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BIOCAP: EXPLOITING SYNTHETIC CAPTIONS BEYOND
LABELS IN BIOLOGICAL FOUNDATION MODELS

Anonymous authors
Paper under double-blind review

Wikipedia-Derived Visual Information 

Calliope hummingbirds have glossy green on the back and crown with white 
underparts. The adult male has wine-red streaks on the gorget, green flanks, 
and a dark tail … Females and immatures have a pinkish wash on the flanks, 
dark streaks on the throat, and a dark tail with white tips …

Format Example

House Sparrow perches on a wooden fence 
in an urban setting, its stout conical bill, 
streaked brown back, and pale underparts 
blending with the surroundings …

A Calliope Hummingbird 
with green feathers, a 
white throat, and a 
bluish tint along the tail, 
with wings in motion.

Female Calliope Hummingbird hovers in 
mid-air, showing glossy green upperparts, 
white underparts, and faint dark streaks 
on the throat, with a short dark tail edged 
in white.

MLLM MLLM

Female/Immature

Male

Fly

Embedding 
Space

Figure 1: Left: Different strategies to create captions for biological images. Wikipedia offers rich
domain knowledge, but descriptions are often generic and not directly grounded in the given image.
Multimodal large language models (MLLMs) may hallucinate details when conditioned solely by
images (wrong color description in this example). Incorporating Wikipedia-derived visual information
and taxon-tailored format examples as contexts helps generate accurate, image-specific captions.
Right: Using these descriptive captions as additional supervision, BIOCAP captures fine-grained
biological semantics. Please refer to Figure 7 for detailed comparisons with other models.

ABSTRACT

This work investigates descriptive captions as an additional source of supervision
for biological multimodal foundation models. Images and captions can be viewed
as complementary samples from the latent morphospace of a species, each cap-
turing certain biological traits. Incorporating captions during training encourages
alignment with this shared latent structure, emphasizing potentially diagnostic
characters while suppressing spurious correlations. The main challenge, however,
lies in obtaining faithful, instance-specific captions at scale. This requirement
has limited the utilization of natural language supervision in organismal biol-
ogy compared with many other scientific domains. We complement this gap by
generating synthetic captions with multimodal large language models (MLLMs),
guided by Wikipedia-derived visual information and taxon-tailored format exam-
ples. These domain-specific contexts help reduce hallucination and yield accurate,
instance-based descriptive captions. Using these captions, we train BIOCAP (i.e.,
BIOCLIP with Captions), a biological foundation model that captures rich se-
mantics and achieves strong performance in species classification and text-image
retrieval. These results demonstrate the value of descriptive captions beyond labels
in bridging biological images with multimodal foundation models1.

1We attach caption metadata, source code, and the BIOCAP model in the anonymized repository.

1

https://kaggle.com/datasets/226b617cb6f1d489e7b70ab9e8c7f484d7aaf5da6006231989fb63538d35ca9f
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1 INTRODUCTION

Multimodal foundation models learn from vast datasets of paired visual and textual inputs (Radford
et al., 2021; Liu et al., 2023; Zhai et al., 2023; Hurst et al., 2024). They demonstrate strong
generalization across various downstream tasks, such as classification and visual question answering
(VQA) (Yue et al., 2024; Mai et al., 2025). In general domains, the web provides a nearly limitless
supply of such paired supervision (Gadre et al., 2023; Schuhmann et al., 2022). In scientific
applications, however, such resources are unevenly distributed. Biomedical imaging benefits from
clinical reports and radiology notes associated with image instances that offer detailed natural
language supervision (Wang et al., 2022; Li et al., 2023; Zhang et al., 2024a). By contrast, many other
scientific domains—including organismal biology, astronomy, geology, and material science (Stevens
et al., 2024; Parker et al., 2024; Vivanco Cepeda et al., 2023; Harnik et al., 2025)—often lack
instance-level textual descriptions and must solely rely on symbolic labels (e.g., species names). This
leaves the potential of natural-language captions untapped for scientific multimodal learning.

In this work, we focus on organismal biology. From the representation learning perspective, each
species can be described by an underlying latent vector in the morphospace, which encodes its
ground-truth biological characteristics, i.e., traits (Budd, 2021). Images and descriptive captions can
be viewed as two projections of this latent vector. Each captures certain traits while also introducing
noise (e.g., pose, lighting). Aligning both modalities encourages the model to recover the shared latent
structure and focus on potentially diagnostic characters, thereby suppressing reliance on spurious
correlations to noise. While the potential exists, in practice, the effectiveness relies on the availability
of captions that are both instance-specific and faithful. Noisy or hallucinated captions can, instead,
introduce contradictory signals that harm multimodal alignment (Huang et al., 2021).

Biological research has produced massive repositories of organismal images, but most are annotated
only with species names (Stevens et al., 2023b; Yang et al., 2024). Collecting instance-based
captions at scale is inherently challenging as expert-level annotation for millions of images demands
exhaustive human labor (Van Horn et al., 2018). A natural solution is to leverage recent progress in
multimodal large language models (MLLMs) to automatically generate image-aligned captions (Fan
et al., 2023; Lai et al., 2024). However, biological species differentiation often depends on subtle
morphological details. Without proper guidance, MLLMs tend to hallucinate about these details
due to the aforementioned noise in the images. Figure 1 shows such an example, where the model
incorrectly describes the color of the Calliope Hummingbird.

Upon this observation, we suggest that domain knowledge has to be incorporated in the context.
Specifically, we collect species-level visual information from Wikipedia as ground-truth characters.
As the model needs to attend to different traits to describe different species, we also curate format
examples based on taxonomic classes to encourage explicit focus. These domain-specific contexts
help MLLMs generate accurate and trait-focused descriptions grounded in the input image. As shown
in Figure 1, contextualizing the model with Wikipedia-derived visual information and taxon-tailored
format examples corrects the earlier hallucination and substitutes it with accurate biological details.

Building on these curated contexts, we generate instance-level synthetic captions for the large-scale
TreeOfLife-10M dataset (Stevens et al., 2023b). We then train the BIOCAP model (i.e., BIOCLIP
with Captions) with species names and captions as complementary supervision. As shown on the
right of Figure 1, BIOCAP demonstrates a rich understanding of biological semantics. Further
comparisons with BIOCLIP (trained without captions) and the initial CLIP checkpoint in Figure 7
show improved semantic alignment of BIOCAP. Quantitatively, BIOCAP is evaluated on species
classification and biological natural-language benchmarks, where it outperforms BIOCLIP by 8.8%
and 21.9%, respectively. These results answer the core question of this work: descriptive captions,
when grounded in biological knowledge, provide essential supervision that bridges organismal images
with multimodal foundation models.

2 RELATED WORK

2.1 MULTIMODAL FOUNDATION MODELS FOR SCIENTIFIC IMAGES

Multimodal large language models (MLLMs) such as GPT-4o (Hurst et al., 2024) and LLaVA (Liu
et al., 2023) have demonstrated a powerful ability in tasks involving images and natural language

2
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like captioning, VQA, and open-ended reasoning. This paradigm has been successfully extended
to specialized domains: LLaVA-Med (Li et al., 2023) adapts the LLaVA framework to radiology
for domain-specific VQA, ChemVLM (Li et al., 2025) reasons about molecular structures, and
BiomedGPT (Zhang et al., 2024a) unifies diverse biomedical tasks under a single multimodal
backbone.

In parallel, CLIP-style contrastive frameworks have also been adapted to a variety of scientific imagery
domains. BIOCLIP (Stevens et al., 2024; Gu et al., 2025) and BioTrove-CLIP (Yang et al., 2024)
align organismal images with taxonomic names. CLIBD (Gong et al., 2025) uses DNA barcodes
as supervision for biodiversity tasks. MedCLIP (Wang et al., 2022) extracts standardized UMLS
entities from radiology reports, and MoleCLIP (Harnik et al., 2025) clusters molecular fingerprints in
chemistry. CLIP allows for more flexible supervision signals when natural language resources are not
available for the specific data. Yet, it also leaves the value of natural language descriptions untapped
for these scientific domains. We provide a detailed discussion with concurrent work in §F.

2.2 SYNTHETIC CAPTION

One promising solution to overcome the lack of instance-level annotations is to generate synthetic
captions that provide fine-grained, image-grounded supervision. Recent work highlights the value of
high-quality text-image pairs for CLIP-style training. BLIP (Li et al., 2022) and LLaVA (Liu et al.,
2023) are widely used to produce semantically richer descriptions from large-scale web text-image
collections. Building on this idea, FG-CLIP (Xie et al., 2025) produces long captions and constructs
region-specific annotations, enabling fine-grained alignment. The caption’s semantic relevance and
granularity are critical for modality alignment. VeCLIP (Lai et al., 2024) and CapsFusion (Yu et al.,
2024) refine captions with large language models to achieve more semantically aligned supervision.
ALIP (Yang et al., 2023) adopts a bi-path strategy that combines web text with synthetic captions.
LaCLIP (Fan et al., 2023) leverages LLMs to generate multiple paraphrases of each caption. These
approaches highlight the utility of synthetic captions for improving modality alignment.

Beyond pretraining, synthetic captions have also been applied to specialized settings. Hyp-OW (Doan
et al., 2024) employs dense region-level captions to expand visual vocabulary and improve open-world
detection. In the MLLM space, MiniGPT-4 (Zhu et al., 2024) and LLaVA rely on GPT-4-generated
image descriptions and instruction-following data to equip models with conversational capabilities.

Despite these advances, most existing efforts target general-domain imagery and emphasize caption
quality or diversity. Organismal biology introduces additional challenges of fine-grained categoriza-
tion and domain-specific fidelity. To address these issues, we incorporate domain knowledge into the
generation process to reduce hallucination and produce faithful, instance-specific captions.

3 METHOD

There have been vast curations of organismal biology images through the efforts of biodiversity
researchers and citizen scientists. Many of them have reliable species labels, geolocation metadata,
and in some cases, DNA barcodes. However, descriptive captions are largely absent in these datasets.
Such captions, which describe human-interpretable visual traits and ecological context, provide
complementary information that species labels alone cannot capture. Yet at the same time, their
usefulness is dependent on being faithful and instance-specific. Such requirements make them difficult
to collect at scale, leaving much of their potential untapped. In this work, we investigate descriptive
captions as an additional source of training supervision for biological multimodal foundation models.
We first illustrate that descriptive captions, when grounded in biological knowledge, help align images
and their species labels. Given the absence of large-scale curated resources, we then explore the use
of MLLMs to generate instance-based synthetic captions for biological images.

