

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BIOCAP: EXPLOITING SYNTHETIC CAPTIONS BEYOND LABELS IN BIOLOGICAL FOUNDATION MODELS

Anonymous authors

Paper under double-blind review

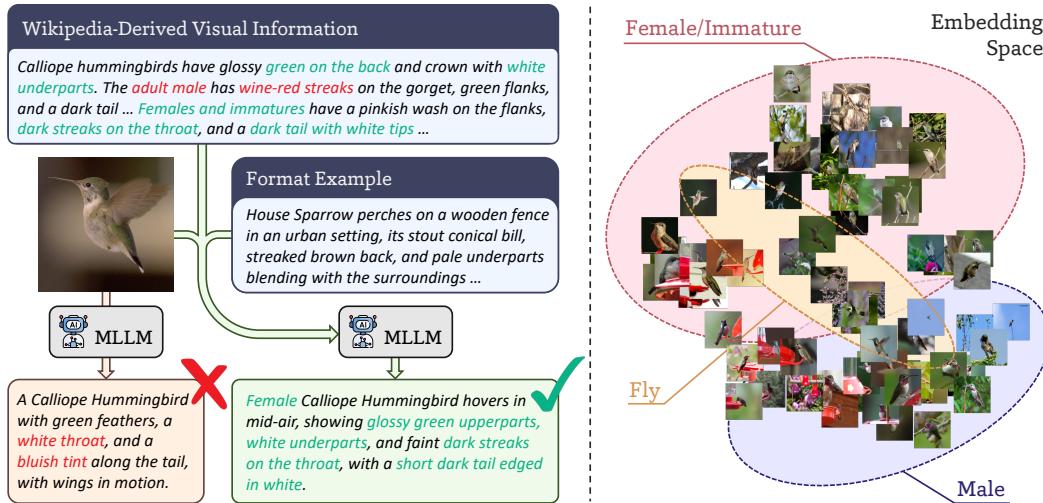


Figure 1: **Left:** **Different strategies to create captions for biological images.** Wikipedia offers rich domain knowledge, but descriptions are often generic and not directly grounded in the given image. Multimodal large language models (MLLMs) may hallucinate details when conditioned solely by images (wrong color description in this example). Incorporating Wikipedia-derived visual information and taxon-tailored format examples as contexts helps generate accurate, image-specific captions. **Right:** Using these descriptive captions as additional supervision, BIOCAP captures fine-grained biological semantics. Please refer to Figure 7 for detailed comparisons with other models.

ABSTRACT

This work investigates descriptive captions as an additional source of supervision for biological multimodal foundation models. Images and captions can be viewed as complementary samples from the latent morphospace of a species, each capturing certain biological traits. Incorporating captions during training encourages alignment with this shared latent structure, emphasizing potentially diagnostic characters while suppressing spurious correlations. The main challenge, however, lies in obtaining faithful, instance-specific captions at scale. This requirement has limited the utilization of natural language supervision in organismal biology compared with many other scientific domains. We complement this gap by generating synthetic captions with multimodal large language models (MLLMs), guided by Wikipedia-derived visual information and taxon-tailored format examples. These domain-specific contexts help reduce hallucination and yield accurate, instance-based descriptive captions. Using these captions, we train BIOCAP (*i.e.*, BIOCLIP with Captions), a biological foundation model that captures rich semantics and achieves strong performance in species classification and text-image retrieval. These results demonstrate the value of descriptive captions beyond labels in bridging biological images with multimodal foundation models¹.

¹We attach caption metadata, source code, and the BIOCAP model in the [anonymized repository](#).

054

1 INTRODUCTION

055
 056 Multimodal foundation models learn from vast datasets of paired visual and textual inputs (Radford
 057 et al., 2021; Liu et al., 2023; Zhai et al., 2023; Hurst et al., 2024). They demonstrate strong
 058 generalization across various downstream tasks, such as classification and visual question answering
 059 (VQA) (Yue et al., 2024; Mai et al., 2025). In general domains, the web provides a nearly limitless
 060 supply of such paired supervision (Gadre et al., 2023; Schuhmann et al., 2022). In scientific
 061 applications, however, such resources are unevenly distributed. Biomedical imaging benefits from
 062 clinical reports and radiology notes associated with image instances that offer detailed natural
 063 language supervision (Wang et al., 2022; Li et al., 2023; Zhang et al., 2024a). By contrast, many other
 064 scientific domains—including organismal biology, astronomy, geology, and material science (Stevens
 065 et al., 2024; Parker et al., 2024; Vivanco Cepeda et al., 2023; Harnik et al., 2025)—often lack
 066 instance-level textual descriptions and must solely rely on symbolic labels (e.g., species names). This
 067 leaves the potential of natural-language captions untapped for scientific multimodal learning.

068 In this work, we focus on organismal biology. From the representation learning perspective, each
 069 species can be described by an underlying latent vector in the morphospace, which encodes its
 070 ground-truth biological characteristics, *i.e.*, traits (Budd, 2021). Images and descriptive captions can
 071 be viewed as two projections of this latent vector. Each captures certain traits while also introducing
 072 noise (e.g., pose, lighting). Aligning both modalities encourages the model to recover the shared latent
 073 structure and focus on potentially diagnostic characters, thereby suppressing reliance on spurious
 074 correlations to noise. While the potential exists, in practice, the effectiveness relies on the availability
 075 of captions that are both instance-specific and faithful. Noisy or hallucinated captions can, instead,
 076 introduce contradictory signals that harm multimodal alignment (Huang et al., 2021).

077 Biological research has produced massive repositories of organismal images, but most are annotated
 078 only with species names (Stevens et al., 2023b; Yang et al., 2024). Collecting instance-based
 079 captions at scale is inherently challenging as expert-level annotation for millions of images demands
 080 exhaustive human labor (Van Horn et al., 2018). A natural solution is to leverage recent progress in
 081 multimodal large language models (MLLMs) to automatically generate image-aligned captions (Fan
 082 et al., 2023; Lai et al., 2024). However, biological species differentiation often depends on subtle
 083 morphological details. Without proper guidance, MLLMs tend to hallucinate about these details
 084 due to the aforementioned noise in the images. [Figure 1](#) shows such an example, where the model
 085 incorrectly describes the color of the Calliope Hummingbird.

086 Upon this observation, we suggest that domain knowledge has to be incorporated in the context.
 087 Specifically, we collect species-level visual information from Wikipedia as ground-truth characters.
 088 As the model needs to attend to different traits to describe different species, we also curate format
 089 examples based on taxonomic classes to encourage explicit focus. These domain-specific contexts
 090 help MLLMs generate accurate and trait-focused descriptions grounded in the input image. As shown
 091 in [Figure 1](#), contextualizing the model with Wikipedia-derived visual information and taxon-tailored
 092 format examples corrects the earlier hallucination and substitutes it with accurate biological details.

093 Building on these curated contexts, we generate instance-level synthetic captions for the large-scale
 094 TreeOfLife-10M dataset (Stevens et al., 2023b). We then train the BIOCAP model (*i.e.*, BioCLIP
 095 with Captions) with species names and captions as complementary supervision. As shown on the
 096 right of [Figure 1](#), BIOCAP demonstrates a rich understanding of biological semantics. Further
 097 comparisons with BioCLIP (trained without captions) and the initial CLIP checkpoint in [Figure 7](#)
 098 show improved semantic alignment of BIOCAP. Quantitatively, BIOCAP is evaluated on species
 099 classification and biological natural-language benchmarks, where it outperforms BioCLIP by 8.8%
 100 and 21.9%, respectively. These results answer the core question of this work: descriptive captions,
 101 when grounded in biological knowledge, provide essential supervision that bridges organismal images
 102 with multimodal foundation models.

103

2 RELATED WORK

104

2.1 MULTIMODAL FOUNDATION MODELS FOR SCIENTIFIC IMAGES

105 Multimodal large language models (MLLMs) such as GPT-4o (Hurst et al., 2024) and LLaVA (Liu
 106 et al., 2023) have demonstrated a powerful ability in tasks involving images and natural language

108 like captioning, VQA, and open-ended reasoning. This paradigm has been successfully extended
 109 to specialized domains: LLaVA-Med (Li et al., 2023) adapts the LLaVA framework to radiology
 110 for domain-specific VQA, ChemVLM (Li et al., 2025) reasons about molecular structures, and
 111 BiomedGPT (Zhang et al., 2024a) unifies diverse biomedical tasks under a single multimodal
 112 backbone.

113 In parallel, CLIP-style contrastive frameworks have also been adapted to a variety of scientific imagery
 114 domains. BIOCLIP (Stevens et al., 2024; Gu et al., 2025) and BioTrove-CLIP (Yang et al., 2024)
 115 align organismal images with taxonomic names. CLIBD (Gong et al., 2025) uses DNA barcodes
 116 as supervision for biodiversity tasks. MedCLIP (Wang et al., 2022) extracts standardized UMLS
 117 entities from radiology reports, and MoleCLIP (Harnik et al., 2025) clusters molecular fingerprints in
 118 chemistry. CLIP allows for more flexible supervision signals when natural language resources are not
 119 available for the specific data. Yet, it also leaves the value of natural language descriptions untapped
 120 for these scientific domains. We provide a detailed discussion with concurrent work in §F.

122 2.2 SYNTHETIC CAPTION

124 One promising solution to overcome the lack of instance-level annotations is to generate synthetic
 125 captions that provide fine-grained, image-grounded supervision. Recent work highlights the value of
 126 high-quality text-image pairs for CLIP-style training. BLIP (Li et al., 2022) and LLaVA (Liu et al.,
 127 2023) are widely used to produce semantically richer descriptions from large-scale web text-image
 128 collections. Building on this idea, FG-CLIP (Xie et al., 2025) produces long captions and constructs
 129 region-specific annotations, enabling fine-grained alignment. The caption’s semantic relevance and
 130 granularity are critical for modality alignment. VeCLIP (Lai et al., 2024) and CapsFusion (Yu et al.,
 131 2024) refine captions with large language models to achieve more semantically aligned supervision.
 132 ALIP (Yang et al., 2023) adopts a bi-path strategy that combines web text with synthetic captions.
 133 LaCLIP (Fan et al., 2023) leverages LLMs to generate multiple paraphrases of each caption. These
 134 approaches highlight the utility of synthetic captions for improving modality alignment.

135 Beyond pretraining, synthetic captions have also been applied to specialized settings. Hyp-OW (Doan
 136 et al., 2024) employs dense region-level captions to expand visual vocabulary and improve open-world
 137 detection. In the MLLM space, MiniGPT-4 (Zhu et al., 2024) and LLaVA rely on GPT-4-generated
 138 image descriptions and instruction-following data to equip models with conversational capabilities.

139 Despite these advances, most existing efforts target general-domain imagery and emphasize caption
 140 quality or diversity. Organismal biology introduces additional challenges of fine-grained categorization
 141 and domain-specific fidelity. To address these issues, we incorporate domain knowledge into the
 142 generation process to reduce hallucination and produce faithful, instance-specific captions.

144 3 METHOD

146 There have been vast curations of organismal biology images through the efforts of biodiversity
 147 researchers and citizen scientists. Many of them have reliable species labels, geolocation metadata,
 148 and in some cases, DNA barcodes. However, descriptive captions are largely absent in these datasets.
 149 Such captions, which describe human-interpretable visual traits and ecological context, provide
 150 complementary information that species labels alone cannot capture. Yet at the same time, their
 151 usefulness is dependent on being faithful and instance-specific. Such requirements make them difficult
 152 to collect at scale, leaving much of their potential untapped. In this work, we investigate descriptive
 153 captions as an additional source of training supervision for biological multimodal foundation models.
 154 We first illustrate that descriptive captions, when grounded in biological knowledge, help align images
 155 and their species labels. Given the absence of large-scale curated resources, we then explore the use
 156 of MLLMs to generate instance-based synthetic captions for biological images.

157 3.1 BIOCAP

159 Let \mathbf{x} be an image embedding, $y \in \mathcal{Y}$ its taxonomic label, and \mathbf{c} the corresponding caption embedding.
 160 We train BIOCAP (*i.e.*, BIOCLIP with Captions) with two text views: the taxonomic label and
 161 the descriptive caption. Both views are encoded by the text encoder and aligned with the image
 162 embedding. Assume an underlying trait latent vector \mathbf{z}^* in the morphospace encodes the phenotypic

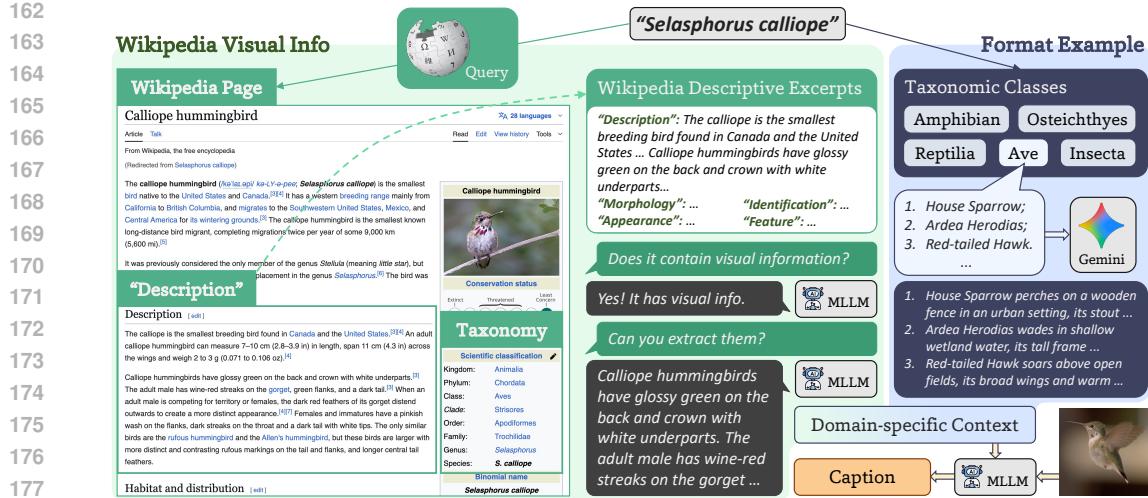


Figure 2: **The pipeline of collecting domain-specific context for MLLMs.** We query Wikipedia with the scientific name to get the corresponding webpage. After validating the full taxonomic rank, we process the descriptive excerpts with MLLMs to extract visual information. For each taxonomic class, we randomly select up to three species and curate format examples through Gemini Deep Research. These contexts help MLLMs generate accurate and grounded descriptive captions.

characters of taxon y . From a causal generation perspective, the image x and caption c are two noisy observations of the same z^* :

$$y \rightarrow z^* \rightarrow \{x, c\}, \quad x = g(z^*, \epsilon), \quad c = h(z^*, \epsilon),$$

where ϵ represents spurious environmental factors (e.g., pose, lighting) that can lead to inaccurate observation. Both the image and the caption capture certain aspects of the ground-truth traits, while being influenced by noise. When captions are involved in the training, the contrastive objective encourages the image embeddings to emphasize trait-relevant factors of the object that are shared with captions, thereby reducing the influence of spurious environmental factors ϵ . Hence, the learned representation becomes closer to the latent trait vector z^* when the caption faithfully reflects visible and potentially diagnostic characters of the species. On the contrary, if the caption captures too much noise instead of the correct traits, the supervision may misguide optimization and degrade classification performance. We further elaborate on this in §A.

Separated visual projectors. Given that supervision in our setting is heterogeneous, we introduce two separate visual projectors after the shared visual encoder for taxonomic labels and captions, respectively (Wang et al., 2024; Ranzinger et al., 2024). When the paired text input is a taxonomic label, only the visual embedding after the taxonomy projector is matched, and vice versa. The visual encoder and the text encoder remain shared across both pathways.

