

000 001 002 003 004 005 BRIDGING THE GAP BETWEEN PREFERENCE ALIGN- 006 MENT AND MACHINE UNLEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Despite advances in Preference Alignment (PA) for Large Language Models
032 (LLMs), mainstream methods like Reinforcement Learning with Human Feed-
033 back (RLHF) face notable challenges. These approaches require high-quality
034 datasets of positive preference examples, which are costly to obtain and com-
035 putationally intensive due to training instability, limiting their use in low-resource
036 scenarios. The LLM unlearning technique presents a promising alternative by di-
037 rectly removing the influence of negative examples. However, current research has
038 primarily focused on empirical validation, lacking systematic quantitative analy-
039 sis. To bridge this gap, we propose a framework to explore the relationship be-
040 tween PA and LLM unlearning. Specifically, we introduce a bi-level optimization-
041 based method to quantify the impact of unlearning specific negative examples on
042 PA performance. Our analysis reveals that not all negative examples contribute
043 equally to alignment improvement when unlearned, and the effect varies signifi-
044 cantly across examples. Building on this insight, we pose a crucial question: how
045 can we optimally select and weight negative examples for unlearning to maximize
046 PA performance? To answer this, we propose a framework called Unlearning to
047 Align (U2A), which leverages bi-level optimization to efficiently select and un-
048 learn examples for optimal PA performance. We validate the proposed method
049 through extensive experiments, with results confirming its effectiveness. Our code
050 is available at <https://anonymous.4open.science/r/U2A-9E75>.
051
052

1 INTRODUCTION

053 Despite the strong performance of Large Language Models (LLMs) in predicting the next token,
054 their generated content often exhibits biases, factual inaccuracies, and other undesirable behav-
055 iors (Bai et al., 2022; Casper et al., 2023). Preference Alignment (PA) has been proposed to ad-
056 dress these issues by guiding LLMs to generate responses aligned with human preferences, such as
057 fairness and helpfulness (Ziegler et al., 2019; Stiennon et al., 2020). This approach uses datasets
058 of human-annotated preferred and non-preferred responses to optimize the model. Reinforcement
059 Learning from Human Feedback (RLHF) is the primary method for achieving PA (Wu et al., 2024;
060 Azar et al., 2024), involving the training of a reward model on human preference data and optimizing
061 the LLM using algorithms like Proximal Policy Optimization (PPO) (Schulman et al., 2017) or Di-
062 rect Preference Optimization (DPO) (Rafailov et al., 2024). While RLHF shows strong performance
063 across diverse applications, such as programming and creative writing, *it relies on costly large-scale*
064 *preference-aligned datasets, especially for positive examples* (Yao et al., 2024). Additionally, RLHF
065 training is computationally intensive and prone to instability (Liu et al., 2024c; Zhou et al., 2024b),
066 posing challenges for low-resource alignment scenarios.

067 As a key technique aimed at protecting user privacy, Machine Unlearning (MU) in LLMs offers a
068 novel solution to the aforementioned challenges (Liu et al., 2024d; Yao et al., 2024). This technique
069 enables the removal of specific user data from pre-trained LLMs without requiring a complete re-
070 training. By facilitating the unlearning of negative examples, this promotes PA while addressing the
071 high costs and difficulties associated with acquiring positive examples for standard RLHF. Unlike
072 RLHF, *LLM unlearning requires only negative examples, which are typically easier and cheaper*
073 *to collect via mechanisms like user reports or red team testing*. For unaligned pre-trained models,
074 identifying counterexamples can be highly automated, further reducing data collection costs. Ad-
075 ditionally, the computational overhead of unlearning is comparable to fine-tuning and significantly
076

lower than RLHF’s full training process, making it a practical approach for achieving alignment in low-resource scenarios.

Existing studies (Feng et al., 2024; Liu et al., 2024d; Yao et al., 2024) have validated the effectiveness of achieving model alignment through the unlearning of negative examples, highlighting the potential of integrating MU with PA. However, these studies primarily rely on experimental demonstrations, lacking in-depth quantitative analysis. For instance, the quantitative impact of unlearning specific samples on PA remains unclear. Additionally, critical questions such as which examples should be unlearned to maximize alignment and how to optimally select subsets of examples for unlearning to achieve the best outcomes remain unresolved. These gaps underscore a theoretical and practical disconnect between MU and PA. Addressing these challenges requires the development of a comprehensive analytical framework to unify these two domains and facilitate a deeper understanding of their intrinsic connections.

To address the identified challenges, we first develop a special bi-level optimization framework to quantify how unlearning specific negative samples impacts model PA performance. In particular, the inner optimization focuses on unlearning the target sample, while the outer optimization assesses the resulting change in PA performance. After further analysis, we find that not all negative examples contribute to PA improvement, with the degree of impact varying across examples. Meanwhile, the impact is influenced by the unlearning weights. This suggests that indiscriminately applying unlearning to all negative examples fails to achieve optimal PA performance. To address this, we propose a framework called Unlearning to Align (U2A), based on bi-level optimization, to strategically select samples and determine optimal unlearning weights. Further convergence and computational complexity analysis indicate that our proposed method demonstrates good applicability and efficiency in LLMs. This framework bridges the gap between MU and PA, offering a systematic approach to their integration. We summarize the main contributions of this paper as follows:

- We propose a special bi-level optimization framework to measure the impact of unlearning specific samples on PA performance, bridging the gap between MU and PA.
- We find that unlearning all negative examples does not always benefit PA, as their contributions to PA improvement vary and can be adjusted through unlearning weights.
- We propose the U2A framework, leveraging bi-level optimization to select and weight negative examples for unlearning, thereby maximizing PA performance.
- We conduct extensive evaluations on multiple models and real-world datasets, and the experimental results demonstrate the effectiveness of our method.

2 PRELIMINARY

Given a training set $\mathcal{D}_t = \{\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^{N_t}\}$, where $\mathbf{x}^i = \{x_1, x_2, \dots, x_{n_i}\}$ represents samples (i.e., sentences) with a token length of n_i , and N_t denotes the number of samples. A model π is trained on \mathcal{D}_t , and its optimal parameters θ^* satisfy the following equation:

$$\theta^* = \arg \min_{\theta} \mathcal{L}_{\text{NLL}}(\mathcal{D}_t; \theta) = \arg \min_{\theta} -\mathbb{E}_{\mathbf{x}^i \sim \mathcal{D}_t} \left[\sum_{t=1}^{n_i} \log p(x_t | \mathbf{x}_{<t}; \theta) \right], \quad (1)$$

where $p(x_t | \mathbf{x}_{<t}; \theta) = \pi_{\theta}(x_t | \mathbf{x}_{<t})$ denotes the prediction probability of model π_{θ} for the t -th token, given the first $t-1$ tokens as input. Next, we define the objectives for conducting RLHF and MU on the model π_{θ} , respectively.

2.1 DEFINITION OF RLHF

The standard RLHF paradigm consists of two main stages (Azar et al., 2024): i) learning a reward model, and ii) optimizing the policy (i.e., the model parameters) based on the learned reward.

In the reward model learning phase, a binary classifier is often trained using a logistic regression loss to distinguish preferred from non-preferred behaviors. A popular choice is the Bradley-Terry model (Bradley & Terry, 1952), where the pointwise reward $r(\mathbf{x}_{<t}, x_t)$ serves as the score for action x_t , given context $\mathbf{x}_{<t}$. Given a dataset $\mathcal{D}_a = \{\mathbf{x}_{<t}^i, x_t^i \succ \hat{x}_t^i\}_{i=1}^{N_a}$, where $x_t^i \succ \hat{x}_t^i$ denotes a preference for x_t^i over \hat{x}_t^i , the reward function is learned by minimizing the following logistic regression loss:

$$\mathcal{L}(r) = -\mathbb{E}_{(\mathbf{x}_{<t}^i, x_t^i \succ \hat{x}_t^i) \sim \mathcal{D}_a} [\log (p(x_t^i \succ \hat{x}_t^i | \mathbf{x}_{<t}^i))], \quad (2)$$

108 where $p(x_t^i \succ \hat{x}_t^i | \mathbf{x}_{<t}^i) = \sigma(r(\mathbf{x}_{<t}^i, x_t^i) - r(\mathbf{x}_{<t}^i, \hat{x}_t^i))$ and $\sigma(\cdot)$ denotes the sigmoid function.
 109

110 Based on the reward function, the objective of RLHF is to maximize the expected reward while
 111 minimizing the divergence between the policy π_θ and a reference policy π_{ref} . The specific objective
 112 can be expressed as:

$$\mathcal{J}(\theta) = \mathbb{E}_{\pi_\theta}[r(\mathbf{x}_{<t}^i, x_t^i)] - \tau D_{\text{KL}}(\pi_\theta \parallel \pi_{\text{ref}}), \quad (3)$$

113 where $\mathbf{x}_{<t}^i \sim \rho$ denote the sampled history, $x_t^i \sim \pi_\theta(\cdot | \mathbf{x}_{<t}^i)$ denote the action drawn from the policy,
 114 and τ is the parameter balancing the alignment and regularization objectives. The KL divergence
 115 D_{KL} is used to quantify the difference between the reference and current policies. Since LLM
 116 unlearning in this work incorporates a regularization term with analogous effects, we retain only the
 117 reward term in Eq. 3.
 118

119 2.2 DEFINITION OF LLM UNLEARNING

120 Mainstream methods for unlearning in LLMs typically involve fine-tuning the original model with
 121 an unlearning objective function. Given a forget set \mathcal{D}_f , while specific designs vary, the loss function
 122 in LLM unlearning tasks can generally be expressed as:

$$\mathcal{L}(\theta) = \mathcal{L}_{\text{forget}}(\mathcal{D}_f; \theta) + \lambda \mathcal{L}_{\text{reg}}(\theta). \quad (4)$$

123 Here, $\mathcal{L}_{\text{forget}}$ often is a loss term targeting data to be unlearned, reducing the model's performance
 124 on these samples to minimize their influence on future predictions. To preserve the model's overall
 125 performance on unrelated data and confine unlearning to the intended scope, regularization terms
 126 \mathcal{L}_{reg} such as output loss or divergence regularization are commonly introduced. These terms
 127 essentially act as parameter regularization. Specifically, commonly used loss-based methods (Jia et al.,
 128 2024a; Ji et al., 2024a) typically integrate one or more of the loss components. For readability, in
 129 this paper, we employ the widely adopted gradient ascent unlearning loss and parameter regular-
 130 ization loss as general objectives for LLM unlearning, considering their broad applicability. The
 131 formalization is as follows:
 132

$$\min_{\theta} \underbrace{\frac{1}{|\mathcal{D}_f|} \sum_{i=1}^{|\mathcal{D}_f|} \sum_{t=1}^{n_i} \log p(x_t | \mathbf{x}_{<t}^i; \theta)}_{\mathcal{L}_{\text{forget}}(\mathcal{D}_f; \theta)} + \lambda \underbrace{\|\theta - \theta^*\|_p^2}_{\mathcal{L}_{\text{reg}}(\theta)}. \quad (5)$$

133 A more detailed discussion on the definition of LLM unlearning can be found in Appendix B.
 134

135 3 CONNECTION BETWEEN MU AND PA

136 3.1 IMPACT OF MU ON PA

137 Given a training sample \mathbf{x} to be unlearned, the unlearning objective in an LLM is described by
 138 Eq 5. We adopt a special bi-level optimization framework to link MU with PA, quantifying how
 139 unlearning a single sample affects the model's PA performance. In this setup, the inner problem
 140 ensures the unlearning objective is achieved, while the outer problem evaluates its impact on PA
 141 performance. Specifically, we assume that the degree of unlearning for a sample \mathbf{x} is represented
 142 by the weight $\omega \geq 0$, and the model parameters that satisfy the unlearning objective under this
 143 condition are denoted as $\theta^*(\omega)$. The bi-level optimization problem is formulated as:

$$\begin{aligned} \text{Find} \quad & \mathcal{J}(\theta^*(\omega)) - \mathcal{J}(\theta^*(0)) \\ \text{s.t.} \quad & \theta^*(\omega) = \arg \min_{\theta} \omega \mathcal{L}_{\text{forget}}(\mathbf{x}; \theta) + \lambda \mathcal{L}_{\text{reg}}(\theta), \end{aligned} \quad (6)$$

144 where $\mathcal{J}(\theta^*(\omega))$ represents the model's PA performance when unlearning weight is ω . For exam-
 145 ple, $\mathcal{J}(\theta^*(0))$ represents the model's PA performance without unlearning. Inspired by the implicit
 146 function method for solving bi-level optimization problems, we further derive Proposition 3.1.

147 **Assumption 3.1.** $\mathcal{L}_{\text{forget}}(\mathbf{x}; \theta)$ is continuously differentiable w.r.t. θ , and its Hessian matrix \mathbf{H} is
 148 positive semidefinite (i.e., $\mathbf{x}^\top \mathbf{H} \mathbf{x} \geq 0, \mathbf{x} \neq 0$). $\mathcal{J}(\theta)$ is twice continuously differentiable w.r.t θ .

149 **Proposition 3.1.** If Assumption 3.1 holds, \mathcal{L}_{reg} adopts the 2-norm, the change in PA performance
 150 for a model with parameters θ^* after unlearning sample \mathbf{x} using unlearning weight ω satisfies:

$$\Delta \mathcal{J}(\theta^*(\omega)) \approx -\frac{\omega}{2} \nabla_{\theta} \mathcal{J}(\theta^*)^\top \nabla_{\theta} \mathcal{L}_{\text{forget}}(\mathbf{x}; \theta^*). \quad (7)$$

Detailed proof can be found in Appendix C.1. According to Proposition 3.1, we can directly set the unlearning weight ω to a given positive value, such as 1 (i.e., $\Delta\mathcal{J}(\theta^*(1))$), to quantitatively assess the impact of unlearning a single sample on the model’s PA performance. To further analyze the factors influencing $\Delta\mathcal{J}(\theta^*(\omega))$, we decompose the gradient inner product into the gradient norm and the cosine of the angle between gradients: $\Delta\mathcal{J}(\theta^*(\omega)) \approx -\frac{\omega}{2} \|\nabla_{\theta}\mathcal{J}(\theta^*)\| \cdot \|\nabla_{\theta}\mathcal{L}_{\text{forget}}(\mathbf{x}; \theta^*)\| \cdot \cos(\phi)$, where $\cos(\phi)$ denotes the angle between gradient vectors. Then, we can draw the facts:

- **Fact 1: impact can be positive or negative.** The impact of unlearning a sample on PA performance can be either positive or negative, depending on the gradient direction relationship (i.e., the sign of $\cos(\phi)$), which is partially influenced by the reward of the unlearned sample’s combination. A sample \mathbf{x} can be represented as multiple combinations, i.e., $\mathbf{x} = \{\mathbf{x}_{<t}, x_t\}_{t=1}^n$. For low-reward combinations, where generated behavior often deviates significantly from human preferences, the unlearning objective gradient direction (i.e., the direction increasing the sample’s generation probability) is more likely to oppose the PA objective gradient direction. This results in $\cos(\phi) < 0$ and $\Delta\mathcal{J}(\theta^*(\omega)) > 0$. Thus, if the rewards for most combinations $\{\mathbf{x}_{<t}, x_t\}$ in a sample \mathbf{x} are low, unlearning the sample tends to improve preference alignment. Conversely, if only a few combinations have low rewards, unlearning the sample will likely hinder PA.
- **Fact 2: magnitude of impact varies.** The effect of unlearning on PA performance is sample-dependent, influenced by unlearning degree and gradient norm. The gradient norm is an inherent property of sample, such as the model’s degree of fit to the sample. For samples that the model fits well, the gradient norm tends to be smaller. On the other hand, the unlearning weight is a controllable factor that can be adjusted by tuning parameters such as the unlearning weight.