3.1 BIOCAP

Let x be an image embedding, y ∈ Y its taxonomic label, and c the corresponding caption embedding.
We train BIOCAP (i.e., BIOCLIP with Captions) with two text views: the taxonomic label and
the descriptive caption. Both views are encoded by the text encoder and aligned with the image
embedding. Assume an underlying trait latent vector z∗ in the morphospace encodes the phenotypic

3
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“Selasphorus calliope”

“Description”

Taxonomy

Wikipedia Page
Query

Wikipedia Descriptive Excerpts 

“Description”: The calliope is the smallest 
breeding bird found in Canada and the United 
States … Calliope hummingbirds have glossy 
green on the back and crown with white 
underparts…
“Morphology”: …
“Appearance”: …

MLLM

Does it contain visual information?

Yes! It has visual info.

MLLM

Can you extract them?

Calliope hummingbirds 
have glossy green on the 
back and crown with 
white underparts. The 
adult male has wine-red 
streaks on the gorget …

Taxonomic Classes

Ave

OsteichthyesAmphibian

InsectaReptilia

1. House Sparrow;
2. Ardea Herodias;
3. Red-tailed Hawk.

... Gemini

1. House Sparrow perches on a wooden 
fence in an urban setting, its stout ...

2. Ardea Herodias wades in shallow 
wetland water, its tall frame ...

3. Red-tailed Hawk soars above open 
fields, its broad wings and warm …

MLLM

Domain-specific Context

Caption

Wikipedia Visual Info Format Example

“Identification”: …
“Feature”: …

Figure 2: The pipeline of collecting domain-specific context for MLLMs. We query Wikipedia
with the scientific name to get the corresponding webpage. After validating the full taxonomic rank,
we process the descriptive excerpts with MLLMs to extract visual information. For each taxonomic
class, we randomly select up to three species and curate format examples through Gemini Deep
Research. These contexts help MLLMs generate accurate and grounded descriptive captions.

characters of taxon y. From a causal generation perspective, the image x and caption c are two noisy
observations of the same z∗:

y → z∗ → {x, c}, x = g(z∗, ϵ), c = h(z∗, ϵ),

where ϵ represents spurious environmental factors (e.g., pose, lighting) that can lead to inaccurate
observation. Both the image and the caption capture certain aspects of the ground-truth traits, while
being influenced by noise. When captions are involved in the training, the contrastive objective
encourages the image embeddings to emphasize trait-relevant factors of the object that are shared
with captions, thereby reducing the influence of spurious environmental factors ϵ. Hence, the learned
representation becomes closer to the latent trait vector z∗ when the caption faithfully reflects visible
and potentially diagnostic characters of the species. On the contrary, if the caption captures too
much noise instead of the correct traits, the supervision may misguide optimization and degrade
classification performance. We further elaborate on this in §A.

Separated visual projectors. Given that supervision in our setting is heterogeneous, we introduce
two separate visual projectors after the shared visual encoder for taxonomic labels and captions,
respectively (Wang et al., 2024; Ranzinger et al., 2024). When the paired text input is a taxonomic
label, only the visual embedding after the taxonomy projector is matched, and vice versa. The visual
encoder and the text encoder remain shared across both pathways.

3.2 SYNTHETIC CAPTION

Based on the above discussion, the captions need to provide thorough and faithful views of the images
to assist alignment. Traits that represent the species should be highlighted, while the information not
visible or influenced by environmental factors should not be hallucinated. As shown in Figure 1, when
solely conditioned by the images, MLLMs tend to generate wrong descriptions due to complicated
environmental factors. Therefore, we propose to collect domain-specific contexts to regularize the
caption generation. Specifically, we use two context sources: Wikipedia-derived visual information
and taxon-tailored format examples. We present the pipeline for collecting these contexts in Figure 2.
The prompts used to collect captions and detailed processes are listed in §B.

Wikipedia visual information extraction. Wikipedia provides a comprehensive and accessible
knowledge base across the Tree of Life, with species-level descriptions that often contain appearance
information. As each instance within a species may have significant appearance variations, these
descriptions cannot be directly associated with images. Even so, they offer morphological vocabulary
that can be systematically extracted and leveraged in captions.

4
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As shown on the left of Figure 2, we scrape Wikipedia pages based on scientific names and validate the
page with the full taxonomy rank. Each page may contain various information regarding the species,
such as appearance, habitat, and distribution. We perform a quick filtering to keep the sections that
potentially have visual descriptions according to their title (e.g., “Description”). Qwen3 32B (Yang
et al., 2025) is then used to verify whether the kept paragraph contains visual information and to
extract such information. The model is forced to only focus on attributes such as color, pattern, shape,
texture, and other morphological characteristics. When no usable visual information is found for a
species, we apply the same process for the corresponding genus and map the description back to the
species if available. This pipeline yields 120K descriptions, covering 31.8% of the 383K species-level
taxa in TreeOfLife-10M (Stevens et al., 2024). The extracted Wikipedia visual information forms the
foundation of the subsequent caption generation process.

Format example design. MLLMs might struggle to decide which traits are salient for a given
organism. Direct prompting without guidance often leads to hallucination or oversight of important
details. Therefore, we design taxon-tailored format examples that illustrate the desired style and
content of descriptive captions. For each of the 347 taxonomic classes in TreeOfLife-10M, we
query Gemini Deep Research (Comanici et al., 2025) to retrieve candidate textual descriptions of
representative species. Each query returns descriptions of up to six species, from which we manually
validate trait accuracy and format consistency, and keep at most three per class. When reliable sources
are scarce, fewer than three species are included. This process yields 896 curated examples, which
explicitly encourage the model to attend to important traits given species labels.

Caption generation. With Wikipedia-derived visual information and taxon-tailored format examples
as domain-specific contexts, we leverage MLLMs to generate synthetic captions grounded in the
target images. Specifically, we use InternVL3 38B (Zhu et al., 2025) as the backbone and accelerate
inference with the vLLM framework (Kwon et al., 2023). When no Wikipedia information is
available for the species, we only incorporate format examples in the context. Such a process helps
the model generate trait-focused descriptions that emphasize visible appearance while avoiding
irrelevant or hallucinated details. Furthermore, this pipeline enables large-scale, efficient generation
of instance-level captions that complement taxonomy-based supervision.

4 EXPERIMENTS

BIOCAP is initialized from the OpenAI ViT-B/16 CLIP checkpoint (Radford et al., 2021) and trained
on TreeOfLife-10M (Stevens et al., 2023b) for 50 epochs with species labels and captions. We
evaluate BIOCAP on species classification tasks following BIOCLIP 2 (Gu et al., 2025), including
NABirds (Van Horn et al., 2015), Meta-Album (Ullah et al., 2022), IDLE-OO-Camera-Traps (Cam-
polongo et al., 2025; Island-Conservation; Desert-Lion-Conservation, 2024; Vélez et al., 2022;
Balasubramaniam, 2024; Yousif et al., 2019), and Rare Species (Stevens et al., 2023a). For evalu-
ating the understanding of natural language, we use INQUIRE-Rerank (Vendrow et al., 2024). In
addition, we collect paired text-image data from PlantID (Bruce Homer-Smith and contributors to
PlantID.net, 2025) and Cornell Bird (Macaulay Library, Cornell Lab of Ornithology, 2025) to test
retrieval performance in organismal domains. Hyperparameter settings and more data information
are presented in §C and §D, respectively.

4.1 MAIN RESULTS

Classification. We evaluate models in the zero-shot setting on ten species classification benchmarks
in Table 1. Compared with BIOCLIP, where captions are not involved in training, the accuracy
increases by 23.5% on Fungi and 7.1% on Rare Species, demonstrating stronger generalization to
challenging real-world settings. Overall, BIOCAP achieves an average top-1 accuracy margin of
8.8% over BIOCLIP and 27.0% over the original CLIP model (Radford et al., 2021).

Retrieval. We evaluate the natural language understanding on INQUIRE-Rerank (AP@50), Cornell
Bird and PlantID(Recall@10) in Table 2. Except for the Behavior and Context tasks in INQUIRE-
Rerank, BIOCAP achieves the best performance across all benchmarks. FG-CLIP is trained for
fine-grained retrieval tasks (Xie et al., 2025), yet BIOCAP shows clear advantages with an aver-
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Table 1: Zero-shot species classification top-1 accuracy across 10 tasks for different models.
Bold and underlined entries indicate the best and second best accuracies, respectively. BIOCAP
achieves the best performance across all benchmarks, with an average improvement of 8.8% over
BIOCLIP. All the compared models are based on the ViT-B/16 visual encoder.
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Mean

Random Guessing 0.2 1.2 1.0 1.0 3.5 4.0 4.0 2.6 4.0 0.3 2.2

CLIP (ViT-B/16) 39.0 3.3 7.4 9.3 28.1 52.5 8.6 5.1 15.0 25.7 19.4
SigLIP 50.2 3.7 17.6 17.6 26.7 76.3 28.3 26.1 45.4 30.7 32.3
FG-CLIP 48.3 1.9 6.9 9.3 26.4 55.6 7.3 5.9 15.7 29.4 20.7
BioTrove-CLIP 39.4 1.0 20.5 15.7 10.7 64.4 38.2 15.7 31.6 24.6 26.2
BIOCLIP 58.8 6.1 34.9 20.5 31.7 88.2 40.9 19.0 38.5 37.1 37.6
BIOCAP 67.6 7.2 41.9 23.7 37.4 93.6 64.4 33.0 51.4 44.2 46.4

Table 2: Performances on natural language tasks, including INQUIRE-Rerank (AP@50) and
two text-image retrieval (Recall@10) benchmarks. Bold and underlined entries indicate the best
and second best accuracies, respectively. I2T means image-to-text retrieval, and vice versa. With
the additional supervision from descriptive captions, BIOCAP achieves an average performance
advantage of 21.9% over BIOCLIP.

INQUIRE Rerank Cornell Bird PlantID

Model Appear. Behav. Context Species I2T T2I I2T T2I Mean

CLIP (ViT-B/16) 30.8 32.9 37.2 37.1 33.8 33.0 26.0 23.7 31.8
SigLIP 34.6 37.2 41.4 36.2 48.4 48.0 43.3 39.3 41.1
FG-CLIP 28.8 31.1 32.5 41.0 50.3 48.4 28.9 28.4 36.2
BioTrove-CLIP 28.5 22.2 30.5 39.5 16.6 15.3 48.0 51.5 31.5
BIOCLIP 27.4 27.2 30.8 41.1 15.4 16.7 48.4 45.5 31.6
BIOCAP 37.1 33.6 37.0 43.0 56.5 55.0 82.6 83.3 53.5

age performance margin of 17.3%. These results indicate that trait-grounded synthetic captions
substantially enhance fine-grained, expert-style retrieval of biological knowledge.

4.2 ABLATION STUDY

For ablation studies, we train models with TreeOfLife-1M (Stevens et al., 2024) for 100 epochs.

