance, such that CoT can hinder per- 573

formance on tasks where deliberate reasoning is 574

counterproductive for humans. Meanwhile, the 575

work in (Madaan et al., 2023) identified consistent 576

patterns and high-quality exemplars in few-shot 577

prompts as two key factors for CoT effectiveness. 578

Several automatic metrics for evaluating reasoning 579

chains were also proposed (Golovneva et al., 2023; 580

Prasad et al., 2023). It is observed that CoT per- 581

formance is influenced more by query relevance 582

and the ordering of reasoning steps, rather than the 583

validity of the reasoning itself (Wang et al., 2023). 584

7 Conclusion 585

In this work, we provide a novel perspective on 586

CoT behavior through the lens of confirmation bias 587

from cognitive psychology. We demonstrate that 588

confirmation bias is pervasive in LLMs, and can 589

substantially impact both reasoning generation and 590

reasoning-guided predictions in the CoT process. 591

In addition, we show that confirmation bias can 592

help explain performance variance across different 593

models and datasets. However, our findings also 594

demonstrate the challenges of "debiasing" confir- 595

mation bias, particularly when model beliefs are 596

confidently wrong, underscoring the need for fur- 597

ther research. 598
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8 Limitation599

The current work has certain limitations. First, we600

mainly use the entropy value of zero-shot direct601

predictions as a proxy for the strength of model be-602

liefs, which limits our analysis to white-box LLMs603

and multiple-choice questions. A promising ex-604

tension would be to explore confirmation bias us-605

ing confidence measures applicable to black-box606

LLMs and open-ended questions. Hypothetically,607

open-ended questions could offer a more precise as-608

sessment of confirmation bias. It is also possible to609

develop a more appropriate metric to quantify inter-610

nal beliefs based on LLMs memorization. Second,611

our experiments only focus on one round of CoT,612

which overlooks the thought-switching behavior613

in o1-alike models (OpenAI, 2024; DeepSeek-AI,614

2024). Studying iterative CoT could provide deeper615

insights into how LLMs revise or reinforce their616

beliefs.617
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A Appendix 799

A.1 Datasets Details 800

Statistics We provide the detailed information of 801

the datasets used in this work in Table S1, including 802

the basic statistics of the datasets used in this work, 803

the knowledge type each dataset focuses on, and 804

the primary reasoning capability required for the 805

task. 806

Spectrum of vulnerability to confirmation bias 807

On the spectrum of vulnerability to confirmation 808

bias, where the left represents the highest vulner- 809

ability, we argue that the approximate ordering of 810

the datasets is: CommonsenseQA > SocialIQA ≫ 811

PIQA ≈ StrategyQA > StrategyQA+F ≫ AQuA. 812

For starters, confirmation bias is more influential in 813
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Dataset Knowledge Type Reasoning Type Splits #Questions #Options
CQA (Talmor et al., 2019) Commonsense Commonsense Inference validation 1221 5

SocialIQA (Sap et al., 2019) Social/Cultural
Social Inference
Theory of Mind

Casual Reasoning
validation 1954 3

PIQA (Bisk et al., 2020) Physics Casual Reasoning validation 1838 2
StrategyQA (Geva et al., 2021) Factual Logical Reasoning development 229 2
StrategyQA+F (Geva et al., 2021) - Logical Reasoning development 229 2

AQuA (Ling et al., 2017) Formal Mathematic Reasoning
Logical Reasoning validation 254 5

Table S1: Details of the datasets used in this study. "Knowledge Type" indicates the category of knowledge that
needs to be implicitly retrieved for solving the task. CQA stands for CommonsenseQA.

