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ABSTRACT

Diffusion models have demonstrated strong capabilities in generating high-quality
images. However, as model size increases, the growing memory footprint and
inference latency pose significant challenges for practical deployment. Recent
studies in large language models (LLMs) show that rotation-based techniques
can smooth outliers and enable 4-bit quantization, but these approaches often
incur substantial overhead and struggle with row-wise outliers in diffusion
transformers. To address these challenges, we develop a theoretical framework:
we define column discrepancy to quantify imbalance in Hadamard matrices,
prove that regular Hadamard matrices attain minimal discrepancy, and provide
a Kronecker-based construction for powers-of-four orders, effectively controlling
row- and column-wise outliers. Based on this, we propose ConvRot, a group-wise
rotation-based quantization that reduces computation from quadratic to linear
complexity while smoothing outliers, and ConvLinear4bit, a plug-and-play module
fusing rotation, quantization, GEMM, and dequantization for W4A4 inference
without retraining. Experiments on FLUX.1-dev achieve a 2.26 x speedup and
4.05x memory reduction, while preserving image quality.

1 INTRODUCTION

Diffusion models are powerful generative frameworks that produce high-fidelity images (Ho et al.,
2020; Rombach et al., 2022), but scaling their architectures significantly increases memory and
inference costs. The recently released Qwen-Image model (Wu et al., 2025) reaches a scale of 20B
parameters, requiring more than 60 GiB of GPU memory for inference. In large language models
(LLMs), quantization has been widely used to compress model size and improve inference speed (Zhu
et al., 2024; Dettmers et al., 2022; Xiao et al., 2023), mainly by reducing memory movement and
leveraging low-precision compute units in modern GPUs. This makes quantization a promising
direction for reducing the memory and latency cost of diffusion models as well. A major source of
accuracy loss in quantization comes from outliers, which can distort the scaling factors and degrade
performance. Recent studies in LLMs show that rotation-based quantization methods redistribute
outliers across channels, enabling 4-bit quantization with minimal accuracy loss (Tseng et al., 2024;
Ashkboos et al., 2024; Liu et al., 2024), but the extra rotation operations bring non-negligible overhead
that offsets part of the speedup. Therefore, the key challenge is to apply rotation-based quantization
to diffusion transformers in a way that preserves accuracy while reducing the rotation cost.

As illustrated in Figure 1, rotation-based quantization methods sup- [g] {2 ]2
press outliers by applying rotational transformations to both weights ol l1111%
and activations. While these methods have been extensively studied -
in LLMs, directly applying them to diffusion models faces two ma- 1
jor challenges. First, the rotation operations themselves introduce Transform |3
substantial computational overhead. Prior works attempt to mitigate T
this using techniques such as the Fast Walsh-Hadamard Transform S -
(FWHT) and operation fusion to reduce online rotations (Ashkboos ~ [63]3-3]43]3.5
et al., 2024). However, the Adaptive LayerNorm (AdaLLN) design Figure 1: Rotation-based quan-
in Diffusion Transformers (DiTs) (Peebles & Xie, 2023) can break tization methods can effectively
these fusion strategies, forcing more frequent online rotations and ~ suppress outliers by redistributing
offsetting the acceleration benefits. Sparse rotation matrices have —energy across channels.
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also been explored (Lin et al., 2024a), but without efficient low-level support, they do not lead to
practical speedup. Second, as shown in Figure 3, we observe row-wise outliers in certain layers
of FLUX.1-dev (Black-Forest-Labs, 2024), which differs from the column-wise outlier patterns
commonly found in LLMs. Existing rotation matrix designs, particularly Hadamard matrix-based
methods, primarily target column-wise outliers and are therefore ineffective at handling row-wise
outliers, leading to noticeable accuracy degradation.

In this work, we propose ConvRot, a novel rotation-based quantization paradigm. First, we introduce
a group-wise rotation quantization scheme that reduces computational complexity from quadratic to
linear complexity and allows flexible trade-offs between computation cost and outlier suppression
by adjusting the group size Ny. Second, we adopt the regular Hadamard Transform (RHT) to
simultaneously suppress row-wise and column-wise outliers. To support this, we propose a theoretical
framework: we formalize the column sum squared property of Hadamard matrices, define the column
discrepancy to quantify imbalance, and present a Kronecker-based construction of regular Hadamard
matrices for orders that are powers of four, guaranteeing minimal column discrepancy. Based on
these regular Hadamard matrices, we implement group-wise RHT with a conv-like matmul operation
on weights and activations, which we name ConvRot. Finally, we design ConvLinear4bit, a plug-
and-play module that fuses rotation, quantization, GEMM, and dequantization, avoiding expensive
loops or extra memory movement while leveraging mature matrix multiplication pipelines on modern
GPUs, without requiring complex operator design or additional inference engines. Experimental
results demonstrate that ConvRot largely preserves image quality, reduces the memory footprint of
the original BF16 DiT by 4.05 %, and achieves a 2.26 x speedup on an RTX 4090 24GB.

