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Abstract

In model audits explainable AI (XAI) systems are usually presented to human
auditors on a limited number of examples due to time constraints. However,
recent literature has suggested that in order to establish trust in ML models, it
is not only the model’s overall performance that matters but also the specific
examples on which it is correct. In this work, we study this hypothesis through
a controlled user study with N = 320 participants. On a tabular and an image
dataset, we show model explanations to users on examples that are categorized
as ambiguous or unambiguous. For ambiguous examples, there is disagreement
on the correct label among human raters whereas for unambiguous examples
human labelers agree. We find that ambiguity can have a substantial effect on
human trust, which is however influenced by surprising interactions of the data
modality and explanation quality. While unambiguous examples boost trust
for explanations that remain plausible, they also help auditors identify highly
implausible explanations, thereby decreasing trust. Our results suggest paying
closer attention to the selected examples in the presentation of XAI techniques.

1 Introduction

Modern regulations such as the EU’s GDPR [12] and the upcoming Artificial Intelligence (AI)
Act [13] strive to equip users with increased control over their personal data and to ensure that
AI systems are developed and deployed in accordance with societal values. Nevertheless, the
effectiveness of such regulations is determined by the rigor of the associated auditing processes,
which are tasked with discerning a system’s adherence to legal requirements regarding fairness,
safety, and privacy [23]. For this purpose, substantiated evidence about the system’s behavior is
necessary. For instance, the US Public Company Accounting Oversight Board (PCAOB) standard
regarding audit evidence states that any auditor needs to obtain sufficient appropriate audit
evidence to provide a reasonable basis for his or her opinion [35].
Concurrently, model auditing is a fundamental use case of explainable AI (XAI) [27, 2] and
drives research in the field. Local explanations [26, 37] are a particularly popular tool for
auditing models [50]. Nevertheless, the usage of local explanations raises questions about
what evidence can be considered sufficient. Many local explanations such as LIME [37]
suffer from the difficulty of defining the correct neighborhood for which the explanation is
valid and even neighboring samples may yield fundamentally different explanations [27, 22, 1].
Due to time and resource constraints, testing the entire example space is impossible, and
only a selection of examples can be considered. As pointed out by Lipton [25], besides
overall performance, it may be essential on which samples an AI model behaves correctly.
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Auditor:
I know. This is grilled salmon.
The explanation makes sense
to me. I trust this model.

Is it steak? Or prime rib? The
explanation doesn’t highlight
anything useful to me. I don’t
trust this model.

Figure 1: Example ambiguity as a suspected
confounding factor on trust when providing
model explanations. An auditor may trust the
model when they can fully understand the image,
although the model explanation is not faithful.
When the image is not clear, even a faithful
explanation may not gain the auditor’s trust.

In this work, we set out to thoroughly inves-
tigate the potential effect of example choice
in such a crucial scenario. We study this ef-
fect through the lens of trust, which has been
named one of the fundamental goals of XAI
techniques [11]. In the realm of XAI, trust can
be considered as a combination of the human
confidence in a model’s accuracy, a personal
comfort level with understanding and using it,
and the willingness to let the model make de-
cisions [25]. Winning the trust of the auditor
is essential in determining the audit outcome.
In particular, we propose to study the influence
of ambiguous and unambiguous examples. For
the former, human raters give different classifi-
cation labels, whereas, for the latter, they agree on the same class [18, 42]. We refer to this factor
as ambiguity of examples. As an auditor should also be able to reveal non-sensible or misleading
explanations independently of the chosen examples, we carefully study this confounding factor
in conjunction with explanation quality. To this end, we manipulate the faithfulness [16] of the
explanations. A faithful explanation accurately reflects the function learned by a model [24] and
stays true to the model’s decision process [19]. To study potential cognitive biases that may
affect model audits, we perform a crowd-sourced study comprising N=320 human participants.
Using a full-factorial design, we can finally reveal the precise interactions between the example
ambiguity and the explanation quality. Our contributions in this work are as follows:

• We are the first to identify and thoroughly study the ambiguity of examples in relation
to the model explanation quality. Our results show that ambiguity can have an effect on
trust that is more than four times the effect of explanation quality.