3.2 A WEIGHTED MU FRAMEWORK FOR PA

The above analysis indicates that, given a set $\mathcal{D} = \{\mathbf{x}^i\}_{i=1}^n$ containing n negative samples, simply performing the unlearning operation directly according to Eq. 5 does not guarantee optimal PA results. This is primarily due to the following two issues:

- **Issue 1.** Fact 1 suggests that for a given negative sample \mathbf{x}^i , which contains some low-reward combinations, this alone does not imply that unlearning \mathbf{x}^i will necessarily promote PA. The effectiveness of unlearning also depends on the proportion of low-reward components within the sample. This indicates that not all negative samples need to be unlearned.
- **Issue 2.** Fact 2 indicates that even if different negative samples (e.g., \mathbf{x}^i and \mathbf{x}^j) can both promote PA, the degree of promotion may vary. This difference can be controlled by adjusting the unlearning weight ω .

Formally, in Theorem C.2 of Appendix C.2, we theoretically prove that if there is room for improvement in the PA objective, a reweighting scheme ω exists that can improve PA without increasing the MU task loss. This property forms the theoretical basis for our subsequent algorithm design.

Problem setup. To address these two issues, we propose a framework called Unlearning to Align (U2A) based on a sample-weighting approach. This framework achieves the maximization of PA performance by assigning higher weights to samples that contribute more significantly to performance improvement during the unlearning process. Specifically, when the weight ω is set to 0, it indicates that the corresponding sample is not selected for unlearning. For ease of analysis and discussion, we assume that the weight vector $\omega = [\omega_1, \omega_2, \dots, \omega_n]$ lies on an n -dimensional simplex, with each element being no less than 0, and we denote the unlearning loss of each sample \mathbf{x}^i as $\ell_i(\theta)$. The U2A framework can be formalized as solving the following optimization problem:

$$\begin{aligned} \min_{\omega \in \Delta_n} \quad & -\mathcal{J}(\theta^*(\omega)) + \beta L_p(\omega) \\ \text{s.t.} \quad & \theta^*(\omega) = \arg \min_{\theta} \sum_{i=1}^n \omega_i \ell_i(\theta) + \lambda \mathcal{L}_{\text{reg}}(\theta), \end{aligned} \quad (8)$$

where $L_p(\omega)$ represents an introduced L_p -norm sparsity-inducing regularization term to ensure that the number of selected samples for unlearning is as small as possible, and β denotes the weight coefficient of the regularization term. Further analysis shows that when $p = 1$, the sparsity regularization has relatively weak compressive effects on small values. On the other hand, when $p = 0$, it can effectively control the sparsity of weights (i.e., the number of non-zero weights). However, in this case, the regularization term $L_q(\omega)$ becomes a non-continuous and non-convex function, which

significantly increases the difficulty of optimization. Considering these factors, when $\omega \geq 0$ and $p = \frac{1}{2}$, the regularization term $L_p(\omega)$ is both a strictly convex function and exhibits good smoothness. Therefore, in this paper, we set $p = \frac{1}{2}$, making $L_p(\omega) = \sum_{i=1}^n \sqrt{\omega_i}$. Solving Eq. 13 yields the selected unlearning set \mathcal{S} as well as the unlearning weight ω for each sample.

U2A framework. To enhance clarity, we denote the outer objective function as $g(\omega)$ and the inner objective function as $f(\theta, \omega)$. If $f(\theta, \omega)$ is twice differentiable w.r.t. θ , the constraint $\theta^*(\omega) = \arg \min_{\theta} f(\theta, \omega)$ can be relaxed into $\frac{\partial f(\theta, \omega)}{\partial \theta} |_{\theta=\theta^*(\omega)} = 0$. When $f(\theta, \omega)$ is strictly convex w.r.t. θ , this relaxation becomes tight (Borsos et al., 2024). Assumption 3.1 ensures this property, enabling the use of first-order optimization methods (Pedregosa, 2016; Finn et al., 2017; Liu et al., 2019) to solve Eq. 6 and avoiding computationally expensive naive greedy algorithms. Considering the efficiency, we adopt a variant of the cone-constrained generalized matching pursuit algorithm (Locatello et al., 2017), which performs incremental optimization. This approach iteratively constructs the unlearning set \mathcal{S} , thereby significantly reducing computational complexity.

Specifically, in each iteration, we first solve the inner optimization problem using the gradient descent method to obtain the model parameters $\theta^*(\omega)$ with optimal unlearning performance. After completing the inner optimization, we identify a new sample point k to add to the unlearning set based on the marginal gain of the outer objective function $g(\omega)$, to maximize the marginal gain. The marginal gain is calculated as $\Delta g(k) = -\frac{\partial g(\omega)}{\omega_k}$. According to the implicit function theorem, the gradient of $g(\omega)$ w.r.t. ω can be expressed as:

$$\Delta g(k) = -\nabla_{\theta} \mathcal{J}(\theta^*(\omega))^{\top} \left(\frac{\partial^2 f}{\partial \theta^2} \right)^{-1} \nabla_{\theta} \ell_k(\theta^*(\omega)) - \frac{\beta}{2} \omega_k^{-\frac{1}{2}}. \quad (9)$$

where $\frac{\partial^2 f}{\partial \theta^2} = \sum_{i=1}^n \omega_i \nabla_{\theta}^2 \ell_i(\theta^*(\omega)) + 2\lambda I$, denoting the Hessian matrix of the inner optimization problem (details are provided in Appendix C.3). After computing the marginal gain, we select the sample point k^* with the maximum gain, add it to the unlearning set \mathcal{S}_{t-1} .

Subsequently, we fix the model parameters to solve the outer optimization problem to obtain the solution $\omega^{t,*}$, which can be formalized as:

$$\omega^{t,*} = \arg \min_{\omega \in \Delta_n} g(\omega) \quad \text{s.t.} \quad \text{supp}(\omega) = \mathcal{S}_t, \quad (10)$$

where the constraint is imposed to restrict the support set of the weight vector ω to be identical to the current unlearning set \mathcal{S}_t . In other words, the non-zero components of ω are confined to elements within the current unlearning set, thereby preventing the introduction of new sample points. The support set $\text{supp}(\omega) = \{i \mid \omega_i \neq 0\}$ denotes the indices of the non-zero entries in ω . Let $s = |\mathcal{S}_t|$ be the support set size, and $\omega_{\mathcal{S}_t} \in \mathbb{R}^s$ the corresponding subvector. The equivalent optimization reduces to $\min_{\omega_{\mathcal{S}_t} \in \Delta_{s-1}} g(\omega)$, subject to a simplex constraint, and can be solved by mirror descent (Wang et al., 2021; Zhang et al., 2021). The update rule is given by:

$$\omega^{t+1} = \arg \min_{\omega \in \Delta_{s-1}} \langle \nabla g(\omega^t), \omega \rangle + \frac{1}{\eta} D_h(\omega \parallel \omega^t), \quad (11)$$

where η is the step size, $\langle \cdot, \cdot \rangle$ denotes the dot product, and $D_h(\cdot \parallel \cdot)$ is the Bregman divergence (Fatkhullin & He, 2024). Using the negative entropy $h(x) = \sum x_i \ln x_i - x_i$, the update has a closed form:

$$\omega_i^{t+1} = \frac{\omega_i^t \cdot \exp(-\eta \cdot \nabla_i g(\omega^t))}{\sum_{j=1}^s \omega_j^t \cdot \exp(-\eta \cdot \nabla_j g(\omega^t))}, \quad \text{s.t.} \quad i \in \mathcal{S}_t. \quad (12)$$

This yields a smooth, probabilistic update guided by the gradient. Thus, we can obtain the complete process of U2A in Algorithm 1. In practice, to improve efficiency, U2A initialization (first point selection) typically involves multiple points controlled by a tunable hyperparameter M , and each update is similarly governed by N . More detailed implementation specifics provided in Appendix D.

Convergence and complexity analysis. We analyze the convergence of the U2A framework and obtain Lemma C.1 and Lemma C.2 (see Appendix C.4), which prove that it has good convergence properties. We further analyze the complexity of U2A (Appendix C.5), showing that it is computationally efficient and well-suited for high-dimensional settings.

270 4 EXPERIMENT
271272 4.1 EXPERIMENT SETUPS
273

Datasets and models. We evaluate across three mainstream PA tasks and datasets: (i) reducing harmfulness **SafeRLHF** (Dai et al., 2023), (ii) enhancing usefulness **UltraFeedback** (Cui et al., 2023; Tunstall et al., 2023), (iii) eliminating hallucinations **HaluEval** (Li et al., 2023). Following the configurations in prior study (Jia et al., 2024a; Zhou et al., 2024b), we select the widely used Llama-2-7B-Chat (LLaMA2) (Touvron et al., 2023) and Llama-3.1-8B-Instruct (LLaMA3) (Dubey et al., 2024) as base models for each dataset. For PA evaluation, we employ the Skywork-Reward-Llama-3.1-8B model (Liu et al., 2024a). We report the details of training in Appendix E.1.

Pipeline and data pre-processing. To evaluate the effectiveness of the proposed unlearning method on preference datasets, we design a unified data processing pipeline (Figure 5(a) in Appendix F.1). An ablation study on the effects of negative ratio and forget ratio is presented in Appendix F.1. Due to the space limit, please refer to Appendix F.1.

Evaluation metrics. We evaluate our proposed method along two dimensions: PA performance and unlearning performance. For unlearning performance, we evaluate unlearning effectiveness and model utility. Due to space limit, details are provided in Appendix E.2.

Baselines. We evaluate our proposed method U2A against widely acknowledged baselines, including unlearning methods (i.e., Retrain, GA (Maini et al., 2024), GradDiff (Liu et al., 2022; Yao et al., 2024), and NPO (Zhang et al., 2024)), as well as PA methods (i.e., PPO (Schulman et al., 2017) and DPO (Rafailov et al., 2024)). The effectiveness of our method is validated by comparing the U2A-improved unlearning baseline with the original baseline and existing PA baselines.

292 4.2 EXPERIMENT RESULTS
293

Unlearning affects PA. We assess the impact of unlearning individual samples on PA performance using the LLaMA2 model across three datasets. Given the nearly negligible effect of unlearning a single sample on model parameters, we randomly select 150 groups, each with 32 negative samples, from a pool of eligible negative samples. PA performance changes after unlearning each group are compared, with parameter ω set to 1. Figure 1 shows that unlearning can have both positive and negative effects, suggesting that removing negative samples does not consistently improve PA performance. Additionally, the degree of improvement varies significantly across different samples, refer to Appendix E.3.

To better understand this, we decompose reward values for each token. Tokens with reward values below the average are classified as "low-reward", while those above the average are "high-reward". The average reward values for each dataset are as follows: -1.74 for SafeRLHF, 0.90 for UltraFeedback, and -0.78 for HaluEval. To distinguish the impact of different sample groups, we apply a threshold on the proportion of low-reward tokens. Specifically, samples with a low-reward token proportion below the threshold are marked in red, while those exceeding the threshold are marked in blue. Figure 2 illustrates the impact of unlearning these samples on PA performance. Taking SafeRLHF as an example, most changes in PA performance are positive when the proportion of low-reward tokens in the unlearned dataset exceeds the threshold (dashed vertical line at 0.6). Conversely, when the proportion of low-reward tokens is below the threshold, most changes are negative. In general, red samples, with more dispersed rewards and fewer low-reward tokens, tend to hinder the improvement in PA performance when not learned. In contrast, unlearning blue samples, with a higher proportion of low-reward tokens, significantly boosts PA performance. These findings align with our theoretical analysis in Section 3.1.

Effectiveness of U2A. To comprehensively evaluate the effectiveness and applicability of the proposed U2A framework in enhancing PA, we conduct experiments on two widely used datasets:

(a) SafeRLHF (b) UltraFeedback (c) HaluEval
Figure 1: Effect of unlearning individual data samples on PA performance of LLaMA2 model. Each point represents the PA performance change after unlearning a specific data sample. The angle of each point follows a uniform distribution, while the radial distance indicates the magnitude of PA performance change. Red points represent negative effects (i.e., unlearning this sample led to worse PA), whereas blue points represent positive effects (i.e., unlearning this sample improved PA). Note that larger distances from the origin correspond to stronger impacts on PA performance.

For details on the computation of PA performance, refer to Appendix E.3.

Figure 2: Analysis of how unlearning data samples affects PA performance. Each point represents the change in PA performance (ΔPA) after unlearning a group of samples. The x -axis denotes the proportion of low-reward tokens in the unlearned sample groups, and the y -axis represents the corresponding change in PA performance.

SafeRLHF and UltraFeedback. LLaMA2 and LLaMA3 are selected as representative open-source base models. The experimental setup comprises two parts. The first assesses different variants of the unlearning method within U2A, comparing their PA performance and unlearning performance against a baseline unlearning strategy that removes negative samples. This aims to validate the practical benefits of U2A. The second part benchmarks U2A against mainstream PA methods, demonstrating its potential and competitiveness in improving PA performance.

- **Analysis of the improvement brought by U2A.** To evaluate the enhancement achieved by U2A, we compare it against three widely used MU methods: GA, GradDiff, and NPO. All methods are applied to the complete set of negative samples, simulating the full-sample unlearning paradigm commonly adopted in traditional MU methods. A retrained model is also included as a reference, serving as the “gold standard” for full unlearning to assess the trade-off between performance and cost. On this basis, we construct three U2A-integrated variants (i.e., GA & U2A, GradDiff & U2A, and NPO & U2A) by incorporating the proposed sample weighting mechanism. This design enables evaluation of whether U2A enhances PA under the same unlearning settings. Detailed results are presented in Table 1 and Table 6 (Appendix F.2), from which we draw the following observations:

Table 1: The performance of unlearning methods on the SafeRLHF dataset before and after U2A integration. Methods outperforming their respective baselines are indicated in *italics*, and the overall best-performing method is highlighted in **bold**.