3.2 SYNTHETIC CAPTION

Based on the above discussion, the captions need to provide thorough and faithful views of the images to assist alignment. Traits that represent the species should be highlighted, while the information not visible or influenced by environmental factors should not be hallucinated. As shown in Figure 1, when solely conditioned by the images, MLLMs tend to generate wrong descriptions due to complicated environmental factors. Therefore, we propose to collect domain-specific contexts to regularize the caption generation. Specifically, we use two context sources: *Wikipedia-derived visual information* and *taxon-tailored format examples*. We present the pipeline for collecting these contexts in Figure 2. The prompts used to collect captions and detailed processes are listed in §B.

Wikipedia visual information extraction. Wikipedia provides a comprehensive and accessible knowledge base across the Tree of Life, with species-level descriptions that often contain appearance information. As each instance within a species may have significant appearance variations, these descriptions cannot be directly associated with images. Even so, they offer morphological vocabulary that can be systematically extracted and leveraged in captions.

216 As shown on the left of [Figure 2](#), we scrape Wikipedia pages based on scientific names and validate the
 217 page with the full taxonomy rank. Each page may contain various information regarding the species,
 218 such as appearance, habitat, and distribution. We perform a quick filtering to keep the sections that
 219 potentially have visual descriptions according to their title (*e.g.*, “Description”). Qwen3 32B ([Yang
 220 et al., 2025](#)) is then used to verify whether the kept paragraph contains visual information and to
 221 extract such information. The model is forced to only focus on attributes such as color, pattern, shape,
 222 texture, and other morphological characteristics. When no usable visual information is found for a
 223 species, we apply the same process for the corresponding genus and map the description back to the
 224 species if available. This pipeline yields 120K descriptions, covering 31.8% of the 383K species-level
 225 taxa in TreeOfLife-10M ([Stevens et al., 2024](#)). The extracted Wikipedia visual information forms the
 226 foundation of the subsequent caption generation process.
 227

Format example design. MLLMs might struggle to decide which traits are salient for a given
 228 organism. Direct prompting without guidance often leads to hallucination or oversight of important
 229 details. Therefore, we design taxon-tailored format examples that illustrate the desired style and
 230 content of descriptive captions. For each of the 347 taxonomic classes in TreeOfLife-10M, we
 231 query Gemini Deep Research ([Comanici et al., 2025](#)) to retrieve candidate textual descriptions of
 232 representative species. Each query returns descriptions of up to six species, from which we manually
 233 validate trait accuracy and format consistency, and keep at most three per class. When reliable sources
 234 are scarce, fewer than three species are included. This process yields 896 curated examples, which
 235 explicitly encourage the model to attend to important traits given species labels.
 236

Caption generation. With Wikipedia-derived visual information and taxon-tailored format examples
 237 as domain-specific contexts, we leverage MLLMs to generate synthetic captions grounded in the
 238 target images. Specifically, we use InternVL3 38B ([Zhu et al., 2025](#)) as the backbone and accelerate
 239 inference with the vLLM framework ([Kwon et al., 2023](#)). When no Wikipedia information is
 240 available for the species, we only incorporate format examples in the context. Such a process helps
 241 the model generate trait-focused descriptions that emphasize visible appearance while avoiding
 242 irrelevant or hallucinated details. Furthermore, this pipeline enables large-scale, efficient generation
 243 of instance-level captions that complement taxonomy-based supervision.
 244

245 4 EXPERIMENTS

246 BIOCAP is initialized from the OpenAI ViT-B/16 CLIP checkpoint ([Radford et al., 2021](#)) and trained
 247 on TreeOfLife-10M ([Stevens et al., 2023b](#)) for 50 epochs with species labels and captions. We
 248 evaluate BIOCAP on species classification tasks following BIOCLIP 2 ([Gu et al., 2025](#)), including
 249 NABirds ([Van Horn et al., 2015](#)), Meta-Album ([Ullah et al., 2022](#)), IDLE-OO-Camera-Traps ([Cam-
 250 polongo et al., 2025](#); [Island-Conservation](#); [Desert-Lion-Conservation](#), 2024; [Vélez et al., 2022](#);
 251 [Balasubramaniam, 2024](#); [Yousif et al., 2019](#)), and Rare Species ([Stevens et al., 2023a](#)). For eval-
 252 uating the understanding of natural language, we use INQUIRE-Rerank ([Vendrow et al., 2024](#)). In
 253 addition, we collect paired text-image data from PlantID ([Bruce Homer-Smith and contributors to
 254 PlantID.net, 2025](#)) and Cornell Bird ([Macaulay Library, Cornell Lab of Ornithology, 2025](#)) to test
 255 retrieval performance in organismal domains. Hyperparameter settings and more data information
 256 are presented in [§C](#) and [§D](#), respectively.
 257

258

259

260 4.1 MAIN RESULTS

261

Classification. We evaluate models in the zero-shot setting on ten species classification benchmarks
 262 in [Table 1](#). Compared with BIOCLIP, where captions are not involved in training, the accuracy
 263 increases by 23.5% on Fungi and 7.1% on Rare Species, demonstrating stronger generalization to
 264 challenging real-world settings. Overall, BIOCAP achieves an average top-1 accuracy margin of
 265 8.8% over BIOCLIP and 27.0% over the original CLIP model ([Radford et al., 2021](#)).
 266

267

268

269

Retrieval. We evaluate the natural language understanding on INQUIRE-Rerank (AP@50), Cornell
 270 Bird and PlantID(Recall@10) in [Table 2](#). Except for the Behavior and Context tasks in INQUIRE-
 271 Rerank, BIOCAP achieves the best performance across all benchmarks. FG-CLIP is trained for
 272 fine-grained retrieval tasks ([Xie et al., 2025](#)), yet BIOCAP shows clear advantages with an aver-

270 **Table 1: Zero-shot species classification top-1 accuracy across 10 tasks for different models.**
 271 **Bold** and underlined entries indicate the **best** and second best accuracies, respectively. BIOCAP
 272 achieves the best performance across all benchmarks, with an average improvement of 8.8% over
 273 BIOCLIP. All the compared models are based on the ViT-B/16 visual encoder.

275 276 277 278 279 280 281 282 283 284 285 286	Model	Animals				Plants & Fungi					Rare Species Mean
		NABirds	Plankton	Insects	Insects 2	Camera Trap	PlantNet	Fungi	PlantVillage	Med. Leaf	
Random Guessing	0.2	1.2	1.0	1.0	3.5	4.0	4.0	2.6	4.0	0.3	2.2
CLIP (ViT-B/16)	39.0	3.3	7.4	9.3	28.1	52.5	8.6	5.1	15.0	25.7	19.4
SigLIP	50.2	3.7	17.6	17.6	26.7	76.3	28.3	<u>26.1</u>	<u>45.4</u>	30.7	32.3
FG-CLIP	48.3	1.9	6.9	9.3	26.4	55.6	7.3	5.9	15.7	29.4	20.7
BioTrove-CLIP	39.4	1.0	20.5	15.7	10.7	64.4	38.2	15.7	31.6	24.6	26.2
BIOCLIP	<u>58.8</u>	<u>6.1</u>	<u>34.9</u>	<u>20.5</u>	<u>31.7</u>	<u>88.2</u>	<u>40.9</u>	19.0	38.5	<u>37.1</u>	<u>37.6</u>
BIOCAP	67.6	7.2	41.9	23.7	37.4	93.6	64.4	33.0	51.4	44.2	46.4

287 **Table 2: Performances on natural language tasks, including INQUIRE-Rerank (AP@50) and**
 288 **two text-image retrieval (Recall@10) benchmarks.** **Bold** and underlined entries indicate the **best**
 289 and second best accuracies, respectively. I2T means image-to-text retrieval, and vice versa. With
 290 the additional supervision from descriptive captions, BIOCAP achieves an average performance
 291 advantage of **21.9%** over BIOCLIP.

293 294 295 296 297 298 299 300 301	Model	INQUIRE Rerank				Cornell Bird		PlantID			Mean
		Appear.	Behav.	Context	Species	I2T	T2I	I2T	T2I		
CLIP (ViT-B/16)	30.8	32.9	37.2	37.1	<u>33.8</u>	<u>33.0</u>	26.0	23.7	<u>31.8</u>		
SigLIP	<u>34.6</u>	37.2	41.4	<u>36.2</u>	48.4	<u>48.0</u>	43.3	<u>39.3</u>	<u>41.1</u>		
FG-CLIP	28.8	31.1	32.5	41.0	<u>50.3</u>	48.4	28.9	28.4	<u>36.2</u>		
BioTrove-CLIP	28.5	22.2	30.5	39.5	<u>16.6</u>	15.3	48.0	<u>51.5</u>	31.5		
BIOCLIP	27.4	27.2	30.8	41.1	<u>15.4</u>	16.7	<u>48.4</u>	45.5	31.6		
BIOCAP	37.1	<u>33.6</u>	<u>37.0</u>	43.0	56.5	55.0	82.6	83.3	53.5		

302
 303
 304 age performance margin of **17.3%**. These results indicate that trait-grounded synthetic captions
 305 substantially enhance fine-grained, expert-style retrieval of biological knowledge.

306 4.2 ABLATION STUDY

307
 308 For ablation studies, we train models with TreeOfLife-1M (Stevens et al., 2024) for 100 epochs.

309
 310
 311 **Influence of different captions.** As illustrated before, the alignment between captions and potential
 312 diagnostic traits is critical to the model training. We conduct ablations to examine the impact of
 313 different caption generation strategies in [Table 3](#). Using only taxonomic labels without captions
 314 (*None*) corresponds to BIOCLIP, and is set as the baseline. Adding raw Wikipedia text as captions
 315 is a straightforward way to involve domain knowledge. We demonstrate by *Wiki Page* that using
 316 non-instance-specific captions provides improvements in retrieval but does not help classification.

317
 318 Then we incorporate MLLMs to generate instance-based synthetic captions. The *Base* prompt
 319 asks the model to “describe this image in short.” Without emphasis on traits, the captions contain
 320 inaccurate descriptions and degrade the performance. It corresponds to our previous analysis that
 321 noise in captions harms multimodal alignment. The *Trait* prompt explicitly requires the model to
 322 focus on traits, which substantially reduces the influence of environmental nuisance. Building upon
 323 the *Trait* prompt, we further introduce taxon-tailored format examples and Wikipedia-derived visual
 324 information as domain-specific contexts. *Trait+Example+Wiki* demonstrates the best performance,
 325 and is used to generate captions for the other experiments. All the adopted prompts are listed in [§B.3](#).

324
 325 **Table 3: Influence of different captions.** *None*: no caption is used
 326 in training (BIOCLIP); *Wiki Page*: a sentence from the Wikipedia
 327 visual information; *Synthetic*: captions generated by MLLMs. Syn-
 328 thetic captions involve the option of simple prompts (*Base*) and
 329 trait-focused prompts (*Trait*). Domain-specific contexts in MLLM
 330 inputs: *Example*: format examples; *Wiki*: Wikipedia-derived vi-
 331 sual information. The average performances on each benchmark
 332 category (*CLS*: classification; *INQ*: INQUIRE-Rerank) are reported.

Caption	Prompt	Context	Strategy			INQ
			CLS	I2T	T2I	
None	–	–	30.2	30.5	31.2	30.0
Wiki Page	–	–	30.0	47.2	47.1	30.3
Synthetic	Base	–	27.0	26.7	28.2	29.9
Synthetic	Trait	–	30.8	44.6	45.2	33.2
Synthetic	Trait	Example	31.8	47.5	48.1	33.9
Synthetic	Trait	Example+Wiki	33.8	54.7	54.3	34.8

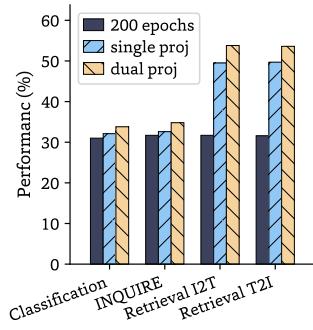
341 **Table 4: The influence of the training set components.**
 342 We incrementally add Wikipedia-covered and non-covered
 343 species into training with different supervisions to validate
 344 the generalization of synthetic captions. The results on
 345 the covered/non-covered test species are reported. *Name*:
 346 species name; *Caption*: synthetic captions.

Training Component		Classification	
Covered	Non-covered	Covered	Non-covered
Name	–	35.7	40.1
Name+Caption	–	37.5	42.7
Name	Name	35.8	43.5
Name+Caption	Name	38.6	46.6
Name+Caption	Name+Caption	45.3	48.8

355 **Training recipe.** In BIOCAP, we adopt two separate visual projectors to align species names and
 356 captions, respectively. To ablate this design, we train a model with a single visual projector that
 357 aligns species and captions at the same time, named as *single proj* in Figure 3. Our two-projector
 358 design is named *dual proj*. The results show that *dual proj* consistently outperforms *single proj*,
 359 which validates the necessity of decoupling supervision signals in heterogeneous multimodal training.
 360 Additionally, caption generation introduces additional computation time. To assess the fairness, we
 361 naively double the training epochs and report the results as *200 epochs* in Figure 3. The results show
 362 an obvious gap between *200 epochs* and other variants, supporting the worth of synthetic captions.

363 **Training set components.** Wikipedia provides faithful domain knowledge as contexts for MLLMs.
 364 However, it does not cover all the species for usable visual descriptions (See §B.2). We incrementally
 365 add different training components to evaluate the generalization of synthetic captions in Table 4.
 366 Specifically, we partition the training set based on whether the species are covered by Wikipedia
 367 (32.3% of the total species-level taxa in TreeOfLife-1M). We also separate classification benchmarks
 368 into the two groups (76.2% covered by Wikipedia). In the table, *Name* refers to taxonomy-only
 369 supervision, while *Name+Caption* denotes the joint supervision with synthetic captions. The results
 370 show that adding captions to Wiki-covered species also enhances the understanding of non-covered
 371 species. Incorporating both taxonomy and captions for all species achieves the best results, even if
 372 many species are not covered by Wikipedia, indicating generalization of caption-encoded knowledge.

373 **Caption evaluation.** We conduct a human evaluation to assess the quality of the generated captions.
 374 As shown in Table 5, we evaluate the captions along four metrics (*Groundedness*: if the description
 375 is visible in the image; *Specificity*: if the caption describes distinctive traits; *Completeness*: if the
 376 caption covers 2-3 most salient aspects; *Clarity*: preciseness and objectiveness). We randomly sample
 377 200 images from TreeOfLife, covering 200 distinct taxonomic classes. For each image, we provide
 378 three captions: one generated by our full method (*Trait+Example+Wiki*) and two obtained from



341 **Figure 3: Ablation study on**
 342 **training recipes.** *200 epochs*:
 343 model trained for 200 epochs
 344 with species labels; *single proj/dual proj*: projector settings
 345 for caption alignment.

341 **Table 5: Win rate of different**
 342 **synthetic captions in the human evalua-**
 343 **tion.** *Base*: naive prompt; *Trait*: trait-
 344 focused prompt; *Ours*: *Trait+domain-*
 345 *specific contexts*.

Attributes	Method		
	Base	Trait	Ours
Groundedness	5.7	11.9	82.4
Specificity	10.3	8.9	80.8
Completeness	5.1	7.6	87.3
Clarity	5.1	5.7	89.2
Average	6.6	8.5	85.0

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 6: **Influence of example number.** We vary the number of taxon-tailored format examples per class and report the resulting performances.

Num of Examples	CLS	Retrieval		INQ
		I2T	T2I	
1	33.2	52.7	53.2	33.9
3	33.8	54.7	54.3	34.8
5	34.0	54.3	54.7	34.5
7	33.7	54.5	54.6	34.6

Table 7: **Comparison across caption generators and model sizes.** We report the resulting performances under each setting.