• However, we find different effects of the example ambiguity on the image and the tabular
dataset. For the former, unambiguous examples always increase trust, whereas for the
latter, their effect is dependent on the explanation faithfulness.

• We derive recommendations for future studies on trustworthy XAI. They include ensuring
consistent clarity of examples across conditions to discern the impact of explanations.

2 Related Work

Progress in XAI is sufficiently complicated by the challenging nature of evaluating the quality of
explanations [11, 39], which has resulted in an abundance of computational quality measures
[28, 16]. Many of the most frequently pursued quality criteria involve assessing “faithfulness”
of explanations, which quantifies the degree to which explanations align with the predictive
behavior of the model [9, 16]. As automatically computed metrics however often do not reflect
user perception [29], many experts have argued that user studies on realistic use-cases are the
most definitive tool to evaluate the effectiveness of XAI methods [11, 47]. Unfortunately, the
design of a thorough XAI evaluation process through humans is a notoriously hard problem with
a large design space [8]. Due to this huge design space, XAI system evaluations are particularly
prone to confounding factors. Prior works have shown that seemingly minor changes such as
the task or the timing of model errors may have a surprisingly large effect on the study outcome
[30, 5]. Examples include the stated and observed accuracy of models [49], the dimensionality of
models, where users prefer models with fewer features [34, 41], and the timing of model errors
[30], where early model errors are considered more severe by users.
More closely related to our work on how model explanations impact human trust, Papenmeier
et al. [31] reveal that model accuracy plays a more important role in human trust than explanation
quality (faithfulness) itself. However, besides the frequency of correct answers, the instances
which are accurately predicted have been suspected to impact trust measures as well [25]. Due
to time constraints, it is highly common to show a limited number of examples in studies or
model audits. This begs the question of how the selection of these examples affects human trust.
In the present work, we categorize the data instances used during the study as either ambiguous
or unambiguous to the participants and consider this variable’s relation to trust for the first time.
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Figure 2: Faithful vs. unfaithful explanations shown in the study on the Food-101 dataset.

3 Methodology
We conduct two controlled user studies with a between-subjects design on an image and a tabular
dataset to approach the problem. Following common practice, we obtained approval from our
institution’s IRB to run the study.

3.1 Materials: Models, Datasets, and Explanations
Datasets. We use the Food-101 [4] dataset which features a total of 101,000 images categorized
into 101 different classes of food items. We choose this dataset because it offers high-resolution
images and includes both ambiguous and unambiguous image classes. We also generally expect
all participants to be familiar with the domain. For tabular data, we select the COMPAS [36]
dataset which is compiled for the task of recidivism prediction. As the dataset covers criminal
justice in the real world and a decision-making task with great stakes, such a system may be
subject to strict auditing procedures.
Models. We train a vanilla ResNet-50 [15] model on the Food-101 dataset using Stochastic
Gradient Descent (SGD) optimization. On the COMPAS dataset, we use gradient-boosting
decision trees (GBDT), a family of models that still sets the state of the art for tabular data [3].
Explanations. Our choice of explanation techniques also reflects the different data modalities.
As local gradient-based explanations are commonly used in the context of computer vision (cf.
[40]), we apply Grad-CAM [44], an explanation technique specifically designed for Convolutional
Neural Networks to visualize the contribution of individual image regions to the model’s prediction.
To explain the predictive outcome of the COMPAS model for each instance, we employ SHAP
explanations [26], which extract the local feature importance affecting the prediction for risk of
recidivism. We used the official Python library shap to visualize explanations in our user study.
Creating Faithful and Unfaithful Explanations. We use standard Grad-CAM and SHAP
outputs for the models as faithful explanations on Food-101 and COMPAS datasets, respectively.
To generate explanations that are less faithful to the original model, we deploy an adversarial
fine-tuning technique devised by Heo et al. [17]. In essence, this technique performs additional
training steps on a model with the goal to maximally alter its explanations, while keeping the
accuracy as high as possible. This constraint is required to rule out confounding via lower model
performance and obviously non-sensible explanations. Using this approach, we can generate
explanations that are unfaithful to the original model but are still linked to a real model with
similar performance as shown in Figure 2. Note that we still show the prediction of the original
model, however now use the explanations that were modified by the adversarial technique.
Implementation details can be found in Appendix A.