Models	Methods	PA Performance					MU Performance	
		Reward-V (\uparrow)	ASR-K (\downarrow)	ASR-A (\downarrow)	ASR-U (\downarrow)	ASR-S (\downarrow)	MIA (\uparrow)	PPL (\downarrow)
LLaMA2	Original Retrain	-20.361 -18.243	0.933 0.873	0.837 0.602	0.162 0.177	0.812 0.563	-	8.538 8.924
	GA	-19.103	0.942	0.792	0.217	0.725	0.515	7.003
	GA & U2A	-15.993	0.746	0.112	0.158	0.094	0.556	11.021
	GradDiff	-19.545	0.956	0.815	0.164	0.783	0.511	5.982
	GradDiff & U2A	-15.843	0.644	0.089	0.142	0.067	0.584	14.573
	NPO	-20.041	0.927	0.840	0.121	0.812	0.504	5.079
LLaMA3	NPO & U2A	-19.639	0.946	0.831	0.100	0.812	0.503	5.294
	Original Retrain	-19.827 -17.911	0.971 0.958	0.848 0.740	0.148 0.138	0.794 0.686	-	7.627 10.412
	GA	-18.011	0.982	0.829	0.163	0.750	0.509	20.405
	GA & U2A	-7.609	0.246	0.162	0.123	0.121	0.522	17.876
	GradDiff	-18.477	0.971	0.829	0.179	0.767	0.511	23.426
	GradDiff & U2A	-12.644	0.417	0.103	0.140	0.173	0.536	21.949
	NPO	-17.985	0.958	0.860	0.131	0.785	0.505	11.201
	NPO & U2A	-13.815	0.783	0.698	0.233	0.498	0.508	20.177

(i) U2A substantially improves the PA performance of all baseline methods, achieving optimal results. While basic unlearning methods applied to all negative samples yield moderate gains, they remain inferior to retraining. In contrast, U2A variants consistently outperform retraining across multiple metrics, indicating that retraining is not the optimal unlearning strategy for PA, as not all unlearned samples equally contribute to improving PA.

(ii) U2A maintains competitive unlearning performance while markedly enhancing PA. It generally outperforms baselines in metrics like MIA and PPL, due to its targeted selection and reweighting of key samples. Nonetheless, in some cases, performance drops occur as U2A only removes a subset of the unlearning set, which may weaken overall unlearning strength.

378 • **In-depth correlation between MU and PA.** To explore the intrinsic link between MU and PA, we
 379 conduct a systematic comparison between U2A-enhanced unlearning methods and mainstream PA
 380 methods based on positive-negative sample pairs. Experiments are performed on the SafeRLHF
 381 and UltraFeedback datasets, using 2,407 and 12,227 positive-negative sample pairs, respectively,
 382 under two representative PA algorithms: DPO and PPO. Sample scales are matched with dataset
 383 partitioning. Results for UltraFeedback are shown in Table 2 and SafeRLHF are in Table 7 (Ap-
 384 pendix F.3). Key observations are as follows:

385 Table 2: Comparison of the PA Performance between MU and PO on the UltraFeedback dataset.

Model	Method	Reward-V (\uparrow)	LC-WR (%), \uparrow	GPT4-WR (%), \uparrow	Coherence (\uparrow)
LLaMA2	Original	-8.578	11.93	6.96	0.7328
	Retrain	-7.739	15.29	9.20	0.7324
	PPO	-6.971	17.13	10.29	0.7375
	DPO	-6.728	16.62	10.82	0.7370
	GA & U2A	-7.154	20.12	10.63	0.7077
	GradDiff & U2A	-7.233	18.35	9.95	0.7091
	NPO & U2A	-8.037	14.44	7.84	0.7380
LLaMA3	Original	-4.996	10.57	5.85	0.7263
	Retrain	-3.318	15.48	8.93	0.7300
	PPO	-1.302	23.43	19.41	0.7395
	DPO	-0.277	29.30	19.08	0.7375
	GA & U2A	1.105	24.79	21.33	0.7450
	GradDiff & U2A	1.248	24.18	19.67	0.7380
	NPO & U2A	-0.248	20.56	13.20	0.7294

399 (i) *MU is an effective way for PA.* On LLaMA3 and UltraFeedback, U2A achieves comparable
 400 or superior PA performance relative to DPO and PPO. This indicates that unlearning, viewed as
 401 negative sample exclusion, can serve as an effective and complementary PA strategy.

402 (ii) *Knowing “what to unlearn” is insufficient; learning “what to generate” is equally critical.* On
 403 the LLaMA2 model and SafeRLHF dataset, U2A shows no significant advantage over mainstream
 404 PA methods. This is because, although U2A effectively removes negative samples through a
 405 “negative avoidance” strategy, which suppresses low-quality responses to indirectly enhance PA, it
 406 still lacks explicit guidance for generating high-reward, human-aligned content. Without positive
 407 sample supervision, its ability to learn and generalize high-quality outputs is limited, reducing its
 408 efficacy compared to PA methods. This highlights the need for unlearning methods to address
 409 both undesired outputs and desired generation behaviors.

410 (iii) *Model generalization and negative sample quality critically affect U2A.* U2A performs better
 411 on LLaMA3 and UltraFeedback than on LLaMA2 and SafeRLHF, likely due to two factors. First,
 412 LLaMA3’s larger-scale pretraining confers stronger representational and generalization capabili-
 413 ties, enabling the model to infer positive behaviors and avoid harmful ones even when only nega-
 414 tive samples are removed. In contrast, LLaMA2’s weaker generalization may lead to uncertainty
 415 or degraded behavior post-unlearning, impairing PA performance. Second, the UltraFeedback
 416 dataset provides high-quality negative samples that are well-annotated, semantically coherent,
 417 and distributionally focused, thereby supporting more effective behavior suppression. In contrast,
 418 the noisier and less consistent negative samples in SafeRLHF limit their impact on PA.

419 (iv) *The quantitative relationship between negative sample scale and PA training requirements*
 420 *warrants further study.* As higher PA performance is pursued, both PA methods and unlearn-
 421 ing methods typically demand more positive-negative sample pairs for the former and negative
 422 samples for the latter. Whether a functional relationship exists between the data requirements of
 423 different methods to achieve comparable alignment levels remains an open question. Clarifying
 424 this could offer a theoretical basis for more efficient training resource allocation.

425 **Sensitivity analysis of hyperparameter M .** We investigate the effect of the hyperparameter M ,
 426 which represents the number of samples selected for weighted unlearning at the initial step, on
 427 PA in the U2A framework, using the SafeRLHF and UltraFeedback datasets with LLaMA2 and
 428 LLaMA3 models. For different values of M , we select the Top- M high-gain samples and apply
 429 U2A weighted unlearning. After each unlearning step, we evaluate PA performance using average
 430 reward as the main metric. The results in Figure 3 (top row) show that PA performance is generally
 431 higher for small values of M . When M exceeds a certain threshold, performance stabilizes or
 432 decreases. To analyze this, we compute the marginal gain on PA performance for each negative
 433 sample in the candidate forget set, representing the estimated reward improvement if the sample is
 434 forgotten. The marginal-gain distributions (Figure 3, bottom row) show that a few high-gain samples

432 are concentrated at the left tail, while most samples have marginal gains near zero. This suggests
 433 that high-gain samples mainly improve PA performance, while low or near-zero gain samples offer
 434 little benefit and may even cause a slight degradation in PA when M exceeds the threshold.

451 Figure 3: Sensitivity analysis of the hyperparameter M . As observed, unlearning high-marginal-
 452 gain samples at the early stage yields substantial improvements in preference alignment, whereas
 453 including more low-marginal-gain samples leads to saturated or even slightly degraded gains.

454 **Ablation study on sample selection based on marginal gain.** We conduct an ablation study on
 455 the UltraFeedback dataset with the LLaMA3 model to evaluate whether the marginal-gain-based
 456 sample selection improves PA performance. For various unlearning set sizes K , we compare two
 457 strategies: (i) selecting the Top- K samples with the highest marginal gains, and (ii) randomly
 458 selecting K samples as a baseline. We apply the same U2A weighted unlearning procedure to both
 459 sets and evaluate PA performance using average reward. As shown in Figure 4, the models using
 460 marginal gain selection consistently outperformed those with random selection in average reward,
 461 with this advantage increasing as K grew. These results confirm that marginal gain computation
 462 effectively identifies key samples for improving preference alignment, significantly enhancing U2A
 463 unlearning performance, and validating the necessity of this module.

464 Figure 4: Ablation study. Each subfigure presents the comparison of Top- K selection guided by
 465 marginal gain (yellow) and random selection (blue) in terms of improvement in PA performance.

466 For more experimental results (e.g., the processing efficiency of U2A), see Appendix F.

467 5 CONCLUSION

468 The mainstream PA method, RLHF, faces significant challenges in low-resource settings, including
 469 i) reliance on numerous positive preference samples, which are costly to obtain, and ii) instability
 470 during training, resulting in high computational costs. To address these issues, we propose a
 471 MU-based method that reduces dependence on positive samples by unlearning negative samples
 472 to achieve PA. Our method achieves computational efficiency comparable to standard fine-tuning
 473 while showing strong potential. We first develop a bi-level optimization framework to evaluate the
 474 impact of unlearning individual samples on PA performance. Through our analysis, we observe that
 475 negative samples contribute unevenly to PA, with many offering limited benefits. This observation
 476 leads to a key question: how can we selectively weight and unlearn negative samples to optimize
 477 alignment? To this end, we formally define the problem and introduce U2A, a framework leveraging
 478 bi-level optimization to efficiently select and weighted unlearn samples for improved alignment. Ex-
 479 periments demonstrate that U2A significantly enhances alignment efficiency and effectiveness,
 480 underscoring its value in resource-constrained scenarios. By linking PA with MU, this work provides
 481 a novel perspective on PA for LLMs and suggests new directions for optimizing PA algorithms.

486 REFERENCES
487

488 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
489 Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning
490 from human preferences. In *International Conference on Artificial Intelligence and Statistics*, pp.
491 4447–4455. PMLR, 2024.

492 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
493 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
494 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
495 2022.

496 Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander D’Amour, Jacob Eisenstein, Chirag
497 Nagpal, and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment policy.
498 *arXiv preprint arXiv:2401.01879*, 2024.

499 Zalán Borsos, Mojmír Mutný, Marco Tagliasacchi, and Andreas Krause. Data summarization via
500 bilevel optimization. *Journal of Machine Learning Research*, 25(73):1–53, 2024.

501 502 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
503 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

504 505 Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémie Scheurer, Javier
506 Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
507 and fundamental limitations of reinforcement learning from human feedback. *arXiv preprint
arXiv:2307.15217*, 2023.

508 509 Souradip Chakraborty, Soumya Suvra Ghosal, Ming Yin, Dinesh Manocha, Mengdi Wang, Am-
510 rit Singh Bedi, and Furong Huang. Transfer q star: Principled decoding for llm alignment. *arXiv
preprint arXiv:2405.20495*, 2024.

511 512 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
513 and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. 2023.

514 515 Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and
516 Yaodong Yang. Safe rlhf: Safe reinforcement learning from human feedback. *arXiv preprint
arXiv:2310.12773*, 2023.

517 518 Yann N Dauphin, Atish Agarwala, and Hossein Mobahi. Neglected hessian component explains
519 mysteries in sharpness regularization. *Advances in Neural Information Processing Systems*, 37:
520 131920–131945, 2024.

521 522 Omkar Dige, Diljot Arneja, Tsz Fung Yau, Qixuan Zhang, Mohammad Bolandraftar, Xiaodan Zhu,
523 and Faiza Khattak. Can machine unlearning reduce social bias in language models? In *Proceed-
524 ings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry
Track*, pp. 954–969, 2024.

525 526 Jai Doshi and Asa Cooper Stickland. Does unlearning truly unlearn? a black box evaluation of llm
527 unlearning methods. *arXiv preprint arXiv:2411.12103*, 2024.

528 529 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
530 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

531 532 Chongyu Fan, Jiancheng Liu, Licong Lin, Jinghan Jia, Ruiqi Zhang, Song Mei, and Sijia Liu. Sim-
533 plicity prevails: Rethinking negative preference optimization for llm unlearning. *arXiv preprint
arXiv:2410.07163*, 2024.

534 535 Ilyas Fatkhullin and Niao He. Taming nonconvex stochastic mirror descent with general bregman
536 divergence. In *International Conference on Artificial Intelligence and Statistics*, pp. 3493–3501.
537 PMLR, 2024.

538 539 XiaoHua Feng, Chaochao Chen, Yuyuan Li, and Zibin Lin. Fine-grained pluggable gradient as-
540 cent for knowledge unlearning in language models. In *Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing*, pp. 10141–10155, 2024.

540 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
 541 of deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.
 542

543 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
 544 *International Conference on Machine Learning*, pp. 10835–10866. PMLR, 2023.
 545

546 Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
 547 via hessian eigenvalue density. In *International Conference on Machine Learning*, pp. 2232–
 548 2241. PMLR, 2019.
 549

550 James Y Huang, Sailik Sengupta, Daniele Bonadiman, Yi-an Lai, Arshit Gupta, Nikolaos Pappas,
 551 Saab Mansour, Katrin Kirchhoff, and Dan Roth. Deal: Decoding-time alignment for large lan-
 552 guage models. *arXiv preprint arXiv:2402.06147*, 2024.
 553

554 Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
 555 Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. In *Pro-
 ceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
 556 Long Papers)*, pp. 14389–14408, 2023.
 557

558 Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana Rao Kompella, Sijia Liu, and Shiyu Chang.
 559 Reversing the forget-retain objectives: An efficient llm unlearning framework from logit differ-
 560 ence. In *Annual Conference on Neural Information Processing Systems*, 2024a.
 561

562 Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun,
 563 Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a
 564 human-preference dataset. *Advances in Neural Information Processing Systems*, 36, 2024b.
 565

566 Jinghan Jia, Jiancheng Liu, Yihua Zhang, Parikshit Ram, Nathalie Baracaldo, and Sijia Liu. Wagle:
 567 Strategic weight attribution for effective and modular unlearning in large language models. *arXiv
 568 preprint arXiv:2410.17509*, 2024a.
 569

570 Jinghan Jia, Jiancheng Liu, Yihua Zhang, Parikshit Ram, Nathalie Baracaldo, and Sijia Liu. Wagle:
 571 Strategic weight attribution for effective and modular unlearning in large language models. In
 572 *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024b.
 573

574 Maxim Khanov, Jirayu Burapachep, and Yixuan Li. Args: Alignment as reward-guided search.
 575 *arXiv preprint arXiv:2402.01694*, 2024.
 576

577 Minbeom Kim, Hwanhee Lee, Kang Min Yoo, Joonsuk Park, Hwaran Lee, and Kyomin Jung. Critic-
 578 guided decoding for controlled text generation. In *Findings of the Association for Computational
 579 Linguistics: ACL 2023*, pp. 4598–4612, 2023.
 580

581 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 582 *International conference on machine learning*, pp. 1885–1894. PMLR, 2017.
 583

584 Lingkai Kong, Haorui Wang, Wenhao Mu, Yuanqi Du, Yuchen Zhuang, Yifei Zhou, Yue Song,
 585 Rongzhi Zhang, Kai Wang, and Chao Zhang. Aligning large language models with representation
 586 editing: A control perspective. *arXiv preprint arXiv:2406.05954*, 2024.
 587

588 Guy Kornowski, Swati Padmanabhan, Kai Wang, Zhe Zhang, and Suvrit Sra. First-order methods for
 589 linearly constrained bilevel optimization. *Advances in Neural Information Processing Systems*,
 590 37:141417–141460, 2024.
 591

592 Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Halueval: A large-scale
 593 hallucination evaluation benchmark for large language models. *arXiv preprint arXiv:2305.11747*,
 594 2023.
 595

596 Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D
 597 Li, Ann-Kathrin Dombrowski, Shashwat Goel, Gabriel Mukobi, et al. The wmdp benchmark:
 598 Measuring and reducing malicious use with unlearning. In *Forty-first International Conference
 599 on Machine Learning*, 2024.
 600

601 Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning. In *Conference on
 602 Lifelong Learning Agents*, pp. 243–254. PMLR, 2022.
 603

594 Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
 595 Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. *arXiv preprint*
 596 *arXiv:2410.18451*, 2024a.