In summary, our main contributions are:

* We provide a theoretical framework for rotation-based quantization: we define the column
discrepancy to quantify column sum imbalance, and propose a Kronecker-based construction
of regular Hadamard matrices for orders that are powers of four, guaranteeing minimal
column discrepancy and therefore particularly effective at mitigating the amplification of
row-wise outliers in activations.

* We propose ConvRot, a novel group-wise rotation-based quantization paradigm that lever-
ages regular Hadamard Transform (RHT) to simultaneously smooth row-wise and column-
wise outliers, reducing computational complexity from O(N?) to O(NV) and significantly
lowering latency compared to global rotations.

* We design ConvLinear4bit, a plug-and-play module that fuses rotation, quantization, GEMM,
and dequantization, enabling training-free W4 A4 inference for all linear layers in diffusion
models. Experiments on FLUX.1-dev show that ConvLinear4bit stably suppresses outliers
by up to 7, reduces memory usage and achieves inference speedup, while preserving image
quality.

2 RELATED WORK

2.1 QUANTIZATION FOR LLMS

Quantization reduces memory traffic and computation by adopting low-precision formats, while
also enabling efficient use of hardware-specific accelerators such as INT4 tensor cores (Frantar
et al., 2023; Lin et al., 2024b; Dettmers et al., 2022). However, naive per-tensor or per-channel post-
training quantization (PTQ) schemes suffer from outliers that dominate the dynamic range, leading to
substantial accuracy degradation. Rotation-based quantization addresses this by applying orthogonal
transforms to distribute outliers across channels, producing smoother distributions with fewer extreme
values (Tseng et al., 2024). Yet, these rotations introduce quadratic complexity, which offsets the
potential acceleration. Prior works mitigate the cost with fast hadamard transforms (Ashkboos et al.,
2024), fusion the rotation into adjacent linear layers (Liu et al., 2024), or block-diagonal rotations (Lin
et al., 2024a). While effective for LLMs, these designs face challenges in diffusion models, fusion
breaks under adaptive normalization layers (Peebles & Xie, 2023), and block-diagonal rotations
fail to deliver speedup proportional to their reduced computation. In contrast, our ConvRot employs
a lightweight group-wise rotation that reduces complexity to linear while preserving sufficient
smoothing, and can be directly applied to diffusion models without architectural changes.
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2.2 ACCELERATION OF DIFFUSION MODELS

Diffusion models (Ho et al., 2020) achieve state-of-the-art performance in image and video gener-
ation (Wu et al., 2025; Kong et al., 2024), but their inference speed remains a major limitation for
deployment due to the inherently slow and computationally intensive iterative process. Existing
acceleration strategies include few-step samplers (Song et al., 2020; Lu et al., 2022a;b), distilla-
tion (Salimans & Ho, 2021; Luo et al., 2023; Yin et al., 2024), pruning (Zhao et al., 2024c), and
caching (Liu et al., 2025). Recently, quantization has also been explored for diffusion models (Li
etal., 2023; Zhao et al., 2024b;a; Li et al., 2024b). However, unlike language models, where latency is
often dominated by weight loading, diffusion models are computationally bounded (Li et al., 2024b).
As a result, weight-only quantization is insufficient for diffusion models, both weights and activations
must be quantized to fully exploit low-precision hardware. However, existing methods either maintain
activations in higher precision (Dettmers et al., 2023), preventing the use of low-precision tensor
cores, or rely on customized inference engines (Li et al., 2024b), which complicates deployment.
By contrast, our method supports end-to-end 4-bit weight-activation quantization, fully exploiting
low-precision hardware units. Furthermore, the proposed ConvLinear4bit layer is plug-and-play,
requiring no specialized inference engine, and integrates seamlessly with existing quantized operators
to deliver both memory reduction and practical speedup.