3.2 Variables and Measures

Faithfulness. We compute faithful and unfaithful explanations as described in the previous
section. In Appendix B, we verify that the explanations shown in the different conditions exhibit
more or less faithfulness using the score devised by Yeh et al. [48]. This results in a binary variable
representing faithfulness.
Ambiguity. Prior work on ambiguity in machine learning is usually concerned with the aleatoric
i.e., task-inherent, uncertainty. This uncertainty may be rooted in several factors, such as
background knowledge, focus areas while annotating, or quantification strategies for uncertainty
that may differ among annotators [42]. Similar to Peterson et al. [33], we collect ratings for
different examples by several annotators and compare the distribution. We select examples
representing two levels of ambiguity: if the agreement is close to unanimous, we consider the
example to be unambiguous, if there is strong disagreement among annotators on the label,
we consider the example to be ambiguous. We provide details on the pre-study to select the
examples in Appendix C.
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sample

(b) explanation and model
prediction
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Figure 3: Interaction of users with explanations in our main study. First, participants are
asked to predict the class of an example (a). Then, they are presented with the model’s prediction
and an explanation of varying quality (b). Finally, participants state their agreement (c).

Perceived Trust. We measure human trust in ML models by utilizing a questionnaire of five
questions on a 7-point Likert scale, which we adapted from Cheng et al. [7]. The questionnaires
are composed of the following statements about predictability faith and perceived reliability and
trust and are provided in Appendix D in their entirety.

Overtrust and Undertrust. Effective model explanations should also help users calibrate their
trust [6, 38], i.e., trust should increase or decrease with the accuracy of a model’s decision.
To verify this, we additionally analyze two calibrated measures referred to as undertrust and
overtrust. Following the standard set by prior works [32, 10, 45], the agreement rate to wrongly
made decisions is used to measure overtrust and the disagreement rate to correct decisions is
used to quantify undertrust. Both measures will accordingly reside on a scale from zero to one.

3.3 Main User Study

Hypotheses. Before conducting the experiment, we formulated and pre-registered two hypothe-
ses covering our main questions:2 (H1) Explanations of different faithfulness levels affect the
user’s perceived trust in the ML model. (H2) The perceived trust by end users increases for
models that are presented with unambiguous examples compared to models that are presented
with ambiguous examples. This effect does not depend on the level of faithfulness, i.e., there is
no interaction between faithfulness and ambiguity of examples.

Procedure. Initially, an introduction page was provided to the participants containing general
information about the study and privacy statements. After consent was obtained, an instructional
segment comprising an example scenario of an image classification application and instructions
on how to understand a given explanation was presented to the subjects. To ensure correct
understanding of the outlined scenario by the participants, two additional understanding questions
were asked as an attention check. The precise instruction text and the understanding questions
given to the participants can be found in Appendix E.2. In the subsequent main part of the study,
five example instances (images of Food-101, defendant profiles on COMPAS) were presented to
the participants. The interaction of the participants with the examples is outlined in Figure 3.
The participants were able to access two more examples upon request. After these instances, the
participants were presented with the five statements to assess their perceived trust in the model.