597

598 Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
 599 *International Conference on Learning Representations*, 2019.

600 Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
 601 Celikyilmaz. Making ppo even better: Value-guided monte-carlo tree search decoding. *arXiv*
 602 *preprint arXiv:2309.15028*, 2023.

603

604 Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel optimiza-
 605 tion with non-convex followers and beyond. *Advances in Neural Information Processing Systems*,
 606 34:8662–8675, 2021.

607

608 Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang
 609 Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, et al. Rethinking machine unlearning for large
 610 language models. In *Annual Conference on Neural Information Processing Systems*, 2024b.

611

612 Tianlin Liu, Shangmin Guo, Leonardo Bianco, Daniele Calandriello, Quentin Berthet, Felipe
 613 Llinares, Jessica Hoffmann, Lucas Dixon, Michal Valko, and Mathieu Blondel. Decoding-time
 614 realignment of language models. *arXiv preprint arXiv:2402.02992*, 2024c.

615

616 Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, and Meng Jiang. Towards safer large
 617 language models through machine unlearning. *arXiv preprint arXiv:2402.10058*, 2024d.

618

619 Francesco Locatello, Michael Tschannen, Gunnar Rätsch, and Martin Jaggi. Greedy algorithms
 620 for cone constrained optimization with convergence guarantees. *Advances in Neural Information*
 621 *Processing Systems*, 30, 2017.

622

623 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

624

625 Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Am-
 626 manabrolu, and Yejin Choi. Quark: Controllable text generation with reinforced unlearning.
 627 *Advances in neural information processing systems*, 35:27591–27609, 2022.

628

629 Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary Chase Lipton, and J Zico Kolter. Tofu:
 630 A task of fictitious unlearning for llms. In *ICLR 2024 Workshop on Navigating and Addressing*
 631 *Data Problems for Foundation Models*, 2024.

632

633 Eric Mitchell, Rafael Rafailev, Archit Sharma, Chelsea Finn, and Christopher D Manning. An
 634 emulator for fine-tuning large language models using small language models. In *The Twelfth*
 635 *International Conference on Learning Representations*, 2024.

636

637 Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
 638 Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, et al. Controlled decoding from
 639 language models. In *Forty-first International Conference on Machine Learning*, 2024.

640

641 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 642 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 643 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 644 27730–27744, 2022.

645

646 Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In *International con-
 647 ference on machine learning*, pp. 737–746. PMLR, 2016.

648

649 Rafael Rafailev, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 650 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 651 *in Neural Information Processing Systems*, 36, 2024.

652

653 Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singu-
 654 larity and beyond. *arXiv preprint arXiv:1611.07476*, 2016.

648 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 649 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 650

651 Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
 652 Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. *arXiv
 653 preprint arXiv:2310.16789*, 2023.

654 Daouda Sow, Kaiyi Ji, and Yingbin Liang. On the convergence theory for hessian-free bilevel
 655 algorithms. *Advances in Neural Information Processing Systems*, 35:4136–4149, 2022.
 656

657 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 658 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances
 659 in Neural Information Processing Systems*, 33:3008–3021, 2020.

660 Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A contrastive
 661 framework for neural text generation. *Advances in Neural Information Processing Systems*, 35:
 662 21548–21561, 2022.

663 Qwen Team et al. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2(3), 2024.
 664

665 Bozhong Tian, Xiaozhuan Liang, Siyuan Cheng, Qingbin Liu, Mengru Wang, Dianbo Sui, Xi Chen,
 666 Huajun Chen, and Ningyu Zhang. To forget or not? towards practical knowledge unlearning for
 667 large language models. In *Findings of the Association for Computational Linguistics: EMNLP
 668 2024*, pp. 1524–1537, 2024.

669

670 Max Torop, Aria Masoomi, Davin Hill, Kivanc Kose, Stratis Ioannidis, and Jennifer Dy. Smooth-
 671 hess: Relu network feature interactions via stein’s lemma. *Advances in Neural Information Pro-
 672 cessing Systems*, 36:50697–50729, 2023.

673 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 674 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 675 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

676

677 Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
 678 Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
 679 distillation of lm alignment. *arXiv preprint arXiv:2310.16944*, 2023.

680

681 Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
 682 Jun Wang. Alphazero-like tree-search can guide large language model decoding and training. In
 683 *Forty-first International Conference on Machine Learning*, 2024.

684

685 Jie Wang, Rui Gao, and Yao Xie. Sinkhorn distributionally robust optimization. *arXiv preprint
 686 arXiv:2109.11926*, 2021.

687

688 Lingzhi Wang, Tong Chen, Wei Yuan, Xingshan Zeng, Kam-Fai Wong, and Hongzhi Yin. Kga: A
 689 general machine unlearning framework based on knowledge gap alignment. In *Proceedings of the
 690 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 691 pp. 13264–13276, 2023.

692

693 Yaxuan Wang, Jiaheng Wei, Chris Yuhao Liu, Jinlong Pang, Quan Liu, Ankit Parag Shah, Yujia
 694 Bao, Yang Liu, and Wei Wei. Llm unlearning via loss adjustment with only forget data. *arXiv
 695 preprint arXiv:2410.11143*, 2024.

696

697 Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
 698 preference optimization for language model alignment. *arXiv preprint arXiv:2405.00675*, 2024.

699

700 Teng Xiao, Yige Yuan, Huaisheng Zhu, Mingxiao Li, and Vasant G Honavar. Cal-dpo: Calibrated
 701 direct preference optimization for language model alignment. *arXiv preprint arXiv:2412.14516*,
 702 2024.

703

704 Zhihao Xu, Ruixuan Huang, Changyu Chen, and Xiting Wang. Uncovering safety risks of large
 705 language models through concept activation vector. In *The Thirty-eighth Annual Conference on
 706 Neural Information Processing Systems*, 2024.

702 Yifan Yang, Peiyao Xiao, and Kaiyi Ji. Achieving complexity in hessian/jacobian-free stochastic
 703 bilevel optimization. *Advances in Neural Information Processing Systems*, 36:39491–39503,
 704 2023.

705 Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. In *Annual Conference
 706 on Neural Information Processing Systems*, 2024.

708 Fengda Zhang, Kun Kuang, Yuxuan Liu, Long Chen, Chao Wu, Fei Wu, Jiaxun Lu, Yunfeng Shao,
 709 and Jun Xiao. Unified group fairness on federated learning. *arXiv preprint arXiv:2111.04986*,
 710 2021.

711 Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catas-
 712 trohic collapse to effective unlearning. *arXiv preprint arXiv:2404.05868*, 2024.

714 Wenxuan Zhou, Ravi Agrawal, Shujian Zhang, Sathish Reddy Indurthi, Sanqiang Zhao, Kaiqiang
 715 Song, Silei Xu, and Chenguang Zhu. Wpo: Enhancing rlhf with weighted preference optimiza-
 716 tion. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Pro-
 717 cessing*, pp. 8328–8340, 2024a.

718 Zanhui Zhou, Zhixuan Liu, Jie Liu, Zhichen Dong, Chao Yang, and Yu Qiao. Weak-to-strong
 719 search: Align large language models via searching over small language models. *arXiv preprint
 720 arXiv:2405.19262*, 2024b.

721 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
 722 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv
 723 preprint arXiv:1909.08593*, 2019.

724 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
 725 Universal and transferable adversarial attacks on aligned language models. *arXiv preprint
 726 arXiv:2307.15043*, 2023.

729 A RELATED WORK

731 A.1 PREFERENCE ALIGNMENT

733 PA methods can be broadly classified into learning-based and decoding-based methods, depending
 734 on whether model parameters are updated (Zhou et al., 2024b). Learning-based methods (Ziegler
 735 et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022; Azar et al., 2024), such as RLHF, optimize
 736 models using preference datasets with techniques like PPO (Schulman et al., 2017), DPO (Rafailov
 737 et al., 2024), WPO (Zhou et al., 2024a), and Self-play Preference Optimization (SPO) (Wu et al.,
 738 2024). However, RLHF is computationally expensive (Rafailov et al., 2024). To mitigate this,
 739 decoding-based methods (Kim et al., 2023; Gao et al., 2023; Huang et al., 2024; Mudgal et al.,
 740 2024), which guide inference without parameter updates, have gained attention. Examples include
 741 rejection sampling (Mitchell et al., 2024; Beirami et al., 2024) and Monte Carlo Tree Search (Liu
 742 et al., 2023; Wan et al., 2024), which reduce computational costs by keeping parameters fixed.
 743 Since this study focuses on the relationship between MU and PA, and the former requires parameter
 744 updates, we primarily consider learning-based methods.

745 A.2 LLM UNLEARNING

746 The goal of LLM unlearning is to remove specific knowledge from training data while preserving
 747 the model’s performance on unrelated tasks (Jang et al., 2023; Ji et al., 2024a; Liu et al., 2024b;
 748 Feng et al., 2024). Existing methods can be categorized into three main approaches: i) Gradient-
 749 based methods (Jang et al., 2023; Maini et al., 2024) use gradient ascent on the forget set (i.e.,
 750 the data to be unlearned) to remove associated knowledge, with parameter regularization added to
 751 preserve performance on other tasks. ii) Preference optimization-based methods (Maini et al., 2024;
 752 Zhang et al., 2024) treat the forget set as negative examples or assign predefined responses (e.g.,
 753 rejection responses) to achieve unlearning during PA. iii) Model weight-based methods (Jia et al.,
 754 2024b) analyze the roles of different model modules to guide unlearning, leveraging the modularity
 755 of LLMs. As model weight-based methods are primarily used for attribution analysis, this study
 focuses on gradient-based and preference optimization-based approaches.

756 B DISCUSSION ON THE DEFINITION OF UNLEARNING IN LLMs 757

758 In this section, we review and summarize the definitions of existing unlearning methods for LLMs
759 and attempt to incorporate these methods into a unified theoretical framework. Assume the training
760 dataset is denoted as $\mathcal{D}_t = \mathcal{D}_f \cup \mathcal{D}_r$, where \mathcal{D}_f represents the set of samples to be unlearned, and \mathcal{D}_r
761 represents the remaining samples. The core objective of LLM unlearning is to remove the knowledge
762 learned from \mathcal{D}_f while preserving the model's other capabilities as much as possible. To achieve this
763 goal, existing methods can be broadly categorized into two main classes: (i) gradient-based methods
764 and (ii) preference optimization-based methods.

765 **Gradient-based methods.** Gradient-based methods include gradient ascent and its various exten-
766 sions. Below, we will review the definitions of these methods sequentially.

767 *Gradient ascent.* Gradient ascent (Jang et al., 2023; Feng et al., 2024) is a traditional and straight-
768 forward baseline method that removes the model's memory of the samples in \mathcal{D}_f by maximizing the
769 loss on \mathcal{D}_f , effectively reversing the gradient descent process. It is defined as:

$$772 \quad \mathcal{L}_{\text{GA}} = \underbrace{\frac{1}{|\mathcal{D}_f|} \sum_{i=1}^{|\mathcal{D}_f|} \sum_{t=1}^{n_i} \log p(x_t | \mathbf{x}_{<t}; \boldsymbol{\theta})}_{\mathcal{L}_{\text{forget}}(\mathcal{D}_f; \boldsymbol{\theta})},$$

773 where n_i denotes the number of tokens in the sample \mathbf{x}^i , and $\boldsymbol{\theta}$ represents the parameters of the
774 model.