3 PRELIMINARY

3.1 EQUIVALENT TRANSFORMATION BASED QUANTIZATION METHODS

Given an activation vector x € R™, a uniform b-bit quantizer is defined as
X
Qx) = round(—) , (1)
s

where s is a scaling factor. Large-magnitude outliers in x inflate s, reducing the effective resolution
for most elements and making low-bit quantization challenging.

Transformation-based quantization methods apply an orthogonal or diagonal transformation 7'(-) to
redistribute activation magnitudes before quantization while preserving the computation. For a linear
layer Y = XW ', this invariance is expressed as

XWT =T(X)T'(W)T, )
where T"(-) is the corresponding transform on the weight. As illustrated in Figure 2, different choices
of T'(+) correspond to different ways of redistributing outliers. The core challenge is to design 7'(+)

to suppress outlier amplitudes with minimal computational overhead, enabling smaller scaling
factors s and higher effective precision in low-bit quantization.

3.2 REGULAR H-MATRICES FOR ROTATION

Definition 3.1 (Hadamard Matrix (#-Matrix)). A Hadamard matrix (abbrev. H-Matrix) H,, €
{£1}*" satisfies

T
H.,H, =nl,, 3)
Per-channel Global Group-wise
Smoothing Factor Hadamard Transform Regular Hadamard Transform
L= -~ RN AR
i FWHT— | . RHT—| [ | !
T
X w X X
; __— - Conv-like
Outlier
(a) SmoothQuant (b) QuaRot (c) ConvRot (Ours)

Figure 2: Illustration of how different transformations redistribute outliers. (a) SmoothQuant (Xiao et al.,
2023): per-channel diagonal transform 7'(X) = X diag(s)™" shifts activation outlier magnitudes into the
corresponding channel weights. (b) QuaRot (Ashkboos et al., 2024): global Hadamard transform 7'(X) = XH
with orthogonal H evenly redistributes activation energy. (c) ConvRot (Ours): Group-wise Regular Hadamard
Transform performs local smoothing of activations within sliding windows.
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Figure 3: Effect of Hadamard transforms on the single_transformer_blocks.37.proj_out activa-
tions in Flux. The standard transform amplifies outliers (max = 106.19), while the group-wise regular transform
suppresses them (max = 9.26), compared to the original (max = 14.48).

where I, is the n x n identity. Normalized by 1/+/n, H,, is orthogonal, making it well-suited for
rotation-based quantization since orthogonality redistributes outliers. Empirically, 7{-Matrix rotations
outperform random orthogonal ones (Liu et al., 2024; Tseng et al., 2024).

A common construction of Hadamard matrices is the Sylvester-type recursion:

H, Hn] @

H, = [1]7 H,, = |:Hn —-H,

The Fast Walsh-Hadamard Transform (FWHT) exploits this structure to reduce the matrix-vector
multiplication complexity from O(n?) to O(nlogn), using only additions and subtractions. Recent
work (Lin et al., 2024a) demonstrates that block-wise rotations can preserve most of the benefits
while reducing computational cost. It is worth noting that the FWHT is equivalent to multiplying by
a Sylvester-type Hadamard matrix, whose first column is all ones, which can inadvertently amplify
row-wise outliers in the activations, as illustrated in Figure 3.

Theorem 3.1 (Column Sum Squared Property). For an H-Matrix H,,
2

Z ZHij = TL2. (5)

j=1 \i=1

Since concentrated column sums can amplify row-wise outliers, we quantitatively evaluate the ability
of H-Matrices to mitigate this effect by introducing the following metric.

Definition 3.2 (Column Discrepancy). For an H-Matrix H,,, the column discrepancy is defined as

I 1o = max ‘ S, ©6)

where 1 is the all-ones vector. It measures the largest deviation of a column sum from zero.

This metric is related to combinatorial discrepancy (Spencer, 1985; Matousek, 1999), defined for
A e {£1}"™ as

dise(d) = min AT el oo- @)

Here ¢ is a £1 coloring of rows, chosen to minimize the maximum column imbalance. In our case,
the column discrepancy corresponds to the fixed coloring € = 1, giving a upper bound on disc(H).

For H-Matrices, the column discrepancy always satisfies
Vi < [H 1w < n. @®

The lower bound follows from the column sum squared property, while the upper bound is achieved
by Sylvester-type matrices that contain identical columns. This motivates the study of regular
‘H-Matrices, which attain the minimum value.
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Figure 4: Overview of ConvRot. Left: ConvLinear4bit serves as a plug-and-play replacement for Linear layers.
Right: ConvRot applies Regular Hadamard Transform (RHT) on non-overlapping sliding windows of the
activation tensor, with each window multiplied by a regular Hadamard matrix.

