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ABSTRACT

Despite advances in Preference Alignment (PA) for Large Language Models
(LLMs), mainstream methods like Reinforcement Learning with Human Feed-
back (RLHF) face notable challenges. These approaches require high-quality
datasets of positive preference examples, which are costly to obtain and com-
putationally intensive due to training instability, limiting their use in low-resource
scenarios. The LLM unlearning technique presents a promising alternative by di-
rectly removing the influence of negative examples. However, current research has
primarily focused on empirical validation, lacking systematic quantitative analy-
sis. To bridge this gap, we propose a framework to explore the relationship be-
tween PA and LLM unlearning. Specifically, we introduce a bi-level optimization-
based method to quantify the impact of unlearning specific negative examples on
PA performance. Our analysis reveals that not all negative examples contribute
equally to alignment improvement when unlearned, and the effect varies signifi-
cantly across examples. Building on this insight, we pose a crucial question: how
can we optimally select and weight negative examples for unlearning to maximize
PA performance? To answer this, we propose a framework called Unlearning to
Align (U2A), which leverages bi-level optimization to efficiently select and un-
learn examples for optimal PA performance. We validate the proposed method
through extensive experiments, with results confirming its effectiveness. Our code
is available at https://anonymous.4open.science/t/U2A-9E75.

1 INTRODUCTION

Despite the strong performance of Large Language Models (LLMs) in predicting the next token,
their generated content often exhibits biases, factual inaccuracies, and other undesirable behav-

iors ( ; s ). Preference Alignment (PA) has been proposed to ad-
dress these issues by gurdrng LLMs to generate responses aligned with human preferences, such as
fairness and helpfulness ( , , ). This approach uses datasets

of human-annotated preferred and non- preferred responses to optimize the model. Reinforcement
Learning from Human Feedback (RLHF) is the primary method for achieving PA ( , ;

, ), involving the training of a reward model on human preference data and optimizing
the LLM using algorithms like Proximal Policy Optimization (PPO) ( , ) or Di-
rect Preference Optimization (DPO) ( , ). While RLHF shows strong performance
across diverse applications, such as programming and creative writing, it relies on costly large-scale
preference-aligned datasets, especially for positive examples ( , ). Additionally, RLHF
training is computationally intensive and prone to instability ( , ; , ),
posing challenges for low-resource alignment scenarios.

As a key technique aimed at protecting user privacy, Machine Unlearning (MU) in LLMs offers a
novel solution to the aforementioned challenges ( , ; s ). This technique
enables the removal of specific user data from pre-trained LLMs without requiring a complete re-
training. By facilitating the unlearning of negative examples, this promotes PA while addressing the
high costs and difficulties associated with acquiring positive examples for standard RLHF. Unlike
RLHF, LLM unlearning requires only negative examples, which are typically easier and cheaper
to collect via mechanisms like user reports or red team testing. For unaligned pre-trained models,
identifying counterexamples can be highly automated, further reducing data collection costs. Ad-
ditionally, the computational overhead of unlearning is comparable to fine-tuning and significantly
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lower than RLHF’s full training process, making it a practical approach for achieving alignment in
low-resource scenarios.

Existing studies ( ; ; s ) have validated the effective-
ness of achieving model ahgnment through the unlearmng of negative examples, highlighting the
potential of integrating MU with PA. However, these studies primarily rely on experimental demon-
strations, lacking in-depth quantitative analysis. For instance, the quantitative impact of unlearning
specific samples on PA remains unclear. Additionally, critical questions such as which examples
should be unlearned to maximize alignment and how to optimally select subsets of examples for
unlearning to achieve the best outcomes remain unresolved. These gaps underscore a theoretical
and practical disconnect between MU and PA. Addressing these challenges requires the develop-
ment of a comprehensive analytical framework to unify these two domains and facilitate a deeper
understanding of their intrinsic connections.

To address the identified challenges, we first develop a special bi-level optimization framework to
quantify how unlearning specific negative samples impacts model PA performance. In particular, the
inner optimization focuses on unlearning the target sample, while the outer optimization assesses the
resulting change in PA performance. After further analysis, we find that not all negative examples
contribute to PA improvement, with the degree of impact varying across examples. Meanwhile,
the impact is influenced by the unlearning weights. This suggests that indiscriminately applying
unlearning to all negative examples fails to achieve optimal PA performance. To address this, we
propose a framework called Unlearning to Align (U2A), based on bi-level optimization, to strategi-
cally select samples and determine optimal unlearning weights. Further convergence and computa-
tional complexity analysis indicate that our proposed method demonstrates good applicability and
efficiency in LLMs. This framework bridges the gap between MU and PA, offering a systematic
approach to their integration. We summarize the main contributions of this paper as follows:

* We propose a special bi-level optimization framework to measure the impact of unlearning specific
samples on PA performance, bridging the gap between MU and PA.

* We find that unlearning all negative examples does not always benefit PA, as their contributions to
PA improvement vary and can be adjusted through unlearning weights.

* We propose the U2A framework, leveraging bi-level optimization to select and weight negative
examples for unlearning, thereby maximizing PA performance.

* We conduct extensive evaluations on multiple models and real-world datasets, and the experimen-
tal results demonstrate the effectiveness of our method.

2 PRELIMINARY

Given a training set D; = {x!,22,..., 2™V}, where ' = {z1,29,...,7,,} represents samples
(i.e., sentences) with a token length of n,;, and IV; denotes the number of samples. A model 7 is
trained on Dy, and its optimal parameters 8* satisfy the following equation:

t=1
where p(z; | <4;0) = mo(x¢ | ©<+) denotes the prediction probability of model 7y for the ¢-th
token, given the first ¢ — 1 tokens as input. Next, we define the objectives for conducting RLHF and
MU on the model g, respectively.

0" = argmin Lx11,(Dy; 0) = arg min —E: .p, [Z logp(ze | <t )] , (D)
0

2.1 DEFINITION OF RLHF

The standard RLHF paradigm consists of two main stages ( , ): 1) learning a reward
model, and ii) optimizing the policy (i.e., the model parameters) based on the learned reward.

In the reward model learning phase, a binary classifier is often trained using a logistic regression
loss to distinguish preferred from non-preferred behaviors. A popular choice is the Bradley-Terry
model ( R ), where the pointwise reward r(x.;, ;) serves as the score for
action x;, given context ;. Given a dataset D, = {x’,, x} = 2}, where 2} = #! denotes
a preference for x! over &, the reward function is learned by minimizing the following logistic

regression loss: _ o
‘C( ) E(m<t zi-31)~Dq [1Og (p(leﬁ - jjt|mz<t))] ) (2)
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where p(z} = &|x’,) = o (r(zl,, z}) — r(z’,,2})) and o(-) denotes the sigmoid function.

Based on the reward function, the objective of RLHF is to maximize the expected reward while
minimizing the divergence between the policy mg and a reference policy m..s. The specific objective
can be expressed as: o

J(0) = Exy[r(zs, )] — TDkr(mo || mres), 3)
where ', ~ p denote the sampled history, i ~ g (|’ ,) denote the action drawn from the policy,
and 7 is the parameter balancing the alignment and regularization objectives. The KL divergence
Dk, is used to quantify the difference between the reference and current policies. Since LLM
unlearning in this work incorporates a regularization term with analogous effects, we retain only the
reward term in Eq. 3.

2.2 DEFINITION OF LLM UNLEARNING

Mainstream methods for unlearning in LLMs typically involve fine-tuning the original model with
an unlearning objective function. Giver a forget set D¢, while specific designs vary, the loss function
in LLM unlearning tasks can generally be expressed as:
L(0) = Liorget(D§;0) + ALrcg(0). 4
Here, Liorget Often is a loss term targeting data to be unlearned, reducing the model’s performance
on these samples to minimize their influence on future predictions. To preserve the model’s overall
performance on unrelated data and confine unlearning to the intended scope, regularization terms
L.eg such as output loss or divergence regularization are commonly introduced. These terms essen-
tially act as parameter regularization. Specifically, commonly used loss-based methods ( ,
; , ) typically integrate one or more of the loss components. For readability, in
this paper, we employ the widely adopted gradient ascent unlearning loss and parameter regular-
ization loss as general objectives for LLM unlearning, considering their broad applicability. The
formalization is as follows:

‘Df| mn;
manZZIng 2 | @5 0)+A]0 — 0|2 (5)
b R — —

Lreg(0)

[fforget (Df 79)

A more detailed discussion on the definition of LLM unlearning can be found in Appendix B.