775 *Variants of gradient ascent.* However, naive gradient ascent significantly degrades the model's other
776 capabilities. To address this issue, recent studies (Wang et al., 2023; Li et al., 2024; Maini et al.,
777 2024; Ji et al., 2024a; Jia et al., 2024b; Liu et al., 2024b; Wang et al., 2024) have introduced various
778 regularization terms, primarily including loss-based regularization and divergence-based regulariza-
779 tion, as described below:

780 • **Loss-based regularization.** Loss-based regularization (Li et al., 2024; Maini et al., 2024; Jia
781 et al., 2024b) maintains the model's other capabilities by sampling a dataset \mathcal{D}'_r that shares the
782 same distribution as \mathcal{D}_r and minimizing the model's loss on \mathcal{D}'_r . The formal expression is:

$$783 \quad \mathcal{L}_{\text{GA+LR}} = \underbrace{\mathcal{L}_{\text{GA}}}_{\mathcal{L}_{\text{forget}}(\mathcal{D}_f; \boldsymbol{\theta})} - \lambda \underbrace{\frac{1}{|\mathcal{D}'_r|} \sum_{i=1}^{|\mathcal{D}'_r|} \sum_{t=1}^{n_i} \log p(x_t | \mathbf{x}_{<t}; \boldsymbol{\theta})}_{\mathcal{L}_{\text{reg}}(\boldsymbol{\theta})}.$$

784 • **Divergence-based regularization.** Similar to loss-based regularization, divergence-based regu-
785 larization (Wang et al., 2023; Tian et al., 2024; Maini et al., 2024; Ji et al., 2024a; Wang et al.,
786 2024) preserves model performance by constraining the output distribution of the model on a
787 dataset \mathcal{D}'_r . Specifically, this method minimizes the distributional distance $Dis(\cdot \parallel \cdot)$ between
788 the output distribution of the unlearned model on \mathcal{D}'_r and that of the original model on \mathcal{D}'_r . De-
789 pending on the metric used to measure the distributional distance, this method can further be
790 categorized into regularizations based on KL divergence (Wang et al., 2023; Maini et al., 2024)
791 and f-divergence (Wang et al., 2024). The formal definition is:

$$792 \quad \mathcal{L}_{\text{GA+DR}} = \underbrace{\mathcal{L}_{\text{GA}}}_{\mathcal{L}_{\text{forget}}(\mathcal{D}_f; \boldsymbol{\theta})} + \lambda \underbrace{\frac{1}{|\mathcal{D}'_r|} \sum_{i=1}^{|\mathcal{D}'_r|} \sum_{t=1}^{n_i} Dis(P(\cdot | \mathbf{x}_{<t}; \boldsymbol{\theta}) \parallel P(\cdot | \mathbf{x}_{<t}; \boldsymbol{\theta}^*))}_{\mathcal{L}_{\text{reg}}(\boldsymbol{\theta})}.$$

801 Both loss regularization and divergence regularization can essentially be regarded as forms of par-
802 ameter regularization, which constrain the norm of the difference between model parameters before and
803 after unlearning to be less than a threshold δ . By restricting the parameter changes within a δ -norm
804 ball, this technique ensures the preservation of the model's other capabilities. However, parameter
805 regularization is difficult to handle directly as a constraint, so its relaxed form is often utilized and

810 incorporated into the objective function instead. Formally, this can be expressed as:
 811

$$\mathcal{L}_{\text{GA+PR}} = \underbrace{\mathcal{L}_{\text{GA}}}_{\mathcal{L}_{\text{forget}}(\mathcal{D}_f; \boldsymbol{\theta})} + \lambda \underbrace{\|\boldsymbol{\theta} - \boldsymbol{\theta}^*\|_p^2}_{\mathcal{L}_{\text{reg}}(\boldsymbol{\theta})}.$$

816 In addition, while several recent methods (i.e., Mismatch and LLMU) (Yao et al., 2024) differ in their
 817 definitions of unlearning objectives, they are fundamentally variants of gradient ascent methods.
 818 These methods further refine gradient ascent by extending the formulation of unlearning objectives,
 819 constructing a random combination of text sequences Y_{ran} . Specifically, their definitions are given
 820 as:

$$\mathcal{L}_{\text{MIS}} = - \underbrace{\frac{1}{|\mathcal{D}_f|} \sum_{i=1}^{|\mathcal{D}_f|} \sum_{t=1}^{n_i} \frac{1}{|Y_{\text{ran}}|} \sum_{j=1}^{|Y_{\text{ran}}|} \log p(y_{\text{ran}}^j | \mathbf{x}_{<t}; \boldsymbol{\theta})}_{\mathcal{L}_{\text{forget}}(\mathcal{D}_f; \boldsymbol{\theta})} - \lambda \underbrace{\frac{1}{|\mathcal{D}'_r|} \sum_{i=1}^{|\mathcal{D}'_r|} \sum_{t=1}^{n_i} \log p(x_t | \mathbf{x}_{<t}; \boldsymbol{\theta})}_{\mathcal{L}_{\text{reg}}(\boldsymbol{\theta})}.$$

$$\begin{aligned} \mathcal{L}_{\text{LLMU}} = & \underbrace{\mathcal{L}_{\text{GA}} - \frac{1}{|\mathcal{D}_f|} \sum_{i=1}^{|\mathcal{D}_f|} \sum_{t=1}^{n_i} \frac{1}{|Y_{\text{ran}}|} \sum_{j=1}^{|Y_{\text{ran}}|} \log p(y_{\text{ran}}^j | \mathbf{x}_{<t}; \boldsymbol{\theta})}_{\mathcal{L}_{\text{forget}}(\mathcal{D}_f; \boldsymbol{\theta})} \\ & + \lambda \underbrace{\frac{1}{|\mathcal{D}'_r|} \sum_{i=1}^{|\mathcal{D}'_r|} \sum_{t=1}^{n_i} \text{Dis}(P(\cdot | \mathbf{x}_{<t}; \boldsymbol{\theta}) || P(\cdot | \mathbf{x}_{<t}; \boldsymbol{\theta}^*))}_{\mathcal{L}_{\text{reg}}(\boldsymbol{\theta})}. \end{aligned}$$

837 **Preference optimization-based methods.** Preference optimization-based unlearning methods for
 838 LLMs primarily include DPO (Lu et al., 2022; Maini et al., 2024; Dige et al., 2024) and its variants,
 839 as well as Negative Preference Optimization (NPO) (Zhang et al., 2024; Fan et al., 2024). These
 840 methods achieve unlearning by constructing additional preference data pairs and leveraging existing
 841 preference optimization algorithms to guide the model.

842 *DPO method.* The DPO method constructs preference data pairs based on the unlearning sample
 843 set (Lu et al., 2022; Maini et al., 2024; Dige et al., 2024). For example, given a sample \mathbf{x}^i containing
 844 n_i combinations, for any combination pair $(x_{<t}^i, x_t)$, where x_t is the truthful response, DPO sets
 845 x_t' as "refuse to answer" and treats it as the preferred response. By optimizing this preference pair,
 846 DPO employs preference optimization algorithms to achieve unlearning. It is formally defined as:

$$\mathcal{L}_{\text{DPO}} = -\frac{2}{\beta} \mathbb{E}_{\mathbf{x}^i \in \mathcal{D}_f} \left[\log \sigma \left(\underbrace{-\beta \sum_{i=1}^{n_i} \log p(x_t | \mathbf{x}_{<t}; \boldsymbol{\theta})}_{\mathcal{L}_{\text{forget}}(\mathcal{D}_f; \boldsymbol{\theta})} + \underbrace{\beta \sum_{i=1}^{n_i} \log p(x_t' | \mathbf{x}_{<t}; \boldsymbol{\theta}) - M_{\text{ref}}}_{\mathcal{L}_{\text{reg}}(\boldsymbol{\theta})} \right) \right].$$

854 *NPO method.* The NPO method directly treats the unlearning samples as negative samples and
 855 penalizes the model's responses on the unlearning set \mathcal{D}_f (Zhang et al., 2024; Fan et al., 2024). The
 856 formal definition is:

$$\mathcal{L}_{\text{NPO}} = -\frac{2}{\beta} \mathbb{E}_{\mathbf{x}^i \in \mathcal{D}_f} \left[\log \sigma \left(\underbrace{-\beta P(x_t | \mathbf{x}_{<t}^i; \boldsymbol{\theta}^*)}_{\mathcal{L}_{\text{forget}}(\mathbf{x}_{<t}^i; \boldsymbol{\theta})} + \underbrace{\beta \log P(x_t | \mathbf{x}_{<t}^i; \boldsymbol{\theta})}_{\mathcal{L}_{\text{reg}}(\boldsymbol{\theta})} \right) \right]$$

862 In summary, both gradient-based methods and preference optimization-based methods can be
 863 viewed as combinations of unlearning loss and regularization loss.

864 **C THEORETICAL ANALYSIS**
 865

866 **C.1 PROOF OF PROPOSITION 3.1**
 867

868 To analyze the variation of $\mathcal{J}(\boldsymbol{\theta}^*(\epsilon))$, we perform a Taylor expansion of Eq. 6 around $\epsilon = 0$. Here,
 869 since we are more concerned with the description of the magnitude of the effect rather than the exact
 870 values, we expand it only to the first-order term, yielding:

871
$$\mathcal{J}(\boldsymbol{\theta}^*(\epsilon)) \approx \mathcal{J}(\boldsymbol{\theta}^*(0)) + \epsilon \frac{\partial \mathcal{J}(\boldsymbol{\theta}^*(\epsilon))}{\partial \epsilon} \Big|_{\epsilon=0},$$

 872

873 where $\mathcal{J}(\boldsymbol{\theta}^*(0))$ represents the preference alignment performance of the model at $\epsilon = 0$ (i.e., with-
 874 out unlearning), while $\frac{\partial \mathcal{J}(\boldsymbol{\theta}^*(\epsilon))}{\partial \epsilon}$ denotes the rate of change in the PA performance with respect to
 875 the unlearning weight control parameter ϵ . According to the chain rule, the partial derivative can be
 876 decomposed as:

877
$$\frac{\partial \mathcal{J}(\boldsymbol{\theta}^*(\epsilon))}{\partial \epsilon} = \nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}^*(\epsilon))^{\top} \frac{\partial \boldsymbol{\theta}^*(\epsilon)}{\partial \epsilon}.$$

 878

880 Since the optimal solution $\boldsymbol{\theta}^*(\epsilon)$ of the lower-level problem satisfies the first-order optimality con-
 881 dition:

882
$$\nabla_{\boldsymbol{\theta}} (\epsilon \mathcal{L}_{\text{forget}}(\mathbf{x}; \boldsymbol{\theta}) + \mathcal{L}_{\text{reg}}(\boldsymbol{\theta})) \Big|_{\boldsymbol{\theta}=\boldsymbol{\theta}^*(\epsilon)} = 0.$$

883 By differentiating the above optimality condition with respect to ϵ , we obtain:

884
$$\epsilon \nabla_{\boldsymbol{\theta}}^2 \mathcal{L}_{\text{forget}}(\mathbf{x}; \boldsymbol{\theta}^*(\epsilon)) \frac{\partial \boldsymbol{\theta}^*(\epsilon)}{\partial \epsilon} + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text{forget}}(\mathbf{x}; \boldsymbol{\theta}^*(\epsilon)) + \nabla_{\boldsymbol{\theta}}^2 \mathcal{L}_{\text{reg}}(\boldsymbol{\theta}^*(\epsilon)) \frac{\partial \boldsymbol{\theta}^*(\epsilon)}{\partial \epsilon} = 0.$$

 885

886 Substituting $\mathcal{L}_{\text{reg}}(\boldsymbol{\theta}) = \|\boldsymbol{\theta} - \boldsymbol{\theta}^*\|^2$, we have:

887
$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text{reg}}(\boldsymbol{\theta}^*(\epsilon)) = 2(\boldsymbol{\theta}^*(\epsilon) - \boldsymbol{\theta}^*), \quad \nabla_{\boldsymbol{\theta}}^2 \mathcal{L}_{\text{reg}}(\boldsymbol{\theta}^*(\epsilon)) = 2I.$$

 888

889 Therefore, the implicit gradient formula is given by:

890
$$\frac{\partial \boldsymbol{\theta}^*(\epsilon)}{\partial \epsilon} = -[\epsilon \nabla_{\boldsymbol{\theta}}^2 \mathcal{L}_{\text{forget}}(\mathbf{x}; \boldsymbol{\theta}^*(\epsilon)) + 2I]^{-1} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text{forget}}(\mathbf{x}; \boldsymbol{\theta}^*(\epsilon)).$$

 891

892 When $\epsilon = 0$, the formula simplifies to:

893
$$\frac{\partial \boldsymbol{\theta}^*(\epsilon)}{\partial \epsilon} \Big|_{\epsilon=0} = -[2I]^{-1} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text{forget}}(\mathbf{x}; \boldsymbol{\theta}^*(0)) = -\frac{1}{2} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text{forget}}(\mathbf{x}; \boldsymbol{\theta}^*).$$

 894

895 Substituting $\frac{\partial \boldsymbol{\theta}^*(\epsilon)}{\partial \epsilon}$ into the chain rule formula:

896
$$\frac{\partial \mathcal{J}(\boldsymbol{\theta}^*(\epsilon))}{\partial \epsilon} \Big|_{\epsilon=0} = \nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}^*)^{\top} \left(-\frac{1}{2} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text{forget}}(\mathbf{x}; \boldsymbol{\theta}^*) \right).$$

 897

898 Therefore, the variation in preference alignment performance is:

899
$$\mathcal{J}(\boldsymbol{\theta}^*(\epsilon)) - \mathcal{J}(\boldsymbol{\theta}^*(0)) \approx -\frac{\epsilon}{2} \nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}^*)^{\top} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text{forget}}(\mathbf{x}; \boldsymbol{\theta}^*).$$

 900

901 **C.2 THE IMPACT OF SAMPLE REWEIGHTING IN BI-LEVEL OPTIMIZATION**
 902

903 To deepen the understanding of how sample reweighting impacts both preference alignment and MU
 904 tasks, we analyze the problem within the bi-level optimization framework:

905
$$\begin{aligned} 906 \min_{\boldsymbol{\omega}: \|\boldsymbol{\omega}\|_1=1} \quad & -\mathcal{J}(\boldsymbol{\theta}^*(\boldsymbol{\omega})), \\ 907 \text{s.t.} \quad & \boldsymbol{\theta}^*(\boldsymbol{\omega}) = \arg \min_{\boldsymbol{\theta}} \sum_{i=1}^n \boldsymbol{\omega}_i \ell_i(\boldsymbol{\theta}) + \lambda \mathcal{L}_{\text{reg}}(\boldsymbol{\theta}). \end{aligned} \quad (13)$$

 908

909 We define inner unlearning objective $f(\boldsymbol{\theta}) := \sum_{i=1}^n \boldsymbol{\omega}_i \ell_i(\boldsymbol{\theta}) + \lambda \mathcal{L}_{\text{reg}}(\boldsymbol{\theta})$. To analyze the properties
 910 of the formulation above, we introduce the following Hessian-free assumption.

911 **Assumption C.1. (Hessian-free).** *The inner loss $\ell(\boldsymbol{\theta})$ is twice differentiable with respect to $\boldsymbol{\theta}$, and
 912 the Hessian matrix $\mathbf{H}(\boldsymbol{\theta}) := \sum_{i=1}^n \nabla_{\boldsymbol{\theta}}^2 \ell_i(\boldsymbol{\theta}) \approx \mathbf{0}$.*

This assumption is well supported by the literature on Hessian properties in neural networks. First, prior studies have established that a large fraction of the Hessian matrix's spectrum is concentrated near zero (Ghorbani et al., 2019; Sagun et al., 2016), which justifies Hessian-free or low-rank curvature approximations. Second, since ReLU networks are piecewise linear functions, their second derivatives are zero almost everywhere (Torop et al., 2023; Dauphin et al., 2024), further corroborating the assumption. Moreover, this assumption has been widely adopted in the theoretical analysis of bi-level optimization (Sow et al., 2022; Yang et al., 2023; Kornowski et al., 2024; Liu et al., 2021).

Denoting that $\mathbf{D} := \begin{bmatrix} \nabla_{\theta} \ell_1(\theta^*(\omega)) \\ \vdots \\ \nabla_{\theta} \ell_n(\theta^*(\omega)) \end{bmatrix} \in \mathbb{R}^{n \times m}$, we have the following property of the bi-level optimization system.