Influence of different captions. As illustrated before, the alignment between captions and potential
diagnostic traits is critical to the model training. We conduct ablations to examine the impact of
different caption generation strategies in Table 3. Using only taxonomic labels without captions
(None) corresponds to BIOCLIP, and is set as the baseline. Adding raw Wikipedia text as captions
is a straightforward way to involve domain knowledge. We demonstrate by Wiki Page that using
non-instance-specific captions provides improvements in retrieval but does not help classification.

Then we incorporate MLLMs to generate instance-based synthetic captions. The Base prompt
asks the model to “describe this image in short.” Without emphasis on traits, the captions contain
inaccurate descriptions and degrade the performance. It corresponds to our previous analysis that
noise in captions harms multimodal alignment. The Trait prompt explicitly requires the model to
focus on traits, which substantially reduces the influence of environmental nuisance. Building upon
the Trait prompt, we further introduce taxon-tailored format examples and Wikipedia-derived visual
information as domain-specific contexts. Trait+Example+Wiki demonstrates the best performance,
and is used to generate captions for the other experiments. All the adopted prompts are listed in §B.3.
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Table 3: Influence of different captions. None: no caption is used
in training (BIOCLIP); Wiki Page: a sentence from the Wikipedia
visual information; Synthetic: captions generated by MLLMs. Syn-
thetic captions involve the option of simple prompts (Base) and
trait-focused prompts (Trait). Domain-specific contexts in MLLM
inputs: Example: format examples; Wiki: Wikipedia-derived vi-
sual information. The average performances on each benchmark
category (CLS: classification; INQ: INQUIRE-Rerank) are reported.

Strategy
CLS

Retrieval
INQ

Caption Prompt Context I2T T2I

None – – 30.2 30.5 31.2 30.0
Wiki Page – – 30.0 47.2 47.1 30.3
Synthetic Base – 27.0 26.7 28.2 29.9
Synthetic Trait – 30.8 44.6 45.2 33.2
Synthetic Trait Example 31.8 47.5 48.1 33.9
Synthetic Trait Example+Wiki 33.8 54.7 54.3 34.8

Classification
INQUIRE

Retrieval I2T

Retrieval T2I
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dual proj

Figure 3: Ablation study on
training recipes. 200 epochs:
model trained for 200 epochs
with species labels; single pro-
j/dual proj: projector settings
for caption alignment.

Table 4: The influence of the training set components.
We incrementally add Wikipedia-covered and non-covered
species into training with different supervisions to validate
the generalization of synthetic captions. The results on
the covered/non-covered test species are reported. Name:
species name; Caption: synthetic captions.

Training Component Classification

Covered Non-covered Covered Non-covered

Name – 35.7 40.1
Name+Caption – 37.5 42.7
Name Name 35.8 43.5
Name+Caption Name 38.6 46.6
Name+Caption Name+Caption 45.3 48.8

Table 5: Win rate of different syn-
thetic captions in the human evalua-
tion. Base: naive prompt; Trait: trait-
focused prompt; Ours: Trait+domain-
specific contexts.

Method

Attributes Base Trait Ours

Groundedness 5.7 11.9 82.4
Specificity 10.3 8.9 80.8
Completeness 5.1 7.6 87.3
Clarity 5.1 5.7 89.2
Average 6.6 8.5 85.0

Training recipe. In BIOCAP, we adopt two separate visual projectors to align species names and
captions, respectively. To ablate this design, we train a model with a single visual projector that
aligns species and captions at the same time, named as single proj in Figure 3. Our two-projector
design is named dual proj. The results show that dual proj consistently outperforms single proj,
which validates the necessity of decoupling supervision signals in heterogeneous multimodal training.
Additionally, caption generation introduces additional computation time. To assess the fairness, we
naively double the training epochs and report the results as 200 epochs in Figure 3. The results show
an obvious gap between 200 epochs and other variants, supporting the worth of synthetic captions.

Training set components. Wikipedia provides faithful domain knowledge as contexts for MLLMs.
However, it does not cover all the species for usable visual descriptions (See §B.2). We incrementally
add different training components to evaluate the generalization of synthetic captions in Table 4.
Specifically, we partition the training set based on whether the species are covered by Wikipedia
(32.3% of the total species-level taxa in TreeOfLife-1M). We also separate classification benchmarks
into the two groups (76.2% covered by Wikipedia). In the table, Name refers to taxonomy-only
supervision, while Name+Caption denotes the joint supervision with synthetic captions. The results
show that adding captions to Wiki-covered species also enhances the understanding of non-covered
species. Incorporating both taxonomy and captions for all species achieves the best results, even if
many species are not covered by Wikipedia, indicating generalization of caption-encoded knowledge.

Caption evaluation. We conduct a human evaluation to assess the quality of the generated captions.
As shown in Table 5, we evaluate the captions along four metrics (Groundedness: if the description
is visible in the image; Specificity: if the caption describes distinctive traits; Completeness: if the
caption covers 2-3 most salient aspects; Clarity: preciseness and objectiveness). We randomly sample
200 images from TreeOfLife, covering 200 distinct taxonomic classes. For each image, we provide
three captions: one generated by our full method (Trait+Example+Wiki) and two obtained from
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Table 6: Influence of example number. We vary
the number of taxon-tailored format examples
per class and report the resulting performances.

Num of CLS Retrieval INQ
Examples I2T T2I

1 33.2 52.7 53.2 33.9
3 33.8 54.7 54.3 34.8
5 34.0 54.3 54.7 34.5
7 33.7 54.5 54.6 34.6

Table 7: Comparison across caption genera-
tors and model sizes. We report the resulting
performances under each setting.

Generator Size CLS Retrieval INQ
I2T T2I

InternVL3 8B 31.7 49.4 50.2 33.7
InternVL3 78B 33.9 54.8 55.6 34.5
InternVL3 38B 33.8 54.7 54.3 34.8
Qwen-2.5-VL 32B 34.1 53.3 55.5 35.2
LLaVA-NeXT 34B 32.9 54.1 54.7 34.4

A tall orange and yellow 
flower standing by the 
water, shaped like a torch, 
with green plants around it.

A striking red hot poker with 
fiery tubular flowers fading to 
yellow, rising above pond lilies, 
attracting hummingbirds nearby.

The red hot poker shows a tall 
conical inflorescence of orange-
to-yellow tubular flowers rising 
above a pond with water lilies.

A small bird with green 
feathers and a white patch 
sits quietly on a branch. 

The White-Eared Honeyeater 
shows an olive back, pale ear 
spot, and dark face while 
standing on a tree. 

The White-Eared Honeyeater 
displays a black head, white ear-
coverts, and olive-green body 
while perched on a branch

A tiny bug-like shape sits on 
a stick, seen against a 
blurry background.

The common elbow orchid 
shows what looks like a small 
insect clinging to a thin stem 
with delicate parts.

The common elbow orchid 
displays small, insect-like flowers 
on a slender, arching stem with 
a few basal bracts. 

Trait+Example+Wiki (Ours) Trait BaseImage & Species

Red Hot 
Poker 

White-Eared 
Honeyeater 

Common 
Elbow Orchid

Figure 4: Captions generated by different strategies (refer to Table 3 and §B.3). The domain-
specific contexts of taxon-tailored format examples and Wikipedia-derived visual information signifi-
cantly reduce hallucination and provide more accurate descriptions of the target object.

alternative strategies (Base and Trait). The order of captions is randomized. Human evaluators are
asked to select the best caption under each metric. Each caption is independently assessed by two
evaluators. The results show that captions generated by our full pipeline are recognized by human
evaluators to be accurate and image-specific. Detailed statistics are included in §G.

Ablation on format examples. Format examples guide MLLMs to emphasize different traits across
species. We examine the influence of varying the number of examples per taxonomic class in Table 6.
Using only one example for the entire class limits diversity, leading to suboptimal performances.
Three or more examples yield similar results. Considering performances and computational cost, we
adopt three examples per class in the other experiments. We also include generating format examples
at the order level instead of the class level and assess the stability across multiple runs in §E.3. NEW

MLLM family and model size. We evaluate using different MLLMs to generate descriptive captions,
including LLaVA-NExT (Zhang et al., 2024b), Qwen2.5-VL (Bai et al., 2025), and InternVL3. We
also vary the parameter scales of InternVL3 (8B, 38B, 78B) and report the results in Table 7. We
observe that captions produced by Qwen2.5-VL and InternVL3 lead to almost the same downstream
performance, while LLaVA-generated captions result in slightly lower performance. Overall, the
proposed caption generation pipeline is robust across different MLLMs. For model size, the 8B
variant produces weaker results, whereas the 38B and 78B models show almost the same performance.
Therefore, we select InternVL3 38B for the other experiments. Overall, the caption-generation
pipeline does not rely on extremely large or highly specialized MLLMs, and the proposed framework
remains stable across both model families and parameter scales. NEW

4.3 ANALYSIS AND DISCUSSION

Qualitative comparison of captions. Figure 4 illustrates qualitative comparisons of generated
captions. The second column corresponds to our full strategy (Trait+Example+Wiki). Using the
Base or Trait prompts without domain-specific contexts leads to hallucination (the common elbow

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Input CLIP BioCLIP BioCAP

“Tail” “Crest” “Northern Cardinal”

CLIP BioCLIP BioCAP CLIP BioCLIP BioCAP

“Antennae” “Legs” “Lygus lineolaris”

“Petal” “Pistil” “Peruvian Lily”

Figure 5: Grad-CAM visualization of CLIP, BIOCLIP, and BIOCAP, given species names
and biological concepts frequently mentioned in their captions. Comparatively, BIOCAP offers a
comprehensive understanding of these concepts and connects them to the corresponding species.

“Crawl”

“Fly”

Input CLIP BioCLIP BioCAP Input CLIP BioCLIP BioCAP

“Fly”

“Feed”

Figure 6: Grad-CAM visualization of CLIP, BIOCLIP, and BIOCAP, given behaviors. BIOCAP
correctly highlights the body parts related to the behaviors.

orchid flower misrecognized as an insect) and inaccurate descriptions (vague color descriptions for
the white-eared honeyeater). In contrast, introducing format examples and Wikipedia-derived visual
information significantly improves the instance-specificity and faithfulness of the synthetic captions.

Why are captions helpful for classification? To better understand the effects of captions, we use
Grad-CAM (Zhou et al., 2016) to visualize model attention given species names and high-frequency
biological concepts mentioned in the corresponding captions in Figure 5. The visualization shows
that BIOCAP learns to localize biologically meaningful traits and associate them with the species
names. It corresponds to our analysis in §3.1 that captions help model focus on diagnostic characters
during training, and thereby improve classification performance. The information on Grad-CAM
implementation and high-frequency concept is presented in §C.3.