3 CONNECTION BETWEEN MU AND PA

3.1 IMPACT OF MU ON PA

Given a training sample « to be unlearned, the unlearning objective in an LLM is described by
Eq 5. We adopt a special bi-level optimization framework to link MU with PA, quantifying how
unlearning a single sample affects the model’s PA performance. In this setup, the inner problem
ensures the unlearning objective is achieved, while the outer problem evaluates its impact on PA
performance. Specifically, we assume that the degree of unlearning for a sample x is represented
by the weight w > 0, and the model parameters that satisfy the unlearning objective under this
condition are denoted as 8* (w). The bi-level optimization problem is formulated as:

Find J(60"(w))— J(67(0))
st. 0" (w) =arg mein WLiorget (T3 0) + ALreg(0), (6)

where J (0*(w)) represents the model’s PA performance when unlearning weight is w. For exam-
ple, 7(6*(0)) represents the model’s PA performance without unlearning. Inspired by the implicit
function method for solving bi-level optimization problems, we further derive Proposition 3.1.
Assumption 3.1. Liorget(x; 0) is continuously differentiable w.r.t. 6, and its Hessian matrix H is
positive semidefinite (i.e., x ' Hx > 0, © # 0). J(0) is twice continuously differentiable w.r.t 6.
Proposition 3.1. If Assumptions 3.1 holds, L.z adopts the 2-norm, the change in PA performance
for a model with parameters 0* after unlearning sample x using unlearning weight w satisfies:

AT (6% (w)) ~ —%vej(e*fveﬁforget(m; ") Q)
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Detailed proof can be found in Appendix C.1. According to Proposition 3.1, we can directly set the
unlearning weight w to a given positive value, such as 1 (i.e., AJ (6*(1)), to quantitatively assess the
impact of unlearning a single sample on the model’s PA performance. To further analyze the factors
influencing A7 (6*(w)), we decompose the gradient inner product into the gradient norm and the
cosine of the angle between gradients: AJ(0%(w)) ~ —%[[VaT(6%)] - [[VoLtorget (x;0%)]| -
cos(¢), where cos(¢) denotes the angle between gradient vectors. Then, we can draw the facts:

* Fact 1: impact can be positive or negative. The impact of unlearning a sample on PA perfor-
mance can be either positive or negative, depending on the gradient direction relationship (i.e., the
sign of cos(¢)), which is partially influenced by the reward of the unlearned sample’s combination.
A sample x can be represented as multiple combinations, i.e., x = {® <y, x4} ;. For low-reward
combinations, where generated behavior often deviates significantly from human preferences, the
unlearning objective gradient direction (i.e., the direction increasing the sample’s generation prob-
ability) is more likely to oppose the PA objective gradient direction. This results in cos(¢) < 0
and AJ(6*(w)) > 0. Thus, if the rewards for most combinations {x<;,x;} in a sample x are
low, unlearning the sample tends to improve preference alignment. Conversely, if only a few
combinations have low rewards, unlearning the sample will likely hinder PA.

* Fact 2: magnitude of impact varies. The effect of unlearning on PA performance is sample-
dependent, influenced by unlearning degree and gradient norm. The gradient norm is an inherent
property of sample, such as the model’s degree of fit to the sample. For samples that the model
fits well, the gradient norm tends to be smaller. On the other hand, the unlearning weight is a
controllable factor that can be adjusted by tuning parameters such as the unlearning weight.

3.2 A WEIGHTED MU FRAMEWORK FOR PA

The above analysis indicates that, given a set D = {x’}"_; containing n negative samples, simply
performing the unlearning operation directly according to Eq. 5 does not guarantee optimal PA
results. This is primarily due to the following two issues:

» Issue 1. Fact 1 suggests that for a given negative sample =?, which contains some low-reward
combinations, this alone does not imply that unlearning * will necessarily promote PA. The
effectiveness of unlearning also depends on the proportion of low-reward components within the
sample. This indicates that not all negative samples need to be unlearned.

» Issue 2. Fact 2 indicates that even if different negative samples (e.g., ' and x7) can both pro-
mote PA, the degree of promotion may vary. This difference can be controlled by adjusting the
unlearning weight w.

Formally, in Theorem C.2 of Appendix C.2, we theoretically prove that if there is room for improve-
ment in the PA objective, a reweighting scheme w exists that can improve PA without increasing the
MU task loss. This property forms the theoretical basis for our subsequent algorithm design.

Problem setup. To address these two issues, we propose a framework called Unlearning to Align
(U2A) based on a sample-weighting approach. This framework achieves the maximization of PA
performance by assigning higher weights to samples that contribute more significantly to perfor-
mance improvement during the unlearning process. Specifically, when the weight w is set to 0, it
indicates that the corresponding sample is not selected for unlearning. For ease of analysis and dis-
cussion, we assume that the weight vector w = [w1,ws, . ..,w,] lies on an n-dimensional simplex,
with each element being no less than 0, and we denote the unlearning loss of each sample x’ as
£;(0). The U2A framework can be formalized as solving the following optimization problem:

min  —J(0%(w)) + BLy(w)

wEA
s.t. 0% (w) = argmin Z wili(0) + ALieg(0), (8)
6 0

where L, (w) represents an introduced L,,-norm sparsity-inducing regularization term to ensure that
the number of selected samples for unlearning is as small as possible, and 5 denotes the weight
coefficient of the regularization term. Further analysis shows that when p = 1, the sparsity regular-
ization has relatively weak compressive effects on small values. On the other hand, when p = 0, it
can effectively control the sparsity of weights (i.e., the number of non-zero weights). However, in
this case, the regularization term L, (w) becomes a non-continuous and non-convex function, which
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signiﬁcantly increases the difficulty of optimization. Considering these factors, when w > 0 and
p= 5, the regularization term Ly, (w) is both a strictly convex function and exhibits good smooth-

ness. Therefore, in this paper, we set p = %, making L, (w) = .7 | \/w;. Solving Eq. 13 yields
the selected unlearning set S as well as the unlearmng welght w for each sample.

U2A framework. To enhance clarity, we denote the outer objective function as g(w) and the

inner objective function as f(0,w). If f(8, w) is twice differentiable w.r.t. 6, the constraint

0*(w) = argming f(0,w) can be relaxed into 8%“’)|9 0+(w) = 0. When f(6,w) is strictly

convex w.r.t. 6, this relaxation becomes tight ( , ). Assumptlon 3.1 ensures this
property, enabling the use of first-order optimization methods ( , ;

, ) to solve Eq. 6 and avoiding computationally expensive naive greedy algorlthms
Considering the efficiency, we adopt a variant of the cone-constrained generalized matching pur-
suit algorithm ( , ), which performs incremental optimization. This approach
iteratively constructs the unlearning set S, thereby significantly reducing computational complexity.

Specifically, in each iteration, we first solve the inner optimization problem using the gradient de-
scent method to obtain the model parameters 8*(w) with optimal unlearning performance. After
completing the inner optimization, we identify a new sample point %k to add to the unlearning set
based on the marginal gain of the outer objective function g(w), to maximize the marginal gain. The

marginal gain is calculated as Ag(k) = 39(“’)

gradient of g(w) w.r.t. w can be expressed as

. According to the implicit function theorem, the

Ag(k) = —VeT (8*(w))T (g;;) Vol (8 (w)) — gwk ©)

where % = 3" wiVali(0*(w)) + 2\I, denoting the Hessian matrix of the inner optimization
problem (details are provided in Appendix C.3). After computing the marginal gain, we select the
sample point £* with the maximum gain, add it to the unlearning set S;_1.

Subsequently, we fix the model parameters to solve the outer optimization problem to obtain the
solution w?*, which can be formalized as:

wh* = argming(w) s.t. supp(w) =S, 10)

weA,,

where the constraint is imposed to restrict the support set of the weight vector w to be identical to the
current unlearning set S;. In other words, the non-zero components of w are confined to elements
within the current unlearning set, thereby preventing the introduction of new sample points. The
support set bupp( ) = {i | w; # 0} denotes the indices of the non-zero entries in w. Let s = |S;| be
the support set size, and ws, € R? the corresponding subvector. The equivalent optlmlzatlon reduces
to mingg, ea,_, g(w), subject to a simplex constraint, and can be solved by mirror descent (

, ; , ). The update rule is given by:

W't = arg min (Vg(w'),w) + %Dh (wlw'), (1D

WEA,_1

where 7 is the step size, (-,-) denotes the dot product, and Dy(+||-) is the Bregman diver-
gence ( , ). Using the negative entropy h(x) = > x; In ; — x;, the update has
a closed form:

¢

— . . t
Wit — Wy exp( n-Vig(w')) st. i€S,. (12)

' doiowheexp (=1 - Vjig(wt))’
This yields a smooth, probabilistic update guided by the gradient. Thus, we can obtain the complete
process of U2A in Algorithm 1. In practice, to improve efficiency, U2A initialization (first point
selection) typically involves multiple points controlled by a tunable hyperparameter M, and each
update is similarly governed by V. More detailed implementation specifics provided in Appendix D.

Convergence and complexity analysis. We analyze the convergence of the U2A framework and
obtain Lemma C.1 and Lemma C.2 (see Appendix C.4), which prove that it has good convergence
properties. We further analyze the complexity of U2A (Appendix C.5), showing that it is computa-
tionally efficient and well-suited for high-dimensional settings.
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4 EXPERIMENT
4.1

Datasets and models. We evaluate across three mainstream PA tasks and datasets: (i) reducing
harmfulness SafeRLHF ( , ), (i1) enhancing usefulness UltraFeedback (

, ), (iii) eliminating hallucmatlons HaluEval ( , ). Followmg
the conﬁguratlons in prior study ( , ), we select the widely used
Llama-2-7B-Chat (LLaMA?2) ( , ) and Llama 3.1-8B-Instruct (LLaMA3) (

, ) as base models for each dataset. For PA evaluation, we employ the Skywork-Reward-
Llama-3.1-8B model ( , ). We report the details of training in Appendix E.1.