Generator	Size	CLS	Retrieval		INQ
			I2T	T2I	
InternVL3	8B	31.7	49.4	50.2	33.7
InternVL3	78B	33.9	54.8	55.6	34.5
InternVL3	38B	33.8	54.7	54.3	34.8
Qwen-2.5-VL	32B	34.1	53.3	55.5	35.2
LLaVA-NeXT	34B	32.9	54.1	54.7	34.4

Image & Species	Trait+Example+Wiki (Ours)	Trait	Base
Red Hot Poker	<i>The red hot poker shows a tall conical inflorescence of orange-to-yellow tubular flowers rising above a pond with water lilies.</i>	<i>A striking red hot poker with fiery tubular flowers fading to yellow, rising above pond lilies, attracting hummingbirds nearby.</i>	<i>A tall orange and yellow flower standing by the water, shaped like a torch, with green plants around it.</i>
White-Eared Honeyeater	<i>The White-Eared Honeyeater displays a black head, white ear-coverts, and olive-green body while perched on a branch</i>	<i>The White-Eared Honeyeater shows an olive back, pale ear spot, and dark face while standing on a tree.</i>	<i>A small bird with green feathers and a white patch sits quietly on a branch.</i>
Common Elbow Orchid	<i>The common elbow orchid displays small, insect-like flowers on a slender, arching stem with a few basal bracts.</i>	<i>The common elbow orchid shows what looks like a small insect clinging to a thin stem with delicate parts.</i>	<i>A tiny bug-like shape sits on a stick, seen against a blurry background.</i>

Figure 4: **Captions generated by different strategies** (refer to Table 3 and §B.3). The domain-specific contexts of taxon-tailored format examples and Wikipedia-derived visual information significantly reduce hallucination and provide more accurate descriptions of the target object.

alternative strategies (*Base* and *Trait*). The order of captions is randomized. Human evaluators are asked to select the best caption under each metric. Each caption is independently assessed by two evaluators. The results show that captions generated by our full pipeline are recognized by human evaluators to be accurate and image-specific. Detailed statistics are included in §G.

Ablation on format examples. Format examples guide MLLMs to emphasize different traits across species. We examine the influence of varying the number of examples per taxonomic class in Table 6. Using only one example for the entire class limits diversity, leading to suboptimal performances. Three or more examples yield similar results. Considering performances and computational cost, we adopt three examples per class in the other experiments. We also include generating format examples at the order level instead of the class level and assess the stability across multiple runs in §E.3.

NEW

MLLM family and model size. We evaluate using different MLLMs to generate descriptive captions, including LLaVA-NErT (Zhang et al., 2024b), Qwen2.5-VL (Bai et al., 2025), and InternVL3. We also vary the parameter scales of InternVL3 (8B, 38B, 78B) and report the results in Table 7. We observe that captions produced by Qwen2.5-VL and InternVL3 lead to almost the same downstream performance, while LLaVA-generated captions result in slightly lower performance. Overall, the proposed caption generation pipeline is robust across different MLLMs. For model size, the 8B variant produces weaker results, whereas the 38B and 78B models show almost the same performance. Therefore, we select InternVL3 38B for the other experiments. Overall, the caption-generation pipeline does not rely on extremely large or highly specialized MLLMs, and the proposed framework remains stable across both model families and parameter scales.

NEW

4.3 ANALYSIS AND DISCUSSION

Qualitative comparison of captions. Figure 4 illustrates qualitative comparisons of generated captions. The second column corresponds to our full strategy (*Trait+Example+Wiki*). Using the *Base* or *Trait* prompts without domain-specific contexts leads to hallucination (the common elbow

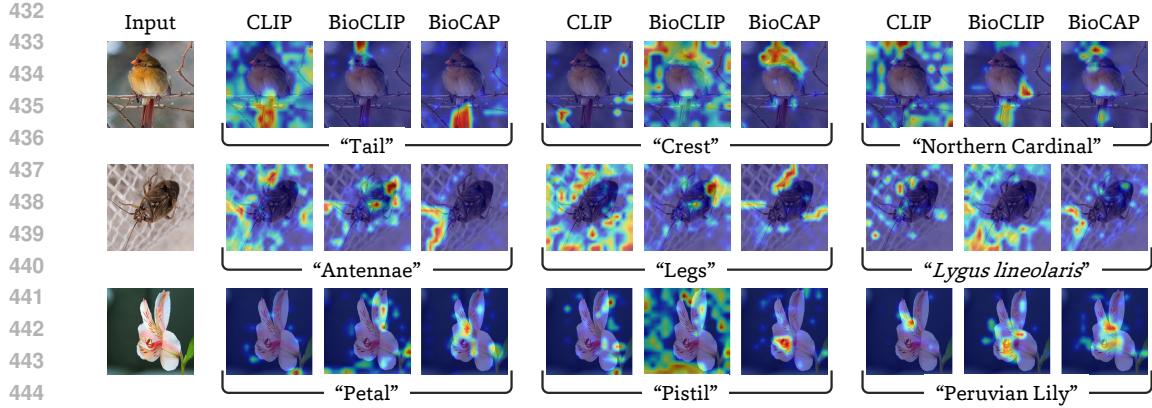


Figure 5: **Grad-CAM visualization of CLIP, BioCLIP, and BioCAP**, given *species names* and *biological concepts* frequently mentioned in their captions. Comparatively, BioCAP offers a comprehensive understanding of these concepts and connects them to the corresponding species.

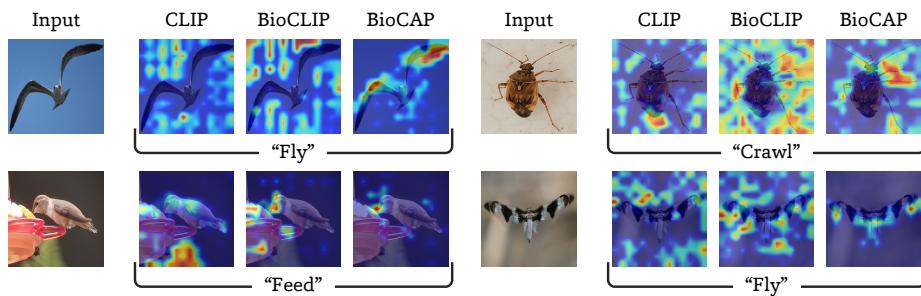


Figure 6: **Grad-CAM visualization of CLIP, BioCLIP, and BioCAP**, given *behaviors*. BioCAP correctly highlights the body parts related to the behaviors.

orchid flower misrecognized as an insect) and inaccurate descriptions (vague color descriptions for the white-eared honeyeater). In contrast, introducing format examples and Wikipedia-derived visual information significantly improves the instance-specificity and faithfulness of the synthetic captions.

Why are captions helpful for classification? To better understand the effects of captions, we use Grad-CAM (Zhou et al., 2016) to visualize model attention given species names and high-frequency biological concepts mentioned in the corresponding captions in Figure 5. The visualization shows that BioCAP learns to localize biologically meaningful traits and associate them with the species names. It corresponds to our analysis in §3.1 that captions help model focus on diagnostic characters during training, and thereby improve classification performance. The information on Grad-CAM implementation and high-frequency concept is presented in §C.3.

Semantic Understanding. In addition to specific traits, we further analyze whether captions help align embeddings with broader biologically meaningful semantics (Figure 6). Using Grad-CAM, we visualize model attention given behavior-related words such as fly, feed, and crawl. Compared with CLIP and BioCLIP, BioCAP accurately highlights the body parts related to these behaviors, for instance, activation of wings for “fly” and legs for “crawl.”

Beyond instance-level understanding, we also visualize the relationship between instances with t-SNE across three bird species in Figure 7, annotated with both behaviors (perch, fly, stand) and sex (male, female/immature). General-purpose models like CLIP and DINOv3 form loose species clusters and conflate sex distinctions. They also mistakenly align female/immature red-winged blackbirds with brown-headed cowbirds. BioCLIP learns the species distinction, but fails to differentiate the behavior variations. Comparatively, BioCAP produces compact species clusters and separation of various biological semantics. These results further demonstrate the effectiveness of descriptive captions in enhancing the understanding of various biological concepts. The collection process of behavior labels is presented in §C.4. We provide more qualitative results in §E.

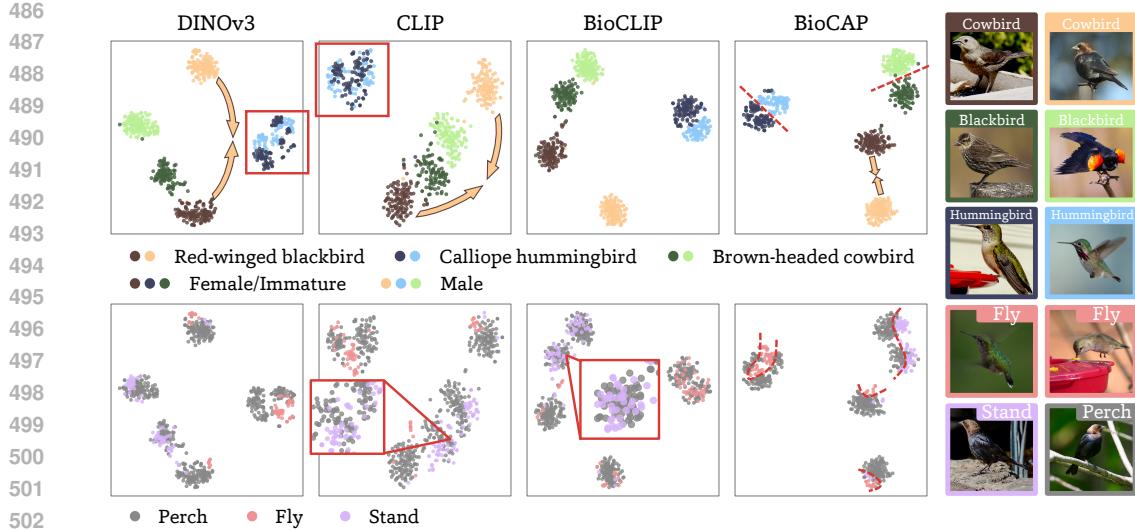


Figure 7: **Embedding distribution of three bird species** with sex and behavior annotations. On the right, we provide example images corresponding to each label. DINOv3 and CLIP fail to align male and female red-winged blackbirds while mixing male and female hummingbirds. BIOCLIP does not capture the semantical difference between behaviors. With the guidance of captions, BIOCAP tells the subtle difference between *perch* and *stand* and accurately separates the behavior variants.

5 CONCLUSION

This paper investigates using instance-level descriptive captions as a complementary supervision for biological multimodal foundation models. Due to the lack of such resources at scale, we incorporate multimodal large language models (MLLMs) to generate synthetic captions. We curate Wikipedia-derived visual information and format examples to reduce hallucination and produce accurate, instance-specific captions. Aligning images with captions encourages the model to emphasize potential diagnostic traits while reducing the influence of environmental factors. The acquired BIOCAP model demonstrates rich understanding of a broad range of biological semantics. The superior performance in species classification and biological text-image retrieval highlights the value of descriptive captions in bridging biological images with multimodal foundation models.

ETHICAL STATEMENT

Our study involves human evaluation of automatically generated captions for organismal biology images. Participants were asked only to express preferences between different caption candidates based on the associated image. No personal or identifiable information was collected, and the task posed minimal risk. Participation was voluntary, and participants were engaged without coercion. As the task did not involve sensitive data, medical decisions, or personal attributes, institutional review board (IRB) approval was not required under our institution’s policies. We emphasize that the generated captions are intended for scientific research purposes. Nonetheless, we acknowledge the potential risk of inaccurate or misleading captions, and we therefore recommend their use only as research tools and not as authoritative sources.

REPRODUCIBILITY STATEMENT

We have attached the source code used for model training and evaluation, and the generated captions associated with the UUID of the TreeOfLife-10M dataset in the [anonymized repository](#). The details regarding caption generation are presented in §B. The training hyperparameters and details to reproduce our evaluation results are included in §C. The information on adopted benchmarks is listed in §D. We will release the source code on GitHub and publish the collected captions in Hugging Face upon acceptance.

540 REFERENCES
541

542 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
543 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
544 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
545 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report, 2025. URL
546 <https://arxiv.org/abs/2502.13923>.

547 S. Balasubramaniam. Optimized classification in camera trap images: An approach with
548 smart camera traps, machine learning, and human inference. Master’s thesis, The Ohio
549 State University, 2024. URL [http://rave.ohiolink.edu/etdc/view?acc_num](http://rave.ohiolink.edu/etdc/view?acc_num=osu1721417695430687)
550 [osu1721417695430687](http://rave.ohiolink.edu/etdc/view?acc_num=osu1721417695430687).

551 Bruce Homer-Smith and contributors to PlantID.net. Plantid – online plant identification resource,
552 2025. URL <https://plantid.net/>. Content licensed under CC BY-NC 3.0. Developed
553 and produced by Bruce Homer-Smith with contributions from Dave Long, Doreen Smith, Kristin
554 Jakob, John Malpas, and others.

555 Graham E Budd. Morphospace. *Current Biology*, 31(19):R1181–R1185, 2021.

556 Elizabeth G Campolongo, Jianyang Gu, and Net Zhang. IDLE-OO Camera Traps, 2025. URL
557 <https://huggingface.co/datasets/imageomics/IDLE-OO-Camera-Traps>.

558 Gheorghe Comanici, Eric Bieber, Mike Schaekermann, et al. Gemini 2.5: Pushing the frontier with
559 advanced reasoning, multimodality, long context, and next generation agentic capabilities, 2025.

560 Desert-Lion-Conservation. Desert lion conservation camera traps, July 2024. URL <https://lila.science/datasets/desert-lion-conservation-camera-traps/>.

561 Thang Doan, Xin Li, Sima Behpour, Wenbin He, Liang Gou, and Liu Ren. Hyp-ow: Exploiting
562 hierarchical structure learning with hyperbolic distance enhances open world object detection. In
563 AAAI, pp. 1555–1563, 2024.

564 Facebook, Inc. Threatexchange. <https://github.com/facebook/ThreatExchange>,
565 2019.

566 Lijie Fan, Dilip Krishnan, Phillip Isola, Dina Katabi, and Yonglong Tian. Improving clip training
567 with language rewrites. In *NeurIPS*, volume 36, pp. 35544–35575, 2023.

568 Geetharamani G. and Arun Pandian J. Identification of plant leaf diseases using a nine-layer deep
569 convolutional neural network. *Computers & Electrical Engineering*, 76:323–338, 2019. ISSN
570 0045-7906. doi: <https://doi.org/10.1016/j.compeleceng.2019.04.011>. URL <https://www.sciencedirect.com/science/article/pii/S0045790619300023>.

571 Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen,
572 Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In search of the
573 next generation of multimodal datasets. In *Advances in Neural Information Processing Systems*,
574 volume 36, pp. 27092–27112, 2023.

575 Camille Garcin, Alexis Joly, Pierre Bonnet, Antoine Affouard, Jean-Christophe Lombardo, Mathias
576 Chouet, Maximilien Servajean, Titouan Lorieul, and Joseph Salmon. PI@ntnet-300k: a plant
577 image dataset with high label ambiguity and a long-tailed distribution. In *Advances in Neural
578 Information Processing Systems (Datasets and Benchmarks Track)*, volume 36, 2021. URL
579 <https://openreview.net/forum?id=eLYinD0TtIt>.

580 Zahra Gharaee, Scott C Lowe, ZeMing Gong, Pablo Millan Arias, Nicholas Pellegrino, Austin T
581 Wang, Joakim Bruslund Haurum, Iuliia Eryriay, Lila Kari, Dirk Steinke, et al. Bioscan-5m: a
582 multimodal dataset for insect biodiversity. In *NeurIPS*, volume 37, pp. 36285–36313, 2024.

583 ZeMing Gong, Austin Wang, Xiaoliang Huo, Joakim Bruslund Haurum, Scott C. Lowe, Graham W.
584 Taylor, and Angel X Chang. CLIBD: Bridging vision and genomics for biodiversity monitoring at
585 scale. In *ICLR*, 2025.