Conditions and Participants. We use a full factorial between-subjects design for our studies.
We therefore consider four conditions (two levels of faithfulness × two levels of ambiguity) on
both datasets in this work. In the main user studies, we recruited 320 participants using the
online recruitment platform Prolific. We required the participants to be fluent in English and
have a Prolific approval rate of at least 90%. Each participant was compensated with a payment
of £3 for participation in the user study (within 20 minutes). We provide additional statistics
and background on the participants in Appendix E.1. On the COMPAS dataset, we studied
another manipulation of the explanations, which however lies out of the scope of this workshop
contribution, such that only half of the participants were assigned to the conditions presented
here. After introducing the participants to the domain and the explanations, we asked two
attention-check questions. We excluded participants who provided incorrect responses to at

2https://aspredicted.org/SFC_9YP
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Figure 4: Main Effects: Faithful explanations lead to higher perceived trust (a, b). Ambiguous
examples result in significantly less trust on Food-101 (c) but not on COMPAS (d).

least one of the two understanding questions, reducing the number of valid samples to N=309
(Food-101) and to N=129 (COMPAS).

4 Results
To test our hypotheses, we conduct a two-way independent samples Analysis of Variance (ANOVA)
test. To make sure that the statistical assumptions underlying this test are met, we apply an
Aligned Rank Transform [46] to our data and run the corresponding version of the ANOVA test.
4.1 Confounding Through Ambiguity of Examples
To investigate our Hypothesis H1 (“faithful explanations lead to increased perceived trust”), we
consider the main effects of the multi-way ANOVA tests. We observe a significant main effect
on Food-101, F (1, 305) = 8.47, p = .004, and COMPAS, F (1, 125) = 28.3, p < .001. In the
visualization in Figure 4a and 4b, it can be seen that the average gap is rather small on Food-101
but more substantial for the COMPAS dataset. We thus confirm our Hypothesis H1 but conclude
that the effect of the explanation quality can be of a rather subtle nature in computer vision
tasks, underlining the need for a careful study design.
We subsequently focus on the effect of the selected examples. As detailed before, we have two
conditions of examples that are either ambiguous or unambiguous. We study the main effect
put forward by the multi-way ANOVA test first. We observe a highly significant main effect
on Food-101, F (1, 305) = 116, p < .001. In this case, the means of the different groups are
more than one unit on the 7-point scale apart as shown in Figure 4c, making the difference
more then four times as large as between different levels of faithfulness. A post-hoc comparison
confirms that the role of ambiguity easily overrides the role of faithfulness: Users trust the food
classifier with unfaithful explanations but unambiguous examples more than the model with
ambiguous examples but faithful explanations (p < .001 on a post-hoc Wilcoxon rank-sum test).
On the COMPAS dataset, however, the effect is insignificant, F (1, 125) = 1.03, p = .310, and
the visualization in Figure 4d does not indicate a substantial difference. This may be due to
interaction effects. Considering interaction effects between faithfulness and ambiguity reveals no
significant effect on Food-101, F (1, 305) = 2.47, p = .118, but a highly significant interaction on
COMPAS, F (1, 125) = 19.4, p =< 0.001, as visualized in Figure 5a and 5b. Our results highlight
that the effect of ambiguity is entirely dependent on faithfulness. When faithful explanations
are shown, we observe the same behavior as on Food-101, i.e., unambiguous examples increase
trust. However, this effect is inverted when the unfaithful explanations are shown. We discuss
this intriguing observation in Section 5. In conclusion, we can confirm our hypothesis H2 stating
that ambiguous examples reduce human trust independently of the explanations’ faithfulness on
the Food-101 dataset but reject the composed hypothesis on COMPAS.
4.2 Over- and Undertrust Through Confounding Factors
In this exploratory analysis, we are interested in unveiling the effect that two confounding factors
have on the (observed) overtrust (trusting the model although it is incorrect) and undertrust
(distrusting the model, although it is correct). For this analysis, we focus on the Food-101
dataset and observe that unambiguous examples significantly increase overtrust, F (1, 305) = 64.1,
p < .001, while ambiguous examples increase undertrust, F (1, 305) = 30.0, p < .001. We show
interaction plots in Figure 5c and Figure 5d, but observe no significant interaction for overtrust,
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Figure 5: Interactions between faithfulness and ambiguity for Food-101 (a) and COMPAS
(b). Ambiguous examples can lead to overtrust (c) while unambiguous ones to undertrust (d).