Definition 3.3 (Regular 7-Matrix). An H-Matrix is regular if each row and column sums to ++/n.

Theorem 3.2. Regular H-Matrices attain the minimal possible column discrepancy:
n
max ‘ S H,| = va ©)
J
i=1

Theorem 3.3 (Kronecker Construction). For every k > 1, a regular H-Matrix of order n = 4% exists.
Starting from

111 -1
11 -1 1
Hi=1y 4 1 1| (10)

-1 1 1 1
one obtains Hyw+1 = Hyr ® Hy via the Kronecker product. Each Hy. remains regular.

All proofs are deferred to Appendix A. We leverage this property to design a group-wise regular
‘H-Matrix rotation scheme. It reduces peak activations and latency while preserving the smoothing
benefits of H-Matrix rotations, making it practical for large diffusion models where global rotations
are expensive and may amplify outliers. Importantly, since regular -Matrices minimize column
discrepancy, they effectively mitigate row-wise outliers introduced by Sylvester-type constructions.

4 METHOD

In this work, we present an plug-and-play W4 A4 quantization method for Diffusion Transformers
(DiTs). As illustrated in Figure 4, Our approach consists of two core components: ConvRot and
ConvLinear4bit.ConvRot performs group-wise regular Hadamard rotations, where the group-wise
design reduces computational cost and alleviates row-wise aggregation, while the regular structure
further resolves the row-wise issue, smoothing activation and weight distributions before quantization.
ConvLinear4bit fuses ConvRot, 4-bit quantization, matrix multiplication, and dequantization into
a single linear layer, enabling straightforward plug-and-play replacement of the original layers.
By simply replacing the original linear layers with ConvLinear4bit, we can perform low-precision
inference on large-scale DiT models while maintaining high visual quality.

4.1 MOTIVATION

Our first motivation comes from the high cost of existing rotation-based quantization methods, such
as QuaRot (Ashkboos et al., 2024) and SpinQuant (Liu et al., 2024), which apply a global Hadamard
rotation. This redistributes outliers across all channels but incurs quadratic complexity, making it
expensive for large diffusion models. We reduce this cost by limiting rotations to smaller groups of
size Ny, balancing computation and outlier smoothing.

The second motivation arises from row-wise outliers in activations (see Figure 3). Large Hadamard
matrices with high-magnitude columns can concentrate such outliers, increasing their values instead
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of smoothing them. Group-wise rotations limit this effect, and regular Hadamard matrices ensures
minimal column discrepancy, smoothing activations while avoiding row-wise outlier aggregation.

These two insights motivate the design of ConvRot: (i) reducing computational cost by restricting the
rotation scope, and (ii) preventing row-wise outlier concentration through regular Hadamard matrices.

4.2 CONVROT: GROUP-WISE REGULAR HADAMARD ROTATION

As discussed in Section 3.1, inserting a Hadamard transformation within a matrix multiplication can
be interpreted as rotating the input or weight space without changing the output distribution. Building
upon this, we propose ConvRot, which applies a group-wise Regular Hadamard Transform (RHT)
to control the scope of rotation and improve both computational efficiency and outlier handling.

Existing rotation-based quantization methods, such as QuaRot and SpinQuant, typically apply a
global Hadamard transform of order K, which incurs quadratic complexity O(K?) since outliers are
redistributed across all channels simultaneously. This becomes prohibitive for large-scale diffusion
models. Our key insight is that by partitioning the feature dimension into blocks of size Ny and
applying a Regular Hadamard Transform within each block, we can reduce the computational cost
and localize outlier redistribution.

Formally, given a standard linear layer
Y =XWT, XeRM*XE W ecRV*K (1)
we partition the input and weight matrices into column-wise blocks of size Ny:

X:[X15X27"'5X|—K/No-|]7 W:[W17W2a"'7w|—K/N0ﬂ' (]2)

For each block, we insert a Regular Hadamard Rotation (RHT):

[K/No]
Y = >  RHT(X;)RHT(W,)". (13)
=1

By performing group-wise RHT, we reduce computational complexity from O(K?) to O(K), while
preserving effective outlier suppression. Importantly, the equivalence property ensures that this
local rotation does not change the overall linear transformation; it only redistributes the information
within each block, providing finer-grained control over activation distributions. Figure 5 shows peak
activation values and accuracy-speed trade-offs under different group sizes Ny.