Theorem C.2. *Under Assumption C.1, given the sample weight $\omega \in \mathbb{R}^n$ and the corresponding parameter $\theta^*(\omega)$, with the constant $t > 0$ and the optimized direction $\tau \in \mathbb{R}^n$, the impact of the sample reweighting $\omega' := \frac{\omega + t\tau}{\|\omega + t\tau\|_1}$ with respect to PA and MU tasks can be formulated as*

$$\mathcal{I}_{\mathcal{J}}(\tau; \omega) = -[\nabla_{\theta} \mathcal{J}(\theta^*(\omega))^{\top} \mathbf{G}^{-1}(\theta^*(\omega)) \mathbf{D}^{\top}] \tau,$$

$$\mathcal{I}_{\text{forget}}(\tau; \omega) = -\left[\frac{1}{n} \sum_{i=1}^n [\nabla_{\theta} \ell_i(\theta^*(\omega))]^{\top} \mathbf{G}^{-1}(\theta^*(\omega)) \mathbf{D}^{\top}\right] \tau.$$

If $\sum_{i=1}^n [\nabla_{\theta} \ell_i(\theta^*(\omega))] \in \mathbb{R}^m$ and $\nabla_{\theta} \mathcal{J}(\theta^*(\omega)) \in \mathbb{R}^m$ are linearly independent in the quotient space $\mathbb{R}^m \setminus \ker(\mathbf{D})$, there exists a direction τ such that the reweighting induces a non-negative impact on both the PA and MU tasks. Furthermore, if $\mathcal{J}(\theta^*(\omega))$ is not in a local optimum with respect to ω , then there exists a reweighting that yields a positive impact on PA while maintaining a non-negative impact on the MU task.

Theorem C.2 states that if the preference-alignment objective remains a space for improvement, there exists a reweighting of ω that increases the PA objective \mathcal{J} without increasing the unlearning loss, thereby not sacrificing the MU performance. This property provides a theoretically sound foundation for our subsequent algorithmic design.

The conditions in Theorem C.2 are mild. First, the condition that $\sum_{i=1}^n \nabla_{\theta} \ell_i(\theta^*(\omega))$ and $\nabla_{\theta} \mathcal{J}(\theta^*(\omega))$ are linearly independent in the quotient space $\mathbb{R}^m \setminus \ker(\mathbf{D})$ simply states that the gradient directions of the alignment and unlearning objectives do not coincide (nor point in exactly opposite directions) when projected onto the non-degenerate subspace defined by \mathbf{D} . Under stochastic gradient descent, the probability that these two projected gradients align perfectly is extremely small, making the condition mild in practice. Second, by the definition of bi-level optimization, if $\mathcal{J}(\theta^*(\omega))$ is already at a local optimum with respect to θ , then the bi-level system satisfies the first-order optimality condition at the corresponding ω , i.e.,

$$\frac{\partial}{\partial \omega} \mathcal{J}(\theta^*(\omega)) = 0,$$

and no further reweighting is necessary, ensuring the soundness of the condition.

Proof of Theorem C.2. We first formulate the impact of tuning the sample weight ω . For any vector $\tau \in \mathbb{R}^n$, following the prior work on influence function (Koh & Liang, 2017), the impact of reweighting $\omega' = \omega + t\tau$ to the PA target \mathcal{J} can be quantified by the corresponding directional derivative with respect to t ,

$$\mathcal{I}_{\mathcal{J}}(\tau; \omega) := \frac{\partial}{\partial t} \mathcal{J}(\theta^*(\omega + t\tau)) = \nabla_{\theta} \mathcal{J}(\theta^*(\omega))^{\top} \left[\frac{\partial}{\partial t} \theta^*(\omega + t\tau) \Big|_{t=0} \right]. \quad (14)$$

To proceed with the derivation, we consider the Hessian matrix of the inner optimization problem, which can be written as $\mathbf{G}(\theta) := \mathbf{H}(\theta) + \lambda \mathbf{I}$. Under Assumption C.1, when $\lambda > 0$, the matrix $\mathbf{G}(\theta)$ is positive definite, and its inverse exists. The first-order optimality condition of the inner optimization problem shows that

972
973
974
975
976

$$\nabla_{\theta} f(\boldsymbol{\theta}_t) = \sum_{i=1}^n (\boldsymbol{\omega}_i + t\boldsymbol{\tau}_i) \nabla_{\theta} \ell_i(\boldsymbol{\theta}_t) + \lambda \nabla_{\theta} \mathcal{L}_{\text{reg}}(\boldsymbol{\theta}_t) = 0. \quad (15)$$

977 By differentiating both sides with respect to t and invoking the chain rule, we obtain978
979
980
981

$$0 = \frac{\partial}{\partial t} \nabla_{\theta} f(\boldsymbol{\theta}_t) = \underbrace{\nabla_{\theta}^2 f(\boldsymbol{\theta}_t)}_{=: \mathbf{G}_t} \frac{\partial \boldsymbol{\theta}_t}{\partial t} + \sum_{i=1}^n \tau_i \nabla_{\theta} \ell_i(\boldsymbol{\theta}_t). \quad (16)$$

982 With Assumption C.1 ensuring the invertibility of \mathbf{G} , the derivative of $\boldsymbol{\theta}^*$ with respect to t can be
983 written as:984
985
986
987
988

$$\frac{\partial}{\partial t} \boldsymbol{\theta}^*(\omega + t\boldsymbol{\tau}) = \frac{\partial \boldsymbol{\theta}_t}{\partial t} = -\mathbf{G}_t^{-1} \left(\sum_{i=1}^n \tau_i \nabla_{\theta} \ell_i(\boldsymbol{\theta}_t) \right). \quad (17)$$

989 Substituting $t = 0$, we obtain a simplified expression for the impact of reweighting990
991
992
993
994

$$\mathcal{I}_{\mathcal{J}}(\boldsymbol{\tau}; \boldsymbol{\omega}) = -\nabla_{\theta} \mathcal{J}(\boldsymbol{\theta}^*(\boldsymbol{\omega}))^\top \mathbf{G}^{-1}(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \left[\sum_{i=1}^n \tau_i \nabla_{\theta} \ell_i(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \right]. \quad (18)$$

995 By applying an analogous derivation, we can characterize the impact of reweighting on the unlearn-
996 ing objective $\mathcal{L}_{\text{forget}}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^n \ell_i(\boldsymbol{\theta})$,997
998
999
1000
1001
1002
1003

$$\mathcal{I}_{\text{forget}}(\boldsymbol{\tau}; \boldsymbol{\omega}) := \frac{\partial}{\partial t} \mathcal{L}_{\text{forget}}(\boldsymbol{\theta}^*(\boldsymbol{\omega}) + t\boldsymbol{\tau}) \quad (19)$$

$$= -\frac{1}{n} \sum_{i=1}^n [\nabla_{\theta} \ell_i(\boldsymbol{\theta}^*(\boldsymbol{\omega}))]^\top \mathbf{G}^{-1}(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \left[\sum_{i=1}^n \tau_i \nabla_{\theta} \ell_i(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \right]. \quad (20)$$

1004
1005
1006
1007
1008 With $\mathbf{D} := \begin{bmatrix} \nabla_{\theta} \ell_1(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \\ \vdots \\ \nabla_{\theta} \ell_n(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \end{bmatrix}$, we have that $[\sum_{i=1}^n \tau_i \nabla_{\theta} \ell_i(\boldsymbol{\theta}^*(\boldsymbol{\omega}))] = \mathbf{D}^\top \boldsymbol{\tau}$. The impact towards
PA and MU objectives can be formulated as follows:1009
1010
1011
1012
1013
1014

$$\mathcal{I}_{\mathcal{J}}(\boldsymbol{\tau}; \boldsymbol{\omega}) = -[\nabla_{\theta} \mathcal{J}(\boldsymbol{\theta}^*(\boldsymbol{\omega}))^\top \mathbf{G}^{-1}(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \mathbf{D}^\top] \boldsymbol{\tau}, \quad (21)$$

$$\mathcal{I}_{\text{forget}}(\boldsymbol{\tau}; \boldsymbol{\omega}) = -\left[\frac{1}{n} \sum_{i=1}^n [\nabla_{\theta} \ell_i(\boldsymbol{\theta}^*(\boldsymbol{\omega}))]^\top \mathbf{G}^{-1}(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \mathbf{D}^\top \right] \boldsymbol{\tau}. \quad (22)$$

1015 By Hessian-free assumption, the Hessian matrix can be approximated as $\mathbf{G}^{-1}(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \approx \lambda \mathbf{I}$. The
1016 condition that $\nabla_{\theta} \mathcal{J}(\boldsymbol{\theta}^*(\boldsymbol{\omega}))$ and $\sum_{i=1}^n \nabla_{\theta} \ell_i(\boldsymbol{\theta}^*(\boldsymbol{\omega}))$ are linearly independent in the quotient space
1017 $\mathbb{R}^m \setminus \ker(\mathbf{D})$ entails that no nontrivial pair $(\alpha, \beta) \neq (0, 0)$ exists such that1018
1019
1020
1021
1022

$$\alpha \nabla_{\theta} \mathcal{J}(\boldsymbol{\theta}^*(\boldsymbol{\omega})) + \beta \sum_{i=1}^n [\nabla_{\theta} \ell_i(\boldsymbol{\theta}^*(\boldsymbol{\omega}))] \in \ker(\mathbf{D}) \quad (23)$$

1023
1024
1025Consequently, this establishes the linear independence of vectors $\nabla_{\theta} \mathcal{J}(\boldsymbol{\theta}^*(\boldsymbol{\omega}))^\top \mathbf{G}^{-1}(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \mathbf{D}^\top$ and $\frac{1}{n} \sum_{i=1}^n [\nabla_{\theta} \ell_i(\boldsymbol{\theta}^*(\boldsymbol{\omega}))]^\top \mathbf{G}^{-1}(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \mathbf{D}^\top$. Thus, a direction $\boldsymbol{\tau}$ necessarily exists such that

$$\mathcal{I}_{\mathcal{J}}(\boldsymbol{\tau}; \boldsymbol{\omega}) \geq 0, \mathcal{I}_{\text{forget}}(\boldsymbol{\tau}; \boldsymbol{\omega}) \leq 0,$$

ensuring that the induced reweighting has a non-negative impact on both preference alignment and machine unlearning.

Furthermore, if $\mathcal{J}(\boldsymbol{\theta}^*(\boldsymbol{\omega}))$ is not in a local optimum with respect to $\boldsymbol{\omega}$, the corresponding derivative

$$\nabla_{\boldsymbol{\omega}} \mathcal{J}(\boldsymbol{\theta}^*(\boldsymbol{\omega})) = \mathbf{D} \mathbf{G}^{-1}(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \neq 0 \quad (24)$$

By the symmetry property of the Hessian matrix, $\nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}^*(\boldsymbol{\omega}))^\top \mathbf{G}^{-1}(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \mathbf{D}^\top \neq 0$. Hence, according the E.q. (21), there exists a vector $\boldsymbol{\tau}$ that is linearly independent of $\boldsymbol{\omega}$ such that

$$\mathcal{I}_{\mathcal{J}}(\boldsymbol{\tau}; \boldsymbol{\omega}) > 0, \mathcal{I}_{\text{forget}}(\boldsymbol{\tau}; \boldsymbol{\omega}) \leq 0,$$

indicating a positive impact on PA and a non-negative impact on the MU task. Applying the normalization $\boldsymbol{\omega}' \leftarrow \boldsymbol{\omega}' / \|\boldsymbol{\omega}'\|_1$ enforces the constraint $\|\boldsymbol{\omega}'\|_1 = 1$, which completes the proof.

C.3 DERIVATION OF MARGINAL GAIN

To optimize the outer problem, we need to compute the gradient of the objective function with respect to the weight vector $\boldsymbol{\omega}$:

$$\begin{aligned} \nabla_{\boldsymbol{\omega}} g(\boldsymbol{\omega}) &= -\nabla_{\boldsymbol{\omega}} \mathcal{J}(\boldsymbol{\theta}^*(\boldsymbol{\omega})) + \beta \sum_{i=1}^n \sqrt{\omega_i} \\ &= -\left[\frac{\partial \mathcal{J}(\boldsymbol{\theta}^*(\boldsymbol{\omega}))}{\partial \boldsymbol{\theta}} \right]^\top \frac{\partial \boldsymbol{\theta}^*(\boldsymbol{\omega})}{\partial \boldsymbol{\omega}} + \left[\frac{\beta}{2\sqrt{\omega_1}}, \frac{\beta}{2\sqrt{\omega_2}}, \dots, \frac{\beta}{2\sqrt{\omega_n}} \right]^\top. \end{aligned} \quad (25)$$

Since the solution of the inner optimization problem $\boldsymbol{\theta}^*(\boldsymbol{\omega})$ satisfies the first-order necessary condition:

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}^*(\boldsymbol{\omega}), \boldsymbol{\omega}) = 0,$$

which is equivalent to

$$\nabla_{\boldsymbol{\theta}} \left(\sum_{i=1}^n \omega_i \ell_i(\boldsymbol{\theta}^*(\boldsymbol{\omega})) + \lambda \|\boldsymbol{\theta}^*(\boldsymbol{\omega}) - \boldsymbol{\theta}^*\|^2 \right) = 0.$$

Taking the derivative with respect to $\boldsymbol{\omega}$, and using the implicit function theorem, we obtain:

$$\begin{aligned} \frac{\partial \boldsymbol{\theta}^*(\boldsymbol{\omega})}{\partial \boldsymbol{\omega}} &= -\left(\frac{\partial^2 f}{\partial \boldsymbol{\theta}^2} \right)^{-1} \frac{\partial^2 f}{\partial \boldsymbol{\theta} \partial \boldsymbol{\omega}} \\ &= -\left(\frac{\partial^2 f}{\partial \boldsymbol{\theta}^2} \right)^{-1} \frac{\partial}{\partial \boldsymbol{\omega}} \left[\sum_{i=1}^n \omega_i \frac{\partial \ell_i(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} + 2\lambda(\boldsymbol{\theta} - \boldsymbol{\theta}^*) \right], \end{aligned} \quad (26)$$

where $\frac{\partial^2 f}{\partial \boldsymbol{\theta}^2} = \sum_{i=1}^n \omega_{\mathcal{S}_{t-1}, i}^* \nabla_{\boldsymbol{\theta}}^2 \ell_i(\boldsymbol{\theta}^*(\boldsymbol{\omega})) + 2\lambda I$ denotes the Hessian matrix of the inner optimization problem. Substituting Eq. 26 into Eq. 25:

$$\nabla_{\boldsymbol{\omega}} g(\boldsymbol{\omega}) = \left[\frac{\partial \mathcal{J}(\boldsymbol{\theta}^*(\boldsymbol{\omega}))}{\partial \boldsymbol{\theta}} \right]^\top \left(\frac{\partial^2 f}{\partial \boldsymbol{\theta}^2} \right)^{-1} \frac{\partial}{\partial \boldsymbol{\omega}} \left[\sum_{i=1}^n \omega_i \frac{\partial \ell_i(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} + 2\lambda(\boldsymbol{\theta} - \boldsymbol{\theta}^*) \right] + \left[\frac{\beta}{2\sqrt{\omega_1}}, \frac{\beta}{2\sqrt{\omega_2}}, \dots, \frac{\beta}{2\sqrt{\omega_n}} \right]^\top.$$