F (1, 305) = 3.16, p = .072, as well as undertrust, F (1, 305) = 0.11, p = .741, indicating that
the effect is consistent across levels of explanation faithfulness.

5 Discussion
Through our study, we first show that explanation faithfulness positively influences human
trust confirming hypothesis H1. Thereby, we validate prior works’ observation of this effect for
explanations, in general [5, 21, 43] or for explanations of high quality [20]. Regarding hypothesis
H2, our study highlights a substantial influence of ambiguity within presented samples, albeit
with a higher degree of instability. On the Food-101 dataset, we observe that trust is drastically
reduced when ambiguous examples are presented. This effect does not only cancel out the
quality of explanations, but in some cases completely overrides it. Startlingly, users tend to
place greater trust in models that offer less faithful explanations when those explanations are
provided alongside unambiguous examples, rather than in models offering faithful explanations
alongside ambiguous examples. Our study further reveals that unambiguous examples facilitate
the build-up of overtrust. Alarmingly, this opens the door to potential abuse, as it shows how
easily humans can be “tricked” into trusting models with non-meaningful explanations.
We further observe an intriguing interaction effect on the COMPAS dataset that merits further
discussion. Figure 5b reveals that the impact of presenting ambiguous examples varies depending
on the quality of the explanations provided. We hypothesize that this negative effect may stem
from unambiguous examples making it easier for participants to discern the unfaithfulness of the
explanations. Most of the unambiguous involve clear classifications (for instance, an individual
with a high number of priors and a high number of violent crimes should be assigned high risk).
When confronted with an unfaithful SHAP model, where highlighted features contradict the
ultimate decision output (e.g., the explanation assigns positive scores to numerous features but
predicts the negative class), users may experience a reduction in understanding and alignment with
their prior expectations – both of which are integral components of trust. On the Food-101 dataset,
the unfaithfulness cannot be spotted as easily. The divergence in outcomes between datasets
suggests that increased ambiguity retains its negative effect in situations where explanations
remain sufficiently plausible.
Our observations of confounding effects on trust have important implications in practice. To rule
out confounding through ambiguity which may trick auditors and users into trusting unreliable
models, we suggest carefully controlling for the ambiguity of the examples and reporting ambiguity
measures such as the inter-rater agreement of the samples provided in under evaluation conditions.
This is particularly important if the explanation quality should be part of the assessment.

6 Conclusion

In this work, we thoroughly study the effect of the ambiguity of examples in human perceptions
of XAI through a human-subject study involving a total of 320 participants. We show that this
factor has the potential to obscure the true relationship between the model explanation quality
and human trust. Our results suggest that controlling for example ambiguity is essential when an
opinion is based on a limited number of instances, as it is common in model auditing.
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A Manipulating Explanations

As described, we use the technique devised by Heo et al. [17] to generate different explanations
that are non-faithful to the original model. Concretely, we utilized the Gaussian noisy baseline
with a variance of σ2 = 0.1 and σ2 = 2 on Food-101 and COMPAS, respectively, to generate
unfaithful explanations.

B Sanity Checks for Conditions

We perform sanity checks to confirm that our manipulations on models, examples, and explanations
succeed to induce substantial differences between the corresponding conditions. In this subsection,
we provide details on these checks.

Ambiguity of Examples. To verify that the selected examples fulfill their purpose and are
indeed more or less ambiguous to the human rates, we compute Fleiss’ kappa to quantify inter-
rater reliability across both conditions. We observe the values given in Table 1, which correspond
to fair agreement with values of κ > 0.5 for the unambiguous samples and to low agreement
with κ < 0.2 for the ambiguous condition.