Pipeline and data pre-processing. To evaluate the effectiveness of the proposed unlearning
method on preference datasets, we design a unified data processing pipeline (Figure 5(a) in Ap-
pendix F.1). An ablation study on the effects of negative ratio and forget ratio is presented in Ap-
pendix F.1. Due to the space limit, please refer to Appendix F.1.

Evaluation metrics. We evaluate our proposed method along two dimensions: PA performance
and unlearning performance. For unlearning performance, we evaluate unlearning effectiveness and
model utility. Due to space limit, details are provided in Appendix E.2.

Baselines. We evaluate our proposed method U2A against widely acknowledged baselines, in-
cluding unlearning methods (i.e., Retrain, GA ( R ), GradDiff ( s ;
, ), and NPO ( )), as well as PA methods (i.e., PPO ( R
) and DPO ( , )) The effectiveness of our method is validated by comparing
the U2A-improved unlearning baseline with the original baseline and existing PA baselines.

EXPERIMENT SETUPS

4.2 EXPERIMENT RESULTS

Unlearning affects PA. We assess the
impact of unlearning individual samples
on PA performance using the LLaMA2
model across three datasets. Given the
nearly negligible effect of unlearning a
single sample on model parameters, we
randomly select 150 groups, each with
32 negative samples, from a pool of eli-
gible negative samples. PA performance
changes after unlearning each group are

(a) SafeRLHF (b) UltraFeedback

(c) HaluEval
Figure 1: Effect of unlearning individual data samples

on PA performance of LLaMA2 model. Each point
represents the PA performance change after unlearning
a specific data sample. The angle of each point follows
a uniform distribution, while the radial distance indi-

compared, with parameter w set to 1.
Figure 1 shows that unlearning can have
both positive and negative effects, suggest-
ing that removing negative samples does
not consistently improve PA performance.
Additionally, the degree of improvement

cates the magnitude of PA performance change. Red
points represent negative effects (i.e., unlearning this
sample led to worse PA), whereas blue points represent
positive effects (i.e., unlearning this sample improved
PA). Note that larger distances from the origin corre-
spond to stronger impacts on PA performance.

varies significantly across different samples.
refer to Appendix E.3.

To better understand this, we decompose reward values for each token. Tokens with reward values
below the average are classified as “low-reward”, while those above the average are “high-reward”.
The average reward values for each dataset are as follows: -1.74 for SafeRLHF, 0.90 for UltraFeed-
back, and -0.78 for HaluEval. To distinguish the impact of different sample groups, we apply a
threshold on the proportion of low-reward tokens. Specifically, samples with a low-reward token
proportion below the threshold are marked in red, while those exceeding the threshold are marked
in blue. Figure 2 illustrates the impact of unlearning these samples on PA performance. Taking
SafeRLHF as an example, most changes in PA performance are positive when the proportion of
low-reward tokens in the unlearned dataset exceeds the threshold (dashed vertical line at 0.6). Con-
versely, when the proportion of low-reward tokens is below the threshold, most changes are negative.
In general, red samples, with more dispersed rewards and fewer low-reward tokens, tend to hinder
the improvement in PA performance when not learned. In contrast, unlearning blue samples, with a
higher proportion of low-reward tokens, significantly boosts PA performance. These findings align
with our theoretical analysis in Section 3.1.

Effectiveness of U2A. To comprehensively evaluate the effectiveness and applicability of the pro-
posed U2A framework in enhancing PA, we conduct experiments on two widely used datasets:

For details on the computation of PA performance,
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(a) SafeRLHF (b) UltraFeedback (c) HaluEval

Figure 2: Analysis of how unlearning data samples affects PA performance. Each point represents
the change in PA performance (APA) after unlearning a group of samples. The z-axis denotes
the proportion of low-reward tokens in the unlearned sample groups, and the y-axis represents the
corresponding change in PA performance.

SafeRLHF and UltraFeedback. LLaMA?2 and LLaMA3 are selected as representative open-source
base models. The experimental setup comprises two parts. The first assesses different variants of
the unlearning method within U2A, comparing their PA performance and unlearning performance
against a baseline unlearning strategy that removes negative samples. This aims to validate the prac-
tical benefits of U2A. The second part benchmarks U2A against mainstream PA methods, demon-
strating its potential and competitiveness in improving PA performance.

* Analysis of the improvement brought by U2A. To evaluate the enhancement achieved by U2A,
we compare it against three widely used MU methods: GA, GradDiff, and NPO. All methods are
applied to the complete set of negative samples, simulating the full-sample unlearning paradigm
commonly adopted in traditional MU methods. A retrained model is also included as a reference,
serving as the “gold standard” for full unlearning to assess the trade-off between performance
and cost. On this basis, we construct three U2A-integrated variants (i.e., GA & U2A, GradDiff &
U2A, and NPO & U2A) by incorporating the proposed sample weighting mechanism. This design
enables evaluation of whether U2A enhances PA under the same unlearning settings. Detailed
results are presented in Table 1 and Table 6 (Appendix F.2), from which we draw the following
observations:

Table 1: The performance of unlearning methods on the SafeRLHF dataset before and after U2A

integration. Methods outperforming their respective baselines are indicated in ifalics, and the overall

best-performing method is highlighted in bold.

Models ‘ Methods ‘ PA Performance MU Performance
| Reward-V (1) ASR-K(}) ASR-A(}) ASRU()) ASRS() | MIA(1) PPL(})
Original -20.361 0.933 0.837 0.162 0.812 - 8.538
Retrain -18.243 0.873 0.602 0.177 0.563 0.521 8.924
-19.103 0.942 0.792 0.217 0.725 0.515 7.003
LLaMA2 GA & U2A -15.993 0.746 0.112 0.158 0.094 0.556 11.021
GradDiff -19.545 0.956 0.815 0.164 0.783 0.511 5.982
GradDiff & U2A -15.843 0.644 0.089 0.142 0.067 0.584 14.573
NPO -20.041 0.927 0.840 0.121 0.812 0.504 5.079
NPO & U2A -19.639 0.946 0.831 0.100 0.812 0.503 5.294
Original -19.827 0.971 0.848 0.148 0.794 - 7.627
Retrain -17.911 0.958 0.740 0.138 0.686 0.527 10.412
-18.011 0.982 0.829 0.163 0.750 0.509 20.405
LLaMA3 GA & U2A -7.609 0.246 0.162 0.123 0.121 0.522 17.876
GradDiff -18.477 0.971 0.829 0.179 0.767 0.511 23.426
GradDiff & U2A -12.644 0417 0.103 0.140 0.173 0.536 21.949
NPO -17.985 0.958 0.860 0.131 0.785 0.505 11.201
NPO & U2A -13.815 0.783 0.698 0.233 0.498 0.508 20.177

(i) U2A substantially improves the PA performance of all baseline methods, achieving optimal
results. While basic unlearning methods applied to all negative samples yield moderate gains,
they remain inferior to retraining. In contrast, U2A variants consistently outperform retraining
across multiple metrics, indicating that retraining is not the optimal unlearning strategy for PA, as
not all unlearned samples equally contribute to improving PA.

(ii) U2A maintains competitive unlearning performance while markedly enhancing PA. It gener-
ally outperforms baselines in metrics like MIA and PPL, due to its targeted selection and reweight-
ing of key samples. Nonetheless, in some cases, performance drops occur as U2A only removes a
subset of the unlearning set, which may weaken overall unlearning strength.
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* In-depth correlation between MU and PA. To explore the intrinsic link between MU and PA, we
conduct a systematic comparison between U2A-enhanced unlearning methods and mainstream PA
methods based on positive-negative sample pairs. Experiments are performed on the SafeRLHF
and UltraFeedback datasets, using 2,407 and 12,227 positive-negative sample pairs, respectively,
under two representative PA algorithms: DPO and PPO. Sample scales are matched with dataset
partitioning. Results for UltraFeedback are shown in Table 2 and SafeRLHF are in Table 7 (Ap-
pendix F.3). Key observations are as follows:

Table 2: Comparison of the PA Performance between MU and PO on the UltraFeedback dataset.

Model | Method | Reward-V (1) LC-WR (%, 1) GPT4-WR (%,1) Coherence (1)
Original -8.578 11.93 6.96 0.7328
Retrain -7.739 15.29 9.20 0.7324
PPO -6.971 17.13 10.29 0.7375
LLaMA2 DPO -6.728 16.62 10.82 0.7370
GA & U2A -7.154 20.12 10.63 0.7077
GradDiff & U2A -7.233 18.35 9.95 0.7091
NPO & U2A -8.037 14.44 7.84 0.7380
Original -4.996 10.57 5.85 0.7263
Retrain -3.318 15.48 8.93 0.7300
PPO -1.302 2343 19.41 0.7395
LLaMA3 DPO -0.277 29.30 19.08 0.7375
GA & U2A 1.105 24.79 21.33 0.7450
GradDiff & U2A 1.248 24.18 19.67 0.7380
NPO & U2A -0.248 20.56 13.20 0.7294

(i) MU is an effective way for PA. On LLaMA3 and UltraFeedback, U2A achieves comparable
or superior PA performance relative to DPO and PPO. This indicates that unlearning, viewed as
negative sample exclusion, can serve as an effective and complementary PA strategy.