594 Jianyang Gu, Samuel Stevens, Elizabeth G Campolongo, Matthew J Thompson, Net Zhang, Jiaman
 595 Wu, Andrei Kopanev, Zheda Mai, Alexander E White, James Balhoff, et al. Bioclip 2: Emergent
 596 properties from scaling hierarchical contrastive learning. In *NeurIPS*, 2025.
 597

598 K. L. Gwet. Computing inter-rater reliability and its variance in the presence of high agreement.
 599 *British Journal of Mathematical and Statistical Psychology*, 61(Pt 1):29–48, 2008.

600 Yonatan Harnik, Hadas Shalit Peleg, Amit H. Bermano, and Anat Milo. Data efficient molecular
 601 image representation learning using foundation models. *Chemical Science*, 16(24):10833–10841,
 602 2025.

603 Emily F. Brownlee Heidi M. Sosik, Emily E. Peacock. Annotated plankton images - data set for
 604 developing and evaluating classification methods, 2015. URL <https://hdl.handle.net/10.1575/1912/7341>.

605 Zhenyu Huang, Guocheng Niu, Xiao Liu, Wenbiao Ding, Xinyan Xiao, Hua Wu, and Xi Peng.
 606 Learning with noisy correspondence for cross-modal matching. In *NeurIPS*, volume 34, pp.
 607 29406–29419, 2021.

608 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 609 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 610 *arXiv:2410.21276*, 2024.

611 Island-Conservation. Island conservation camera traps. URL <https://lila.science/datasets/island-conservation-camera-traps/>.

612 Faizan Farooq Khan, Xiang Li, Andrew J Temple, and Mohamed Elhoseiny. Fishnet: A large-scale
 613 dataset and benchmark for fish recognition, detection, and functional trait prediction. In *ICCV*, pp.
 614 20496–20506, 2023.

615 Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2015.

616 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 617 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 618 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating*
 619 *Systems Principles*, 2023.

620 Zhengfeng Lai, Haotian Zhang, Bowen Zhang, Wentao Wu, Haoping Bai, Aleksei Timofeev, Xianzhi
 621 Du, Zhe Gan, Jilong Shan, Chen-Nee Chuah, Yinfei Yang, and Meng Cao. Veclip: Improving
 622 clip training via visual-enriched captions. In *ECCV*, pp. 111–127, 2024.

623 J. R. Landis and G. G. Koch. The measurement of observer agreement for categorical data. *Biometrics*,
 624 33(1):159–174, 1977.

625 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan
 626 Naumann, Hoifung Poon, and Jianfeng Gao. LLaVA-med: Training a large language-and-vision
 627 assistant for biomedicine in one day. In *NeurIPS*, 2023.

628 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping language-image
 629 pre-training for unified vision-language understanding and generation. In *ICML*, volume 162, pp.
 630 12888–12900, 2022.

631 Junxian Li, Di Zhang, Xunzhi Wang, Zeying Hao, Jingdi Lei, Qian Tan, Cai Zhou, Wei Liu, Yaotian
 632 Yang, Xinrui Xiong, Weiyun Wang, Zhe Chen, Wenhui Wang, Wei Li, Mao Su, Shufei Zhang,
 633 Wanli Ouyang, Yuqiang Li, and Dongzhan Zhou. Chemvilm: Exploring the power of multimodal
 634 large language models in chemistry area. In *AAAI*, pp. 415–423, 2025.

635 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In A. Oh,
 636 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *NeurIPS*, volume 36, pp.
 637 34892–34916, 2023.

638 Macaulay Library, Cornell Lab of Ornithology. Macaulay library: Multimedia resources for birds
 639 and other animals, 2025. URL <https://www.macaulaylibrary.org>.

648 Zheda Mai, Arpita Chowdhury, Zihe Wang, Sooyoung Jeon, Lemeng Wang, Jiacheng Hou, and
 649 Wei-Lun Chao. Ava-bench: Atomic visual ability benchmark for vision foundation models. *arXiv*
 650 *preprint arXiv:2506.09082*, 2025.

651

652 Ernst Mayr and Peter D. Ashlock. *Principles of Systematic Zoology*. McGraw-Hill, 2nd edition,
 653 1991.

654 Liam Parker, Francois Lanusse, Siavash Golkar, Leopoldo Sarra, Miles Cranmer, Alberto Bietti,
 655 Michael Eickenberg, Geraud Krawezik, Michael McCabe, Rudy Morel, Ruben Ohana, Mariel
 656 Pettee, Bruno Régaldo-Saint Blancard, Kyunghyun Cho, and Shirley Ho. Astroclip: a cross-
 657 modal foundation model for galaxies. *Monthly Notices of the Royal Astronomical Society*, 531(4):
 658 4990–5011, June 2024. ISSN 1365-2966.

659 Lukáš Picek, Milan Šulc, Jiří Matas, Thomas S Jeppesen, Jacob Heilmann-Clausen, Thomas Læssøe,
 660 and Tobias Frøslev. Danish fungi 2020-not just another image recognition dataset. In *Proceedings*
 661 *of the IEEE Winter Conference on Applications of Computer Vision*, pp. 1525–1535, 2022.

662

663 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 664 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 665 Learning transferable visual models from natural language supervision. In *ICML*, pp. 8748–8763,
 666 2021.

667 Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. Am-radio: Agglomerative vision
 668 foundation model reduce all domains into one. In *CVPR*, pp. 12490–12500, 2024.

669

670 Roopashree S and Anitha J. Medicinal leaf dataset, Oct 2020. URL <https://data.mendeley.com/datasets/nnytj2v3n5/1>.

671

672 Srikumar Sastry, Subash Khanal, Aayush Dhakal, Adeel Ahmad, and Nathan Jacobs. Taxabind: A
 673 unified embedding space for ecological applications. In *WACV*, pp. 1765–1774. IEEE, 2025.

674

675 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 676 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 677 open large-scale dataset for training next generation image-text models. In *Advances in neural*
 678 *information processing systems*, volume 35, pp. 25278–25294, 2022.

679 Hortense Serret, Nicolas Deguines, Yikweon Jang, Gregoire Lois, and Romain Julliard. Data
 680 quality and participant engagement in citizen science: comparing two approaches for monitoring
 681 pollinators in france and south korea. *Citizen Science: Theory and Practice*, 4(1):22, 2019.

682

683 Davinder Singh, Naman Jain, Pranjali Jain, Pratik Kayal, Sudhakar Kumawat, and Nipun Batra.
 684 Plantdoc: A dataset for visual plant disease detection. In *Proceedings of the 7th ACM IKDD*
 685 *CoDS and 25th COMAD*, CoDS COMAD 2020, pp. 249–253, New York, NY, USA, 2020.
 686 Association for Computing Machinery. ISBN 9781450377386. doi: 10.1145/3371158.3371196.
 687 URL <https://doi.org/10.1145/3371158.3371196>.

688

689 Samuel Stevens, Jiaman Wu, Matthew J Thompson, Elizabeth G Campolongo, Chan Hee Song,
 690 David Edward Carlyn, Li Dong, Wasila M Dahdul, Charles Stewart, Tanya Berger-Wolf, Wei-Lun
 691 Chao, and Yu Su. Rare species, 2023a. URL <https://huggingface.co/datasets/imageomics/rare-species>.

692

693 Samuel Stevens, Jiaman Wu, Matthew J Thompson, Elizabeth G Campolongo, Chan Hee Song,
 694 David Edward Carlyn, Li Dong, Wasila M Dahdul, Charles Stewart, Tanya Berger-Wolf, Wei-Lun
 695 Chao, and Yu Su. TreeOfLife-10M, 2023b. URL <https://huggingface.co/datasets/imageomics/TreeOfLife-10M>.

696

697 Samuel Stevens, Jiaman Wu, Matthew J Thompson, Elizabeth G Campolongo, Chan Hee Song,
 698 David Edward Carlyn, Li Dong, Wasila M Dahdul, Charles Stewart, Tanya Berger-Wolf, Wei-
 699 Lun Chao, and Yu Su. BioCLIP: A vision foundation model for the tree of life. In *CVPR*, pp.
 700 19412–19424, June 2024.

701 Kiat Chuan Tan and Yulong Liu. Herbarium challenge 2019 - fgvc6. <https://kaggle.com/competitions/herbarium-2019-fgvc6>, 2019. Kaggle.

702 Ihsan Ullah, Dustin Carrion, Sergio Escalera, Isabelle M Guyon, Mike Huisman, Felix Mohr, Jan N
 703 van Rijn, Haozhe Sun, Joaquin Vanschoren, and Phan Anh Vu. Meta-album: Multi-domain meta-
 704 dataset for few-shot image classification. In *NeurIPS*, 2022. URL [https://meta-album.](https://meta-album.github.io/)
 705 [github.io/](https://meta-album.github.io/).

706 Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro
 707 Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with citizen
 708 scientists: The fine print in fine-grained dataset collection. In *CVPR*, pp. 595–604, 2015.

709 Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
 710 Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
 711 *CVPR*, pp. 8769–8778, 2018.

712 Grant Van Horn, Elijah Cole, Sara Beery, Kimberly Wilber, Serge Belongie, and Oisin Mac Aodha.
 713 Benchmarking representation learning for natural world image collections. In *CVPR*, pp. 12884–
 714 12893, 2021.

715 Juliana Vélez, Paula J Castiblanco-Camacho, Michael A Tabak, Carl Chalmers, Paul Fergus, and
 716 John Fieberg. Choosing an appropriate platform and workflow for processing camera trap data
 717 using artificial intelligence. *arXiv preprint arXiv:2202.02283*, 2022.

718 Edward Vendrow, Omiros Pantazis, Alexander Shepard, Gabriel Brostow, Kate E Jones, Oisin
 719 Mac Aodha, Sara Beery, and Grant Van Horn. Inquire: A natural world text-to-image retrieval
 720 benchmark. *NeurIPS*, 2024.

721 Vicente Vivanco Cepeda, Gaurav Kumar Nayak, and Mubarak Shah. Geoclip: Clip-inspired alignment
 722 between locations and images for effective worldwide geo-localization. In *NeurIPS*, volume 36,
 723 pp. 8690–8701. Curran Associates, Inc., 2023.

724 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 725 birds-200-2011 dataset. 2011.

726 Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel, and
 727 Xia Hu. Score-cam: Score-weighted visual explanations for convolutional neural networks. In
 728 *CVPRW*, pp. 24–25, 2020.

729 Haoxiang Wang, Pavan Kumar Anasosalu Vasu, Fartash Faghri, Raviteja Vemulapalli, Mehrdad
 730 Farajtabar, Sachin Mehta, Mohammad Rastegari, Oncel Tuzel, and Hadi Pouransari. Sam-clip:
 731 Merging vision foundation models towards semantic and spatial understanding. In *CVPR*, pp.
 732 3635–3647, 2024.

733 Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
 734 ment and uniformity on the hypersphere. In *ICML*, pp. 9929–9939. PMLR, 2020.

735 Zifeng Wang, Zhenbang Wu, Dinesh Agarwal, and Jimeng Sun. MedCLIP: Contrastive learning from
 736 unpaired medical images and text. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.),
 737 *EMNLP*, pp. 3876–3887, 2022.

738 Xiaoping Wu, Chi Zhan, Yukun Lai, Ming-Ming Cheng, and Jufeng Yang. IP102: A large-scale
 739 benchmark dataset for insect pest recognition. In *Proceedings of the IEEE Conference on Computer*
 740 *Vision and Pattern Recognition*, pp. 8787–8796, 2019.

741 Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning—a
 742 comprehensive evaluation of the good, the bad and the ugly. *IEEE TPAMI*, 41(9):2251–2265, 2018.

743 Chunyu Xie, Bin Wang, Fanjing Kong, Jincheng Li, Dawei Liang, Gengshen Zhang, Dawei Leng,
 744 and Yuhui Yin. FG-CLIP: Fine-grained visual and textual alignment. In *ICML*, 2025.

745 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 746 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 747 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 748 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Kefin Bao, Kexin Yang,
 749 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 750

756 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 757 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 758 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 759 Qiu. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.

760 Chih-Hsuan Yang, Ben Feuer, Zaki Jubery, Zi K. Deng, Andre Nakkab, Zahid Hasan, Shivan
 761 Chiranjeevi, Kelly Marshall, Nirmal Baishnab, Asheesh K Singh, Arti Singh, Soumik Sarkar, Nirav
 762 Merchant, Chinmay Hegde, and Baskar Ganapathysubramanian. Biotrove: A large curated image
 763 dataset enabling ai for biodiversity. In *NeurIPS*, volume 37, pp. 102101–102120, 2024.

764

765 Kaicheng Yang, Jiankang Deng, Xiang An, Jiawei Li, Ziyong Feng, Jia Guo, Jing Yang, and Tongliang
 766 Liu. Alip: Adaptive language-image pre-training with synthetic caption. In *ICCV*, pp. 2910–2919,
 767 2023.

768 Hayder Yousif, Roland Kays, and Zhihai He. Dynamic programming selection of object proposals
 769 for sequence-level animal species classification in the wild. *IEEE Transactions on Circuits and*
 770 *Systems for Video Technology*, 2019.

771

772 Qiyi Yu, Quan Sun, Xiaosong Zhang, Yufeng Cui, Fan Zhang, Yue Cao, Xinlong Wang, and
 773 Jingjing Liu. Capsfusion: Rethinking image-text data at scale. In *CVPR*, pp. 14022–14032, June
 774 2024.

775 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 776 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
 777 understanding and reasoning benchmark for expert agi. In *CVPR*, pp. 9556–9567, 2024.

778

779 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 780 image pre-training. In *ICCV*, pp. 11941–11952, 2023.

781 Kai Zhang, Rong Zhou, Eashan Adhikarla, Zhiling Yan, Yixin Liu, Jun Yu, Zhengliang Liu, Xun
 782 Chen, Brian D Davison, Hui Ren, et al. A generalist vision–language foundation model for diverse
 783 biomedical tasks. *Nature Medicine*, pp. 1–13, 2024a.

784

785 Yuanhan Zhang, Bo Li, Haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and
 786 Chunyuan Li. Llava-next: A strong zero-shot video understanding model. *Llava-next: A strong*
 787 *zero-shot video understanding model*, 8, 2024b.

788 Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
 789 features for discriminative localization. In *CVPR*, pp. 2921–2929, 2016.

790

791 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. MiniGPT-4: Enhancing
 792 vision–language understanding with advanced large language models. In *ICLR*, 2024.