Semantic Understanding. In addition to specific traits, we further analyze whether captions help
align embeddings with broader biologically meaningful semantics (Figure 6). Using Grad-CAM, we
visualize model attention given behavior-related words such as fly, feed, and crawl. Compared with
CLIP and BIOCLIP, BIOCAP accurately highlights the body parts related to these behaviors, for
instance, activation of wings for “fly” and legs for “crawl.”

Beyond instance-level understanding, we also visualize the relationship between instances with t-SNE
across three bird species in Figure 7, annotated with both behaviors (perch, fly, stand) and sex (male,
female/immature). General-purpose models like CLIP and DINOv3 form loose species clusters
and conflate sex distinctions. They also mistakenly align female/immature red-winged blackbirds
with brown-headed cowbirds. BIOCLIP learns the species distinction, but fails to differentiate the
behavior variations. Comparatively, BIOCAP produces compact species clusters and separation
of various biological semantics. These results further demonstrate the effectiveness of descriptive
captions in enhancing the understanding of various biological concepts. The collection process of
behavior labels is presented in §C.4. We provide more qualitative results in §E.
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Red-winged blackbird Calliope hummingbird Brown-headed cowbird
Female/Immature Male

Perch Fly Stand

DINOv3 CLIP BioCLIP BioCAP

FlyFly

Hummingbird Hummingbird

Blackbird Blackbird

Cowbird Cowbird

Stand Perch

Figure 7: Embedding distribution of three bird species with sex and behavior annotations. On the
right, we provide example images corresponding to each label. DINOv3 and CLIP fail to align male
and female red-winged blackbirds while mixing male and female hummingbirds. BIOCLIP does not
capture the semantical difference between behaviors. With the guidance of captions, BIOCAP tells
the subtle difference between perch and stand and accurately separates the behavior variants.

5 CONCLUSION

This paper investigates using instance-level descriptive captions as a complementary supervision for
biological multimodal foundation models. Due to the lack of such resources at scale, we incorporate
multimodal large language models (MLLMs) to generate synthetic captions. We curate Wikipedia-
derived visual information and format examples to reduce hallucination and produce accurate,
instance-specific captions. Aligning images with captions encourages the model to emphasize
potential diagnostic traits while reducing the influence of environmental factors. The acquired
BIOCAP model demonstrates rich understanding of a broad range of biological semantics. The
superior performance in species classification and biological text-image retrieval highlights the value
of descriptive captions in bridging biological images with multimodal foundation models.

ETHICAL STATEMENT

Our study involves human evaluation of automatically generated captions for organismal biology
images. Participants were asked only to express preferences between different caption candidates
based on the associated image. No personal or identifiable information was collected, and the task
posed minimal risk. Participation was voluntary, and participants were engaged without coercion.
As the task did not involve sensitive data, medical decisions, or personal attributes, institutional
review board (IRB) approval was not required under our institution’s policies. We emphasize that the
generated captions are intended for scientific research purposes. Nonetheless, we acknowledge the
potential risk of inaccurate or misleading captions, and we therefore recommend their use only as
research tools and not as authoritative sources.

REPRODUCIBILITY STATEMENT

We have attached the source code used for model training and evaluation, and the generated captions
associated with the UUID of the TreeOfLife-10M dataset in the anonymized repository. The details
regarding caption generation are presented in §B. The training hyperparameters and details to
reproduce our evaluation results are included in §C. The information on adopted benchmarks is listed
in §D. We will release the source code on GitHub and publish the collected captions in Hugging Face
upon acceptance.
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A ANALYSIS ON THE IMPACT OF CAPTIONS IN TRAINING

Let x be an image embedding extracted by the visual encoder, y ∈ Y the taxonomic label, c the
textual embedding of a corresponding descriptive caption, z∗ the underlying latent vector of ground-
truth traits associated with the taxon y, and ϵ ⊥ z∗ the environmental noise influencing the trait
observation. Assume the image x and the caption c are derived from a linear transformation on the
latent vector z∗ and noise ϵ:

x = Az∗ +Gϵ+ ηx, c = Bz∗ +Dϵ+ ηc,

where ηx and ηc are independent zero-mean Gaussian noises. The label y can be directly determined
by z∗ and is irrelevant to the noise ϵ. The target is to optimize the encoders so that x is aligned with
z∗, and thereby the label y can be derived from x. We train the model with InfoNCE loss:

LNCE = Ep(x,c)

[
−s(x, c) + logEp(x′ )

∑
exp s(x

′
, c)

]
,

where
s(x, c) =

1

τ
ϕ(x)⊤ψ(c).

Wang & Isola (2020) show that the contrastive loss optimizes alignment and uniformity properties.
The alignment part increases the image-caption inner product E[x⊤c], while the uniformity part
preserves maximum information. For l2-normalized features, E[x⊤c] = tr(Σxc), i.e., the cross-
covariance between the two views. We have:

Σxc = AB⊤ +GD⊤,

which decomposes into the trait-shared component AB⊤ and the nuisance-shared component GD⊤.
If captions capture the diagnostic characters without noise disturbance (D = 0), the trait term AB⊤

dominates the cross-covariance. The learned image projection, therefore, aligns with trait directions
and drops nuisance. Thus, the faithful caption c helps species classification. On the contrary, if
the caption covaries with image nuisance ϵ, GD⊤ adds to Σxc. The InfoNCE loss pulls the image
embedding toward the range of G, which leads to spurious correlation and potential performance
drop. Based on these analyses, we propose to generate synthetic captions that ground biological
knowledge to enhance the alignment between images and labels.
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B DETAILS ON CAPTION GENERATION

In this section, we list the adopted prompts and pipeline details for collecting descriptive captions.
We also present some ablation of the visual information extraction pipeline.

B.1 PROMPTS

Format example generation. For each of the 347 taxonomic classes in TreeOfLife-10M, we
query Gemini Deep Research (Comanici et al., 2025) to retrieve candidate textual descriptions of
representative species. Each query returns up to six candidate descriptions together with images, each
representing one species within the class. We manually validate trait accuracy and format consistency
based on the images of the species, and keep at most three per class. The images are only used to
validate the format example, but are not used in our model training. When reliable sources are scarce,
fewer than three species are included. This process yields 896 curated examples, which are then
incorporated into the context to guide the model in generating trait-focused captions in a consistent
style. The prompt used for Gemini Deep Research is listed below.

Prompt for Format Example Generation

You are a biologist describing organisms strictly on the basis of visible characteristics in an
image. Your task is to generate short, fluent, and biologically meaningful captions for a given
class, using examples drawn from different species within that class. Captions must be based
on real samples and grounded in visual evidence.

Requirements:
• Provide 6 diverse format examples captions from different species within the class.
• Captions must emphasize salient visual traits (e.g., color, shape, pattern, texture,

body structure).
• If clearly visible, background or environmental features may be included, but only

when they are explicitly apparent in the image.
• Each caption must contain either the scientific name or the common name (not

both).
• Do not begin directly with the name; instead, weave it naturally into the caption text.
• Each caption must not exceed 35 words.
• Each caption must be linked to a corresponding image URL, which should point to

the actual visual sample used for description.
• Maintain a concise, scientific style, with variation across examples.
• If the class contains too few distinctive species, provide fewer than three examples;

if no usable information is available, output “N/A”.

Output Format:
• Two columns for all provided classes:

1. Class name
2. Examples (listed as 1, 2, 3, ...), each followed by its corresponding image URL

Now, generate examples for given classes: {classes}

Wikipedia visual information extraction. Format examples encourage MLLMs to focus on im-
portant traits for different species. We also leverage Wikipedia as a large-scale resource to provide
detailed visual information across the Tree of Life. The descriptions of visual information on
Wikipedia pages are often mixed with habitat, behavior, and distributional information. We perform
a quick filtering based on the section titles of the Wikipedia pages and keep those with potential
visual information, including “description”, “morphology”, “appearance”, “identification”, “feature”,
“characteristics”, “physical”, “structure”, and “explanation of names.”
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After the quick filtering, we design a verifying and extraction pipeline to further extract visual
information such as color, pattern, shape, and texture. This process yields over 122K trait-focused
descriptions, covering 30.0% of the 406K species-level taxa in TreeOfLife-10M (Stevens et al., 2024).
The prompt used to filter and extract morphological traits from Wikipedia is provided below.

Prompt for Wikipedia Visual Information Verification

You are given a textual description of a species.
Your task is to determine whether the description contains any information about the species’
visible appearance (including features, colors, shapes, patterns, textures, or other morpho-
logical characteristics).
Respond strictly with: "Yes" or "No".

Examples:
“Bagada is a genus of moths of the family Noctuidae.” → No

“Aetheolaena rosana is a species of flowering plant in the family Asteraceae. It is
found only in Ecuador. Its natural habitat is subtropical or tropical moist montane
forests. It is threatened by habitat loss.” → No

“The fur of the African wild dog differs significantly from that of other canids,
consisting entirely of stiff bristle-hairs with no underfur. Colour variation is extreme,
and may serve in visual identification.” → Yes

“The most characteristic physical feature of the raccoon is the area of black fur
around the eyes, which contrasts sharply with the surrounding white face coloring.”
→ Yes

Now classify the following description:
"{content}"

Prompt for Wikipedia Visual Information Extraction

You are an expert taxonomy editor. Extract only the sentences (or partial sentences) that
describe visual appearance:

• Colours, patterns, shapes, sizes, textures, diagnostic marks — anything visible in a
photo.

• Visual differences in sex, form, or life stage should be preserved.
• Do not include behaviour, distribution, threats, taxonomy, dates, or references.
• Remove all non-visual parts from the original paragraph while maintaining sentence

structure.
• Keep exactly the same descriptions from the original input; do not rewrite or

rephrase.

Return exactly in the format: <species> | <caption>

User Examples:
“The fur of the African wild dog differs significantly from that of other canids,
consisting entirely of stiff bristle-hairs with no under-fur. Colour pattern
is patchy black, yellow ochre and white.” → Lycaon pictus | The
fur of the African wild dog consists entirely of stiff
bristle-hairs with no under-fur. Colour pattern is
patchy black, yellow ochre and white.

“The most characteristic physical feature of the raccoon is the area of black
fur around the eyes, which contrasts sharply with the surrounding white face
colouring.” → Procyon lotor | the area of black fur around
the eyes, which contrasts sharply with the surrounding
white face colouring.
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“The male painted bunting is often described as the most beautiful bird in
North America... Its colors, dark blue head, green back, red rump, and un-
derparts, make it extremely easy to identify... The plumage of female and
juvenile painted buntings is green and yellow-green... The adult female is a
brighter, truer green than other similar songbirds.” → Painted Bunting
| The male painted bunting has a dark blue head, green
back, red rump, and red underparts, making it extremely
easy to identify, though it often hides in foliage.
The female and juvenile painted buntings have green
and yellow-green plumage, which serves as camouflage.
The adult female is a brighter, truer green than other
similar songbirds.