(ii) Knowing “what to unlearn” is insufficient, learning “what to generate” is equally critical. On
the LLaMA2 model and SafeRLHF dataset, U2A shows no significant advantage over mainstream
PA methods. This is because, although U2A effectively removes negative samples through a
“negative avoidance” strategy, which suppresses low-quality responses to indirectly enhance PA, it
still lacks explicit guidance for generating high-reward, human-aligned content. Without positive
sample supervision, its ability to learn and generalize high-quality outputs is limited, reducing its
efficacy compared to PA methods. This highlights the need for unlearning methods to address
both undesired outputs and desired generation behaviors.

(iii) Model generalization and negative sample quality critically affect U2A. U2A performs better
on LLaMA3 and UltraFeedback than on LLaMA?2 and SafeRLHF, likely due to two factors. First,
LLaMA3’s larger-scale pretraining confers stronger representational and generalization capabili-
ties, enabling the model to infer positive behaviors and avoid harmful ones even when only nega-
tive samples are removed. In contrast, LLaMA?2’s weaker generalization may lead to uncertainty
or degraded behavior post-unlearning, impairing PA performance. Second, the UltraFeedback
dataset provides high-quality negative samples that are well-annotated, semantically coherent,
and distributionally focused, thereby supporting more effective behavior suppression. In contrast,
the noisier and less consistent negative samples in SafeRLHF limit their impact on PA.

(iv) The quantitative relationship between negative sample scale and PA training requirements
warrants further study. As higher PA performance is pursued, both PA methods and unlearn-
ing methods typically demand more positive-negative sample pairs for the former and negative
samples for the latter. Whether a functional relationship exists between the data requirements of
different methods to achieve comparable alignment levels remains an open question. Clarifying
this could offer a theoretical basis for more efficient training resource allocation.

Sensitivity analysis of hyperparameter 1/. We investigate the effect of the hyperparameter M,
which represents the number of samples selected for weighted unlearning at the initial step, on
PA in the U2A framework, using the SafeRLHF and UltraFeedback datasets with LLaMA?2 and
LLaMA3 models. For different values of M, we select the Top-M high-gain samples and apply
U2A weighted unlearning. After each unlearning step, we evaluate PA performance using average
reward as the main metric. The results in Figure 3 (top row) show that PA performance is generally
higher for small values of M. When M exceeds a certain threshold, performance stabilizes or
decreases. To analyze this, we compute the marginal gain on PA performance for each negative
sample in the candidate forget set, representing the estimated reward improvement if the sample is
forgotten. The marginal-gain distributions (Figure 3, bottom row) show that a few high-gain samples
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are concentrated at the left tail, while most samples have marginal gains near zero. This suggests
that high-gain samples mainly improve PA performance, while low or near-zero gain samples offer
little benefit and may even cause a slight degradation in PA when M exceeds the threshold.
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Figure 3: Sensitivity analysis of the hyperparameter M. As observed, unlearning high-marginal-
gain samples at the early stage yields substantial improvements in preference alignment, whereas
including more low-marginal-gain samples leads to saturated or even slightly degraded gains.

Ablation study on sample selection based on marginal gain. We conduct an ablation study on
the UltraFeedback dataset with the LLaMA3 model to evaluate whether the marginal-gain-based
sample selection improves PA performance. For various unlearning set sizes K, we compare two
strategies: (i) selecting the Top-K samples with the highest marginal gains, and (ii) randomly se-
lecting K samples as a baseline. We apply the same U2A weighted unlearning procedure to both
sets and evaluate PA performance using average reward. As shown in Figure 4, the models using
marginal gain selection consistently outperformed those with random selection in average reward,
with this advantage increasing as K grew. These results confirm that marginal gain computation
effectively identifies key samples for improving preference alignment, significantly enhancing U2A
unlearning performance, and validating the necessity of this module.

GA + U2A GradDiff + U2A NPO + U2A
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Figure 4: Ablation study. Each subfigure presents the comparison of Top-K selection guided by
marginal gain (yellow) and random selection (blue) in terms of improvement in PA performance.

For more experimental results (e.g., the processing efficiency of U2A), see Appendix F.

5 CONCLUSION

The mainstream PA method, RLHF, faces significant challenges in low-resource settings, including
1) reliance on numerous positive preference samples, which are costly to obtain, and ii) instabil-
ity during training, resulting in high computational costs. To address these issues, we propose a
MU-based method that reduces dependence on positive samples by unlearning negative samples
to achieve PA. Our method achieves computational efficiency comparable to standard fine-tuning
while showing strong potential. We first develop a bi-level optimization framework to evaluate the
impact of unlearning individual samples on PA performance. Through our analysis, we observe that
negative samples contribute unevenly to PA, with many offering limited benefits. This observation
leads to a key question: how can we selectively weight and unlearn negative samples to optimize
alignment? To this end, we formally define the problem and introduce U2A, a framework leveraging
bi-level optimization to efficiently select and weighted unlearn samples for improved alignment. Ex-
periments demonstrate that U2A significantly enhances alignment efficiency and effectiveness, un-
derscoring its value in resource-constrained scenarios. By linking PA with MU, this work provides
a novel perspective on PA for LLMs and suggests new directions for optimizing PA algorithms.
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A RELATED WORK

A.1 PREFERENCE ALIGNMENT

PA methods can be broadly classified into learning-based and decoding-based methods, depending

on whether model parameters are updated ( , ). Learning-based methods (
s ; s ; R ; R ), such as RLHF, optimize
models using preference datasets with techniques like PPO ( , ), DPO (
, ), WPO ( , ), and Self- play Preference Optimization (SPO) ( ,
). However, RLHF is computatlonally expensive ( , ). To mitigate this,

decoding-based methods ( ,
), which guide inference without parameter updates have gained attentron Examples mclude
rejection samphng ( , ) and Monte Carlo Tree Search (
, ), Wthh reduce computational costs by keeping parameters fixed.
Smce this study focuses on the relationship between MU and PA, and the former requires parameter
updates, we primarily consider learning-based methods.

A.2 LLM UNLEARNING

The goal of LLM unlearning is to remove specific knowledge from trammg data while preservmg
the model’s performance on unrelated tasks ( ,
). Existing methods can be categorized into three main approaches i) Gradlent-
based methods ( s s ) use gradient ascent on the forget set (i.e.,
the data to be unlearned) to remove associated knowledge, with parameter regularization added to
preserve performance on other tasks. ii) Preference optimization-based methods ( ;
, ) treat the forget set as negative examples or assign predefined responses (e.g.,
rejection responses) to achieve unlearning during PA. iii) Model weight-based methods ( ,
) analyze the roles of different model modules to guide unlearning, leveraging the modularity
of LLMs. As model weight-based methods are primarily used for attribution analysis, this study
focuses on gradient-based and preference optimization-based approaches.

14
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B DISCUSSION ON THE DEFINITION OF UNLEARNING IN LLMS

In this section, we review and summarize the definitions of existing unlearning methods for LLMs
and attempt to incorporate these methods into a unified theoretical framework. Assume the training
dataset is denoted as D; = Dy UD,., where D represents the set of samples to be unlearned, and D,
represents the remaining samples. The core objective of LLM unlearning is to remove the knowledge
learned from D while preserving the model’s other capabilities as much as possible. To achieve this
goal, existing methods can be broadly categorized into two main classes: (i) gradient-based methods
and (ii) preference optimization-based methods.

Gradient-based methods. Gradient-based methods include gradient ascent and its various exten-
sions. Below, we will review the definitions of these methods sequentially.

Gradient ascent. Gradient ascent ( ; s ) is a traditional and stralght—
forward baseline method that removes the model S memory of the samples in Dy by maximizing the
loss on Dy, effectively reversing the gradient descent process. It is defined as:

|Df‘ Mg

‘D ‘ Zzlogp xt ‘ T<t; )a

i=1 t=1

GA

Leorget (Dy;0)

where n; denotes the number of tokens in the sample x?, and @ represents the parameters of the
model.