793

794 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 795 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 796 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

797

798

799

800

801

802

803

804

805

806

807

808

809

810 Table of Contents in Appendix

813	A Analysis on the Impact of Captions in Training	17
815	B Details on Caption Generation	18
816	B.1 Prompts	18
817	B.2 Statistics of Caption Collection	20
818	B.3 Baseline Prompts	21
819	B.4 Genus-to-Species Description Mapping	22
820		
821		
822		
823	C Experimental Details	23
824	C.1 Hyperparameters	23
825	C.2 Text-Image Retrieval	23
826	C.3 Grad-CAM Visualization	23
827	C.4 Behavior Semantic Annotation	24
828		
829		
830		
831	D Benchmark Details	25
832	D.1 Collection of Retrieval Benchmarks	25
833	D.2 Information of Other Benchmarks	25
834	D.3 Duplicate and Leakage Control	25
835	D.4 License Information	26
836		
837		
838		
839	E More Qualitative and Quantitative Evaluations	27
840	E.1 Synthetic Caption Comparisons.	27
841	E.2 Grad-CAM Results.	28
842	E.3 Format Example Design	30
843	E.4 Performance on Underrepresented Species	30
844	E.5 Performance on Few-shot Classification and Biological Visual tasks	31
845		
846		
847		
848	F Discussion with Recent Work	33
849		
850	G Human Evaluation	34
851	G.1 Evaluation Instruction	34
852	G.2 Evaluation Statistics	35
853		
854		
855	H Disclosure of LLM Usage	36
856		
857	I Limitations	36
858		
859		
860		
861		
862		
863		

864 A ANALYSIS ON THE IMPACT OF CAPTIONS IN TRAINING
865

866 Let \mathbf{x} be an image embedding extracted by the visual encoder, $y \in \mathcal{Y}$ the taxonomic label, \mathbf{c} the
867 textual embedding of a corresponding descriptive caption, \mathbf{z}^* the underlying latent vector of ground-
868 truth traits associated with the taxon y , and $\epsilon \perp \mathbf{z}^*$ the environmental noise influencing the trait
869 observation. Assume the image \mathbf{x} and the caption \mathbf{c} are derived from a linear transformation on the
870 latent vector \mathbf{z}^* and noise ϵ :

$$871 \quad \mathbf{x} = \mathbf{A}\mathbf{z}^* + \mathbf{G}\epsilon + \eta_x, \quad \mathbf{c} = \mathbf{B}\mathbf{z}^* + \mathbf{D}\epsilon + \eta_c, \\ 872$$

873 where η_x and η_c are independent zero-mean Gaussian noises. The label y can be directly determined
874 by \mathbf{z}^* and is irrelevant to the noise ϵ . The target is to optimize the encoders so that \mathbf{x} is aligned with
875 \mathbf{z}^* , and thereby the label y can be derived from \mathbf{x} . We train the model with InfoNCE loss:

$$876 \quad \mathcal{L}_{\text{NCE}} = \mathbb{E}_{p(\mathbf{x}, \mathbf{c})} \left[-s(\mathbf{x}, \mathbf{c}) + \log \mathbb{E}_{p(\mathbf{x}')} \sum \exp s(\mathbf{x}', \mathbf{c}) \right], \\ 877$$

878 where

$$879 \quad s(\mathbf{x}, \mathbf{c}) = \frac{1}{\tau} \phi(\mathbf{x})^\top \psi(\mathbf{c}). \\ 880$$

881 Wang & Isola (2020) show that the contrastive loss optimizes alignment and uniformity properties.
882 The alignment part increases the image-caption inner product $\mathbb{E}[\mathbf{x}^\top \mathbf{c}]$, while the uniformity part
883 preserves maximum information. For l_2 -normalized features, $\mathbb{E}[\mathbf{x}^\top \mathbf{c}] = \text{tr}(\Sigma_{\mathbf{x}\mathbf{c}})$, *i.e.*, the cross-
884 covariance between the two views. We have:

$$885 \quad \Sigma_{\mathbf{x}\mathbf{c}} = \mathbf{A}\mathbf{B}^\top + \mathbf{G}\mathbf{D}^\top, \\ 886$$

887 which decomposes into the trait-shared component $\mathbf{A}\mathbf{B}^\top$ and the nuisance-shared component $\mathbf{G}\mathbf{D}^\top$.
888 If captions capture the diagnostic characters without noise disturbance ($\mathbf{D} = 0$), the trait term $\mathbf{A}\mathbf{B}^\top$
889 dominates the cross-covariance. The learned image projection, therefore, aligns with trait directions
890 and drops nuisance. Thus, the faithful caption \mathbf{c} helps species classification. On the contrary, if
891 the caption covaries with image nuisance ϵ , $\mathbf{G}\mathbf{D}^\top$ adds to $\Sigma_{\mathbf{x}\mathbf{c}}$. The InfoNCE loss pulls the image
892 embedding toward the range of \mathbf{G} , which leads to spurious correlation and potential performance
893 drop. Based on these analyses, we propose to generate synthetic captions that ground biological
894 knowledge to enhance the alignment between images and labels.

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 B DETAILS ON CAPTION GENERATION
919920 In this section, we list the adopted prompts and pipeline details for collecting descriptive captions.
921 We also present some ablation of the visual information extraction pipeline.
922923 B.1 PROMPTS
924925 **Format example generation.** For each of the 347 taxonomic classes in TreeOfLife-10M, we
926 query Gemini Deep Research (Comanici et al., 2025) to retrieve candidate textual descriptions of
927 representative species. Each query returns up to six candidate descriptions together with images, each
928 representing one species within the class. We manually validate trait accuracy and format consistency
929 based on the images of the species, and keep at most three per class. The images are only used to
930 validate the format example, but are not used in our model training. When reliable sources are scarce,
931 fewer than three species are included. This process yields 896 curated examples, which are then
932 incorporated into the context to guide the model in generating trait-focused captions in a consistent
933 style. The prompt used for Gemini Deep Research is listed below.
934935 Prompt for Format Example Generation
936937 You are a biologist describing organisms strictly on the basis of visible characteristics in an
938 image. Your task is to generate short, fluent, and biologically meaningful captions for a given
939 class, using examples drawn from different species within that class. Captions must be based
940 on real samples and grounded in visual evidence.
941942 Requirements:
943944

- Provide 6 diverse format examples captions from different species within the class.
- Captions must emphasize salient visual traits (e.g., color, shape, pattern, texture, body structure).
- If clearly visible, background or environmental features may be included, but only when they are explicitly apparent in the image.
- Each caption must contain either the scientific name *or* the common name (not both).
- Do not begin directly with the name; instead, weave it naturally into the caption text.
- Each caption must not exceed 35 words.
- Each caption must be linked to a corresponding image URL, which should point to the actual visual sample used for description.
- Maintain a concise, scientific style, with variation across examples.
- If the class contains too few distinctive species, provide fewer than three examples; if no usable information is available, output ‘N/A’.

945946 Output Format:
947948

- Two columns for all provided classes:
 1. Class name
 2. Examples (listed as 1, 2, 3, ...), each followed by its corresponding image URL

949950 Now, generate examples for given classes: {classes}
951952 **Wikipedia visual information extraction.** Format examples encourage MLLMs to focus on im-
953 portant traits for different species. We also leverage Wikipedia as a large-scale resource to provide
954 detailed visual information across the Tree of Life. The descriptions of visual information on
955 Wikipedia pages are often mixed with habitat, behavior, and distributional information. We perform
956 a quick filtering based on the section titles of the Wikipedia pages and keep those with potential
957 visual information, including “description”, “morphology”, “appearance”, “identification”, “feature”,
958 “characteristics”, “physical”, “structure”, and “explanation of names.”
959

972 After the quick filtering, we design a verifying and extraction pipeline to further extract visual
 973 information such as color, pattern, shape, and texture. This process yields over 122K trait-focused
 974 descriptions, covering 30.0% of the 406K species-level taxa in TreeOfLife-10M (Stevens et al., 2024).
 975 The prompt used to filter and extract morphological traits from Wikipedia is provided below.
 976

977 **Prompt for Wikipedia Visual Information Verification**

978 You are given a textual description of a species.
 979 Your task is to determine whether the description contains any information about the species'
 980 **visible appearance** (including features, colors, shapes, patterns, textures, or other morpho-
 981 logical characteristics).
 982 Respond strictly with: "Yes" or "No".
 983

984 **Examples:**

985 "Bagada is a genus of moths of the family Noctuidae." → No
 986

987 "Aetheolaena rosana is a species of flowering plant in the family Asteraceae. It is
 988 found only in Ecuador. Its natural habitat is subtropical or tropical moist montane
 989 forests. It is threatened by habitat loss." → No
 990

991 "The fur of the African wild dog differs significantly from that of other canids,
 992 consisting entirely of stiff bristle-hairs with no underfur. Colour variation is extreme,
 993 and may serve in visual identification." → Yes
 994

995 "The most characteristic physical feature of the raccoon is the area of black fur
 996 around the eyes, which contrasts sharply with the surrounding white face coloring."
 997 → Yes
 998

999 **Now classify the following description:**

1000 "{content}"

1001 **Prompt for Wikipedia Visual Information Extraction**

1002 You are an expert taxonomy editor. Extract only the sentences (or partial sentences) that
 1003 describe **visual appearance**:

- 1004 • Colours, patterns, shapes, sizes, textures, diagnostic marks — anything visible in a
 1005 photo.
- 1006 • Visual differences in sex, form, or life stage should be preserved.
- 1007 • **Do not include** behaviour, distribution, threats, taxonomy, dates, or references.
- 1008 • Remove all non-visual parts from the original paragraph while maintaining sentence
 1009 structure.
- 1010 • Keep exactly the same descriptions from the original input; do not rewrite or
 1011 rephrase.

1012 Return exactly in the format: <species> | <caption>
 1013

1014 **User Examples:**

1015 "The fur of the African wild dog differs significantly from that of other canids,
 1016 consisting entirely of stiff bristle-hairs with no under-fur. Colour pattern
 1017 is patchy black, yellow ochre and white." → Lycaon pictus | The
 1018 fur of the African wild dog consists entirely of stiff
 1019 bristle-hairs with no under-fur. Colour pattern is
 1020 patchy black, yellow ochre and white.

1021 "The most characteristic physical feature of the raccoon is the area of black
 1022 fur around the eyes, which contrasts sharply with the surrounding white face
 1023 colouring." → Procyon lotor | the area of black fur around
 1024 the eyes, which contrasts sharply with the surrounding
 1025 white face colouring.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

“The male painted bunting is often described as the most beautiful bird in North America... Its colors, dark blue head, green back, red rump, and underparts, make it extremely easy to identify... The plumage of female and juvenile painted buntings is green and yellow-green... The adult female is a brighter, truer green than other similar songbirds.” → Painted Bunting
 | The male painted bunting has a dark blue head, green back, red rump, and red underparts, making it extremely easy to identify, though it often hides in foliage.
 The female and juvenile painted buntings have green and yellow-green plumage, which serves as camouflage.
 The adult female is a brighter, truer green than other similar songbirds.

1039
1040
1041
1042**Now extract:**

```
<species>: {species}
<description>: "{description}"
```

1043
1044
1045
1046
1047
1048

The design of separating the verification and extraction steps is based on the consideration of efficiency. In our experiment, Qwen3 8B is used for verification and Qwen3 32B is used for extraction (Yang et al., 2025). Compared with a single-step design integrating both verification and extraction with Qwen3 32B, the separate design saves 13% computational time. After manual examination on a 200-sample validation set, the accuracy of Qwen3 8B in verifying if the paragraph contains visual information is consistent with Qwen3 32B. Therefore, we adopt the separate design in our experiment.

1049
1050
1051
1052
1053

Caption generation. After acquiring the domain-specific contexts, we query MLLMs to generate instance-based captions. When Wikipedia-derived visual information is not available, only format examples are used in the context. This ensures the model consistently generates accurate and instance-specific descriptions that emphasize visible morphology while avoiding hallucination. The exact prompt template is shown below.

1054
1055
1056
1057
1058
1059
1060
1061
1062

Prompt for Caption Generation

You are a biologist describing organisms based strictly on what is visible in the image. Your goal is to produce a concise caption that highlights diagnostic, image-based traits. Focus primarily on anatomical structures (e.g., color, shape, pattern, texture, position). If clearly visible, you may mention substrate, scale cues, or explicit interactions. Use precise biological terminology. Avoid vague or generic words.

Examples of good captions: {format_examples}

If a Wikipedia excerpt is available:

Reference excerpt about {species_name}, use only to standardize correct terms that match visible traits; do not copy text; do not add traits not visible in the image: {wiki_excerpt}.

The caption must not exceed {word_limit} words.

Include the species name “{species_name}” naturally in the sentence.

Priority order: (1) the most diagnostic visible trait, (2) a secondary distinctive trait, (3) a contextual detail only if it strengthens identification.

Final instruction: For the following image of a {species_name}, write a single, concise sentence describing its visible traits.

1073

1074
1075

B.2 STATISTICS OF CAPTION COLLECTION

1076
1077
1078
1079

Wikipedia coverage. As illustrated above, we apply an LLM-based extractor to only keep Wikipedia-derived descriptions related to visual information. There are cases where the species is not covered by Wikipedia, or the original Wikipedia page does not contain any visual information. As shown in Table 8, after excluding non-visual descriptions, we retain a total of 122,243 species with Wikipedia-

1080
1081
1082 Table 8: Taxa coverage and sample coverage across taxonomic ranks.
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Rank	Taxa coverage		Sample coverage	
	Covered taxa / Total	Ratio	Covered images / Total	Ratio
Order	1,137/1,486	76.5%	9,256,964/9,533,174	97.1%
Family	5,127/7,920	64.7%	9,164,272/9,533,174	96.1%
Genus	32,725/73,290	44.7%	7,436,080/9,533,174	78.0%
Species	122,243/406,293	30.0%	4,989,956/9,533,174	52.3%

derived visual information, which is 30.0% of the total species-level taxa. 44.7% taxonomic genera have Wikipedia visual information associated with at least one species within them, and the number becomes 64.7% for orders.

Sample-wise, 52.3% samples are covered with the Wikipedia-derived visual information of exactly the corresponding species. However, when it comes to the family level, 96.1% samples have at least one species covered by Wikipedia within the same family. In such a way, even if the species is not exactly covered, there is at least another similar species with diagnostic characters described in the context. Thereby, the knowledge is generalized across different species during training. We provide quantitative analysis toward the generalization in [Table 4](#).

Computational time. For caption generation, we employ InternVL3 38B with the vLLM ([Kwon et al., 2023](#)), running on 12 NVIDIA H100 GPUs for about 30 hours to process 10 million samples. Note that the caption generation process is designed to be highly scalable. The adopted vLLM framework allows for efficient distributed inference with optimized memory management and parallel sampling. The system can handle larger datasets by increasing the number of GPUs or extending the running time. This scalability ensures that generating captions for hundreds of millions of images is feasible, which is valuable for existing biological image repositories.

1108 B.3 BASELINE PROMPTS

1109
1110 In addition to introducing domain-specific contexts, we also explore different formats for the instruction.
1111 We design two different prompts: *Base*, which generates generic short captions without any
1112 domain hints, and *Trait*, which encourages more detailed, image-grounded trait descriptions. The two
1113 prompts are listed below.

1114
1115 Baseline Prompt: Base

1116
1117 Describe this image in short.

1118
1119 Baseline Prompt: Trait

1120
1121 You are a biologist describing organisms strictly on the basis of visible characteristics in an
1122 image.
1123 Your goal is to produce a concise caption that highlights diagnostic, image-based traits.
1124 Focus primarily on anatomical structures (e.g., color, shape, pattern, texture, position).
1125 If clearly visible, you may mention substrate, scale cues, or explicit interactions.
1126 Use precise biological terminology. Avoid vague or generic words.
1127 The caption must not exceed {word_limit} words.
1128 Include the species name “{species_name}” naturally in the sentence.

1129
1130 We provide the quantitative comparison between the captions generated with the two prompts in
1131 [Table 3](#). The qualitative comparisons are presented in [Figure 4](#) and [Figure 9](#). MLLMs tend to produce
1132 more detailed descriptions when the prompt explicitly asks the model to focus on traits. Based on the
1133 comparison, we use the *Trait* prompt in other experiments and further incorporate domain-specific
contexts to ground biological knowledge.

1134 B.4 GENUS-TO-SPECIES DESCRIPTION MAPPING
1135

1136	Image & Species	Captions
1137	 Moraea flavescens	<i>Moraea flavescens</i> features a slender, elongated yellow flower atop a thin green stem, set against a backdrop of dry, woody ground.
1143	 Moraea neglecta	<i>Moraea neglecta</i> features bright yellow, iris-like flowers with twisted petals, growing amidst dry, grassy substrate.

1148 Figure 8: Examples of genus-level Wikipedia descriptions used as fallback and the resulting captions.
1149

1150 When species-level Wikipedia visual descriptions are unavailable, we map the corresponding genus-
1151 level descriptions to species within that genus. This strategy is biologically grounded: in taxonomy,
1152 species belonging to the same genus typically share most of their diagnostic morphological characters
1153 and differ only in a small subset of traits (Mayr & Ashlock, 1991). Genus-level descriptions therefore
1154 provide a coherent approximation of the shared morphological context for closely related species.
1155 These descriptions are not used directly as captions, but serve as contextual information to guide the
1156 caption-generation MLLM, which still conditions on the input image. As a result, even if multiple
1157 species receive the same genus-level Wikipedia visual description, the generation process leads to
1158 instance-specific captions that reflect visual traits present in the image, shown in Figure 8.