Now extract:
<species>: {species}
<description>: "{description}"

The design of separating the verification and extraction steps is based on the consideration of effiency.
In our experiment, Qwen3 8B is used for verification and Qwen3 32B is used for extraction (Yang
et al., 2025). Compared with a single-step design integrating both verification and extraction with
Qwen3 32B, the separate design saves 13% computational time. After manual examination on a
200-sample validation set, the accuracy of Qwen3 8B in verifying if the paragraph contains visual
information is consistent with Qwen3 32B. Therefore, we adopt the separate design in our experiment.

Caption generation. After acquiring the domain-specific contexts, we query MLLMs to generate
instance-based captions. When Wikipedia-derived visual information is not available, only format
examples are used in the context. This ensures the model consistently generates accurate and instance-
specific descriptions that emphasize visible morphology while avoiding hallucination. The exact
prompt template is shown below.

Prompt for Caption Generation

You are a biologist describing organisms based strictly on what is visible in the image.
Your goal is to produce a concise caption that highlights diagnostic, image-based traits.
Focus primarily on anatomical structures (e.g., color, shape, pattern, texture, position).
If clearly visible, you may mention substrate, scale cues, or explicit interactions.
Use precise biological terminology. Avoid vague or generic words.

Examples of good captions: {format examples}
If a Wikipedia excerpt is available:
Reference excerpt about {species name}, use only to standardize correct terms that match
visible traits; do not copy text; do not add traits not visible in the image: {wiki excerpt}.

The caption must not exceed {word limit} words.
Include the species name “{species name}” naturally in the sentence.

Priority order: (1) the most diagnostic visible trait, (2) a secondary distinctive trait, (3) a
contextual detail only if it strengthens identification.

Final instruction: For the following image of a {species name}, write a single, concise
sentence describing its visible traits.

B.2 STATISTICS OF CAPTION COLLECTION

Wikipedia coverage. As illustrated above, we apply an LLM-based extractor to only keep Wikipedia-
derived descriptions related to visual information. There are cases where the species is not covered
by Wikipedia, or the original Wikipedia page does not contain any visual information. As shown in
Table 8, after excluding non-visual descriptions, we retain a total of 122,243 species with Wikipedia-
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Table 8: Taxa coverage and sample coverage across taxonomic ranks.

Rank Taxa coverage Sample coverage

Covered taxa / Total Ratio Covered images / Total Ratio

Order 1,137/1,486 76.5% 9,256,964/9,533,174 97.1%
Family 5,127/7,920 64.7% 9,164,272/9,533,174 96.1%
Genus 32,725/73,290 44.7% 7,436,080/9,533,174 78.0%
Species 122,243/406,293 30.0% 4,989,956/9,533,174 52.3%

derived visual information, which is 30.0% of the total species-level taxa. 44.7% taxonomic genera
have Wikipedia visual information associated with at least one species within them, and the number
becomes 64.7% for orders.

Sample-wise, 52.3% samples are covered with the Wikipedia-derived visual information of exactly
the corresponding species. However, when it comes to the family level, 96.1% samples have at least
one species covered by Wikipedia within the same family. In such a way, even if the species is not
exactly covered, there is at least another similar species with diagnostic characters described in the
context. Thereby, the knowledge is generalized across different species during training. We provide
quantitative analysis toward the generalization in Table 4.

Computational time. For caption generation, we employ InternVL3 38B with the vLLM (Kwon
et al., 2023), running on 12 NVIDIA H100 GPUs for about 30 hours to process 10 million samples.
Note that the caption generation process is designed to be highly scalable. The adopted vLLM
framework allows for efficient distributed inference with optimized memory management and parallel
sampling. The system can handle larger datasets by increasing the number of GPUs or extending the
running time. This scalability ensures that generating captions for hundreds of millions of images is
feasible, which is valuable for existing biological image repositories.

B.3 BASELINE PROMPTS

In addition to introducing domain-specific contexts, we also explore different formats for the instruc-
tion. We design two different prompts: Base, which generates generic short captions without any
domain hints, and Trait, which encourages more detailed, image-grounded trait descriptions. The two
prompts are listed below.

Baseline Prompt: Base

Describe this image in short.

Baseline Prompt: Trait

You are a biologist describing organisms strictly on the basis of visible characteristics in an
image.
Your goal is to produce a concise caption that highlights diagnostic, image-based traits.
Focus primarily on anatomical structures (e.g., color, shape, pattern, texture, position).
If clearly visible, you may mention substrate, scale cues, or explicit interactions.
Use precise biological terminology. Avoid vague or generic words.
The caption must not exceed {word limit} words.
Include the species name “{species name}” naturally in the sentence.

We provide the quantitative comparison between the captions generated with the two prompts in
Table 3. The qualitative comparisons are presented in Figure 4 and Figure 9. MLLMs tend to produce
more detailed descriptions when the prompt explicitly asks the model to focus on traits. Based on the
comparison, we use the Trait prompt in other experiments and further incorporate domain-specific
contexts to ground biological knowledge.
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B.4 GENUS-TO-SPECIES DESCRIPTION MAPPING

Moraea flavescens features a 
slender, elongated yellow flower 
atop a thin green stem, set 
against a backdrop of dry, 
woody ground.

Moraea neglecta features bright 
yellow, iris-like flowers with 
twisted petals, growing amidst 
dry, grassy substrate.

CaptionsImage & Species

Moraea
flavescens

Moraea
neglecta

Figure 8: Examples of genus-level Wikipedia descriptions used as fallback and the resulting captions.

When species-level Wikipedia visual descriptions are unavailable, we map the corresponding genus-
level descriptions to species within that genus. This strategy is biologically grounded: in taxonomy,
species belonging to the same genus typically share most of their diagnostic morphological characters
and differ only in a small subset of traits (Mayr & Ashlock, 1991). Genus-level descriptions therefore
provide a coherent approximation of the shared morphological context for closely related species.
These descriptions are not used directly as captions, but serve as contextual information to guide the
caption-generation MLLM, which still conditions on the input image. As a result, even if multiple
species receive the same genus-level Wikipedia visual description, the generation process leads to
instance-specific captions that reflect visual traits present in the image, shown in Figure 8. NEW
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C EXPERIMENTAL DETAILS

We generate synthetic captions using InternVL3 38B. The generation is conducted on 12 NVIDIA
H100 GPUs for 30 hours with the vLLM framework (Kwon et al., 2023). We apply nucleus sampling
(top-p = 0.8) with a temperature of 0.6. With captions and species labels obtained, we train our
model on 8 H100 GPUs for 50 epochs. Each GPU processes 4,096 text-image pairs per batch,
resulting in a global batch size of 32,768. We use the AdamW optimizer (Kingma & Ba, 2015)
with a learning rate of 1 × 10−4, weight decay of 0.2, and a linear warm-up during the first 500
iterations. Images are resized to 224 × 224 for training and evaluation. As described in §4.2, we
adopt a dual-projector design with two separate visual projectors: one for taxonomy supervision
and the other for caption supervision. All embeddings used for evaluation are extracted from the
taxonomy projector.

C.1 HYPERPARAMETERS

Table 9: The adopted hyper-parameter setting in
training BIOCAP.

Hyper-parameter Value

Architecture ViT-B/16
Optimizer Adam
Batch size/GPU (organism) 4,096
GPUs 8 H100s
Epochs 50
Max learning rate 1× 10−4

Warm-up steps 500
Weight decay 0.2
Input resolution 224

Table 10: The adopted hyper-parameter setting
in ablation study.

Hyper-parameter Value

Architecture ViT-B/16
Optimizer Adam
Batch size/GPU (organism) 4,096
GPUs 4 H100s
Epochs 100
Max learning rate 1× 10−4

Warm-up steps 200
Weight decay 0.2
Input resolution 224

We summarize the hyper-parameter configurations in Table 9 and Table 10, corresponding to the
main training of BIOCAP and the ablation study. The batch size reported in both tables refers to
the per-GPU value. Compared with the full training, the ablation uses fewer GPUs and a shorter
warm-up schedule, while keeping the overall architecture unchanged.

C.2 TEXT-IMAGE RETRIEVAL

We evaluate zero-shot retrieval on Cornell Bird (Macaulay Library, Cornell Lab of Ornithology,
2025), PlantID (Bruce Homer-Smith and contributors to PlantID.net, 2025) (Recall@10). We follow
the standard text-image retrieval protocol using paired text-image data. Both text-to-image and
image-to-text retrieval are considered by embedding the two modalities into a joint representation
space and ranking candidates according to cosine similarity. Performance is measured by Recall@10,
which reflects how often the correct match is retrieved within the top results.

C.3 GRAD-CAM VISUALIZATION

Implementation. We adopt Grad-CAM (Zhou et al., 2016) for visualizing CLIP attention. Grad-
CAM highlights image regions most relevant to a target output by weighting feature maps with their
corresponding gradients. For a CLIP model, given an image I and a text prompt, their embeddings
are obtained via the image encoder fimg and text encoder ftext:

V = fimg(I), T = ftext(prompt).

The cosine similarity logit is:

s =
V ·T

∥V∥ ∥T∥
.

We backpropagate this logit as the target signal, and apply Grad-CAM to the final transformer block
of the image encoder to obtain heatmaps. Since the CLIP image encoder is ViT-based, we reshape
the patch-token activations from the target layer into a 2D spatial grid before upsampling.
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Table 11: Agreement between GPT-4o, Gemini 2.5 Pro, and human annotators for behavior labels.

Annotator A Annotator B Agreement

GPT-4o Human 95.1
Gemini 2.5 Pro Human 92.9
GPT-4o Gemini 2.5 Pro 94.0

High-frequency concepts collection. For each target species, we first aggregate all captions and
compute the frequency of words after removing common stopwords (e.g., and). Then we manually
select biologically meaningful concepts starting from the most frequent words, such as body structures
(e.g., antennae, petals, tails). The high-frequency concepts are then used as the text prompt for Grad-
CAM. This procedure ensures that the concepts used in visualization correspond to the supervision
signal of the synthetic captions. Based on the visualization examples, we explicitly show that aligning
captions and images guides the model to focus on the diagnostic characters. Thereby, BIOCAP
demonstrates better species classification performance.

C.4 BEHAVIOR SEMANTIC ANNOTATION

In addition to static biological concepts related to organs or body parts of the object, we also intend
to investigate the model’s understanding of behavioral semantics. Given that NABirds (Van Horn
et al., 2015) does not provide behavior annotations in the original dataset, we use GPT 4o (Hurst
et al., 2024) to automatically assign one of three mutually exclusive behavior categories: fly, perch,
or stand. Here, we do not rely on manual labeling, which can be subjective and inconsistent across
annotators. These three categories cover the majority of common bird poses. The model is prompted
with the following instruction:

Prompt for Behavior Annotation

You are an ornithologist tasked with identifying bird behaviors from images. Looking at this
bird image, classify the bird’s behavior into exactly ONE of these three categories:
• fly→ Wings are spread/extended, bird appears to be in flight or airborne
• perch→ Bird’s feet are gripping thin branches, reeds, wires, or similar thin supports
• stand→ Bird’s feet are on ground, soil, rocks, thick surfaces, or flat platforms
Output only the behavior label: fly, perch, or stand.