Variants of gradient ascent. However, naive gradient ascent significantly degrades the model s other
capabrhtres To address this issue, recent studies ( , ;

s ; , ) have 1ntroduced various
regularrzatron terms, prrmarrly mcludmg loss- based regularrzatron and divergence-based regulariza-
tion, as described below:

» Loss-based regularization. Loss-based regularization ( ;
, ) maintains the model’s other capabilities by samphng a dataset D, that shares the
same distribution as D,. and minimizing the model’s loss on D... The formal expression is:

‘D/l g
Loatir = Laa |D’| Z Zlogp T | ®<r; 0).
: =1 t=1
»Cforget (Df ) )
Lreg(0)

* Divergence-based regularlzatlon Similar to loss based regularlzatlon dlvergence -based regu-
larization ( ,

) preserves model performance by constrammg the output dlstrrbutlon of the model on a
dataset D,.. Specifically, this method minimizes the distributional distance Dis(- || -) between
the output distribution of the unlearned model on D, and that of the original model on D,.. De-
pending on the metric used to measure the distributional distance, this method can further be

categorized into regularizations based on KL divergence ( , ; , )
and f-divergence ( s ). The formal definition is:
ID.| n;
Loator = Lo |D,| >N Dis(P(- | x<1;0) || P(-| @<1;6%)).
Ltorget (Ds0) i=1 t=1
Lreg(0)

Both loss regularization and divergence regularization can essentially be regarded as forms of param-
eter regularization, which constrain the norm of the difference between model parameters before and
after unlearning to be less than a threshold 4. By restricting the parameter changes within a é-norm
ball, this technique ensures the preservation of the model’s other capabilities. However, parameter
regularization is difficult to handle directly as a constraint, so its relaxed form is often utilized and
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incorporated into the objective function instead. Formally, this can be expressed as:

Loaypr =  Laa  +A[0— 9*”;2; :
Leorget (Dy30) Lres(8)
In addition, while several recent methods (i.e., Mismatch and LLMU) ( , ) differ in their

definitions of unlearning objectives, they are fundamentally variants of gradient ascent methods.
These methods further refine gradient ascent by extending the formulation of unlearning objectives,
constructing a random combination of text sequences Y;,,. Specifically, their definitions are given
as:

1 [Dsl ny 1 [Yian| D] n;
Lyiis = D Z Z % Z 108 P(Ylan | T<1:0 D’ ZZlogp Ty | i3 0).
‘f‘i:1t:1|m“‘ | & Rl
Leorget (Dy;0) Lreg(0)

|Yran|

g
1
Z logp yran | T<ts )

[Yean]

Dyl
Liimu = Lga — |D | Z
1=

1= 1

Lforget (D,f§9)
IDL| n,

|D,| YD Dis(P(- | 2<i;0) || P(- | 2<;607)).

i=1 t=1

Lrog(0)

Preference optimization-based methods. Preference optlmlzatlon -based unlearning methods for
LLMs primarily include DPO ( , ; s ; s ) and its variants,
as well as Negative Preference Optimization (NPO) ( , ; , ). These
methods achieve unlearning by constructing additional preference data palrs and leveraging existing
preference optimization algorithms to guide the model.

DPO method. The DPO method constructs preference data pairs based on the unlearmng sample
set ( , ; , ). For example given a sample &' containing
nZ combinations, for any comblnatlon pair (z’,,z;), where z; is the truthful response, DPO sets
x} as “'refuse to answer” and treats it as the preferred response. By optimizing this preference pair,
DPO employs preference optimization algorithms to achieve unlearning. It is formally defined as:

2 N, Uz
Lppo = —EEmieDf logo —BZlogp(xt | ©<1;6) +ﬁzlogp(l’§ | @15 0) — Mot

i=1 i=1

L:forgct (Df§0) l:reg(e)

NPO method. The NPO method directly treats the unlearning samples as negative samples and
penalizes the model’s responses on the unlearning set D ( s ; s ). The
formal definition is:

2 o Z.
Lxpo = —B]E:ciebf logo | =BP(x: | ®;0%) + Blog Pz | ;)

Lforget (forget;@) 'Creg(e)

In summary, both gradient-based methods and preference optimization-based methods can be
viewed as combinations of unlearning loss and regularization loss.
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C THEORETICAL ANALYSIS

C.1 PROOF OF PROPOSITION 3.1

To analyze the variation of 7 (6*(¢)), we perform a Taylor expansion of Eq. 6 around ¢ = 0. Here,
since we are more concerned with the description of the magnitude of the effect rather than the exact
values, we expand it only to the first-order term, yielding:
07(0°(0),

Oe =0,
where 7 (60*(0)) represents the preference alignment performance of the model at € = 0 (i.e., with-
out unlearning), while %

J(07(e)) = T (67(0)) + €

- <) denotes the rate of change in the PA performance with respect to

the unlearning weight control parameter €. According to the chain rule, the partial derivative can be

decomposed as:

07(0%(¢))
Oe

Vo (0%(e)T ‘9956(6).

Since the optimal solution 6*(¢) of the lower-level problem satisfies the first-order optimality con-
dition:

v@ (chorget(w; 9) + ACreg(e)) |9:9*(e) =0.
By differentiating the above optimality condition with respect to €, we obtain:

00* (e)
Oe
Substituting L,cz(0) = |0 — 6*|]%, we have:
VoLieg(07(€) = 2(8(¢) — 07),  VpLieg(0"(€)) = 21.

Therefore, the implicit gradient formula is given by:

00* (¢)
Oe

evgﬁforget(m; 0% () + Vo Liorget (x; 0" (€)) + Vgﬁmg(e*(g)) =0.

00* (e N -1 .
(96( ) =— [evgﬁforget(w;e (6)) + 2]] Vo Lorget (x5 0™ (€)).
When e = 0, the formula simplifies to:
00* (e _ . 1 X
56( )|e:0 = - [21] ! VBJCfomc;et(x; 0 (O)) = _§v0£forget(x§ 0 )
Substituting 8056(6) into the chain rule formula:

97 (6" (¢))
Oe

Therefore, the variation in preference alignment performance is:

j(e*(€>) - j(@*(O)) ~ _gvej(e*)—rv@cforget(x; 0*)

1
|e=0 = Vej(e*)T (_2v9£forget(m§0*)> .

C.2 THE IMPACT OF SAMPLE REWEIGHTING IN BI-LEVEL OPTIMIZATION

To deepen the understanding of how sample reweighting impacts both preference alignment and MU
tasks, we analyze the problem within the bi-level optimization framework:

min_ —J(6%(w)),

w:||wl1=1
st 0% (w) =argmin Y w;li(6) + ALreg(8). (13)
O

We define inner unlearning objective f(0) := > | w;¢;(0) + ALyeg (). To analyze the properties
of the formulation above, we introduce the following Hessian-free assumption.

Assumption C.1. (Hessian-free). The inner loss £(0) is twice differentiable with respect to 6, and
the Hessian matrix H(0) := Y"1 | V2(,(0) ~ 0.
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This assumption is well supported by the literature on Hessian properties in neural networks. First,
prior studies have established that a large fraction of the Hessian matrix’s spectrum is concentrated

near zero ( R ), which _]ust1ﬁes Hessian-free or low-rank cur-

vature approximations. Second smce ReLU networks are piecewise linear functions, their second

derivatives are zero almost everywhere ( s s ), further corroborat-

ing the assumption. Moreover, this assumption has been w1dely adopted in the theoretical analysis

of bi-level optimization ( , ; , ; , ; , ).
Viol1 (0" (w))

Denoting that D := : € R™*™ we have the following property of the bi-level
Vol (67 (w))

optimization system.

Theorem C.2. Under Assumption C.1, given the sample weight w € R" and the corresponding
parameter 0*(w), with the constant t > 0 and the optimized direction T € R", the impact of the

sample reweighting w’ Hu‘;’:tf” with respect to PA and MU tasks can be formulated as

Iy(miw) =~ [VoJ (6" (w)) G !(6"(w))D "] T,

Iforget(T;w) = - %Z[Vagl(e*(w))]TG_l(a*(w))DT T.

i=1

IfF Y0 [Voli(0*(w))] € R™ and Vo J(0*(w)) € R™ are linearly independent in the quotient
space R™\ker(D), there exists a direction T such that the reweighing induces a non-negative impact
on both the PA and MU tasks. Furthermore, if J(0*(w)) is not in a local optimum with respect to w,
then there exists a reweighting that yields a positive impact on PA while maintaining a non-negative
impact on the MU task.

Theorem C.2 states that if the preference-alignment objective remains a space for improvement,
there exists a reweighting of w that increases the PA objective J without increasing the unlearning
loss, thereby not sacrificing the MU performance. This property provides a theoretically sound
foundation for our subsequent algorithmic design.

The conditions in Theorem C.2 are mild. First, the condition that > . ; Vyl;(6*(w)) and
Vo J(0*(w)) are linearly independent in the quotient space R™\ ker(D) simply states that the gra-
dient directions of the alignment and unlearning objectives do not coincide (nor point in exactly
opposite directions) when projected onto the non-degenerate subspace defined by D. Under stochas-
tic gradient descent, the probability that these two projected gradients align perfectly is extremely
small, making the condition mild in practice. Second, by the definition of bi-level optimization,
if 7(0*(w)) is already at a local optimum with respect to 6, then the bi-level system satisfies the
first-order optimality condition at the corresponding w, i.e.,

o _ .
35707 (@) =0,

and no further reweighting is necessary, ensuring the soundness of the condition.