NEW

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188
1189 C EXPERIMENTAL DETAILS

1190 We generate synthetic captions using InternVL3 38B. The generation is conducted on 12 NVIDIA
 1191 H100 GPUs for 30 hours with the vLLM framework (Kwon et al., 2023). We apply nucleus sampling
 1192 (top- $p = 0.8$) with a temperature of 0.6. With captions and species labels obtained, we train our
 1193 model on 8 H100 GPUs for 50 epochs. Each GPU processes 4,096 text-image pairs per batch,
 1194 resulting in a global batch size of 32,768. We use the AdamW optimizer (Kingma & Ba, 2015)
 1195 with a learning rate of 1×10^{-4} , weight decay of 0.2, and a linear warm-up during the first 500
 1196 iterations. Images are resized to 224×224 for training and evaluation. As described in §4.2, we
 1197 adopt a dual-projector design with two separate visual projectors: one for taxonomy supervision
 1198 and the other for caption supervision. All embeddings used for evaluation are extracted from the
 1199 taxonomy projector.

1200
1201 C.1 HYPERPARAMETERS1202
1203 Table 9: The adopted hyper-parameter setting in
1204 training BIOCAP.

Hyper-parameter	Value
Architecture	ViT-B/16
Optimizer	Adam
Batch size/GPU (organism)	4,096
GPUs	8 H100s
Epochs	50
Max learning rate	1×10^{-4}
Warm-up steps	500
Weight decay	0.2
Input resolution	224

1205
1206 Table 10: The adopted hyper-parameter setting
1207 in ablation study.

Hyper-parameter	Value
Architecture	ViT-B/16
Optimizer	Adam
Batch size/GPU (organism)	4,096
GPUs	4 H100s
Epochs	100
Max learning rate	1×10^{-4}
Warm-up steps	200
Weight decay	0.2
Input resolution	224

1208 We summarize the hyper-parameter configurations in Table 9 and Table 10, corresponding to the
 1209 main training of BIOCAP and the ablation study. The batch size reported in both tables refers to
 1210 the per-GPU value. Compared with the full training, the ablation uses fewer GPUs and a shorter
 1211 warm-up schedule, while keeping the overall architecture unchanged.

1212
1213 C.2 TEXT-IMAGE RETRIEVAL

1214 We evaluate zero-shot retrieval on Cornell Bird (Macaulay Library, Cornell Lab of Ornithology,
 1215 2025), PlantID (Bruce Homer-Smith and contributors to PlantID.net, 2025) (Recall@10). We follow
 1216 the standard text-image retrieval protocol using paired text-image data. Both text-to-image and
 1217 image-to-text retrieval are considered by embedding the two modalities into a joint representation
 1218 space and ranking candidates according to cosine similarity. Performance is measured by Recall@10,
 1219 which reflects how often the correct match is retrieved within the top results.

1220
1221 C.3 GRAD-CAM VISUALIZATION

1222 **Implementation.** We adopt Grad-CAM (Zhou et al., 2016) for visualizing CLIP attention. Grad-
 1223 CAM highlights image regions most relevant to a target output by weighting feature maps with their
 1224 corresponding gradients. For a CLIP model, given an image \mathbf{I} and a text prompt, their embeddings
 1225 are obtained via the image encoder f_{img} and text encoder f_{text} :

$$1226 \quad \mathbf{V} = f_{\text{img}}(\mathbf{I}), \quad \mathbf{T} = f_{\text{text}}(\text{prompt}).$$

1227 The cosine similarity logit is:

$$1228 \quad s = \frac{\mathbf{V} \cdot \mathbf{T}}{\|\mathbf{V}\| \|\mathbf{T}\|}.$$

1229 We backpropagate this logit as the target signal, and apply Grad-CAM to the final transformer block
 1230 of the image encoder to obtain heatmaps. Since the CLIP image encoder is ViT-based, we reshape
 1231 the patch-token activations from the target layer into a 2D spatial grid before upsampling.

1242 Table 11: [Agreement between GPT-4o, Gemini 2.5 Pro, and human annotators for behavior labels.](#)
1243
1244

	Annotator A	Annotator B	Agreement
1245	GPT-4o	Human	95.1
1246	Gemini 2.5 Pro	Human	92.9
1247	GPT-4o	Gemini 2.5 Pro	94.0

1248
1249 **High-frequency concepts collection.** For each target species, we first aggregate all captions and
1250 compute the frequency of words after removing common stopwords (*e.g.*, *and*). Then we manually
1251 select biologically meaningful concepts starting from the most frequent words, such as body structures
1252 (*e.g.*, antennae, petals, tails). The high-frequency concepts are then used as the text prompt for Grad-
1253 CAM. This procedure ensures that the concepts used in visualization correspond to the supervision
1254 signal of the synthetic captions. Based on the visualization examples, we explicitly show that aligning
1255 captions and images guides the model to focus on the diagnostic characters. Thereby, BIOCAP
1256 demonstrates better species classification performance.
1257

1258

C.4 BEHAVIOR SEMANTIC ANNOTATION

1259 In addition to static biological concepts related to organs or body parts of the object, we also intend
1260 to investigate the model’s understanding of behavioral semantics. Given that NABirds ([Van Horn
1261 et al., 2015](#)) does not provide behavior annotations in the original dataset, we use GPT 4o ([Hurst
1262 et al., 2024](#)) to automatically assign one of three mutually exclusive behavior categories: *fly*, *perch*,
1263 or *stand*. Here, we do not rely on manual labeling, which can be subjective and inconsistent across
1264 annotators. These three categories cover the majority of common bird poses. The model is prompted
1265 with the following instruction:

1266 **Prompt for Behavior Annotation**

1267 You are an ornithologist tasked with identifying bird behaviors from images. Looking at this
1268 bird image, classify the bird’s behavior into exactly ONE of these three categories:
1269

- *fly* → Wings are spread/extended, bird appears to be in flight or airborne
- *perch* → Bird’s feet are gripping thin branches, reeds, wires, or similar thin supports
- *stand* → Bird’s feet are on ground, soil, rocks, thick surfaces, or flat platforms

1270 Output only the behavior label: *fly*, *perch*, or *stand*.

1271 To further verify the reliability of these labels, we collect annotations from Gemini 2.5 pro and from
1272 human annotators. The agreement rates are summarized in [Table 11](#). Across all comparisons, the
1273 agreement exceeds 92%, indicating that behavior classification is a low-ambiguity task. The two
1274 MLLMs produce labels highly consistent with human judgment, supporting the robustness of the
1275 automatic annotation pipeline.

NEW

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 **D BENCHMARK DETAILS**
12971298 **D.1 COLLECTION OF RETRIEVAL BENCHMARKS**
12991300 Table 12: Benchmarks collected for image-text retrieval evaluation.
1301

Benchmark	Description	Species	Image-Text Pairs
Cornell Bird	Sourced from the Macaulay Library of the Cornell Lab of Ornithology, containing image-text pairs of North American bird species.	700	7,000
PlantID	Collected from PlantID, providing paired images and textual descriptions for a wide range of plants.	794	2,254

1308 We collect two retrieval benchmarks to evaluate our model under diverse biological domains: Cornell
1309 Bird ([Macaulay Library, Cornell Lab of Ornithology, 2025](#)) and PlantID ([Bruce Homer-Smith and](#)
1310 [contributors to PlantID.net, 2025](#)). These datasets cover bird and plant species, each providing
1311 paired images and textual descriptions for fine-grained retrieval tasks. [Table 12](#) summarizes the key
1312 characteristics of these benchmarks.
1313

1314 **D.2 INFORMATION OF OTHER BENCHMARKS**
13151316 Table 13: Datasets used for zero-shot classification evaluation. Top-1 accuracy is reported for all the
1317 listed benchmarks.
1318

	Name		Examples	Classes	Labels
Animals	NABird	(Van Horn et al., 2015)	48,000	400	Common
	Plankton	(Heidi M. Sosik, 2015)	4,080	102	Mixed
	Insects	(Serret et al., 2019)	4,680	117	Scientific
	Insects 2	(Wu et al., 2019)	4,080	102	Mixed
Plants & Fungi	PlantNet	(Garcin et al., 2021)	1,000	25	Scientific
	Fungi	(Picek et al., 2022)	1,000	25	Scientific
	PlantVillage	(G. & J., 2019)	1,520	38	Common
	Medicinal Leaf	(S & J., 2020)	1,040	26	Scientific
	PlantDoc	(Singh et al., 2020)	1,080	27	Common
CameraTrap	Desert-lion	(Desert-Lion-Conservation, 2024)	352	32	Taxonomic
	ENA24	(Yousif et al., 2019)	1120	20	Taxonomic
	Island	(Island-Conservation)	310	17	Taxonomic
	Ohio-small-animals	(Balasubramaniam, 2024)	468	39	Taxonomic
	Orinoquia	(Vélez et al., 2022)	336	28	Taxonomic
	Rare Species	(Stevens et al., 2023a)	12,000	400	Taxonomic

1335 We summarize the datasets used for zero-shot classification evaluation in [Table 13](#). These benchmarks
1336 cover diverse biological domains, including animals, plants, fungi, and camera-trap datasets, and all
1337 tasks are evaluated with Top-1 accuracy. We additionally evaluate on INQUIRE-Rerank ([Vendrow](#)
1338 [et al., 2024](#)), a benchmark where the goal is to re-rank 100 candidate images for each of 200 text
1339 queries (20K images in total), ensuring relevant images appear higher in the order.
1340

1341 **D.3 DUPLICATE AND LEAKAGE CONTROL**
1342

1343 To ensure rigorous evaluation and eliminate any potential information leakage, we conduct duplicate
1344 control for two retrieval benchmarks used in this study. Since the two collected retrieval datasets
1345 (PlantID ([Bruce Homer-Smith and contributors to PlantID.net, 2025](#)) and Cornell Bird ([Macaulay](#)
1346 [Library, Cornell Lab of Ornithology, 2025](#))) are uploaded individually by users rather than systematically
1347 aggregated, their provenance metadata is noisy and inconsistent. We therefore apply perceptual
1348 hashing ([Facebook, Inc, 2019](#)) with a distance threshold of 10 to detect visually similar images
1349 that cannot be identified through metadata or MD5. Images flagged as near-duplicates are treated
conservatively to avoid leakage from any retrieval dataset into the training corpus. Using this pipeline,

1350 we find that 4.1% of PlantID images and less than 0.1% of Cornell Bird images appear in the training
1351 set before filtering. All overlapping images are removed. This deduplication ensures that all retrieval
1352 benchmarks are cleanly disjoint from the training data.

NEW

1354 D.4 LICENSE INFORMATION

1355 For retrieval evaluation, we additionally used paired text-image data from PlantID ([Bruce Homer-Smith and contributors to PlantID.net, 2025](#)) and the Cornell Bird Macaulay Library (Macaulay
1356 Library, Cornell Lab of Ornithology, 2025).

1357 PlantID is developed and maintained by Bruce Homer-Smith with contributions from numerous
1358 experts and organizations. The website content, including most textual and photographic materials, is
1359 released under the Creative Commons CC BY-NC 3.0 license, which allows reuse for non-commercial
1360 purposes with proper attribution. We confirm that our usage strictly followed these terms.

1361 The Cornell Bird Macaulay Library is maintained by the Cornell Lab of Ornithology. Use of its
1362 media assets in scientific publications requires attribution following their official guidelines. We
1363 obtained explicit approval for our use and acknowledge receipt of media from the Cornell Lab of
1364 Ornithology | Macaulay Library.

1365 We sincerely thank PlantID, its contributors, and the Cornell Lab of Ornithology for making these
1366 invaluable resources available to the community, which enables our retrieval evaluation.

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

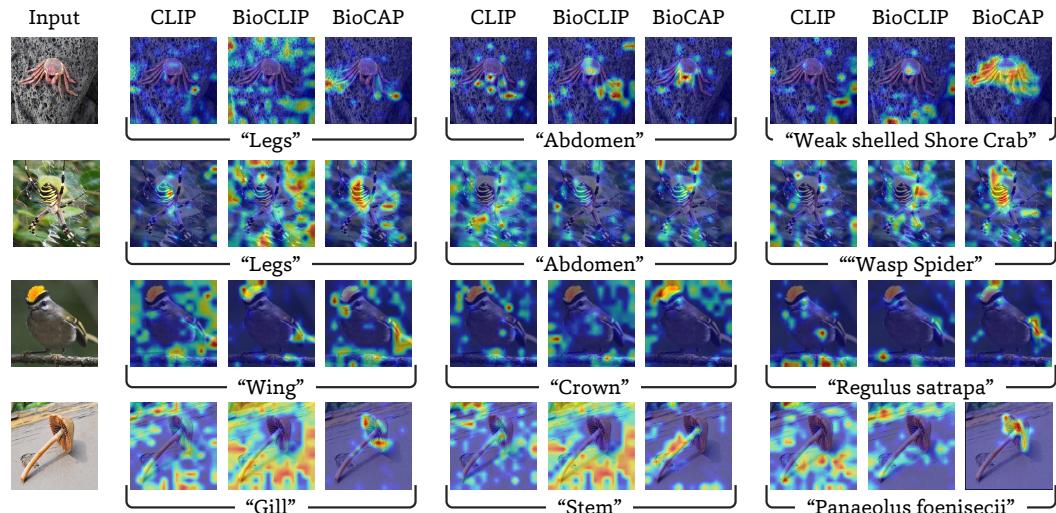
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457 E MORE QUALITATIVE AND QUANTITATIVE EVALUATIONS

E.1 SYNTHETIC CAPTION COMPARISONS.

Image & Species	Trait+Example+Wiki (Ours)	Trait	Base
Lesser Horseshoe-vetch	Lesser Horseshoe-vetch features small, bright yellow flowers with compound, green leaves and reddish stems, growing low to the ground.	The image shows a plant with small yellow flowers and delicate, feathery green leaves, typical of Lesser Horseshoe-vetch, growing among rocks.	Small plant with delicate yellow flowers and green leaves growing in rocky soil.
Cloesia digna	Cloesia digna displays iridescent blue wings with a metallic sheen and distinct brownish fringes, set against a plain white background.	The moth has dark, textured wings with a bluish tint and a distinctive body, matching its scientific name Cloesia digna.	A dark-colored moth with intricate patterns on its wings is displayed against a white background.
Habronattus fallax	Habronattus fallax exhibits a mottled brown pattern with distinct white stripes on the cephalothorax, positioned on a textured substrate.	The image shows a small spider with a speckled pattern, likely Habronattus fallax, featuring distinct markings and slender legs on a textured surface.	A small spider with striped legs and body sits on a textured surface near a straw.
Garden Orbweaver	Garden Orbweavers display a distinctive zigzag stabilimentum in their web, with a central white cross pattern and radial symmetry, set against a backdrop of green foliage.	This is Larvae of the Larvae orb-weaver spider. The intricate web is set in a green, leafy environment, likely a garden or forest.	A spider meticulously creates an intricate, decorative web against a backdrop of green leaves.
Paranapiacaba significata	A small, reddish-orange insect, possibly Paranapiacaba significata, is perched on a white, five-petaled flower with dark spots near its center, set against green foliage.	The image shows a white flower with a green center, featuring small black spots and an ant on its petals, set against green foliage.	A white flower with a small insect on it, set against green foliage.
Pink Leaf Moth	The Pink Leaf Moth displays vibrant pink and yellow wings with subtle gradation, delicate furry texture, and prominent antennae.	The moth has vibrant pink and yellow wings, a delicate appearance, and a soft, pastel color gradient, typical of the Pink Leaf Moth species.	A colorful moth with pink and yellow wings displayed against a white background.
Rattlesnake Mannagrass	Rattlesnake mannagrass displays an open panicle with drooping spikelets, nestled among broad, green leaves in a grassy habitat. sci.txt: a photo of Glyceria canadensis.	The image shows dense, green grass with small, light-colored seed heads, typical of rattlesnake mannagrass, growing in a natural setting.	Close-up of grass with small seed heads in a natural, outdoor setting.
Atlantic Threetooth	The Atlantic threetooth features a brown, spiraled shell with fine growth lines and a pale, open umbilicus, resting on a soft, fibrous surface.	The image shows a small, coiled, three-toothed snail with a brown, textured shell resting on a soft, fibrous surface.	A small, coiled snail larva is resting on a soft, fibrous surface.