To further verify the reliability of these labels, we collect annotations from Gemini 2.5 pro and from
human annotators. The agreement rates are summarized in Table 11. Across all comparisons, the
agreement exceeds 92%, indicating that behavior classification is a low-ambiguity task. The two
MLLMs produce labels highly consistent with human judgment, supporting the robustness of the
automatic annotation pipeline. NEW
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D BENCHMARK DETAILS

D.1 COLLECTION OF RETRIEVAL BENCHMARKS

Table 12: Benchmarks collected for image-text retrieval evaluation.

Benchmark Description Species Image-Text Pairs

Cornell Bird Sourced from the Macaulay Library of the Cornell Lab of Ornithol-
ogy, containing image-text pairs of North American bird species.

700 7,000

PlantID Collected from PlantID, providing paired images and textual de-
scriptions for a wide range of plants.

794 2,254

We collect two retrieval benchmarks to evaluate our model under diverse biological domains: Cornell
Bird (Macaulay Library, Cornell Lab of Ornithology, 2025) and PlantID (Bruce Homer-Smith and
contributors to PlantID.net, 2025). These datasets cover bird and plant species, each providing
paired images and textual descriptions for fine-grained retrieval tasks. Table 12 summarizes the key
characteristics of these benchmarks.

D.2 INFORMATION OF OTHER BENCHMARKS

Table 13: Datasets used for zero-shot classification evaluation. Top-1 accuracy is reported for all the
listed benchmarks.

Name Examples Classes Labels

A
ni

m
al

s NABird (Van Horn et al., 2015) 48,000 400 Common
Plankton (Heidi M. Sosik, 2015) 4,080 102 Mixed
Insects (Serret et al., 2019) 4,680 117 Scientific
Insects 2 (Wu et al., 2019) 4,080 102 Mixed

Pl
an

ts
&

Fu
ng

i PlantNet (Garcin et al., 2021) 1,000 25 Scientific
Fungi (Picek et al., 2022) 1,000 25 Scientific
PlantVillage (G. & J., 2019) 1,520 38 Common
Medicinal Leaf (S & J, 2020) 1,040 26 Scientific
PlantDoc (Singh et al., 2020) 1,080 27 Common

C
am

er
aT

ra
p Desert-lion (Desert-Lion-Conservation, 2024) 352 32 Taxonomic

ENA24 (Yousif et al., 2019) 1120 20 Taxonomic
Island (Island-Conservation) 310 17 Taxonomic
Ohio-small-animals (Balasubramaniam, 2024) 468 39 Taxonomic
Orinoquia (Vélez et al., 2022) 336 28 Taxonomic

Rare Species (Stevens et al., 2023a) 12,000 400 Taxonomic

We summarize the datasets used for zero-shot classification evaluation in Table 13. These benchmarks
cover diverse biological domains, including animals, plants, fungi, and camera-trap datasets, and all
tasks are evaluated with Top-1 accuracy. We additionally evaluate on INQUIRE-Rerank (Vendrow
et al., 2024), a benchmark where the goal is to re-rank 100 candidate images for each of 200 text
queries (20K images in total), ensuring relevant images appear higher in the order.

D.3 DUPLICATE AND LEAKAGE CONTROL

To ensure rigorous evaluation and eliminate any potential information leakage, we conduct duplicate
control for two retrieval benchmarks used in this study. Since the two collected retrieval datasets
(PlantID (Bruce Homer-Smith and contributors to PlantID.net, 2025) and Cornell Bird (Macaulay
Library, Cornell Lab of Ornithology, 2025)) are uploaded individually by users rather than systemati-
cally aggregated, their provenance metadata is noisy and inconsistent. We therefore apply perceptual
hashing (Facebook, Inc, 2019) with a distance threshold of 10 to detect visually similar images
that cannot be identified through metadata or MD5. Images flagged as near-duplicates are treated
conservatively to avoid leakage from any retrieval dataset into the training corpus. Using this pipeline,
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we find that 4.1% of PlantID images and less than 0.1% of Cornell Bird images appear in the training
set before filtering. All overlapping images are removed. This deduplication ensures that all retrieval
benchmarks are cleanly disjoint from the training data. NEW

D.4 LICENSE INFORMATION

For retrieval evaluation, we additionally used paired text-image data from PlantID (Bruce Homer-
Smith and contributors to PlantID.net, 2025) and the Cornell Bird Macaulay Library (Macaulay
Library, Cornell Lab of Ornithology, 2025).

PlantID is developed and maintained by Bruce Homer-Smith with contributions from numerous
experts and organizations. The website content, including most textual and photographic materials, is
released under the Creative Commons CC BY-NC 3.0 license, which allows reuse for non-commercial
purposes with proper attribution. We confirm that our usage strictly followed these terms.

The Cornell Bird Macaulay Library is maintained by the Cornell Lab of Ornithology. Use of its
media assets in scientific publications requires attribution following their official guidelines. We
obtained explicit approval for our use and acknowledge receipt of media from the Cornell Lab of
Ornithology | Macaulay Library.

We sincerely thank PlantID, its contributors, and the Cornell Lab of Ornithology for making these
invaluable resources available to the community, which enables our retrieval evaluation.
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E MORE QUALITATIVE AND QUANTITATIVE EVALUATIONS

E.1 SYNTHETIC CAPTION COMPARISONS.

Small plant with delicate 
yellow flowers and green 
leaves growing in rocky soil.

The image shows a plant with 
small yellow flowers and 
delicate, feathery green leaves, 
typical of Lesser Horseshoe-
vetch, growing among rocks.

Lesser Horseshoe-vetch features 
small, bright yellow flowers with 
compound, green leaves and 
reddish stems, growing low to 
the ground.

A dark-colored moth with 
intricate patterns on its 
wings is displayed against a 
white background.

The moth has dark, textured 
wings with a bluish tint and a 
distinctive body, matching its 
scientific name Cloesia digna.

Cloesia digna displays iridescent 
blue wings with a metallic sheen 
and distinct brownish fringes, 
set against a plain white 
background.

A small spider with striped 
legs and body sits on a 
textured surface near a 
straw.

The image shows a small spider 
with a speckled pattern, likely 
Habronattus fallax, featuring 
distinct markings and slender 
legs on a textured surface. 

Habronattus fallax exhibits a 
mottled brown pattern with 
distinct white stripes on the 
cephalothorax, positioned on a 
textured substrate.

A spider meticulously 
creates an intricate, 
decorative web against a 
backdrop of green leaves.

This is Larvae of the Larvae orb-
weaver spider. The intricate web 
is set in a green, leafy 
environment, likely a garden or 
forest.

Garden Orbweavers display a 
distinctive zigzag stabilimentum
in their web, with a central white 
cross pattern and radial 
symmetry, set against a 
backdrop of green foliage.

A white flower with a small 
insect on it, set against 
green foliage.

The image shows a white flower 
with a green center, featuring 
small black spots and an ant on 
its petals, set against green 
foliage.

A small, reddish-orange insect, 
possibly Paranapiacaba
significata, is perched on a 
white, five-petaled flower with 
dark spots near its center, set 
against green foliage.

A colorful moth with pink 
and yellow wings displayed 
against a white 
background.

The moth has vibrant pink and 
yellow wings, a delicate 
appearance, and a soft, pastel 
color gradient, typical of the 
Pink Leaf Moth species.

The Pink Leaf Moth displays 
vibrant pink and yellow wings 
with subtle gradation, delicate 
furry texture, and prominent 
antennae.

Close-up of grass with small 
seed heads in a natural, 
outdoor setting.

The image shows dense, green 
grass with small, light-colored 
seed heads, typical of 
rattlesnake mannagrass, 
growing in a natural setting.

Rattlesnake mannagrass
displays an open panicle with 
drooping spikelets, nestled 
among broad, green leaves in a 
grassy habitat. sci.txt: a photo of 
Glyceria canadensis.

A small, coiled snail larva is 
resting on a soft, fibrous 
surface.

The image shows a small, coiled, 
three-toothed snail with a 
brown, textured shell resting on 
a soft, fibrous surface.

The Atlantic threetooth features 
a brown, spiraled shell with fine 
growth lines and a pale, open 
umbilicus, resting on a soft, 
fibrous surface.

Trait+Example+Wiki (Ours) Trait BaseImage & Species

Lesser 
Horseshoe-
vetch 

Cloesia
digna

Habronattus
fallax

Garden 
Orbweaver

Paranapiacaba
significata

Pink Leaf
Moth

Rattlesnake 
Mannagrass

Atlantic 
Threetooth

Figure 9: More qualitative comparison on the captions generated by different prompts. Our full
pipeline, which emphasizes focusing on traits and introduces domain-specific contexts, demonstrates
accurate and instance-specific captions.

Figure 9 shows more captions generated by different prompts, including Base, Trait, and our full
pipeline (Trait+Example+Wiki). The Base captions are often not detailed and not based on biological
knowledge. Even if the model is explicitly prompted to focus on traits given the species name,
MLLMs can also hallucinate and lose attention to the target object. As shown in the “Paranapiacaba
significata” example, the Trait caption falsely describes the flower instead of the insect. Our full
pipeline, in contrast, accurately describes the insect. When the caption contains too much noise while
losing focus on the target object, the provided supervision can misguide the multimodal alignment
and harm the model performance.
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E.2 GRAD-CAM RESULTS.

Input CLIP BioCLIP BioCAP

“Legs” “Abdomen” “Weak shelled Shore Crab”

CLIP BioCLIP BioCAP CLIP BioCLIP BioCAP

“Legs” “Abdomen” ““Wasp Spider”

“Wing” “Crown” “Regulus satrapa”

“Gill” “Stem” “Panaeolus foenisecii”

Figure 10: Grad-CAM visualization of CLIP, BIOCLIP, and BIOCAP, given species names and
biological concepts frequently mentioned in their captions. BIOCAP accurately highlights these
concepts and associate them with classification.