Proof of Theorem C.2. We first formulate the impact of tuning the sample weight w. For any
vector 7 € R", following the prior work on influence function ( s ), the impact
of reweighting w’ = w + t7 to the PA target 7 can be quantified by the corresponding directional
derivative with respect to ¢,

a0*((4)—i-t7')|t 0| - (14)

Is(Tiw) = 9\7(0*(0.: +t7)) = Vo T (0" (w)) " 5

ot

To proceed with the derivation, we consider the Hessian matrix of the inner optimization problem,
which can be written as G(0) := H(0) + AL. Under Assumption C.1, when A\ > 0, the matrix
G(0) is positive definite, and its inverse exists. The first-order optimality condition of the inner
optimization problem shows that
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n

Vof(0:) = (wi +t7:)Voli(8;) + AVpLreg(6:) = 0. (15)

i=1
By differentiating both sides with respect to ¢ and invoking the chain rule, we obtain

00,

0
0= &Vef(at) =V5f(6:) Bt

=:Gy

+ 3 TV (6). (16)
i=1

With Assumption C.1 ensuring the invertibility of G, the derivative of 8* with respect to ¢ can be
written as:

0 NP £ o Yy
50 WHin) =2 = -G (;nwl (9t)>. (17)

Substituting ¢ = 0, we obtain a simplified expression for the impact of reweighting

Is7(Tiw)= —ng(@*(w))TG_l(H*(w)) lz TiVQEi(G*(w))] . (18)

By applying an analogous derlvatlon we can characterize the impact of reweighting on the unlearn-
ing objective Liorget (0) := = >0 1 £;(6),

0
Iforget (T, W) = 5£forget(0* (UJ + tT)) (19)
=—= Z [Voli(6*(w lz 7iVoli(0* (w )1 NI

Vol1(0*(w))
With D := : , we have that [>_;" | 7;Vg¢;(6*(w))] = D" 1. The impact towards
Vil (6" (w))

PA and MU objectives can be formulated as follows:

Iy(Tiw) =~ [VoJ (6" (w)) G™!(6"(w))D "] T, 21
Iforget(7-§w) = - %Z[V@&(G*(w))]TG_l(H*(w))DT T. (22)

By Hessian-free assumption, the Hessian matrix can be approximated as G~!(6*(w)) ~ AL. The
condition that V7 (0*(w)) and Y., Vo¢;(6*(w)) are linearly independent in the quotient space
R™ \ ker(D) entails that no nontrivial pair («, 8) # (0, 0) exists such that

aVeJ (0*(w)) + 8 Z [Vol;(0* (w))] € ker(D) (23)

=1

Consequently, this establishes the linear independence of vectors V7 (6*(w)) T G~1(0*(w))DT
and 1 3" [Vyl;(0%(w))] "G~ (0*(w))D". Thus, a direction T necessarily exists such that

IJ(T;W) > OaIforget(T§w) <0,
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ensuring that the induced reweighting has a non-negative impact on both preference alignment and
machine unlearning.

Furthermore, if 7 (6*(w)) is not in a local optimum with respect to w, the corresponding derivative

VuJ (0" (w)) = DG™H(0"(w))VoT (8" (w)) # 0 (24)

By the symmetry property of the Hessian matrix, V7 (0*(w))"G~1(8*(w))DT # 0. Hence,

according the E.q. ( 21), there exists a vector 7 that is linearly independent of w such that
IJ(T;“‘J) > OaIforget(T§w) <0,

indicating a positive impact on PA and a non-negative impact on the MU task. Applying the nor-

malization w’ < w'/||w’||1 enforces the constraint ||w’||; = 1, which completes the proof.

C.3 DERIVATION OF MARGINAL GAIN

To optimize the outer problem, we need to compute the gradient of the objective function with
respect to the weight vector w:

Vog(w) = =VuJ(0"(w)) + 8 Z Vw

[53(9*<w”fa”*(“>+[ BB 8 F_ 05)

00 Ow 2 /w1 2y /we’ T 24 /wn

Since the solution of the inner optimization problem 6*(w) satisfies the first-order necessary condi-
tion:
Vo (0" (w),w) =0,

which is equivalent to

Ve (Z w6 () + N6 () - 0*”2> =0
i=1
Taking the derivative with respect to w, and using the implicit function theorem, we obtain:

00%(w)  (PF\TT 0%f
dw  \082) 0980w

(PN 0| ot(e) .
S <802) 5o Lg_l wi—o +2X60 —-06%)|, (26)
%f _ —n *

where 555 = Y1 w§, | Vgli(6* (w))+2AI denotes the Hessian matrix of the inner optimization
problem. Substituting Eq. 26 into Eq. 25:

B

%ﬁ B

CJage (W) (02T 0 [~ 0L(8) .
vwg(w){aa] <ao2) ‘9‘"[;% g 00"

Now, consider the contribution of the k-th component of the weight vector w to g(w), i.e., computing
%}‘:’). Since only when ¢ = k, the term corresponding to wy, contributes, we derive:
dg(w . 2\ " . ,;
Agtk) = =29 _ g, 7(6* () <aé];) Volu(6"(w) ~ Dy .

Wi

C.4 CONVERGENCE ANALYSIS

We analyze the convergence of the U2A framework and obtain Lemma C.1 and Lemma C.2.
Lemma C.1 indicates that as the number of iterations ¢ increases, the solution obtained by our U2A
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algorithm gradually approaches the optimal solution, and the error decreases at O(1/t). Lemma C.2
demonstrates that as the size of the unlearning set m increases, the approximation error gradually
diminishes. This implies that it is unnecessary to unlearn all negative examples; selecting a subset is
sufficient to make the value of the objective function very close to the optimal value of the original
problem. The formal definition is as follows:

Lemma C.1. Suboptimality Bound (cf. Theorem 2 of ( y ). Assume g(w) is
L-smooth and convex, and let the initial suboptimality be denoted as €1 = g(w'*) — g(w*). After t
iterations, the suboptimality bound of the U2A algorithm can be expressed as:

8L+4€1
tyky *) <
glw") = glw") <

where g(w™) represents the global optimal value. In the case of a non-convex objective function,
g(w*) is approximated as a certain local optimal value.

)

Lemma C.2. Size of Unlearning Set. Under the condition that the suboptimality error does not
exceed ¢, the size m of the final unlearning set satisfies:

m e O((L+e)e™t).

That is, the size of the final unlearning set is proportional to the smoothness of the objective function
and the initial suboptimality €1, while being inversely proportional to the target precision .

Proof. The suboptimality bound provided by Theorem C.1 is given as:

8L+4€1
* o\ g 22 Tl
9(ws,) — glw') < =

To satisfy the suboptimality error constraint, i.e., g(ws,) — g(w*) < ¢, it suffices to ensure that the
right-hand side of the suboptimality bound is less than or equal to €, which gives: % <e.

By moving ¢ 4 3 to the right-hand side and expanding the terms on the right, we obtain: ¢t >
8L +4e;1 — 3¢. Neglecting —3¢ (as its impact diminishes with increasing ¢), the expression is further
simplified to: et > 8L + 4¢e;.

Moving ¢ to the right-hand side yields: ¢ > SLJ“%. This indicates that, to satisfy the suboptimality
error constraint (w3, ) — g(w*) < ¢, the number of iterations ¢ must be at least: ¢ = O(%) O

C.5 COMPUTATIONAL COMPLEXITY ANALYSIS

The inner optimization problem must be solved in each iteration to determine the optimal model
parameter. Assuming ?; gradient descent iterations are required, with each iteration computing
gradients for all data points, and the gradient computation complexity for a single data point is ¢, the
total complexity of the inner optimization is O(t - n- ¢). For the outer problem, given an unlearning
set S* with ¢ samples, and t,, updates required per optimization, the complexity of solving w?’*
is O(t - t, - d), where d is the model parameter dimension. Marginal gain computation involves
implicit gradient calculations. Using the conjugate gradient method with ¢, iterations, where each
iteration requires a Hessian-vector product computation of complexity O(t, - n - ¢), and computing
the gradients of all data points with respect to 6 contributes an additional complexity of O(n - ¢).
Thus, the total complexity for marginal gain computation is O((t4 + 1) - n - ¢). Finally, if the final
unlearning set contains m samples, the overall algorithm complexity can be expressed as:

O(m-((ty+tg+1)-n-c+n-d+m-t,-d).

This demonstrates that our U2A algorithm is computationally efficient and well-suited for high-
dimensional applications, such as LLMs.

D IMPLEMENTATION DETAILS OF U2A

Calculation of Ag(k). Directly computing the Hessian matrix in LLMs is impractical due to the
substantial computational cost. Therefore, following the setup in prior work ( , ), we
adopt the diagonal Hessian assumption V3£(6*(w)) = %I and set v = 1 to simplify the computa-
tion.
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Initialization and Update. Considering efficiency, we propose two implementation enhance-
ments in the initialization and update of the unlearning set. For initialization, rather than begin-
ning with a single data point, we preliminarily select M candidate points set S! using Eq. 9,
assigning wil’* = ﬁ Ijiesry. Here, Lies = 1if i € S; otherwise, l;es = 0. For up-
dating, N points are selected simultaneously rather than individually, which is formalized as
K* = Top—N({Ag(k)|k € [1,n],k ¢ S'=1}), where Top—N(-) denotes the set of indices corre-
sponding to the top N elements with the highest values.

Final Algorithm Procedure. Incorporating the aforementioned improvements, the overall proce-
dure is summarized in Algorithm 1.

Algorithm 1 U2A Algorithm

Require: Dataset D = {aci}?zl, initial parameter 8*, max iterations 7', initial size M, per-round
size N, early-stop threshold 4, regularization coefficients A, 3.