Figure 9: More qualitative comparison on the captions generated by different prompts. Our full pipeline, which emphasizes focusing on traits and introduces domain-specific contexts, demonstrates accurate and instance-specific captions.

Figure 9 shows more captions generated by different prompts, including *Base*, *Trait*, and our full pipeline (*Trait+Example+Wiki*). The *Base* captions are often not detailed and not based on biological knowledge. Even if the model is explicitly prompted to focus on traits given the species name, MLLMs can also hallucinate and lose attention to the target object. As shown in the “Paranapiacaba significata” example, the *Trait* caption falsely describes the flower instead of the insect. Our full pipeline, in contrast, accurately describes the insect. When the caption contains too much noise while losing focus on the target object, the provided supervision can misguide the multimodal alignment and harm the model performance.

1458 E.2 GRAD-CAM RESULTS.
14591460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478 Figure 10: Grad-CAM visualization of CLIP, BioCLIP, and BioCAP, given species names and
1479 biological concepts frequently mentioned in their captions. BioCAP accurately highlights these
1480 concepts and associate them with classification.1481
1482 **Alignment with biological traits.** Various biological concepts are mentioned in the synthetic captions
1483 to describe potential diagnostic characters of the species. we present more visualizations regarding
1484 these concepts in [Figure 10](#) as a supplement to [Figure 5](#). Compared with CLIP and BioCLIP,
1485 BioCAP demonstrates significantly better localization of these concepts. Moreover, when Grad-
1486 CAM is applied to the species name, the parts highlighted by BioCAP align with these concepts.
1487 The results indicate that the synthetic captions guide the model to focus on potential diagnostic
1488 traits, while suppressing the spurious correlation. Thereby, BioCAP demonstrates better species
1489 classification performance, which also aligns with our analyses in [§3](#) and [§A](#).1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

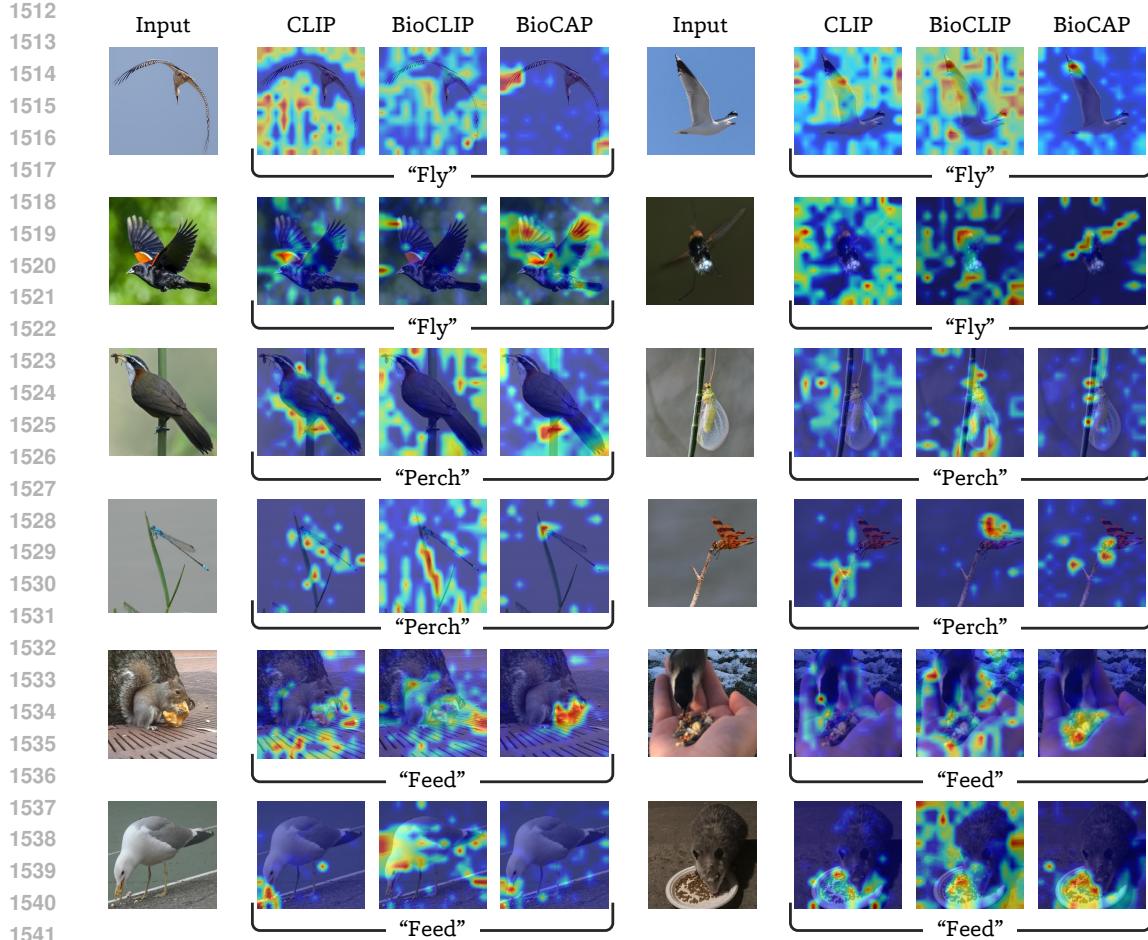


Figure 11: Grad-CAM visualization of CLIP, BioCLIP, and BioCAP, given behaviors. BioCAP correctly highlights the body parts related to the behaviors.

Table 14: Localization performance of different models on CUB, evaluated by the energy-based pointing game.

Model	Localization score
CLIP	0.36
BioCLIP	0.43
BioCAP	0.47

Alignment with behavior semantics. In addition to the organism parts that are potentially discriminative traits of the species, the generated captions also contain descriptions regarding behaviors. We provide more Grad-CAM visualizations toward behavior in Figure 11 as a supplement to the previous demonstration in Figure 6. For “fly,” “perch,” and “feed,” BioCAP accurately highlights wings, legs/feet, and mouth/beak/food in the images, respectively. Based on the comparison with CLIP and BioCLIP, the understanding of these behavior concepts is derived from the newly curated synthetic captions. It also validates that our synthetic captions have successfully captured a variety of biological semantics. The rich semantic understanding of BioCAP potentially enables broader applications in various biology-related tasks.

Grad-CAM quantitative results. We provide a quantitative evaluation of localization quality on CUB (Wah et al., 2011), using ground-truth bounding boxes offered in the dataset. For each model (CLIP, BioCLIP, and BioCAP), we compute Grad-CAM maps with species names as text prompts and measure localization accuracy using the energy-based pointing game (Wang et al., 2020). This

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Table 15: **Class-level vs. order-level format examples.** We compare using class and order level examples to guide caption generation.

Taxonomic Level	CLS	Retrieval		INQ
		I2T	T2I	
Class	33.8	54.7	54.3	34.8
Order	33.2	55.1	53.9	33.6

Table 16: **Stability across examples generation rounds.** We evaluate BIOCAP using two independently generated exemplar sets.

Generation Round	CLS	Retrieval		INQ
		I2T	T2I	
1	33.8	54.7	54.3	34.8
2	33.6	54.9	54.5	34.7

Table 17: **Performance on underrepresented species groups.** We report classification accuracy across conditions defined by Wikipedia coverage, training image availability, and the Rare Species set. **Bold** and underlined entries indicate the **best** and second best results, respectively.

Model	Classification				
	Few-images		Many-images		Rare
	non-covered	covered	non-covered	covered	
CLIP	16.2	<u>32.3</u>	21.1	23.4	25.7
BioCLIP	<u>54.0</u>	<u>30.4</u>	<u>35.4</u>	<u>42.1</u>	<u>37.6</u>
BIOCAP	61.0	45.0	43.7	48.9	46.4

metric quantifies the fraction of activation energy that falls within the annotated bounding box. The results are reported in Table 14. BIOCAP achieves higher localization scores than both CLIP and BioCLIP, indicating that the trait-focused captions help guide the model toward biologically meaningful regions.

NEW

E.3 FORMAT EXAMPLE DESIGN

In §4.2, we analyze the effect of format examples count and show that using three curated examples per taxonomic class provides a stable and sufficient guidance for caption generation. Here, we provide detailed results for two more design choices: the taxonomic level used to generate format examples, and the stability of the pipeline across independent generation rounds.

Taxonomic level of format examples. We compare class-level and order-level format examples for guiding caption generation, with results shown in Table 15. The two configurations yield comparable performance across all metrics, while order-level format examples introduce slightly higher variability in a few cases. These findings indicate that class-level format examples strike an effective balance between trait specificity and taxonomic coverage without over-constraining the captioner.

Stability across generation rounds. To assess robustness against sampling variability, we regenerate a full second set of format examples using the same Gemini-based pipeline and retrain BIOCAP. As reported in Table 16, while the regenerated format examples are different, the resulting models achieve nearly identical performance. This shows that the format examples generation process remains stable across model runs.

NEW

E.4 PERFORMANCE ON UNDERREPRESENTED SPECIES

It has been shown in Table 4 that BIOCAP improves the species not covered by Wikipedia-derived visual descriptions. We further partition species in the test sets using two criteria: whether the species is Wikipedia-covered or non-covered, and the number of available training images. We rank species by sample count and define the bottom 5% as “few-image” species, with the remainder treated as “many-image.” Combining these two factors yields four groups: *few-image + non-covered*, *few-image + covered*, *many-image + non-covered*, and *many-image + covered*. We report the results of these groups in Table 17, together with Rare Species, of which the species are not seen during training. Across all groups, BIOCAP consistently outperforms CLIP and BioCLIP. The improvements are most pronounced for the two most challenging conditions (*few-image + non-covered* and *few-image + covered*), indicating that caption-guided training is beneficial even when both visual data and external descriptions are limited. BIOCAP also shows clear gains on the Rare Species set, suggesting that

1620 Table 18: **Few-shot species classification top-1 accuracy across 10 tasks. Bold** and underlined
 1621 values indicate the **best** and second best results. All models use the ViT-B/16 visual encoder.

Model	Animals					Plants & Fungi					Mean
	NABirds	Plankton	Insects	Insects 2	Camera Trap	PlantNet	Fungi	PlantVillage	Med. Leaf	Rare Species	
<i>One-Shot Classification</i>											
CLIP (ViT-B/16)	24.5 \pm 1.0	21.8 \pm 1.1	19.8 \pm 0.5	11.3 \pm 0.5	34.0 \pm 2.7	38.9 \pm 3.7	15.5 \pm 2.2	46.0 \pm 2.2	67.3 \pm 2.4	26.5 \pm 0.5	30.6
SigLIP	30.3 \pm 0.8	28.2 \pm 0.7	27.5 \pm 0.9	17.1 \pm 1.3	<u>35.1</u> \pm 2.8	57.1 \pm 4.1	21.9 \pm 1.8	58.9 \pm 2.4	79.6 \pm 1.9	32.7 \pm 0.3	38.8
Supervised-IN21K	45.4 \pm 0.5	25.6 \pm 0.9	23.9 \pm 0.9	20.8 \pm 1.0	34.3 \pm 2.5	58.2 \pm 4.4	28.6 \pm 3.7	59.5 \pm 1.9	81.3 \pm 1.8	36.1 \pm 0.6	41.4
DINOv3	47.8 \pm 0.7	36.4 \pm 1.1	10.1 \pm 0.4	19.3 \pm 0.6	43.0 \pm 2.5	60.7 \pm 3.5	23.8 \pm 1.9	66.4 \pm 2.1	94.3 \pm 1.5	41.7 \pm 0.7	44.4
BioTrove-CLIP	61.9 \pm 0.6	26.4 \pm 0.5	57.1 \pm 1.4	<u>20.9</u> \pm 0.7	31.2 \pm 2.3	69.7 \pm 3.4	47.3 \pm 2.1	55.8 \pm 3.4	83.5 \pm 1.1	34.9 \pm 0.4	48.9
BioCLIP	57.4 \pm 1.2	29.7 \pm 1.1	57.1 \pm 1.0	20.4 \pm 0.9	35.0 \pm 2.8	67.7 \pm 3.9	44.6 \pm 2.0	59.5 \pm 2.5	83.7 \pm 1.8	44.9 \pm 0.7	50.0
BioCAP	53.9 \pm 1.0	<u>31.2</u> \pm 0.7	<u>53.9</u> \pm 1.0	23.5 \pm 1.3	33.1 \pm 3.0	<u>68.9</u> \pm 3.9	41.2 \pm 1.4	66.9 \pm 1.8	86.9 \pm 1.8	45.4 \pm 0.8	50.5
<i>Five-Shot Classification</i>											
CLIP (ViT-B/16)	48.2 \pm 0.3	36.2 \pm 0.7	36.7 \pm 0.6	22.0 \pm 0.1	51.7 \pm 1.8	59.6 \pm 2.1	24.1 \pm 2.1	69.9 \pm 1.2	86.1 \pm 0.8	43.3 \pm 0.3	47.8
SigLIP	54.2 \pm 0.4	47.9 \pm 0.6	48.0 \pm 0.8	30.2 \pm 0.7	52.2 \pm 2.0	76.6 \pm 1.8	36.2 \pm 2.0	78.5 \pm 0.7	92.4 \pm 1.7	50.8 \pm 0.4	56.7
Supervised-IN21K	66.7 \pm 0.1	51.0 \pm 0.4	47.7 \pm 0.6	35.9 \pm 1.2	57.6 \pm 2.2	80.7 \pm 1.6	51.5 \pm 1.6	83.5 \pm 1.3	96.5 \pm 1.2	57.7 \pm 0.2	62.9
DINOv3	75.5 \pm 0.4	61.0 \pm 1.0	28.7 \pm 0.5	<u>37.1</u> \pm 1.4	69.3 \pm 2.2	86.3 \pm 1.5	50.3 \pm 2.0	<u>85.6</u> \pm 1.7	99.2 \pm 0.5	67.5 \pm 0.4	66.1
BioTrove-CLIP	78.5 \pm 0.2	44.6 \pm 0.6	77.0 \pm 0.8	34.2 \pm 0.6	47.9 \pm 2.0	<u>86.0</u> \pm 1.0	65.2 \pm 0.8	75.1 \pm 0.8	96.2 \pm 0.7	51.3 \pm 0.2	65.6
BioCLIP	78.2 \pm 0.3	49.2 \pm 1.1	78.0 \pm 0.6	33.9 \pm 0.6	54.3 \pm 2.2	85.7 \pm 1.7	61.6 \pm 1.9	81.7 \pm 1.1	96.7 \pm 0.6	65.7 \pm 0.4	68.5
BioCAP	77.0 \pm 0.3	<u>51.1</u> \pm 0.8	<u>77.0</u> \pm 0.4	38.1 \pm 0.4	48.4 \pm 2.4	85.4 \pm 1.8	<u>63.2</u> \pm 3.1	86.2 \pm 0.5	<u>96.9</u> \pm 0.3	<u>67.3</u> \pm 0.4	69.1

1640 Table 19: **Biological visual tasks beyond species classification.** Bold and underlined entries indicate
 1641 the **best** and second best accuracies.