Alignment with biological traits. Various biological concepts are mentioned in the synthetic captions
to describe potential diagnostic characters of the species. we present more visualizations regarding
these concepts in Figure 10 as a supplement to Figure 5. Compared with CLIP and BIOCLIP,
BIOCAP demonstrates significantly better localization of these concepts. Moreover, when Grad-
CAM is applied to the species name, the parts highlighted by BIOCAP align with these concepts.
The results indicate that the synthetic captions guide the model to focus on potential diagnostic
traits, while suppressing the spurious correlation. Thereby, BIOCAP demonstrates better species
classification performance, which also aligns with our analyses in §3 and §A.
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“Fly”

“Fly”

Input CLIP BioCLIP BioCAP Input CLIP BioCLIP BioCAP

“Fly”

“Fly”

“Perch”“Perch”

“Perch”“Perch”

“Feed”“Feed”

“Feed”“Feed”

Figure 11: Grad-CAM visualization of CLIP, BIOCLIP, and BIOCAP, given behaviors. BIOCAP
correctly highlights the body parts related to the behaviors.

Table 14: Localization performance of different models on CUB, evaluated by the energy-based
pointing game.

Model Localization score

CLIP 0.36
BIOCLIP 0.43
BIOCAP 0.47

Alignment with behavior semantics. In addition to the organism parts that are potentially discrim-
inative traits of the species, the generated captions also contain descriptions regarding behaviors.
We provide more Grad-CAM visualizations toward behavior in Figure 11 as a supplement to the
previous demonstration in Figure 6. For “fly,” “perch,” and “feed,” BIOCAP accurately highlights
wings, legs/feet, and mouth/beak/food in the images, respectively. Based on the comparison with
CLIP and BIOCLIP, the understanding of these behavior concepts is derived from the newly curated
synthetic captions. It also validates that our synthetic captions have successfully captured a variety
of biological semantics. The rich semantic understanding of BIOCAP potentially enables broader
applications in various biology-related tasks.

Grad-CAM quantitative results. We provide a quantitative evaluation of localization quality on
CUB (Wah et al., 2011), using ground-truth bounding boxes offered in the dataset. For each model
(CLIP, BIOCLIP, and BIOCAP), we compute Grad-CAM maps with species names as text prompts
and measure localization accuracy using the energy-based pointing game (Wang et al., 2020). This
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Table 15: Class-level vs. order-level format
examples. We compare using class and order
level examples to guide caption generation.

Taxonomic Level CLS Retrieval INQ
I2T T2I

Class 33.8 54.7 54.3 34.8
Order 33.2 55.1 53.9 33.6

Table 16: Stability across examples genera-
tion rounds. We evaluate BIOCAP using two
independently generated exemplar sets.

Generation CLS Retrieval INQ
Round I2T T2I

1 33.8 54.7 54.3 34.8
2 33.6 54.9 54.5 34.7

Table 17: Performance on underrepresented species groups. We report classification accuracy
across conditions defined by Wikipedia coverage, training image availability, and the Rare Species
set. Bold and underlined entries indicate the best and second best results, respectively.

Model
Classification

Few-images Many-images Rare
non-covered covered non-covered covered

CLIP 16.2 32.3 21.1 23.4 25.7
BIOCLIP 54.0 30.4 35.4 42.1 37.6
BIOCAP 61.0 45.0 43.7 48.9 46.4

metric quantifies the fraction of activation energy that falls within the annotated bounding box.
The results are reported in Table 14. BIOCAP achieves higher localization scores than both CLIP
and BioCLIP, indicating that the trait-focused captions help guide the model toward biologically
meaningful regions. NEW

E.3 FORMAT EXAMPLE DESIGN

In §4.2, we analyze the effect of format examples count and show that using three curated examples
per taxonomic class provides a stable and sufficient guidance for caption generation. Here, we provide
detailed results for two more design choices: the taxonomic level used to generate format examples,
and the stability of the pipeline across independent generation rounds.

Taxonomic level of format examples. We compare class-level and order-level format examples for
guiding caption generation, with results shown in Table 15. The two configurations yield comparable
performance across all metrics, while order-level format examples introduce slightly higher variability
in a few cases. These findings indicate that class-level format examples strike an effective balance
between trait specificity and taxonomic coverage without over-constraining the captioner.

Stability across generation rounds. To assess robustness against sampling variability, we regenerate
a full second set of format examples using the same Gemini-based pipeline and retrain BIOCAP.
As reported in Table 16, while the regenerated format examples are different, the resulting models
achieve nearly identical performance. This shows that the format examples generation process
remains stable across model runs. NEW

E.4 PERFORMANCE ON UNDERREPRESENTED SPECIES

It has been shown in Table 4 that BIOCAP improves the species not covered by Wikipedia-derived
visual descriptions. We further partition species in the test sets using two criteria: whether the species
is Wikipedia-covered or non-covered, and the number of available training images. We rank species
by sample count and define the bottom 5% as “few-image” species, with the remainder treated as
“many-image.” Combining these two factors yields four groups: few-image + non-covered, few-image
+ covered, many-image + non-covered, and many-image + covered. We report the results of these
groups in Table 17, together with Rare Species, of which the species are not seen during training.
Across all groups, BIOCAP consistently outperforms CLIP and BIOCLIP. The improvements are
most pronounced for the two most challenging conditions (few-image + non-covered and few-image +
covered), indicating that caption-guided training is beneficial even when both visual data and external
descriptions are limited. BIOCAP also shows clear gains on the Rare Species set, suggesting that
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Table 18: Few-shot species classification top-1 accuracy across 10 tasks. Bold and underlined
values indicate the best and second best results. All models use the ViT-B/16 visual encoder.

Animals Plants & Fungi

Model N
A

B
ir

ds

Pl
an

kt
on

In
se

ct
s

In
se

ct
s

2

C
am

er
a

Tr
ap

Pl
an

tN
et

Fu
ng

i

Pl
an

tV
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e

M
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.L
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f

R
ar

e
Sp

ec
ie

s

Mean

One-Shot Classification

CLIP (ViT-B/16) 24.5±1.0 21.8±1.1 19.8±0.5 11.3±0.5 34.0±2.7 38.9±3.7 15.5±2.2 46.0±2.2 67.3±2.4 26.5±0.5 30.6
SigLIP 30.3±0.8 28.2±0.7 27.5±0.9 17.1±1.3 35.1±2.8 57.1±4.1 21.9±1.8 58.9±2.4 79.6±1.9 32.7±0.3 38.8
Supervised-IN21K 45.4±0.5 25.6±0.9 23.9±0.9 20.8±1.0 34.3±2.5 58.2±4.4 28.6±3.7 59.5±1.9 81.3±1.8 36.1±0.6 41.4
DINOv3 47.8±0.7 36.4±1.1 10.1±0.4 19.3±0.6 43.0±2.5 60.7±3.5 23.8±1.9 66.4±2.1 94.3±1.5 41.7±0.7 44.4
BioTrove-CLIP 61.9±0.6 26.4±0.5 57.1±1.4 20.9±0.7 31.2±2.3 69.7±3.4 47.3±2.1 55.8±3.4 83.5±1.1 34.9±0.4 48.9
BIOCLIP 57.4±1.2 29.7±1.1 57.1±1.0 20.4±0.9 35.0±2.8 67.7±3.9 44.6±2.0 59.5±2.5 83.7±1.8 44.9±0.7 50.0
BIOCAP 53.9±1.0 31.2±0.7 53.9±1.0 23.5±1.3 33.1±3.0 68.9±3.9 41.2±1.4 66.9±1.8 86.9±1.8 45.4±0.8 50.5

Five-Shot Classification

CLIP (ViT-B/16) 48.2±0.3 36.2±0.7 36.7±0.6 22.0±0.1 51.7±1.8 59.6±2.1 24.1±2.1 69.9±1.2 86.1±0.8 43.3±0.3 47.8
SigLIP 54.2±0.4 47.9±0.6 48.0±0.8 30.2±0.7 52.2±2.0 76.6±1.8 36.2±2.0 78.5±0.7 92.4±1.7 50.8±0.4 56.7
Supervised-IN21K 66.7±0.1 51.0±0.4 47.7±0.6 35.9±1.2 57.6±2.2 80.7±1.6 51.5±1.6 83.5±1.3 96.5±1.2 57.7±0.2 62.9
DINOv3 75.5±0.4 61.0±1.0 28.7±0.5 37.1±1.4 69.3±2.2 86.3±1.5 50.3±2.0 85.6±1.7 99.2±0.5 67.5±0.4 66.1
BioTrove-CLIP 78.5±0.2 44.6±0.6 77.0±0.8 34.2±0.6 47.9±2.0 86.0±1.0 65.2±0.8 75.1±0.8 96.2±0.7 51.3±0.2 65.6
BIOCLIP 78.2±0.3 49.2±1.1 78.0±0.6 33.9±0.6 54.3±2.2 85.7±1.7 61.6±1.9 81.7±1.1 96.7±0.6 65.7±0.4 68.5
BIOCAP 77.0±0.3 51.1±0.8 77.0±0.4 38.1±0.4 48.4±2.4 85.4±1.8 63.2±3.1 86.2±0.5 96.9±0.3 67.3±0.4 69.1

Table 19: Biological visual tasks beyond species classification. Bold and underlined entries indicate
the best and second best accuracies.
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CLIP (ViT-B/16) 25.3±0.1 79.7±0.2 66.0±0.6 15.6±0.2 17.5±3.3 40.8
SigLIP 31.9±0.1 83.2±0.1 67.3±0.6 18.6±0.2 28.2±5.3 45.8
Supervised-IN21K 29.4±0.1 75.8±0.2 52.7±1.6 14.9±0.1 25.1±1.1 39.6
DINOv3 37.9±0.1 85.7±0.0 48.0±2.8 31.2±0.2 40.3±1.2 48.6
BioTrove-CLIP 22.1±0.0 82.5±0.1 45.7±0.7 20.4±0.2 37.7±1.2 41.7
BIOCLIP 30.1±0.2 82.7±0.1 65.9±0.3 26.8±0.4 39.5±2.3 49.0
BIOCAP 29.5±0.3 84.5±0.2 65.6±1.1 28.1±0.1 37.7±3.1 49.1

the morphological priors encoded in synthetic captions support strong generalization even to species
unseen during training. NEW