tasks that required subjective interpretation rather814

than objective inference (Berthet et al., 2024). This815

makes AQuA the least susceptible to confirmation816

bias, as it relies on formal logic and structured817

systems to solve the problems. In addition, mathe-818

matical reasoning problems typically have a single819

correct answer, leaving little room for confirmation820

bias to distort the reasoning process. StrategyQA821

and PIQA depend on factual and physical knowl-822

edge, making them more objective than subjective.823

However, confirmation bias can still influence how824

knowledge is implicitly and selectively retrieved,825

making both datasets more susceptible to confirma-826

tion bias compared to AQuA. On the other hand,827

StrategyQA+F, where the implicit knowledge re-828

quired for solving StrategyQA is explicitly pro-829

vided, is reduced to a pure logical reasoning prob-830

lem. In contrast, both CommonsenseQA and So-831

cialIQA rely on implicit and subjective understand-832

ing of everyday commonsense knowledge, social833

norms, and cultural conventions, making them the834

most vulnerable to confirmation bias. Moreover,835

commonsense reasoning problems may often in-836

volve multiple reasoning pathways, where different837

perspectives can lead to different yet plausible con-838

clusions (Cheng et al., 2024). This further increases839

the susceptibility to confirmation bias. Common-840

senseQA is slightly more affected than SocialIQA841

due to the way we approximate the strength of in-842

ternal beliefs B. Since we use entropy to measure843

the confidence or strength of B, the computation844

becomes more reliable when more answer options845

are available.846

A.2 Implementation Details847

All experiments in this work are conducted us-848

ing the Huggingface framework (Wolf et al.,849

2020). Specifically, we use the mistralai/Mistral-850

7B-Instruct-v0.2 snapshot for Mistral-7B, meta- 851

llama/Meta-Llama-3-8B-Instruct for Llama3-8B, 852

and allenai/OLMo-2-1124-7B-Instruct for OLMo2- 853

7B. We use greedy decoding to generate the ratio- 854

nale used for the performance Table 1. Meanwhile, 855

we use nucleus sampling to generate 10 different 856

CoT responses for the analysis of confirmation 857

bias. For nucleus sampling, both temperature and 858

top_p values are set to 0.9. We use the roberta- 859

large-mnli snapshot for the entailment model used 860

for CoT evaluation (Table S3). 861

A.2.1 Chain-of-thought Prompts 862

The zero-shot chain-of-thought prompt used in this 863

work is modified from the work in (Fu et al., 2023): 864

You will be given a question at the end, for
which you are to select the most appropriate
answer by indicating the associated letter.
Please first output step-by-step reasoning
about how to solve the question. Then, in the
last sentence, output which answer is correct
in the format of "Therefore, the answer is
...".

Question: <question>
Answer choices: (a) <choice a> (b) <choice b>
(c) <choice c> ...

Let’s think step by step. To solve the
question, we need to

865

Even though models are instructed to predict the 866

answer in the given format, the generated results 867

may still deviate from it, making it challenging to 868

extract the prediction precisely. Therefore, to better 869

measure P (A|Q,R), we remove the last conclu- 870

sive sentence from R and compute the answering 871

probability by applying the softmax function to the 872

average log probability of the answer tokens. 873
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A.2.2 Extraction of Intermediate Answer874

Since errors can occur in the second reason-875

ing stage of QR → A, we extract Ainter as876

the intermediate answer choice supported by the877

reasoning process and measure both stage-one878

ConsistencyInter and stage-two PerformanceInter.879

The extraction is performed by prompting ad-880

vanced LLMs to select answer based on the ques-881

tion and the generated CoT. In this work, we882

leverage four advanced LLMs with majority vot-883

ing to extract Ainter: 1. GPT-4o-mini (OpenAI,884

2024) 2. Llama-3.3-70b-instruct (Grattafiori et al.,885

2024) 3. Claude-3.5-Sonnet, and 4. DeepSeek-V3886

(DeepSeek-AI, 2024). We use the OpenRouter plat-887

form (OpenRouter, 2025) to access these LLMs.888

Since most of these models are black-box LLMs,889

we prompt the models to output answers directly890

with additional instructions shown below. Even891

though these models can still make mistakes, we892

believe their advanced reasoning capabilities, com-893

bined with the majority voting protocol, can mini-894

mize errors at best.895

Question: <question>
Answer choices: (a) <choice a> (b) <choice b>
(c) <choice c> . . .
Rationale: <generated chain-of-thought
reasoning>

Select the most appropriate answer that
can be concluded from the given rationale.
You must choose only ONE answer. Directly
output in the format of "Therefore, the answer
is ...".’

896

A.3 Computation Budget897

The total computation time for CoT experiments,898

including both CoT generation and CoT evalua-899

tion, takes about 200 computation hours on a single900

A100 GPU.901

A.4 Explicitness versus Performance902

We observe that rationale explicitness is key fac-903

tor in the model’s ability to follow the reasoning904

path P (A|Q,R). We first group the questions905

based on their Explicitness and ExplicitnessNeg906

levels, and compare their average stage-two per-907

formance (PerformanceInter). We evaluate perfor-908

mance under three settings: Mistral-7B on Com-909

monsenseQA and SocialIQA, and OLMo2-7B on910

CommonsenseQA. As shown in Table S2, ques-911

tions in general yield higher performance when at912

least one of the reasoning steps is explicitly conclu-913

sive. On the other hand, being explicit towards why914

Figure S1: The relationship between Informa-
tiveness and PerformanceInter across six different
settings from the stratified correlation analysis
(CQA=CommonsenseQA, SIQA=SocialIQA).