Model	Animals				Plants				Mean
	FishNet	NeWT	AwA2	Herb. 19	PlantDoc				
<i>Animals</i>									
CLIP (ViT-B/16)	25.3 \pm 0.1	79.7 \pm 0.2	<u>66.0</u> \pm 0.6	15.6 \pm 0.2	17.5 \pm 3.3	40.8			
SigLIP	<u>31.9</u> \pm 0.1	83.2 \pm 0.1	67.3 \pm 0.6	18.6 \pm 0.2	28.2 \pm 5.3	45.8			
Supervised-IN21K	29.4 \pm 0.1	75.8 \pm 0.2	52.7 \pm 1.6	14.9 \pm 0.1	25.1 \pm 1.1	39.6			
DINOv3	37.9 \pm 0.1	85.7 \pm 0.0	48.0 \pm 2.8	31.2 \pm 0.2	40.3 \pm 1.2	48.6			
BioTrove-CLIP	22.1 \pm 0.0	82.5 \pm 0.1	45.7 \pm 0.7	20.4 \pm 0.2	37.7 \pm 1.2	41.7			
BioCLIP	30.1 \pm 0.2	82.7 \pm 0.1	65.9 \pm 0.3	26.8 \pm 0.4	<u>39.5</u> \pm 2.3	49.0			
BioCAP	29.5 \pm 0.3	<u>84.5</u> \pm 0.2	65.6 \pm 1.1	28.1 \pm 0.1	37.7 \pm 3.1	49.1			
<i>Plants</i>									

1656 the morphological priors encoded in synthetic captions support strong generalization even to species
 1657 unseen during training.

NEW

1659 E.5 PERFORMANCE ON FEW-SHOT CLASSIFICATION AND BIOLOGICAL VISUAL TASKS

1660 Beyond zero-shot classification and retrieval, we further evaluate BioCAP on few-shot species
 1661 classification and additional biological visual tasks (Khan et al., 2023; Van Horn et al., 2021; Xian
 1662 et al., 2018; Tan & Liu, 2019; Singh et al., 2020) in Table 18 and Table 19, respectively. We observe
 1663 an overall improvement of BioCAP over BioCLIP in few-shot classification and a similar result in
 1664 other biological visual tasks. We believe the smaller gap compared with zero-shot and multimodal
 1665 retrieval is expected, given the nature of the added supervision. Compared with species names alone,
 1666 descriptive captions introduce more “disturbances” that enrich the semantics carried by the embedding
 1667 but also distract embeddings from the species prototypes. BioCAP yields a more interpretable intra-
 1668 class structure tied to biological semantics. However, this supervision does not explicitly enforce
 1669 more separation between visual embeddings of different species. Therefore, when captions provide
 1670 better semantic organization and multimodal alignment, they do not contribute to better few-shot
 1671 classification performances. This is supported by results in Table 20. We compare models trained
 1672 with varying caption qualities. We observe that while higher-quality captions significantly boost
 1673 zero-shot and retrieval metrics shown in Table 2, few-shot performance shows minimal variance. This
 indicates that few-shot capability is weakly correlated with the granularity of language supervision

1674
 1675
 1676
 1677
 1678
 1679 Table 20: **Effects of different captions on few-shot species classification top-1 accuracy across 10**
tasks. *None* uses no caption; *Wiki Page* uses Wikipedia visual text; *Synthetic* uses MLLM-generated
 1680 captions via simple (*Base*) or trait-focused (*Trait*) prompts. Domain-specific contexts include format
 1681 examples (*Example*) and Wikipedia-derived info (*Wiki*). The results demonstrate that varying caption
 1682 generation strategies yields marginal performance differences in the few-shot setting. **Bold** and
 1683 underlined values indicate the **best** and second best results.

Strategy	Caption	Prompt	Context	Animals				Plants & Fungi				Rare Species	Mean	
				NABirds	Plankton	Insects	Insects 2	Camera Trap	PlantNet	Fungi	PlantVillage			
				One-Shot Classification										
None	-	-	-	45.1 \pm 0.9	29.9 \pm 1.2	45.6 \pm 1.5	18.7 \pm 0.6	33.3 \pm 3.6	64.1 \pm 3.7	35.8 \pm 1.8	59.8 \pm 2.7	78.0 \pm 1.7	36.9 \pm 0.5	44.7
Wiki Page	-	-	-	40.8 \pm 1.0	31.9 \pm 1.7	42.4 \pm 1.6	19.5 \pm 1.0	35.3 \pm 2.5	60.7 \pm 3.9	35.0 \pm 0.6	58.9 \pm 3.4	82.1 \pm 1.7	38.1 \pm 0.7	44.5
Synthetic	Base	-	-	38.6 \pm 0.8	34.3 \pm 0.6	40.3 \pm 1.5	20.0 \pm 0.7	34.6 \pm 3.4	58.1 \pm 2.2	34.0 \pm 2.1	62.2 \pm 3.9	81.9 \pm 2.7	35.9 \pm 0.5	44.0
Synthetic	Trait	-	-	41.5 \pm 0.8	29.9 \pm 1.4	42.1 \pm 1.2	19.5 \pm 0.9	34.3 \pm 3.2	63.1 \pm 3.6	35.3 \pm 1.8	60.9 \pm 3.3	81.1 \pm 2.1	37.2 \pm 0.8	44.5
Synthetic	Trait	Example	-	41.9 \pm 0.7	31.5 \pm 1.3	43.5 \pm 1.4	19.3 \pm 0.8	34.5 \pm 2.9	64.1 \pm 4.3	34.9 \pm 1.3	61.5 \pm 3.1	79.6 \pm 2.1	36.8 \pm 0.4	44.8
Synthetic	Trait	Example+Wiki	-	<u>43.3</u> \pm 0.9	31.8 \pm 1.6	<u>43.5</u> \pm 0.7	19.3 \pm 1.0	33.8 \pm 4.6	<u>63.5</u> \pm 0.6	35.6 \pm 2.9	<u>61.6</u> \pm 1.6	78.7 \pm 0.7	<u>37.8</u> \pm 0.7	44.9
Five-Shot Classification														
None	-	-	-	67.0 \pm 0.4	55.7 \pm 0.6	65.0 \pm 0.4	34.8 \pm 0.6	52.4 \pm 2.2	78.3 \pm 1.0	50.6 \pm 1.1	84.2 \pm 0.9	95.8 \pm 0.8	57.1 \pm 0.3	64.1
Wiki Page	-	-	-	69.0 \pm 0.3	49.2 \pm 0.7	69.9 \pm 0.7	33.4 \pm 0.6	53.5 \pm 1.2	82.0 \pm 1.1	54.6 \pm 1.0	79.6 \pm 0.7	93.3 \pm 0.3	57.9 \pm 0.3	64.3
Synthetic	Base	-	-	66.2 \pm 0.3	<u>55.0</u> \pm 0.8	67.3 \pm 0.7	<u>34.5</u> \pm 0.4	55.3 \pm 2.0	78.9 \pm 1.4	54.8 \pm 1.2	82.5 \pm 1.0	93.6 \pm 1.0	58.2 \pm 0.3	64.6
Synthetic	Trait	-	-	67.0 \pm 0.3	49.7 \pm 0.5	67.7 \pm 0.3	<u>34.5</u> \pm 0.7	52.7 \pm 2.4	80.2 \pm 0.6	53.9 \pm 1.1	<u>83.2</u> \pm 0.8	<u>94.5</u> \pm 0.6	58.2 \pm 0.4	64.2
Synthetic	Trait	Example	-	67.0 \pm 0.3	51.6 \pm 0.4	68.1 \pm 0.6	33.9 \pm 0.3	53.3 \pm 2.1	81.0 \pm 1.0	54.5 \pm 1.1	81.8 \pm 1.2	93.2 \pm 0.8	<u>58.4</u> \pm 0.3	64.3
Synthetic	Trait	Example+Wiki	-	<u>67.4</u> \pm 0.3	51.2 \pm 1.0	<u>68.3</u> \pm 0.5	<u>34.5</u> \pm 0.9	53.0 \pm 3.1	<u>81.2</u> \pm 1.3	53.9 \pm 1.3	82.7 \pm 1.6	93.9 \pm 1.0	58.8 \pm 0.4	64.5

1695
 1696 and relies primarily on the intrinsic discriminative foundation of the visual backbone. On the other
 1697 hand, the generalization across other biological visual tasks arises from a larger training scale, as
 1698 stated in the *BIOCLIP 2* paper (Gu et al., 2025). Here, we use the same amount of data as *BIOCLIP*.
 1699 Therefore, it is also understandable that no such “emergent properties” occur.

NEW

1728 **F DISCUSSION WITH RECENT WORK**
1729

1730 This work proposes a new biological multimodal foundation model based on the combined supervision
 1731 of taxonomic names and descriptive captions. This direction is complementary to recent advances
 1732 that enrich biological models via scale or additional modalities. [Gu et al. \(2025\)](#) curate a large-
 1733 scale TreeOfLife-200M dataset, with which they demonstrate that scaling hierarchical contrastive
 1734 learning enables emergent properties. [Gharaee et al. \(2024\)](#) introduce DNA barcoding information
 1735 as additional supervision. This work does not aim to replace scaling or other supervision sources,
 1736 but focuses on an orthogonal direction of how synthetic captions help bridge biological images
 1737 with multimodal foundation models. We demonstrate in this paper that descriptive captions, when
 1738 grounded in biological knowledge, can significantly enhance the model’s understanding of rich
 1739 semantics and its species classification performance. The value of descriptive captions is, however,
 1740 largely underexplored so far [Vendrow et al. \(2024\)](#). It is also notable that the designed caption
 1741 generation pipeline can be feasibly scaled up for larger datasets and integrated with more supervision
 1742 dimensions through techniques like TaxaBind ([Sastry et al., 2025](#)).

1743 A parallel line of work strengthens CLIP-style training by improving or expanding captions. FG-
 1744 CLIP ([Xie et al., 2025](#)) constructs region-specific annotations, targeting fine-grained alignment
 1745 capabilities. LaCLIP ([Fan et al., 2023](#)) uses LLMs to generate multiple versions of each caption
 1746 according to format examples. VeCLIP ([Lai et al., 2024](#)) rewrites noisy web text into visual-enriched
 1747 captions and mixes them with alt-text for training. CapsFusion ([Yu et al., 2024](#)) obtains descriptive
 1748 captions from captioning models and refines them with large language models to achieve more
 1749 semantically aligned supervision. These advances have pushed the frontier of general-domain
 1750 multimodal foundation models and also enabled the pipeline of our approach. However, previous
 1751 efforts mainly focus on general images, with limited exploration of scientific domains like organismal
 1752 biology. When the pipeline is naively applied to biology, we empirically observe more hallucinations
 1753 about biological details and oversight on discriminative traits. As discussed in §3, noisy captions can
 1754 potentially harm the multimodal alignment. To this end, we explicitly inject the domain knowledge
 1755 into the MLLM context. We demonstrate that the domain-specific contexts reduce hallucination and
 1756 produce captions with more accurate biological details. Our work complements the gap for biological
 1757 foundation models to explore the value of descriptive captions.

1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

1782 **G HUMAN EVALUATION**
17831784 **G.1 EVALUATION INSTRUCTION**
17851786 Evaluation Task and Criteria
17871788 **Objective**

1789 The goal of this study is to validate the quality and reliability of automatically generated
1790 captions. Your task is to independently evaluate them along predefined criteria. Specifically,
1791 we have sampled a set of examples, each paired with multiple candidate captions. For each
1792 example, you will review the captions and select the one that performs best under each
1793 evaluation criterion.

1794 **Criterion-Level Assessment**

1795 For each example, you will be provided with an image and three candidate captions. You are
1796 asked to evaluate the captions on four criteria:

- 1797 • **Groundedness:** Does the caption align with features actually visible in the image?
- 1798 • **Trait Specificity:** Does the caption highlight the most distinctive traits (e.g., color,
1799 patterns, morphology)?
- 1800 • **Completeness:** Does the caption cover the 2-3 most salient visible aspects?
- 1801 • **Clarity / Scientific Tone:** Is the caption written clearly, using precise and objective
1802 language?

1803 For each criterion, select the caption that best satisfies the requirement.

1804 **Notes**

- 1805 • Each criterion is independent: you may choose different captions across criteria.
- 1806 • Please read the criteria carefully and base your judgments only on the provided
1807 image and captions.
- 1808 • Please only select the best caption per criterion.

1812 Participant Information and Consent
1813

1814 **Thank you for agreeing to participate in this human evaluation study.** Before you begin,
1815 please carefully read the following information:

1816 **Voluntary Participation**

1817 Your participation in this study is entirely voluntary. You may stop at any time without
1818 penalty.

1819 **Purpose**

1820 The goal of this study is to evaluate the quality of automatically generated captions for
1821 biological images, using expert judgments across specific evaluation criteria.

1822 **Data Collected**

1823 Only your evaluation responses (e.g., which caption you select for each criterion) will be
1824 recorded.

1826 **No Personal Information**

1827 We will not collect any personally identifiable information (PII), such as your name, email
1828 address, or IP address. Your responses will remain anonymous.

1829 **Confidentiality**

1830 All data will be stored securely and used solely for research purposes. Results may be reported
1831 in aggregate form but will never be linked to individual evaluators.

1832 **Risks and Benefits**

1833 There are no anticipated risks associated with this study. While you may not receive di-
1834 rect personal benefit, your participation will contribute to the advancement of methods for
1835 evaluating scientific image descriptions.

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

Consent Statement

By clicking “Yes,” you confirm that you have read the information above, agree to participate in this evaluation, and acknowledge that no personal data will be collected.

G.2 EVALUATION STATISTICS

Table 21: Agreement between different human evaluators. Overall values are computed across all data (micro average).

Attributes	Metric	
	Raw Agreement	Gwet’s AC1
Groundedness	66.5	0.509
Specificity	64.7	0.482
Completeness	78.8	0.724
Clarity	80.0	0.750
Overall	72.5	0.615

We conduct a human evaluation to assess the quality of captions generated by three different strategies: *Base*, *Trait*, and *Trait+Example+Wiki (Ours)*. A total of 16 participants are involved in the study, including one ecologist and 15 computer science students. The evaluation covers 20 sets of images, each set containing 10 images, resulting in 200 images in total. For each image, we provide three candidate captions (one from each strategy) and ask evaluators to select the best one according to four evaluation attributes: *Groundedness*, *Specificity*, *Completeness*, and *Clarity*. Each image is independently evaluated by two different participants, ensuring two evaluation results.

We first report the win rate of each caption generation method, defined as the percentage of times a method’s caption is selected as the best among the three candidates. As shown in Table 5, our full method (*Trait+Example+Wiki*) consistently outperforms both baselines across all four evaluation attributes, supporting the effectiveness of domain-specific contexts in improving the caption quality.

In addition, we assess the agreement between the two human evaluators. We report both the *raw agreement* (the proportion of samples where two evaluators select the same caption) and *Gwet’s AC1* (Gwet, 2008), a chance-corrected agreement coefficient designed to provide stable estimates under imbalanced category distributions. Agreement is reported separately for each attribute, and we also report a micro-average across all data. As summarized in Table 21, both raw agreement (72.5% overall) and Gwet’s AC1 (0.615 overall) indicate substantial inter-evaluator agreement, corresponding to the “substantial” level in standard interpretation scales (Landis & Koch, 1977).

1890 **H DISCLOSURE OF LLM USAGE**
18911892 Portions of this manuscript were polished for clarity and readability using an LLM. The LLM was not
1893 used to generate research ideas, design experiments, analyze data, or draw conclusions. All scientific
1894 content, methods, and results are the authors' original work.
18951896 **I LIMITATIONS**
18971898 We use InternVL3 38B to generate the synthetic captions. The caption generation process is biased
1899 toward the adopted MLLM. Although we employ Wikipedia-derived visual information and taxon-
1900 tailored format examples to provide biological contexts, the emphasized traits may still vary across
1901 different MLLMs. In this work, we have not investigated the influence of different MLLMs on the
1902 generated captions. We treat this as an important question and will explore it in the future.
19031904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943