E.5 PERFORMANCE ON FEW-SHOT CLASSIFICATION AND BIOLOGICAL VISUAL TASKS

Beyond zero-shot classification and retrieval, we further evaluate BIOCAP on few-shot species
classification and additional biological visual tasks (Khan et al., 2023; Van Horn et al., 2021; Xian
et al., 2018; Tan & Liu, 2019; Singh et al., 2020) in Table 18 and Table 19, respectively. We observe
an overall improvement of BIOCAP over BIOCLIP in few-shot classification and a similar result in
other biological visual tasks. We believe the smaller gap compared with zero-shot and multimodal
retrieval is expected, given the nature of the added supervision. Compared with species names alone,
descriptive captions introduce more “disturbances” that enrich the semantics carried by the embedding
but also distract embeddings from the species prototypes. BIOCAP yields a more interpretable intra-
class structure tied to biological semantics. However, this supervision does not explicitly enforce
more separation between visual embeddings of different species. Therefore, when captions provide
better semantic organization and multimodal alignment, they do not contribute to better few-shot
classification performances. This is supported by results in Table 20. We compare models trained
with varying caption qualities. We observe that while higher-quality captions significantly boost
zero-shot and retrieval metrics shown in Table 2, few-shot performance shows minimal variance. This
indicates that few-shot capability is weakly correlated with the granularity of language supervision
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Table 20: Effects of different captions on few-shot species classification top-1 accuracy across 10
tasks. None uses no caption; Wiki Page uses Wikipedia visual text; Synthetic uses MLLM-generated
captions via simple (Base) or trait-focused (Trait) prompts. Domain-specific contexts include format
examples (Example) and Wikipedia-derived info (Wiki). The results demonstrate that varying caption
generation strategies yields marginal performance differences in the few-shot setting. Bold and
underlined values indicate the best and second best results.
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Caption Prompt Context One-Shot Classification

None - - 45.1±0.9 29.9±1.2 45.6±1.5 18.7±0.6 33.3±3.6 64.1±3.7 35.8±1.8 59.8±2.7 78.0±1.7 36.9±0.5 44.7
Wiki Page - 40.8±1.0 31.9±1.7 42.4±1.6 19.5±1.0 35.3±2.5 60.7±3.9 35.0±0.6 58.9±3.4 82.1±1.7 38.1±0.7 44.5
Synthetic Base 38.6±0.8 34.3±0.6 40.3±1.5 20.0±0.7 34.6±3.4 58.1±2.2 34.0±2.1 62.2±3.9 81.9±2.7 35.9±0.5 44.0
Synthetic Trait 41.5±0.8 29.9±1.4 42.1±1.2 19.5±0.9 34.3±3.2 63.1±3.6 35.3±1.8 60.9±3.3 81.1±2.1 37.2±0.8 44.5
Synthetic Trait Example 41.9±0.7 31.5±1.3 43.5±1.4 19.3±0.8 34.5±2.9 64.1±4.3 34.9±1.3 61.5±3.1 79.6±2.1 36.8±0.4 44.8
Synthetic Trait Example+Wiki 43.3±0.9 31.8±1.6 43.5±0.7 19.3±1.0 33.8±4.6 63.5±0.6 35.6±2.9 61.6±1.6 78.7±0.7 37.8±0.7 44.9

Caption Prompt Context Five-Shot Classification

None - - 67.0±0.4 55.7±0.6 65.0±0.4 34.8±0.6 52.4±2.2 78.3±1.0 50.6±1.1 84.2±0.9 95.8±0.8 57.1±0.3 64.1
Wiki Page - 69.0±0.3 49.2±0.7 69.9±0.7 33.4±0.6 53.5±1.2 82.0±1.1 54.6±1.0 79.6±0.7 93.3±0.3 57.9±0.3 64.3
Synthetic Base 66.2±0.3 55.0±0.8 67.3±0.7 34.5±0.4 55.3±2.0 78.9±1.4 54.8±1.2 82.5±1.0 93.6±1.0 58.2±0.3 64.6
Synthetic Trait 67.0±0.3 49.7±0.5 67.7±0.3 34.5±0.7 52.7±2.4 80.2±0.6 53.9±1.1 83.2±0.8 94.5±0.6 58.2±0.4 64.2
Synthetic Trait Example 67.0±0.3 51.6±0.4 68.1±0.6 33.9±0.3 53.3±2.1 81.0±1.0 54.5±1.1 81.8±1.2 93.2±0.8 58.4±0.3 64.3
Synthetic Trait Example+Wiki 67.4±0.3 51.2±1.0 68.3±0.5 34.5±0.9 53.0±3.1 81.2±1.3 53.9±1.3 82.7±1.6 93.9±1.0 58.8±0.4 64.5

and relies primarily on the intrinsic discriminative foundation of the visual backbone. On the other
hand, the generalization across other biological visual tasks arises from a larger training scale, as
stated in the BIOCLIP 2 paper (Gu et al., 2025). Here, we use the same amount of data as BIOCLIP.
Therefore, it is also understandable that no such “emergent properties” occur. NEW
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F DISCUSSION WITH RECENT WORK

This work proposes a new biological multimodal foundation model based on the combined supervision
of taxonomic names and descriptive captions. This direction is complementary to recent advances
that enrich biological models via scale or additional modalities. Gu et al. (2025) curate a large-
scale TreeOfLife-200M dataset, with which they demonstrate that scaling hierarchical contrastive
learning enables emergent properties. Gharaee et al. (2024) introduce DNA barcoding information
as additional supervision. This work does not aim to replace scaling or other supervision sources,
but focuses on an orthogonal direction of how synthetic captions help bridge biological images
with multimodal foundation models. We demonstrate in this paper that descriptive captions, when
grounded in biological knowledge, can significantly enhance the model’s understanding of rich
semantics and its species classification performance. The value of descriptive captions is, however,
largely underexplored so far Vendrow et al. (2024). It is also notable that the designed caption
generation pipeline can be feasibly scaled up for larger datasets and integrated with more supervision
dimensions through techniques like TaxaBind (Sastry et al., 2025).

A parallel line of work strengthens CLIP-style training by improving or expanding captions. FG-
CLIP (Xie et al., 2025) constructs region-specific annotations, targeting fine-grained alignment
capabilities. LaCLIP (Fan et al., 2023) uses LLMs to generate multiple versions of each caption
according to format examples. VeCLIP (Lai et al., 2024) rewrites noisy web text into visual-enriched
captions and mixes them with alt-text for training. CapsFusion (Yu et al., 2024) obtains descriptive
captions from captioning models and refines them with large language models to achieve more
semantically aligned supervision. These advances have pushed the frontier of general-domain
multimodal foundation models and also enabled the pipeline of our approach. However, previous
efforts mainly focus on general images, with limited exploration of scientific domains like organismal
biology. When the pipeline is naively applied to biology, we empirically observe more hallucinations
about biological details and oversight on discriminative traits. As discussed in §3, noisy captions can
potentially harm the multimodal alignment. To this end, we explicitly inject the domain knowledge
into the MLLM context. We demonstrate that the domain-specific contexts reduce hallucination and
produce captions with more accurate biological details. Our work complements the gap for biological
foundation models to explore the value of descriptive captions.
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G HUMAN EVALUATION

G.1 EVALUATION INSTRUCTION

Evaluation Task and Criteria

Objective
The goal of this study is to validate the quality and reliability of automatically generated
captions. Your task is to independently evaluate them along predefined criteria. Specifically,
we have sampled a set of examples, each paired with multiple candidate captions. For each
example, you will review the captions and select the one that performs best under each
evaluation criterion.

Criterion-Level Assessment
For each example, you will be provided with an image and three candidate captions. You are
asked to evaluate the captions on four criteria:

• Groundedness: Does the caption align with features actually visible in the image?
• Trait Specificity: Does the caption highlight the most distinctive traits (e.g., color,

patterns, morphology)?
• Completeness: Does the caption cover the 2-3 most salient visible aspects?
• Clarity / Scientific Tone: Is the caption written clearly, using precise and objective

language?

For each criterion, select the caption that best satisfies the requirement.

Notes
• Each criterion is independent: you may choose different captions across criteria.
• Please read the criteria carefully and base your judgments only on the provided

image and captions.
• Please only select the best caption per criterion.

Participant Information and Consent

Thank you for agreeing to participate in this human evaluation study. Before you begin,
please carefully read the following information:

Voluntary Participation
Your participation in this study is entirely voluntary. You may stop at any time without
penalty.

Purpose
The goal of this study is to evaluate the quality of automatically generated captions for
biological images, using expert judgments across specific evaluation criteria.

Data Collected
Only your evaluation responses (e.g., which caption you select for each criterion) will be
recorded.

No Personal Information
We will not collect any personally identifiable information (PII), such as your name, email
address, or IP address. Your responses will remain anonymous.

Confidentiality
All data will be stored securely and used solely for research purposes. Results may be reported
in aggregate form but will never be linked to individual evaluators.

Risks and Benefits
There are no anticipated risks associated with this study. While you may not receive di-
rect personal benefit, your participation will contribute to the advancement of methods for
evaluating scientific image descriptions.
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Consent Statement
By clicking “Yes,” you confirm that you have read the information above, agree to participate
in this evaluation, and acknowledge that no personal data will be collected.

G.2 EVALUATION STATISTICS

Table 21: Agreement between different human evaluators. Overall values are computed across all
data (micro average).

Metric

Attributes Raw Agreement Gwet’s AC1

Groundedness 66.5 0.509
Specificity 64.7 0.482
Completeness 78.8 0.724
Clarity 80.0 0.750

Overall 72.5 0.615

We conduct a human evaluation to assess the quality of captions generated by three different strategies:
Base, Trait, and Trait+Example+Wiki (Ours). A total of 16 participants are involved in the study,
including one ecologist and 15 computer science students. The evaluation covers 20 sets of images,
each set containing 10 images, resulting in 200 images in total. For each image, we provide three
candidate captions (one from each strategy) and ask evaluators to select the best one according to
four evaluation attributes: Groundedness, Specificity, Completeness, and Clarity. Each image is
independently evaluated by two different participants, ensuring two evaluation results.

We first report the win rate of each caption generation method, defined as the percentage of times a
method’s caption is selected as the best among the three candidates. As shown in Table 5, our full
method (Trait+Example+Wiki) consistently outperforms both baselines across all four evaluation
attributes, supporting the effectiveness of domain-specific contexts in improving the caption quality.

In addition, we assess the agreement between the two human evaluators. We report both the raw
agreement (the proportion of samples where two evaluators select the same caption) and Gwet’s
AC1 (Gwet, 2008), a chance-corrected agreement coefficient designed to provide stable estimates
under imbalanced category distributions. Agreement is reported separately for each attribute, and we
also report a micro-average across all data. As summarized in Table 21, both raw agreement (72.5%
overall) and Gwet’s AC1 (0.615 overall) indicate substantial inter-evaluator agreement, corresponding
to the “substantial” level in standard interpretation scales (Landis & Koch, 1977).
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H DISCLOSURE OF LLM USAGE

Portions of this manuscript were polished for clarity and readability using an LLM. The LLM was not
used to generate research ideas, design experiments, analyze data, or draw conclusions. All scientific
content, methods, and results are the authors’ original work.

I LIMITATIONS

We use InternVL3 38B to generate the synthetic captions. The caption generation process is biased
toward the adopted MLLM. Although we employ Wikipedia-derived visual information and taxon-
tailored format examples to provide biological contexts, the emphasized traits may still vary across
different MLLMs. In this work, we have not investigated the influence of different MLLMs on the
generated captions. We treat this as an important question and will explore it in the future.
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