1
1: Initial: S° « 0; S' < Top-M ({Ag(k) | k € [L,n], k ¢ S°}); w]™ T Hie Sty
2: fort =2to1 do

3: Gradient descent on the inner problem of Eq. 13 to obtain 6* (w!~1*);
4: K* + Top-N ({Ag(k) | k € [1,n], k ¢ S™'});

550 St STTUK

6:  Fix *(w!~1*) and optimize w®* via Eq. 12;

7. if g(w!™h*) — g(wh*) < 6 then

8: break;

9: end if

10: end for

11: Return Sfiral  St—1 = yfinalx - yt—1,x,

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 TRAINING CONFIGURATIONS

All experiments employ two AdamW ( , ) optimizers: one for model training, with
a learning rate adjusted based on the specific baseline, dataset, and model architecture (as presented
in Table 3); the other for updating unlearning weights, using a fixed learning rate of 3e — 2. Both
optimizers adopt cosine annealing for learning rate scheduling. Baseline hyperparameters are strictly
set according to their original papers. For our proposed U2A method, key hyperparameters are:
regularization coefficient A = 1.0, scaling factor § = 0.5, early stopping threshold 6 = 0.01,
and a maximum of 7" = 10 iterations. Additional configurations (including the number of initially
selected samples and the number of samples chosen in each iteration) are provided in Table 4. All
experiments were performed on machines equipped with NVIDIA A800.

Table 3: Learning rates for model training.

Datasets Models Methods Learning Rate
GA & U2A 4.25 x 107°
LLaMA?2  GradDiff & U2A 4.5 x107°
SafeRLHF NPO & U2A 6.7 x107°
GA & U2A 7.5 x107°
LLaMA3 GradDiff & U2A 7.8 x107°
NPO & U2A 1.2 x10~*
GA & U2A 1.55 x 1074
LLaMA2 GradDiff & U2A 1.6 x 1074
—4
UltraFeedback NPO & U2A 1.9 x 10
GA & U2A 49 x107°
LLaMA3 GradDiff & U2A  5.38 x 107°
NPO & U2A 7.0 x 107°
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Table 4: Number of unlearned samples selected in the initial stage.

Dataset Model = Number of Forgotten Samples
LLaMA2 1536
SafeRLHE 7. MA3 1024
LLaMA2 1024
UltraFeedback LLaMA3 2048

E.2 EVALUATION CONFIGURATIONS

In this section, we provide a detailed explanation of each evaluation metric.

For the performance of PA, we utilize the following four evaluation metrics:

¢ Reward-Value ( s ; s ). Reward-Value assesses the quality of
the model’s outputs based on reward scores assigned by the reward model. Higher values for these
two metrics indicate better PA performance of the model after unlearning.

* ASR ( , ). ASR measures the model’s tendency to generate potentially harmful
content. In our experiments, ASR is further divided into four sub-dimensions (
, ): ASR- Keyword ASR-Answer, ASR-Useful, and ASR-Summary. Table 5 hsts
the set of keywords used in this study for evaluation with the ASR-Keyword metric. Smaller
values for these metrics indicate better PA performance of the model after unlearning.

¢ Coherence ( ; ; s ). Coherence is
evaluated by calculating the cosine s1m11ar1ty between the SlmCSE ( , ) embeddings
of each prompt and its generated response, assessing their semantic proximity ( ,

). Higher coherence indicates better PA performance.

* Win-rate ( ; , ). Win-rate measures the proportion of instances
where the model’s outputs are preferred over those of the baseline model, including Win Rate vs.
GPT-4 (i.e., GPT4-Win Rate) and Length-control Win Rate (i.e., LC-Win Rate).

* Hallucination-rate ( , ). Hallucination-rate measures the frequency of false or fac-
tually incorrect information in the outputs. A lower hallucination-rate indicates better PA perfor-
mance.

For the performance of unlearning, we utilize the following three evaluation metrics:

¢ Membership Inference Attack (MIA) ( , ). We employ the Min-k% Prob (

, ) method to calculate the likelihood of a given text belonging to the training data. The
specific metric used is the area under the ROC curve (AUC). A higher AUC value indicates that
the model is better at distinguishing between training and non-training data, thereby demonstrating
greater unlearning effectiveness.

* Perplexity (PPL) ( s ; s ). Lower PPL values indicate higher
quality of the generated text, with outputs being more fluent and consistent with natural language
expression norms.

E.3 DETAILS OF PA PERFORMANCE COMPUTATION

To further investigate the impact of unlearning individual samples on the model’s PA performance,
we conduct a fine-grained reward analysis on the generated texts corresponding to each sample
group. Specifically, we employ Beaver-7B-v3.0 ( , ; ) as the reward
model to compute the reward value for each token in the generated text. The choice of Beaver-
7B-v3.0 over the Skywork-Reward-Llama-3.1-8B model—used in the evaluation metric Reward
value—is primarily due to the need for token-level reward granularity in this experiment. Beaver-
7B-v3.0 is capable of precisely outputting the reward value associated with each token during the
scoring process, thus meeting the analytical requirements of this study.
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Table 5: ASR Keyword Indicator List.

No. Keyword or Phrase \ No. Keyword or Phrase
1 I'm sorry 16  not ethical
2 Sorry 17 My apologies but I cannot
3 I am sorry 18  is not recommended to
4 I apologize 19  is not advisable to
5 As an Al 20 If you have any other non-malicious requests
6 I’'man 21  I’m not able to provide
7 I'm just 22 I am really sorry
8 As a language model 23 Icannot create
9 As an assistant 24 I cannot support
10 Icannot 25  is not appropriate
11 Idonot 26 Ican’t provide
12 isillegal and unethical | 27  Iam unable to
13 I'mreally sorry 28  is not possible
14 OpenAl 29  Ican’tassist
15  unethical

F ADDITIONAL EXPERIMENTS

F.1 ABLATION STUDY ON DATASET PARTITIONING

To evaluate the effectiveness of the proposed unlearning method on preference datasets, we design
a unified data processing pipeline (Figure 5(a)). Specifically, 2,000 samples are selected from the
original training set to serve as a test set for evaluating preference alignment performance. The
remaining data are split into two parts: 20% is used to construct a PA dataset for PO, and the
rest is allocated based on the algorithmic requirement—used for reward model training under PO,
or as a fine-tuning set for building the unlearning pipeline. Each sample comprises a positive-
negative preference pair. A subset of positive instances is extracted to form the positive sample set,
while the corresponding negative instances, drawn from the remaining samples, form the negative
sample set, with their proportion denoted as the negative ratio. These data are used to fine-tune the
model, producing the original model. The negative set is then defined as the unlearning region from
which a portion, specified by the forget ratio, is selected as the target data to be unlearned. The
remaining negative samples, together with the positive set, formed the retraining dataset for training
a comparative model, referred to as the retrained model. Some of the ratio values involved in this
partitioning remain uncertain and require further investigation.

To systematically evaluate the impact of two key control parameters, the negative ratio and the forget
ratio, on the model’s ability to align with preferences, we conducted a grid search-based ablation
study on the SafeRLHF dataset. Specifically, negative ratio is set to nine levels: 0.365, 0.4125, 0.46,
0.5075, 0.555, 0.6025, 0.65, 0.6975, and forget ratio is set to five values: 0.2, 0.35, 0.5, 0.65, 0.8,
resulting in a total of 40 experimental configurations through their combinations. Each configuration
is subjected to a complete retraining and evaluation process. Model performance is assessed on a
predefined posterior alignment evaluation set (PA test set), where a reward model is used to score
the responses generated by each model. These scores serve as a measure of how well the model
aligned with human preferences. The experimental results are shown in Figure 5(b), and the key
observations are as follows:

* Effect of the negative ratio. As the negative ratio increases, model performance on the PA task
exhibits a generally upward trend. This indicates that incorporating more low-quality samples
helps the model better distinguish between high-quality and low-quality responses, thereby en-
hancing its preference learning capability. However, this improvement plateaued when negative
ratio exceeds 0.65, and in some configurations, diminishing returns are observed. We attribute
this to the increased presence of noisy samples. Considering the trade-off between sample quality,
training stability, and model performance, we ultimately set the negative ratio to 0.65.

* Effect of the forget ratio. Across most negative ratio settings, a forget ratio of 0.65 consistently
led to optimal performance on the PA test set. This result suggests that a moderate unlearning
intensity, removing approximately 65% of negative samples, can effectively suppress the model’s
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Figure 5: Detailed description of data pre-processing.

retention of undesirable preferences, thereby promoting behavioral alignment without compro-
mising positive alignment capability. In contrast, an excessively high forget ratio may lead to
an imbalanced training data distribution, while a low forget ratio may be insufficient to exert a
meaningful unlearning effect.

On the UltraFeedback dataset, which inherently contains a higher proportion of negative samples,
we adopt the same experimental framework and analytical methodology as described above. Based
on multiple rounds of empirical validation, we ultimately set the negative ratio to 0.7 and the forget
ratio to 0.8 to achieve a more pronounced improvement in PA performance.

In summary, through the systematic exploration provided by the above ablation studies, we not only
identify the optimal parameter configurations (i.e., negative ratio = 0.65, forget ratio = 0.65 for
SafeRLHF; negative ratio = 0.7, forget ratio = 0.8 for UltraFeedback), but also confirm the signifi-
cant value of appropriately controlling the amount of negative data and the extent of unlearning in
enhancing model behavior quality in PA tasks.

F.2 IMPROVEMENT BROUGHT BY U2A

In this section, we supplement our analysis with the performance of unlearning methods before and
after the integration of U2A on the UltraFeedback dataset. The experimental results are presented
in Table 6.

Table 6: The performance of unlearning methods on the UltraFeedback dataset before and after U2A
integration. Methods outperforming their respective baselines are indicated in italics, and the overall
best-performing method is highlighted in bold.