It is important to note that existing FWHT-based implementations achieve speedup via FFT-like
butterfly operations, but this restricts them to CUDA cores and prevents leveraging Tensor Cores. In
contrast, we implement ConvRot using matrix multiplication, which avoids extra memory movement
and fully exploits highly optimized matmul pipelines on modern GPUs, yielding significant speedups
over FWHT. Formally, a group rotation of size [Ny can be implemented as a convolution-like operation
on the input activation with kernel size [1, Ny], channels = out channels = Ny, and stride = (1, Ng),
motivating the name ConvRot as it fuses the concepts of convolution and rotation.

40 | —a—Sylvester 36,343 9 —ﬁ—_S}Tvezter_ -7 _be?or;ro_tati_on_(l’TSZ_) T
3 Regular Regular
% 30 6 5.285
520 | 13656 s —& before rotation (14.48) 5007 2P0 3064 3.045 J0%
5 & 1.57% 3 T Ry — —
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E 12.422 11.352 10.828 oS 3.072 2.918

0 Ny=16 W,=64 N,=256 Wy=1024 ° N,=16 Ny=64 Ny=256 N, = 1024
(a) Layer with row-wise outliers (b) Layer without row-wise outliers

Figure 5: Impact of rotation matrix type and size on activation outliers. We compare Regular and Sylvester
Hadamard matrices under two scenarios: with and without row-wise outliers. Results show that, in the presence
of row-wise outliers, increasing rotation size Ny with Regular Hadamard matrices effectively suppresses them,
whereas Sylvester matrices tend to amplify them. Without row-wise outliers, both types perform similarly.

6



Under review as a conference paper at ICLR 2026

4.3 CONVLINEAR4BIT

Building on ConvRot, we develop ConvLinear4bit, which allows straightforward replacement
of original linear layers for plug-and-play 4-bit inference as shown in Figure 4. ConvLinear4bit
fuses ConvRot, quantization, 4-bit matrix multiplication, and dequantization into a single layer. For
ConvRot, we implement the group-wise Hadamard rotation via reshape-based matrix multiplication,
completely avoiding memory movement. The quantization, 4-bit matrix multiplication, and dequanti-
zation operations follow the design in QuaRot (Ashkboos et al., 2024) and utilize highly optimized
CUDA kernels to take advantage of GPUs’ int4 Tensor Cores.

In summary, ConvRot provides a flexible mechanism to control the number of channels participat-
ing in outlier redistribution, trading off computation and smoothing effectiveness. Matmul-based
implementation allows leveraging modern GPU pipelines efficiently, while ConvLinear4bit enables
practical, plug-and-play 4-bit weight-activation quantization for large-scale diffusion models, achiev-
ing significant memory reduction and inference speedup without sacrificing image quality.

5 EXPERIMENTS

5.1 SETUPS

Models. We conduct our experiments on FLUX.1.DEV (Black-Forest-Labs, 2024), which is a 12B-
parameter text-to-image diffusion model known for its high-quality image generation capabilities.
Typically, inference with this model requires over 30GiB of GPU memory, making it hard to deploy
on consumer-grade hardware.

Datasets. Following Li et al. (2024b), we evaluate generation quality on a subset of SK prompts
stratified sampled across categories from the MJHQ-30K dataset (Li et al., 2024a), a benchmark
curated from Midjourney containing 30K high-quality images in 10 diverse categories, filtered by
aesthetic and CLIP scores to ensure strong visual quality and text alignment.

Baselines. We compare ConvRot against the following baselines:

* SVDQuant (Li et al., 2024b) is a state-of-the-art 4-bit quantization framework for diffusion
models that combines a novel low-rank branch design with a carefully co-optimized inference
engine, achieving much higher speedups than standard quantization methods through engineering
optimizations beyond quantization itself.

* QuaRot (Ashkboos et al., 2024) is a representative rotation-based quantization method for LLMs
that reduces the number of rotations by fusing them into adjacent weight matrices and employs
fast Walsh-Hadamard transforms (FWHT) to minimize rotation latency. However, 1) the fusion
technique cannot be applied to FLUX due to the presence of adaptive normalization layers (Peebles
& Xie, 2023), and 2) the FWHT rotation matrix is equivalent to the standard Hadamard matrix,
which can lead to row-wise outlier clustering. Therefore, we only use it to compare single-layer
outlier suppression and acceleration effects.