Now, consider the contribution of the k -th component of the weight vector $\boldsymbol{\omega}$ to $g(\boldsymbol{\omega})$, i.e., computing $\frac{\partial g(\boldsymbol{\omega})}{\partial \omega_k}$. Since only when $i = k$, the term corresponding to ω_k contributes, we derive:

$$\Delta g(k) = -\frac{\partial g(\boldsymbol{\omega})}{\omega_k} = -\nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}^*(\boldsymbol{\omega})) \left(\frac{\partial^2 f}{\partial \boldsymbol{\theta}^2} \right)^{-1} \nabla_{\boldsymbol{\theta}} \ell_k(\boldsymbol{\theta}^*(\boldsymbol{\omega})) - \frac{\beta}{2} \omega_k^{-\frac{1}{2}}.$$

C.4 CONVERGENCE ANALYSIS

We analyze the convergence of the U2A framework and obtain Lemma C.1 and Lemma C.2. Lemma C.1 indicates that as the number of iterations t increases, the solution obtained by our U2A

1080 algorithm gradually approaches the optimal solution, and the error decreases at $\mathcal{O}(1/t)$. Lemma C.2
 1081 demonstrates that as the size of the unlearning set m increases, the approximation error gradually
 1082 diminishes. This implies that it is unnecessary to unlearn all negative examples; selecting a subset is
 1083 sufficient to make the value of the objective function very close to the optimal value of the original
 1084 problem. The formal definition is as follows:

1085 **Lemma C.1. Suboptimality Bound (cf. Theorem 2 of (Locatello et al., 2017)).** Assume $g(\omega)$ is
 1086 L -smooth and convex, and let the initial suboptimality be denoted as $\varepsilon_1 = g(\omega^{1,*}) - g(\omega^*)$. After t
 1087 iterations, the suboptimality bound of the U2A algorithm can be expressed as:

$$1088 \quad 1089 \quad 1090 \quad g(\omega^{t,*}) - g(\omega^*) \leq \frac{8L + 4\varepsilon_1}{t + 3},$$

1091 where $g(\omega^*)$ represents the global optimal value. In the case of a non-convex objective function,
 1092 $g(\omega^*)$ is approximated as a certain local optimal value.

1093 **Lemma C.2. Size of Unlearning Set.** Under the condition that the suboptimality error does not
 1094 exceed ε , the size m of the final unlearning set satisfies:

$$1095 \quad m \in \mathcal{O}((L + \varepsilon_1)\varepsilon^{-1}).$$

1096 That is, the size of the final unlearning set is proportional to the smoothness of the objective function
 1097 and the initial suboptimality ε_1 , while being inversely proportional to the target precision ε .

1099 *Proof.* The suboptimality bound provided by Theorem C.1 is given as:

$$1100 \quad 1101 \quad 1102 \quad g(\omega_{\mathcal{S}_t}^*) - g(\omega^*) \leq \frac{8L + 4\varepsilon_1}{t + 3}.$$

1103 To satisfy the suboptimality error constraint, i.e., $g(\omega_{\mathcal{S}_t}^*) - g(\omega^*) \leq \varepsilon$, it suffices to ensure that the
 1104 right-hand side of the suboptimality bound is less than or equal to ε , which gives: $\frac{8L + 4\varepsilon_1}{t + 3} \leq \varepsilon$.

1105 By moving $t + 3$ to the right-hand side and expanding the terms on the right, we obtain: $\varepsilon t \geq 8L + 4\varepsilon_1 - 3\varepsilon$. Neglecting -3ε (as its impact diminishes with increasing t), the expression is further
 1106 simplified to: $\varepsilon t \geq 8L + 4\varepsilon_1$.

1107 Moving ε to the right-hand side yields: $t \geq \frac{8L + 4\varepsilon_1}{\varepsilon}$. This indicates that, to satisfy the suboptimality
 1108 error constraint $g(\omega_{\mathcal{S}_t}^*) - g(\omega^*) \leq \varepsilon$, the number of iterations t must be at least: $t = \mathcal{O}(\frac{L + \varepsilon_1}{\varepsilon})$. \square

1112 C.5 COMPUTATIONAL COMPLEXITY ANALYSIS

1113 The inner optimization problem must be solved in each iteration to determine the optimal model
 1114 parameter. Assuming t_f gradient descent iterations are required, with each iteration computing
 1115 gradients for all data points, and the gradient computation complexity for a single data point is c , the
 1116 total complexity of the inner optimization is $\mathcal{O}(t_f \cdot n \cdot c)$. For the outer problem, given an unlearning
 1117 set \mathcal{S}^t with t samples, and t_ω updates required per optimization, the complexity of solving $\omega^{t,*}$
 1118 is $\mathcal{O}(t \cdot t_\omega \cdot d)$, where d is the model parameter dimension. Marginal gain computation involves
 1119 implicit gradient calculations. Using the conjugate gradient method with t_g iterations, where each
 1120 iteration requires a Hessian-vector product computation of complexity $\mathcal{O}(t_g \cdot n \cdot c)$, and computing
 1121 the gradients of all data points with respect to θ contributes an additional complexity of $\mathcal{O}(n \cdot c)$.
 1122 Thus, the total complexity for marginal gain computation is $\mathcal{O}((t_g + 1) \cdot n \cdot c)$. Finally, if the final
 1123 unlearning set contains m samples, the overall algorithm complexity can be expressed as:

$$1124 \quad \mathcal{O}(m \cdot ((t_f + t_g + 1) \cdot n \cdot c + n \cdot d + m \cdot t_\omega \cdot d)).$$

1125 This demonstrates that our U2A algorithm is computationally efficient and well-suited for high-
 1126 dimensional applications, such as LLMs.

1128 D IMPLEMENTATION DETAILS OF U2A

1130 **Calculation of $\Delta g(k)$.** Directly computing the Hessian matrix in LLMs is impractical due to the
 1131 substantial computational cost. Therefore, following the setup in prior work (Jia et al., 2024a), we
 1132 adopt the diagonal Hessian assumption $\nabla_{\theta}^2 \ell(\theta^*(\omega)) = \frac{1}{\gamma} \mathbf{I}$ and set $\gamma = 1$ to simplify the computa-
 1133 tion.

1134 **Initialization and Update.** Considering efficiency, we propose two implementation enhancements
 1135 in the initialization and update of the unlearning set. For initialization, rather than begin-
 1136 ning with a single data point, we preliminarily select M candidate points set \mathcal{S}^1 using Eq. 9,
 1137 assigning $\omega_i^{1,*} = \frac{1}{M} \cdot \mathbb{I}_{\{i \in \mathcal{S}^1\}}$. Here, $\mathbb{I}_{i \in \mathcal{S}} = 1$ if $i \in \mathcal{S}$; otherwise, $\mathbb{I}_{i \in \mathcal{S}} = 0$. For up-
 1138 dating, N points are selected simultaneously rather than individually, which is formalized as
 1139 $\mathcal{K}^* = \text{Top-}N(\{\Delta g(k) | k \in [1, n], k \notin \mathcal{S}^{t-1}\})$, where $\text{Top-}N(\cdot)$ denotes the set of indices corre-
 1140 sponding to the top N elements with the highest values.

1141

1142 **Final Algorithm Procedure.** Incorporating the aforementioned improvements, the overall proce-
 1143 dure is summarized in Algorithm 1.

1144

Algorithm 1 U2A Algorithm

1146 **Require:** Dataset $\mathcal{D} = \{\mathbf{x}^i\}_{i=1}^n$, initial parameter θ^* , max iterations T , initial size M , per-round
 1147 size N , early-stop threshold δ , regularization coefficients λ, β .

1148 1: **Initial:** $\mathcal{S}^0 \leftarrow \emptyset$; $\mathcal{S}^1 \leftarrow \text{Top-}M(\{\Delta g(k) | k \in [1, n], k \notin \mathcal{S}^0\})$; $\omega_i^{1,*} \leftarrow \frac{1}{M} \mathbb{I}\{i \in \mathcal{S}^1\}$.

1149 2: **for** $t = 2$ to T **do**

1150 3: Gradient descent on the inner problem of Eq. 13 to obtain $\theta^*(\omega^{t-1,*})$;

1151 4: $\mathcal{K}^* \leftarrow \text{Top-}N(\{\Delta g(k) | k \in [1, n], k \notin \mathcal{S}^{t-1}\})$;

1152 5: $\mathcal{S}^t \leftarrow \mathcal{S}^{t-1} \cup \mathcal{K}^*$;

1153 6: Fix $\theta^*(\omega^{t-1,*})$ and optimize $\omega^{t,*}$ via Eq. 12;

1154 7: **if** $g(\omega^{t-1,*}) - g(\omega^{t,*}) \leq \delta$ **then**

1155 8: **break**;

1156 9: **end if**

1157 10: **end for**

1158 11: **Return** $\mathcal{S}^{\text{final}} \leftarrow \mathcal{S}^{t-1}$, $\omega^{\text{final},*} \leftarrow \omega^{t-1,*}$;

1159

1160

E ADDITIONAL EXPERIMENTAL DETAILS

1161

E.1 TRAINING CONFIGURATIONS

1162

1163 All experiments employ two AdamW (Loshchilov, 2017) optimizers: one for model training, with
 1164 a learning rate adjusted based on the specific baseline, dataset, and model architecture (as presented
 1165 in Table 3); the other for updating unlearning weights, using a fixed learning rate of $3e-2$. Both
 1166 optimizers adopt cosine annealing for learning rate scheduling. Baseline hyperparameters are strictly
 1167 set according to their original papers. For our proposed U2A method, key hyperparameters are:
 1168 regularization coefficient $\lambda = 1.0$, scaling factor $\beta = 0.5$, early stopping threshold $\delta = 0.01$,
 1169 and a maximum of $T = 10$ iterations. Additional configurations (including the number of initially
 1170 selected samples and the number of samples chosen in each iteration) are provided in Table 4. All
 1171 experiments were performed on machines equipped with NVIDIA A800.

1172

1173

1174 Table 3: Learning rates for model training.

Datasets	Models	Methods	Learning Rate
SafeRLHF	LLaMA2	GA & U2A	4.25×10^{-5}
		GradDiff & U2A	4.5×10^{-5}
		NPO & U2A	6.7×10^{-5}
UltraFeedback	LLaMA3	GA & U2A	7.5×10^{-5}
		GradDiff & U2A	7.8×10^{-5}
		NPO & U2A	1.2×10^{-4}
	LLaMA2	GA & U2A	1.55×10^{-4}
		GradDiff & U2A	1.6×10^{-4}
		NPO & U2A	1.9×10^{-4}
	LLaMA3	GA & U2A	4.9×10^{-5}
		GradDiff & U2A	5.38×10^{-5}
		NPO & U2A	7.0×10^{-5}

1188

1189

Table 4: Number of unlearned samples selected in the initial stage.

1190

1191

Dataset	Model	Number of Forgotten Samples
SafeRLHF	LLaMA2	1536
	LLaMA3	1024
UltraFeedback	LLaMA2	1024
	LLaMA3	2048

1192

1193

1194

1195

1196

1197

E.2 EVALUATION CONFIGURATIONS

1198

In this section, we provide a detailed explanation of each evaluation metric.

1200

For the performance of PA, we utilize the following four evaluation metrics:

1202

- **Reward-Value** (Chakraborty et al., 2024; Yao et al., 2024). Reward-Value assesses the quality of the model’s outputs based on reward scores assigned by the reward model. Higher values for these two metrics indicate better PA performance of the model after unlearning.
- **ASR** (Xu et al., 2024). ASR measures the model’s tendency to generate potentially harmful content. In our experiments, ASR is further divided into four sub-dimensions (Xu et al., 2024; Zou et al., 2023): ASR-Keyword, ASR-Answer, ASR-Useful, and ASR-Summary. Table 5 lists the set of keywords used in this study for evaluation with the ASR-Keyword metric. Smaller values for these metrics indicate better PA performance of the model after unlearning.
- **Coherence** (Chakraborty et al., 2024; Khanov et al., 2024; Kong et al., 2024). Coherence is evaluated by calculating the cosine similarity between the SimCSE (Su et al., 2022) embeddings of each prompt and its generated response, assessing their semantic proximity (Chakraborty et al., 2024). Higher coherence indicates better PA performance.
- **Win-rate** (Xiao et al., 2024; Rafailov et al., 2024). Win-rate measures the proportion of instances where the model’s outputs are preferred over those of the baseline model, including Win Rate vs. GPT-4 (i.e., GPT4-Win Rate) and Length-control Win Rate (i.e., LC-Win Rate).
- **Hallucination-rate** (Yao et al., 2024). Hallucination-rate measures the frequency of false or factually incorrect information in the outputs. A lower hallucination-rate indicates better PA performance.

1221

1222

For the performance of unlearning, we utilize the following three evaluation metrics:

1223

1224

- **Membership Inference Attack (MIA)** (Jia et al., 2024a). We employ the Min- $k\%$ Prob (Shi et al., 2023) method to calculate the likelihood of a given text belonging to the training data. The specific metric used is the area under the ROC curve (AUC). A higher AUC value indicates that the model is better at distinguishing between training and non-training data, thereby demonstrating greater unlearning effectiveness.
- **Perplexity (PPL)** (Yao et al., 2024; Doshi & Stickland, 2024). Lower PPL values indicate higher quality of the generated text, with outputs being more fluent and consistent with natural language expression norms.

1232

1233

1234

E.3 DETAILS OF PA PERFORMANCE COMPUTATION

1235

1236

1237

1238

1239

1240

1241

To further investigate the impact of unlearning individual samples on the model’s PA performance, we conduct a fine-grained reward analysis on the generated texts corresponding to each sample group. Specifically, we employ Beaver-7B-v3.0 (Dai et al., 2023; Ji et al., 2024b) as the reward model to compute the reward value for each token in the generated text. The choice of Beaver-7B-v3.0 over the Skywork-Reward-Llama-3.1-8B model—used in the evaluation metric Reward value—is primarily due to the need for token-level reward granularity in this experiment. Beaver-7B-v3.0 is capable of precisely outputting the reward value associated with each token during the scoring process, thus meeting the analytical requirements of this study.

1242

1243

Table 5: ASR Keyword Indicator List.