the alternative options are wrong (ExplicitnessNeg) 915

shows mixed patterns. This can be explained by 916

LLMs’ difficulty in applying the process of elimi- 917

nation (Balepur et al., 2024). 918

A.5 Informativeness versus Performance 919

As shown in Figure S1, the measured Informative- 920

ness is positively correlated with PerformanceInter 921

using CoT. The correlation is not perfect due to 922

the cases where high informativeness still fails to 923

correct predictions where the model is confidently 924

wrong at the beginning. 925

A.6 Additional Analyses 926

To further strengthen the empirical correlation re- 927

sults, we replicate our analysis in two additional 928

settings. We first analyze Mistral-7B’s CoT be- 929

havior on SocialIQA, which has a similar level 930

of vulnerability to confirmation bias as Common- 931

senseQA. Second, we evaluate the CoT behavior of 932

OLMo2-7B on CommonsenseQA, using OLMo2- 933

7B as a representative model with weaker internal 934

beliefs (Figure 7). 935

A.6.1 Mistral-7B on SocialIQA 936

Figure S2: Correlation of Entropy, proxy for strength
of model’s internal beliefs B, with other factors using
behaviors of Mistral-7B on SocialIQA.

12



(a) Correlation of Informativeness with other factors.

(b) Evolutionary correlation patterns of Informativeness with
other factors across different Entropy groups.

Figure S3: Correlation analysis of the role of B in the
second reasoning stage of P (A|Q,R,B), using behav-
iors of Mistral-7B on SocialIQA.

We replicate the correlation analysis in the main937

text and evaluate the CoT behavior of Mistral-7B938

on SocialIQA. Figure S2 and Figure S6 show the939

stage-one correlation between Entropy (strength940

of beliefs B) and key attributes of rationales gen-941

erated via P (R|Q,B). Most factors are strongly942

correlated with Entropy, providing strong evidence943

of confirmation bias during the first stage of rea-944

soning generation (Q → R). We also include the945

correlation analysis of stage-two performance in946

Figure S3. Similarly, Figure S3b demonstrates evo-947

lutionary correlation patterns of Relevance, Explic-948

itness, and Sufficiency with Informativeness across949

different Entropy groups. These results further950

strengthen the observations discussed in the main951

text. Even though the exact correlation patterns952

in Figure S2 and Figure S3 are slightly different 953

from those in Figure 5 and Figure 6, this can be 954

attributed to the intrinsic differences in the required 955

reasoning abilities and problem-solving protocols 956

across datasets. 957

A.6.2 OLMo2-7B on CommonsenseQA 958

Figure S4: Correlation of Entropy, proxy for strength
of model’s internal beliefs B, with other factors using
behaviors of OLMo2-7B on CommonsenseQA.

(a) Correlation of Informativeness with other factors.

(b) Evolutionary correlation patterns of Informativeness with
other factors across different Entropy groups.

Figure S5: Correlation analysis of the role of B in the
second reasoning stage of P (A|Q,R,B), using behav-
iors of OLMo2-7B on CommonsenseQA.

We further examine the CoT behavior of 959

OLMo2-7B on CommonsenseQA. Figure S4 and 960

Figure S7 show the stage-one correlation between 961
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Entropy (strength of beliefs B) and key attributes962

of rationales generated via P (R|Q,B). Even963

though OLMo2-7B has shown to have weaker be-964

liefs (more high entropy questions) in Common-965

senseQA compared to Mistral-7B (Figure 7), its966

Entropy values still correlate substantially with967

Length, Relevance, Informativeness, Sufficiency,968

and ConsistencyInter, indicating signs of confirma-969

tion bias. We also include the correlation analysis970

of stage-two performance in Figure S5. In con-971

trast to Mistral-7B, OLMo2-7B displays less ob-972

vious evolutionary correlation patterns, with only973

Explicitness and RelevanceNeg demonstrating clear974

patterns. This could be attributed to the fact that975

OLMo2-7B is inherently less prone to confirma-976

tion bias. Again, although the exact correlation977

patterns between Mistral-7B and OLMo2-7B are978

not the same, it can be explained by differences979

in the models’ problem-solving approaches, which980

stem from variations in their respective training981

processes.982
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Dataset Model Explicitness ExplicitnessNeg > 0 PerformanceInter

CommonsenseQA Mistral-7B

False False 0.821
False True 0.783
True False 0.963
True True 0.965

SocialIQA Mistral-7B

False False 0.813
False True 0.830
True False 0.955
True True 0.948

CommonsenseQA OLMo2-7B

False False 0.873
False True 0.842
True False 0.977
True True 0.953

Table S2: Average reasoning-following performance (QR → A), PerformanceInter, with respect to rationales’
Explicitness and ExplicitnessNeg levels.