Metrics. We conduct a comprehensive evaluation at both the single-layer and end-to-end levels. For
single linear layer analysis, we evaluate Precision by measuring the post-rotation outlier amplitude
and the maximum layer error. We also assess Efficiency by benchmarking the rotation latency and
overall layer latency. For the end-to-end text-to-image task, we evaluate from two aspects: Quality,
using FID (Heusel et al., 2017) (lower is better) and ImageReward (IR) (Xu et al., 2024) (higher is
better); and Similarity to the original BF16 model, using LPIPS (lower is better) and PSNR (higher
is better). We also report DiT memory footprint and end-to-end generation latency.

Implementation details. For ConvRot, we use per-token/per-channel 4-bit quantization with regular
Hadamard rotations, denoting ConvRot-Nj as group size Ny. Regular denotes regular Hadamard
matrices, standard denotes Sylvester-type Hadamard, and random denotes random orthogonal matri-
ces. Layers with larger outlier amplitudes use larger rotations (Ny = 1024) to better smooth outliers.
To preserve fine-grained details, proj_out remains in FP16 (following QuaRot’s implementation).
SVDQuant and QuaRot use their official defaults. Experiments run on a single RTX 4090 (24GB),
with CPU offloading for models exceeding GPU memory.
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Table 1: Precision and efficiency of different rotation implementations in a single Flux linear layer (in=15360,
out=3072) with the prompt “A cute cat.” QuaRot uses a Sylvester-type Hadamard of size 15360, realized by
matrix multiplication + FWHT. Sylvester/FWHT and Regular/Group-wise RHT represent two H-Matrix Types.

Rotation Setting | Precision | Efficiency (ms)

Type Size | Outlier Amp. |  MaxEr. | | Rot.Lat. |  LayerLat. |
FP16 = 18.00 e — 1.943
QuaRot 15360 \ 105.63 1306.00 \ 0.690 1.795
16 13.66 27.25 3.782 4.586
S— T - B
1024 36.34 338.00 0.465 1.623
16 12.42 36.13 0.364 1.424
R S | b3 3| e b
1024 9,22 23.03 0.729 1.843

Table 2: End-to-end performance comparison on FLUX.1-dev (50 steps). Lower LPIPS/FID and higher
PSNR/IR/Human indicate better performance. SVDQuant’s method maintains a parallel 16-bit LoRA branch,
while our rollback strategy selectively keeps a few highly sensitive layers in 16-bit precision.

Method Precision | DIiT Memory Latency |  Quality Similarity

| (GiB) (s) |FID] IR?T LPIPS| PSNR T
Baseline BF16 22.7 54.6 10.07 0.992 - -
SVDQuant W4A4 + BF1610rA 6.5 149 ]10.01 0974 0.182 21.24

232 | 1427 0.596 0.247 18.60
24.3 11.81 0.637 0.246 19.24

ConvRot-16 W4A4 5.6
5.8
5.6 22.6 | 1325 0.735 0.242 18.28
5.8
5.6
5.8

+ FP16prj onr W4A4 + FP16 proj_out
ConvRot-64 W4A4

+ FP16proj o W4A4 + FP16 proj_out
Coanol—ES‘6 W4A4

+ FP16prj_ onr W4A4 + FP16 proj_out

239 | 11.25 0.833 0.220 20.05
23.0 | 1219 0.822 0.211 20.36
242 1033 0961 0.185 21.17

5.2 SINGLE-LAYER ANALYSIS

Table 1 compares precision and efficiency of different rotation implementations in a single
Flux linear layer (in=15360, out=3072) with the prompt “A cute cat.”. Outlier Amplitude de-
notes the maximum absolute activation, Max Error the largest element-wise deviation from
the FP16 layer, Rotation Latency the rotation runtime, and Layer Latency the full layer run-
time. As shown in Figure 3, layers such as single_transformer_blocks.proj_out and

FLUX.I-dev SVDQuant ConvRot-64 ConvRot-256 FLUX.1-dev SVDQuant ConvRot-64 ConvRot-256
BF16 INT4 (W4A4) INT4 (W4A4) INT4 (W4Ad) INT4 (W4A4) INT4 (W4Ad) INT4 (W4A4)

Prompt: inside a creepy house in a dense forest, victorian bathroom interior design at night...