1244

1245

No.	Keyword or Phrase	No.	Keyword or Phrase
1	I'm sorry	16	not ethical
2	Sorry	17	My apologies but I cannot
3	I am sorry	18	is not recommended to
4	I apologize	19	is not advisable to
5	As an AI	20	If you have any other non-malicious requests
6	I'm an	21	I'm not able to provide
7	I'm just	22	I am really sorry
8	As a language model	23	I cannot create
9	As an assistant	24	I cannot support
10	I cannot	25	is not appropriate
11	I do not	26	I can't provide
12	is illegal and unethical	27	I am unable to
13	I'm really sorry	28	is not possible
14	OpenAI	29	I can't assist
15	unethical		

1258

1259

F ADDITIONAL EXPERIMENTS

1260

1261

F.1 ABLATION STUDY ON DATASET PARTITIONING

1262

1263

To evaluate the effectiveness of the proposed unlearning method on preference datasets, we design a unified data processing pipeline (Figure 5(a)). Specifically, 2,000 samples are selected from the original training set to serve as a test set for evaluating preference alignment performance. The remaining data are split into two parts: 20% is used to construct a PA dataset for PO, and the rest is allocated based on the algorithmic requirement—used for reward model training under PO, or as a fine-tuning set for building the unlearning pipeline. Each sample comprises a positive-negative preference pair. A subset of positive instances is extracted to form the positive sample set, while the corresponding negative instances, drawn from the remaining samples, form the negative sample set, with their proportion denoted as the *negative ratio*. These data are used to fine-tune the model, producing the original model. The negative set is then defined as the unlearning region from which a portion, specified by the *forget ratio*, is selected as the target data to be unlearned. The remaining negative samples, together with the positive set, formed the retraining dataset for training a comparative model, referred to as the retrained model. Some of the ratio values involved in this partitioning remain uncertain and require further investigation.

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

To systematically evaluate the impact of two key control parameters, the negative ratio and the forget ratio, on the model’s ability to align with preferences, we conducted a grid search-based ablation study on the SafeRLHF dataset. Specifically, negative ratio is set to nine levels: 0.365, 0.4125, 0.46, 0.5075, 0.555, 0.6025, 0.65, 0.6975, and forget ratio is set to five values: 0.2, 0.35, 0.5, 0.65, 0.8, resulting in a total of 40 experimental configurations through their combinations. Each configuration is subjected to a complete retraining and evaluation process. Model performance is assessed on a predefined posterior alignment evaluation set (PA test set), where a reward model is used to score the responses generated by each model. These scores serve as a measure of how well the model aligned with human preferences. The experimental results are shown in Figure 5(b), and the key observations are as follows:

- **Effect of the negative ratio.** As the negative ratio increases, model performance on the PA task exhibits a generally upward trend. This indicates that incorporating more low-quality samples helps the model better distinguish between high-quality and low-quality responses, thereby enhancing its preference learning capability. However, this improvement plateaued when negative ratio exceeds 0.65, and in some configurations, diminishing returns are observed. We attribute this to the increased presence of noisy samples. Considering the trade-off between sample quality, training stability, and model performance, we ultimately set the negative ratio to 0.65.
- **Effect of the forget ratio.** Across most negative ratio settings, a forget ratio of 0.65 consistently led to optimal performance on the PA test set. This result suggests that a moderate unlearning intensity, removing approximately 65% of negative samples, can effectively suppress the model’s

(a) Schematic diagram of dataset partitioning.

(b) Negative ratio vs. forget ratio.

Figure 5: Detailed description of data pre-processing.

retention of undesirable preferences, thereby promoting behavioral alignment without compromising positive alignment capability. In contrast, an excessively high forget ratio may lead to an imbalanced training data distribution, while a low forget ratio may be insufficient to exert a meaningful unlearning effect.

On the UltraFeedback dataset, which inherently contains a higher proportion of negative samples, we adopt the same experimental framework and analytical methodology as described above. Based on multiple rounds of empirical validation, we ultimately set the negative ratio to 0.7 and the forget ratio to 0.8 to achieve a more pronounced improvement in PA performance.

In summary, through the systematic exploration provided by the above ablation studies, we not only identify the optimal parameter configurations (i.e., negative ratio = 0.65, forget ratio = 0.65 for SafeRLHF; negative ratio = 0.7, forget ratio = 0.8 for UltraFeedback), but also confirm the significant value of appropriately controlling the amount of negative data and the extent of unlearning in enhancing model behavior quality in PA tasks.

F.2 IMPROVEMENT BROUGHT BY U2A

In this section, we supplement our analysis with the performance of unlearning methods before and after the integration of U2A on the UltraFeedback dataset. The experimental results are presented in Table 6.

Table 6: The performance of unlearning methods on the UltraFeedback dataset before and after U2A integration. Methods outperforming their respective baselines are indicated in *italics*, and the overall best-performing method is highlighted in **bold**.

Models	Methods	PA Performance				MU Performance	
		Reward-V	LC-WR (\uparrow)	GPT4-WR (\uparrow)	Coherence (\uparrow)	MIA (\uparrow)	PPL (\downarrow)
LLaMA2	Original Retrain	-8.578 -7.739	11.93 15.29	6.96 9.20	0.7328 0.7324	-	3.253
	GA	-8.283	11.72	6.77	0.7295	0.520	3.539
	GA & U2A	-7.154	20.12	10.63	0.7077	0.525	2.571
	GradDiff	-7.960	14.46	7.95	0.7329	0.523	3.845
	GradDiff & U2A	-7.233	18.35	9.50	0.7091	0.524	2.553
	NPO	-8.157	13.53	7.39	0.7329	0.523	2.524
LLaMA3	NPO & U2A	-8.037	14.44	7.84	0.7380	0.523	2.523
	Original Retrain	-4.996 -3.318	10.57 15.48	5.85 8.93	0.7263 0.7300	-	3.915
	GA	-4.760	13.08	7.13	0.7265	0.519	2.761
	GA & U2A	1.105	24.79	21.33	0.7450	0.525	9.397
	GradDiff	-2.297	17.93	9.82	0.7258	0.522	3.039
	GradDiff & U2A	1.248	24.18	19.67	0.7380	0.525	9.326
	NPO	-4.619	12.63	6.65	0.7287	0.519	2.670
	NPO & U2A	-0.248	20.56	13.20	0.7294	0.520	10.071

1350 F.3 CORRELATION BETWEEN MU AND PA
13511352 In this section, we further present a comparison between the improved unlearning methods and PO-
1353 based methods in terms of PA performance on the SafeRLHF dataset. The experimental results are
1354 shown in Table 7.
1355

1356 Table 7: Comparison of the PA Performance between MU and PO on the SafeRLHF dataset.

Model	Method	Reward-V (\uparrow)	ASR-K (\downarrow)	ASR-A (\downarrow)	ASR-U (\downarrow)	ASR-S (\downarrow)
LLaMA2	Original	-20.361	0.933	0.837	0.162	0.812
	Retrain	-18.243	0.873	0.602	0.177	0.563
	PPO	-8.172	0.089	0.000	0.000	0.000
	DPO	-8.143	0.173	0.000	0.134	0.000
	GA & U2A	-15.993	0.746	0.112	0.158	0.094
	GradDiff & U2A	-15.843	0.644	0.089	0.142	0.067
	NPO & U2A	-19.639	0.946	0.831	0.100	0.812
LLaMA3	Original	-19.827	0.971	0.848	0.148	0.794
	Retrain	-17.911	0.958	0.740	0.138	0.686
	PPO	-8.640	0.340	0.031	0.042	0.027
	DPO	-7.160	0.142	0.000	0.035	0.000
	GA & U2A	-7.609	0.246	0.162	0.123	0.121
	GradDiff & U2A	-12.644	0.417	0.103	0.140	0.078
	NPO & U2A	-13.815	0.783	0.698	0.233	0.498

1368
1369 F.4 PROCESSING EFFICIENCY OF U2A
13701371 To assess the computational efficiency of our proposed U2A framework, we compare its training
1372 cost with standard PPO and DPO baselines on two datasets (SafeRLHF and UltraFeedback) and two
1373 model sizes (LLaMA2 and LLaMA3). For each method, we measure the wall-clock time required
1374 to complete one training epoch. The detailed results are reported in Table 8. For PPO, its time
1375 cost includes both reward model training and the PPO optimization itself, and the time cost of each
1376 component is significantly higher than that of U2A. For DPO, the time cost is comparable to that
1377 of U2A. In addition, due to all positive training pairs for PPO and DPO being fixed during dataset
1378 preprocessing, we also estimate the expected runtime of these baselines when trained on the same
1379 number of samples as our methods, providing a fair comparison. All results demonstrate that U2A
1380 is sufficiently efficient compared to the current PA baseline.
13811382 Table 8: Training samples and time costs of different methods. PPO+RM and PPO, respectively,
1383 indicate whether the training time of the reward model is included.

Model	Datasets	Methods	Samples		Time Costs
			Actual	(Expected)	
LLaMA2	SafeRLHF	PPO+RM	2407	(4069)	172min (291min)
		PPO	2407	(4069)	98min (166min)
		DPO	2407	(4069)	17min (29min)
		GA & U2A	4069		27min
		GradDiff & U2A	4069		37min
		NPO & U2A	4069		28min
		PPO+RM	12227	(27351)	1068min (2389min)
LLaMA3	UltraFeedback	PPO	12227	(27351)	236min (528min)
		DPO	12227	(27351)	132min (295min)
		GA & U2A	27351		221min
		GradDiff & U2A	27351		224min
		NPO & U2A	27351		221min
		PPO+RM	2407	(4069)	186min (314min)
		PPO	2407	(4069)	112min (189min)
LLaMA3	SafeRLHF	DPO	2407	(4069)	18min (31min)
		GA & U2A	4069		18min
		GradDiff & U2A	4069		21min
		NPO & U2A	4069		18min
		PPO+RM	12227	(27351)	1136min (2541min)
		PPO	12227	(27351)	304min (608min)
		DPO	12227	(27351)	156min (349min)
LLaMA3	UltraFeedback	GA & U2A	27351		270min
		GradDiff & U2A	27351		284min
		NPO & U2A	27351		270min

1404
1405 F.5 SCALING U2A ON LARGE MODELS
1406

1406 In this section, we further evaluate the applicability and effectiveness of the proposed U2A framework under larger model scales. Specifically, we adopt the higher-capacity Qwen2.5-14B (Team
1407 et al., 2024) model and conduct experiments on the UltraFeedback dataset to examine whether U2A
1408 remains stable and effective in high-capacity model settings. As shown in Table 9, U2A consistently
1409 yields substantial improvements in preference alignment across multiple mainstream unlearning
1410 methods, and in some cases even surpasses strong preference optimization baselines such as
1411 DPO and PPO. These results demonstrate that U2A maintains strong performance in larger models
1412 and more complex data regimes, highlighting its scalability and broad applicability. In addition, we
1413 observe that as the model size increases, the performance of U2A becomes more prominent. We
1414 believe this is because a larger model’s scale pretraining confers stronger representational and
1415 generalization capabilities, enabling the model to infer positive behaviors and avoid harmful ones even
1416 when only negative samples are removed. In contrast, a smaller model’s weaker generalization may
1417 lead to uncertainty or degraded behavior post-unlearning, impairing PA performance. This aligns
1418 with the description in section 4.2.

1419
1420 Table 9: Comparison of the PA performance between MU and PO on Qwen2.5-14B
1421

Model	Method	Reward	LC-WR (% ,↑)	GPT4-WR (% ,↑)	Coherence (↑)
Qwen2.5-14B	Original(SFT)	-5.338	8.02	4.86	0.7316
	Retrain	-3.841	9.51	8.10	0.7342
	PPO	-2.913	14.71	10.47	0.7329
	DPO	-2.762	14.46	10.72	0.7313
	GA	-4.447	8.85	6.86	0.7365
	GradDiff	-4.551	9.35	6.48	0.7324
	NPO	-4.814	8.60	6.23	0.7357
	GA & U2A	-2.273	13.97	9.60	0.7324
	GradDiff & U2A	-2.912	11.22	9.72	0.7391
	NPO & U2A	-4.138	10.60	7.86	0.7254

1429
1430 F.6 INCORPORATING POSITIVE SAMPLE GUIDANCE INTO U2A FOR IMPROVED PA
1431

1432 In the original U2A framework, negative samples are used solely to unlearn undesirable outputs,
1433 thereby improving PA. However, the lack of positive sample guidance means that U2A does not
1434 show a clear PA performance advantage when compared to traditional PA methods, such as DPO and
1435 PPO, which leverage positive samples as guiding signals. To validate this, we introduced positive
1436 sample guidance into the U2A training process. Specifically, we incorporate DPO and PPO as
1437 baseline methods and experimented with different proportions (k%) of positive samples during U2A
1438 training to examine the impact of positive samples on PA.

1439 The comparative experimental results, as shown in Table 10, demonstrate that the introduction of
1440 positive sample guidance significantly enhanced U2A’s PA performance. As the proportion of posi-
1441 tive samples gradually increased, the PA effectiveness also improved. When the positive sample ratio
1442 reached that of DPO and PPO, U2A’s PA performance showed a significant advantage. This also
1443 indicates that using only negative samples for U2A PA is a promising and cost-effective direction.

1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473

1474 Table 10: Comparison of PA performance in U2A with positive sample guidance.

1475 Model	1476 Method	1477 Ratio	1478 Reward-V	1479 LC-WR (% ,↑)	1480 GPT4-WR (% ,↑)	1481 Coherence (↑)
1482 LLaMA3-8B	PPO	100%	-1.302	23.43	19.41	0.7395
		100%	-0.277	29.30	19.08	0.7375
	GA & U2A	0%	1.105	24.79	21.33	0.7450
		20%	1.543	28.68	21.82	0.7467
		40%	2.214	29.93	22.57	0.7428
		60%	2.351	30.54	22.44	0.7482
	GradDiff & U2A	0%	1.248	24.18	19.67	0.7380
		20%	1.696	27.56	21.57	0.7396
		40%	2.139	29.80	21.94	0.7407
		60%	2.348	29.80	22.69	0.7396
	NPO & U2A	0%	-0.248	20.56	13.20	0.7294
		20%	-0.037	21.07	15.57	0.7286
		40%	0.582	22.82	15.84	0.7312
		60%	0.541	22.94	15.71	0.7327
1491 Qwen2.5-14B	PPO	100%	-2.913	14.71	10.47	0.7329
		100%	-2.766	14.46	10.72	0.7313
	GA & U2A	0%	-2.273	13.97	9.60	0.7324
		20%	-1.934	14.34	10.47	0.7331
		40%	-1.627	14.96	10.35	0.7358
		60%	-1.582	15.09	11.34	0.7352
	GradDiff & U2A	0%	-2.912	11.22	9.72	0.7391
		20%	-2.319	11.47	10.35	0.7409
		40%	-2.027	13.71	10.97	0.7426
		60%	-2.089	13.84	10.84	0.7417
	NPO & U2A	0%	-4.138	10.60	7.86	0.7254
		20%	-3.825	11.10	8.72	0.7249
		40%	-3.624	11.47	8.48	0.7374
		60%	-3.597	12.22	9.35	0.7364

1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511