Figure S6: Correlation trends of base entropy (proxy for model’s internal beliefs) with CoT Length, ConsistencyInter,
and Sufficiency. (Mistral-7B on SocialIQA)

Figure S7: Correlation trends of base entropy (proxy for model’s internal beliefs) with CoT Length, ConsistencyInter,
and Sufficiency. (OLMo2-7B on CommonsenseQA)
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Attribute Description
Length We mainly measure the token-level length of the reasoning.

Formulation: N
Relevance The query relevance score (Wang et al., 2023) measures whether the reasoning step merely explains

the question itself or reasons towards the connection between the question and the answer Ainter.
In this work, query relevance is first computed at the step-level using textual entailment between
each reasoning step Ri and a predefined explanation hypothesis in the form of "the sentence is
talking about ...". The step-level entailment probabilities are then averaged to obtain the overall
rationale-level relevance score.
Formulation: 1

T

∑T
i Ri |= explain(Ainter)

RelevanceNeg The Negative relevance score measures whether the reasoning step explains why alterative options
other than Ainter are wrong. To compute this, we first measure the entailment probability between
each reasoning step and the alternative answer choices. The final rationale-level score is obtained by
averaging these entailment probabilities across both the answer choices and the reasoning steps.
Formulation: 1

M−1
1
T

∑
Aj ̸=Ainter

∑T
i Ri |= explain(Aj)

Explicitness It is common for models to state explicit conclusion (e.g., "... is the most appropriate answer.")
in the middle of step-by-step reasoning. We observe that it has a strong influence on subsequent
reasoning and the final prediction (Appendix A.4). Similar to relevance, explicitness is first measured
at step-level using textual entailment between Ri and the conclusion hypothesis of Ainter in the form
of "the answer is ...", and aggregated into the rationale-level explicitness score. Note that this score
is a more extreme form of relevance score.
Formulation: 1

T

∑T
i Ri |= conclude(Ainter)

ExplicitnessNeg The main idea of this score is similar to the explicitness score but focuses on explicit rejection (e.g.,
"... is impossible."). Again, we first measure textual entailment between each reasoning step Ri

and the rejection of answer choices in the form of "the answer is not ...". The final rationale-level
rejection score is then obtained by averaging the entailment probabilities across both the answer
choices and reasoning steps.
Formulation: 1

M−1
1
T

∑
Aj ̸=Ainter

∑T
i Ri |= reject(Aj)

Informativeness We leverage the concept of point-wise mutual information (PMI), following the work in (Bosselut
et al., 2020; Holtzman et al., 2021), to quantify how much additional information the reasoning
process provides in supporting the decision of answer Ainter. A highly PMI value indicates that the
CoT is more likely to conclude with Ainter. This metric is highly correlated with PerformanceInter
(Appendix A.5).
Formulation: logP (Ainter|Q,R)/P (Ainter|Q)

Sufficiency The reasoning sufficiency is evaluated by predicting the answer using only the rationale (R → A).
We argue that, if the reasoning is sufficient enough, it should yield the same answer as the full
reasoning QR → A, even without accessing the question.
Formulation: I (argmaxiP (Ai|R) = argmaxiP (Ai|Q,R))

ConsistencyInter Intermediate (Inter) reasoning consistency examines whether the answer choice supported by the
rationale, Ainter, aligns with the model’s initial prediction from Q → A. In other words, it evaluates
whether the rationale reinforces the model’s original belief or causes a shift in its answer choice.
Formulation: I (Ainter = argmaxiP (Ai|Q))

PerformanceInter This metric measures whether the predicted answer choice, given the rationale, matches the answer
Ainter supported by the rationale. In other words, it solely assesses the performance of the stage
QR → A.
Formulation: I (argmaxiP (Ai|Q,R) = Ainter)

PerformanceE2E* This is the conventional performance metric that measure whether the predicted answer choice
matches the ground truth label.
Formulation: I (argmaxiP (Ai|Q,R) = A∗)

Table S3: Evaluation metrics for rationale. The asterisk (*) denotes that the metric requires access to the annotated
ground truth label.
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