Figure 6: Visual comparison on the MJHQ-30K dataset. The prompts cover diverse themes including food,
human portraits, animals, landscapes, indoor scenes, and figurines.
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transformer_blocks.ff_context.net .2 exhibit pronounced row-wise outliers, with full-
size Sylvester-type Hadamard reaching Outlier Amplitude 105.63 and Max Error 1306.00.

For the FWHT implementation, small group sizes (e.g., No = 16) require many rotation calls,
increasing latency, while larger Ny aggregates row-wise outliers due to the first column of all ones,
reducing precision. In contrast, Group-wise RHT shows decreasing Outlier Amplitude and Max Error
with larger Ny, effectively mitigating row-wise outliers. Rotation latency also decreases with Ny,
reaching 1.43x speedup over FP16 at Ny = 64 .

5.3 END-TO-END PERFORMANCE ON TEXT-TO-IMAGE GENERATION

We compare our ConvRot approach with SVDQuant and the BF16 baseline on FLUX.1-dev with
50 sampling steps. As summarized in Table 2, we evaluate both Similarity (LPIPS, PSNR) and
Quality (FID, IR). Lower LPIPS/FID scores and higher PSNR/IR scores indicate better performance.
ConvRot significantly reduces both DiT memory and latency compared to the BF16 baseline. Metrics
indicate that INT4 quantization causes more degradation in image quality than in structural similarity.
This is because the quantized model has a limited numerical representation space, making it difficult
to preserve high-frequency details in the generated images, discussed in Section 5.4.

To mitigate this degradation, we selectively maintain a few highly sensitive layers in FP16 precision.
This rollback strategy effectively restores fine-grained details in the generated images, improving
perceptual quality while retaining most of the efficiency gains of INT4 inference. As shown in
Table 2, ConvRot with partial FP16 rollback achieves a favorable balance between memory, latency,
and image fidelity, demonstrating its practical effectiveness for large-scale text-to-image generation.

5.4 ABLATION STUDY

We further investigate the impact of group size Ny and rotation type on image generation quality.
Unlike the experiments in Section 5.3, here we apply the same N, uniformly across all layers. This
setup isolates the effect of rotation configuration on the model’s representational capacity and image
fidelity. In our results, the regular rotation with Ny = 256 consistently achieves the best performance.
The standard rotation performs well at Ny = 16 or 64, but exhibits degradation at Ny = 256. The
random rotation shows unstable performance across different random seeds, yet it does not suffer
from the degradation observed when N increases. Results are provided in the Appendix B.

We observe that, without special treatment, the outputs of a quantized model often exhibit banding or
granularity artifacts. This is because the INT4 quantization severely limits the model’s expressive
capacity, preventing it from producing smooth color transitions. Under effective outlier suppression,
the quantized model tends to degrade more noticeably in low-frequency details, such as gradual
color gradients, while still preserving overall structural integrity and high-frequency details, such as
textures in hair, noodles, or flower patterns. A promising direction to mitigate these limitations is to
enhance the model’s expressive power via high-precision LoRA branches, or by keeping a subset of
layers or sampling steps in higher precision.

6 CONCLUSION

We present ConvRot, a novel rotation-based quantization framework for diffusion transformers that
enables efficient W4A4 INT4 inference while preserving image quality. To address the challenges
of row-wise and column-wise outliers in activations, we introduce a group-wise rotation scheme
based on regular Hadamard matrices, reducing computational complexity from quadratic to linear
complexity and significantly lowering rotation latency compared to global rotations. Building on
this, we design ConvLinear4bit, a plug-and-play module that fuses rotation, quantization, GEMM,
and dequantization, allowing all linear layers in a diffusion model to be quantized without retraining.
Extensive experiments on FLUX.1-dev demonstrate that our approach stably suppresses outliers
(up to 7x), reduces memory usage by 4.05x, and achieves a 2.26x speedup, while maintaining
high-fidelity image generation. To our knowledge, this work is the first to apply rotation-based
quantization to diffusion transformers for fully INT4 W4A4 inference, providing a practical solution
for accelerating large-scale text-to-image generation with minimal quality loss.
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A PROOFS

A.1 PROOF OF THEOREM 3.1 (COLUMN SUM SQUARED PROPERTY)

Proof. Let H,, be a Hadamard matrix of order n, satisfying H,,H,| = nI,,. Define the column sums

asc; = Z?Zl H;j for j =1,...,n. We consider the squared £ norm of the vector of column sums:
n n n 2
-3 (L) a
j=1 j=1 \i=1