Models | Methods | PA Performance MU Performance
\ | Reward-V. LC-WR (1) GPT4-WR (1) Coherence () | MIA (1) PPL (})
Original -8.578 11.93 6.96 0.7328 - 3.253
Retrain -7.739 15.29 9.20 0.7324 0.526 3.305
-8.283 11.72 6.77 0.7295 0.520 3.539
LLaMA2 GA & UZA -7.154 20.12 10.63 0.7077 0.525 2.571
GradDiff -7.960 14.46 7.95 0.7329 0.523 3.845
GradDiff & U2A -7.233 18.35 9.50 0.7091 0.524 2.553
NPO -8.157 13.53 7.39 0.7329 0.523 2.524
NPO & U2A -8.037 14.44 7.84 0.7380 0.523 2.523
Original -4.996 10.57 5.85 0.7263 - 3915
Retrain -3.318 15.48 8.93 0.7300 0.526 3.797
-4.760 13.08 7.13 0.7265 0.519 2.761
LLaMA3 GA & U2A 1.105 24.79 21.33 0.7450 0.525 9.397
GradDiff -2.297 17.93 9.82 0.7258 0.522 3.039
GradDiff & U2A 1.248 24.18 19.67 0.7380 0.525 9.326
NPO -4.619 12.63 6.65 0.7287 0.519 2.670
NPO & U2A -0.248 20.56 13.20 0.7294 0.520 10.071
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F.3 CORRELATION BETWEEN MU AND PA
In this section, we further present a comparison between the improved unlearning methods and PO-
based methods in terms of PA performance on the SafeRLHF dataset. The experimental results are

shown in Table 7.

Table 7: Comparison of the PA Performance between MU and PO on the SafeRLHF dataset.

Model | Method | Reward-V (1) ASR-K(]) ASR-A(]) ASR-U()) ASR-S())
Original 20.361 0.933 0.837 0.162 0.812
Retrain -18.243 0.873 0.602 0.177 0.563
PPO -8.172 0.089 0.000 0.000 0.000
LLaMA2 DPO -8.143 0.173 0.000 0.134 0.000
GA & U2A -15.993 0.746 0.112 0.158 0.094
GradDiff & U2A -15.843 0.644 0.089 0.142 0.067
NPO & U2A -19.639 0.946 0.831 0.100 0.812
Original -19.827 0.971 0.848 0.148 0.794
Retrain 17911 0.958 0.740 0.138 0.686
PPO -8.640 0.340 0.031 0.042 0.027
LLaMA3 DPO -7.160 0.142 0.000 0.035 0.000
GA & U2A -7.609 0.246 0.162 0.123 0.121
GradDiff & U2A -12.644 0.417 0.103 0.140 0.078
NPO & U2A -13.815 0.783 0.698 0.233 0.498

F.4 PROCESSING EFFICIENCY OF U2A

To assess the computational efficiency of our proposed U2A framework, we compare its training
cost with standard PPO and DPO baselines on two datasets (SafeRLHF and UltraFeedback) and two
model sizes (LLaMA?2 and LLaMA3). For each method, we measure the wall-clock time required
to complete one training epoch. The detailed results are reported in Table 8. For PPO, its time
cost includes both reward model training and the PPO optimization itself, and the time cost of each
component is significantly higher than that of U2A. For DPO, the time cost is comparable to that
of U2A. In addition, due to all positive training pairs for PPO and DPO being fixed during dataset
preprocessing, we also estimate the expected runtime of these baselines when trained on the same
number of samples as our methods, providing a fair comparison. All results demonstrate that U2A
is sufficiently efficient compared to the current PA baseline.

Table 8: Training samples and time costs of different methods. PPO+RM and PPO, respectively,
indicate whether the training time of the reward model is included.

Samples

Model Datasets Methods Time Costs
Actual
PPO+RM 2407 172min
PPO 2407 98min
DPO 2407 17min
SafeRLHF GA & U2A 4069 27min
GradDiff & U2A 4069 37min
LLaMA2 NPO & U2A 4069 28min
PPO+RM 12227 1068min
PPO 12227 236min
DPO 12227 132min
UltraFeedback GA & U2A 27351 221min
GradDiff & U2A 27351 224min
NPO & U2A 27351 221min
PPO+RM 2407 186min
PPO 2407 112min
DPO 2407 18min
SafeRLHF GA & U2A 4069 18min
GradDiff & U2A 4069 21min
LLaMA3 NPO & U2A 4069 18min
PPO+RM 12227 1136min
PPO 12227 304min
DPO 12227 156min
UltraFeedback 5" 1104 27351 270min
GradDiff & U2A 27351 284min
NPO & U2A 27351 270min
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F.5 ScALING U2A ON LARGE MODELS

In this section, we further evaluate the applicability and effectiveness of the proposed U2A frame-
work under larger model scales. Specifically, we adopt the higher-capacity Qwen2.5-14B (

, ) model and conduct experiments on the UltraFeedback dataset to examine whether U2A
remains stable and effective in high-capacity model settings. As shown in Table 9, U2A consis-
tently yields substantial improvements in preference alignment across multiple mainstream unlearn-
ing methods, and in some cases even surpasses strong preference optimization baselines such as
DPO and PPO. These results demonstrate that U2A maintains strong performance in larger models
and more complex data regimes, highlighting its scalability and broad applicability. In addition, we
observe that as the model size increases, the performance of U2A becomes more prominent. We
believe this is because a larger model’s scale pretraining confers stronger representational and gen-
eralization capabilities, enabling the model to infer positive behaviors and avoid harmful ones even
when only negative samples are removed. In contrast, a smaller model’s weaker generalization may
lead to uncertainty or degraded behavior post-unlearning, impairing PA performance. This aligns
with the description in section 4.2.

Table 9: Comparison of the PA performance between MU and PO on Qwen2.5-14B

Model | Method | Reward LC-WR (%,1) GPT4-WR (%.,1) Coherence (1)
Original(SFT) | -5.338 8.02 486 0.7316
Retrain -3.841 9.51 8.10 0.7342
PPO 2913 1471 10.47 0.7329
DPO 2762 14.46 10.72 0.7313
GA 4,447 8.85 6.86 0.7365
Qwen2.5-14B GradDiff 4551 9.35 6.48 0.7324
NPO 4814 8.60 6.23 0.7357
GA&U2A | 2273 13.97 9.60 0.7324
GradDiff & U2A | -2.912 1122 9.72 0.7391
NPO & U2A | -4.138 10.60 7.86 0.7254

F.6 INCORPORATING POSITIVE SAMPLE GUIDANCE INTO U2A FOR IMPROVED PA

In the original U2A framework, negative samples are used solely to unlearn undesirable outputs,
thereby improving PA. However, the lack of positive sample guidance means that U2A does not
show a clear PA performance advantage when compared to traditional PA methods, such as DPO and
PPO, which leverage positive samples as guiding signals. To validate this, we introduced positive
sample guidance into the U2A training process. Specifically, we incorporate DPO and PPO as
baseline methods and experimented with different proportions (k%) of positive samples during U2A
training to examine the impact of positive samples on PA.

The comparative experimental results, as shown in Table 10, demonstrate that the introduction of
positive sample guidance significantly enhanced U2A’s PA performance. As the proportion of posi-
tive samples gradually increased, the PA effectiveness also improved. When the positive sample ratio
reached that of DPO and PPO, U2A’s PA performance showed a significant advantage. This also
indicates that using only negative samples for U2A PA is a promising and cost-effective direction.
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Table 10: Comparison of PA performance in U2A with positive sample guidance.

Model Method Ratio \ Reward-V. LC-WR (%, 1) GPT4-WR (%, 1) Coherence (1)
PPO 100% | -1.302 2343 19.41 0.7395
DPO 100% | -0.277 29.30 19.08 0.7375
0% 1.105 24.79 2133 0.7450
20% | 1543 28.68 21.82 0.7467
GA &T24 40% | 2214 29.93 2.57 0.7428
60% | 2351 30.54 22.44 0.7482
LLaMA3-8B 0% 1.248 24.18 19.67 0.7380
) 20% | 1.696 27.56 21.57 0.7396
GradDiff & U2A | 450 | 57139 2980 21.94 0.7407
60% | 2348 29.80 22.69 0.7396
0% | -0.248 20.56 13.20 0.7294
20% | -0.037 21.07 1557 0.7286
NPO&U2A | 450 | 0582 22.82 15.84 0.7312
60% | 0541 22.94 1571 0.7327
PPO 100% | -2.913 1471 10.47 0.7329
DPO 100% | -2.766 14.46 10.72 0.7313
0% | -2273 13.97 9.60 0.7324
20% | -1.934 14.34 10.47 0.7331
GA & 124 40% | -1.627 14.96 1035 0.7358
60% | -1.582 15.09 11.34 0.7352
Qwen2.5-14B 0% 2912 11.22 9.72 0.7391
) 20% | -2319 11.47 10.35 0.7409
GradDiff & U2A | 50 | 5007 1371 10.97 0.7426
60% | -2.089 13.84 10.84 0.7417
0% | -4.138 10.60 7.86 0.7254
20% | -3.825 11.10 8.72 0.7249
NPO&U2A | 4oq, | 3624 11.47 8.48 0.7374
60% | -3.597 12.22 935 0.7364
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