11
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This can be expressed as
Y =|H]1|3=1TH,H 1. (15)
j=1

Using the orthogonality property H,,H, = nl,,, we obtain

1THnH11 =n-1"1=n-n=n (16)
Therefore,
n n 2
() - )
j=1 \i=1
which proves the claim. O

A.2 PROOF OF THEOREM 3.2 (COLUMN DISCREPANCY OF REGULAR HADAMARD)

Lemma A.1 (Column Sum of Regular Hadamard Matrix). If H,, is a regular Hadamard matrix, then
each column sum satisfies

> Hy=+vn, Vi=1,...n (18)
i=1

Proof. By definition, a regular Hadamard matrix has all row and column sums equal in magnitude to
/n. Let H,, be regular. Then by the row-column symmetry of Hadamard matrices (orthogonality
and £1 entries), each column must sum to the same absolute value as the row sum. Since the squared

sum of all columns is
n n 2

j=1 \i=1

and there are n columns, each column sum squared must equal n, i.e.,

n 2 n
=1 =1

O
Proof of Theorem 3.2. By definition, the column discrepancy of H,, is
T e ..
IH, 1o = max Z;Hu : (19)
1=

Applying Lemma A.1, each column sum of a regular Hadamard matrix is ++/n. Hence, the maximum
absolute column sum is exactly 1/n.

Since +/n is also the theoretical minimum discrepancy achievable by any Hadamard matrix, regular
Hadamard matrices attain the optimum. O

A.3 PROOF OF THEOREM 3.3 (KRONECKER CONSTRUCTION OF REGULAR HADAMARD
MATRICES)

Proof. We prove by induction on k.

Base case: For k = 1, the given 4 x 4 matrix H, is regular, since each row and column sums to
+2 = +v/4.

Inductive step: Assume H, is a regular Hadamard matrix, i.e., each row and column sums to
+v4k, Consider Hyr11 = Hyr ® Hy. For any column of Hyx+1, the Kronecker product structure

12
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ensures that its entries are composed of four blocks, each proportional to a column of Hx. Therefore,

the column sum is
S H = (Z He, ’) : (Z H&%L) , (20
u w

where v, z index the corresponding columns in H,x and Hy. By the induction hypothesis,
k
> Hq(fv) = +v/4*, and since H, is regular, ) Hl(f)z = 42, Thus,

STHET = (2VaR)(£2) = £V @1
Hence H 1 is also regular. By induction, a regular Hadamard matrix exists for all n = 4*. O

B MORE RESULTS

Here, the ConvRot- N results correspond to the model without any FP16 layers preserved and without
applying special large-scale rotations to sensitive layers, allowing a clearer observation of how the
rotation matrix affects the degradation of generated image quality.

FLUX.1-dev BF16 ConvRot 16 W4A4 ConvRot 64 W4A4 ConvRot 256 W4A4  ConvRot 256 + Rollback
caw, < ¢ % < CAW, cA
S 7l ¢ & 4%, &
Q 43 ) =) ? P Q A 4:g‘
J J % ® %45 sHov

Prompt: logo for best candle shop.
- i I —m I

Prompt: 4 22,000 square foot contemporary home designed by Mies van der Rohe ...

Prompt: photo of a ficus, shot on Afga Vista 400, flat lighting.

Figure 7: Ablation study on Ny (Part 1).
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FLUX.1-dev BF16 ConvRot 16 W4A4 ConvRot 64 W4A4 ConvRot 256 W4A4  ConvRot 256 + Rollback

Prompt: a 12 year old orphan boy wizard with tattered clothes. South American ancient clothing ...

A

Figure 8: Ablation study on N (Part 2).
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FLUX.1-dev BF16 ConvRot 16 W4A4 ConvRot 64 W4A4 ConvRot 256 W4A4  ConvRot 256 + Rollback

Prompt: Greenery Watercolor Clipart, Greenery Bundle Clipart, Botanical Clipart, Watercolor Clipart, Wedding Clipart, ...

Figure 9: Ablation study on N (Part 3).
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FLUX.1-dev BF16 Standard Random Regular Regular + Rollback

[]

Prompt: ultra photo realistic, ultra detailed, neon, black and red 2023 AMG mercedes benz, octane render, Sk.

Figure 10: Ablation study on Rotation Types.
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