Dataset ambiguous samples unambiguous samples
Food-101 κ = 0.152 κ = 0.507
COMPAS κ = 0.112 κ = 0.552

Table 1: Values of Fleiss’ κ obtained in both conditions. The values confirm that there was much
higher disagreement on the examples presented in the “ambiguous” condition.

Image Model Explanation Infidelity
No. Prediction faithful unfaithful

1 grilled salmon 0.4453 0.9900
2 spring rolls 7.7788 7.9321
3 cheese plate 0.9405 1.5177
4 chocolate mousse 10.1175 14.1950
5 macaroni and cheese 0.7220 0.9854
6 chicken wings 1.1944 1.4725
7 fish and chips 3.8063 5.5710
8 pork chop 0.7919 1.4126
9 lobster bisque 74.7130 81.2756
10 poutine 9.7138 10.6590
11 eggs benedict 20.9709 22.0356
12 croque madame 4.9141 7.6924
13 prime rib 2.0639 2.3327
14 pork chop 0.9131 1.4983

(a) Food-101

Profile Prediction Explanation Infidelity
faithful unfaithful

3 1 0.3181 0.5629
5 0 0.2082 0.5050
9 1 1.3134 3.5983
13 1 1.3278 4.1902
16 0 0.2709 1.1184
24 1 0.7521 2.0209
25 1 1.3456 2.4542
26 1 0.2694 4.1591
30 1 1.3311 1.8392
32 1 0.6716 3.0944
37 0 0.4029 0.7723
39 1 0.8909 0.9992
45 1 0.3209 0.4846
49 1 0.5617 2.0599

(b) COMPAS

Table 2: Scores of the infidelity metric of the models and examples used in the study

Faithfulness. We numerically computed the faithfulness by using the metric by Yeh et al. [48]
(“fidelity”). The faithfulness results are shown in Table 2 and confirm that the infidelity is indeed
larger on each of the model/explanation combinations shown in the “unfaithful” condition.

C Identification of Ambiguous Examples

We performed two preliminary studies to assess the extent to which users considered given
instances to be ambiguous or unambiguous. We recruited voluntary participants through the
author’s networks at our institution to assess the intuitiveness of certain instances. Each example
was classified by an average of 24.8 participants (each example was assessed by at least 8
participants), who either selected the classification outcome among the top-six outputs of the
classifier or between the two options on COMPAS. We subsequently selected the least and most
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ambiguous examples for our study. On Food-101, this resulted in an average agreement on
the most common label of 93 % for the most unambiguous examples and 53 % agreement for
the most ambiguous examples. On COMPAS, an average of 97 % of the annotators agreed on
the classification for the unambiguous examples whereas only 66 % agreed on one label for the
ambiguous ones. As a sanity check, we also computed the inter-rater reliability through Fleiss’
κ [14] for the participants in the corresponding conditions of the main study, which confirms
that the selected examples in the ambiguous condition led to substantially higher disagreement
(cf. Appendix B). In our selection of examples, we paid attention to rule out other confounding
factors such as observed accuracy by checking the overall share of correctly classified examples in
each condition.

D Measuring Trust

We use the following questions in our user study for measuring the perceived trust:

• I can predict how the model will behave.
• I trust the decisions made by the model.
• I have faith that the model would be able to cope with all different kinds of food / criminal

defendant situations.
• If I am not sure about a decision, I trust that the model will provide the best solution.
• I trust the model to provide a reliable decision for classifying different images of food / for

criminal recidivism.

E Main Study

Main Study Survey. Figure 6 illustrates an example question on COMPAS from our main user
study. An anonymized version of the full user study survey can be found at this anonymized
URL: https://anonymous.4open.science/r/xai_ambiguity_survey-A185/Main-Study_
Survey_Anonymous.pdf.

E.1 Participants

In the main user studies, we recruited 320 participants using the online recruitment platform
Prolific.3 We required the participants to be fluent in English and have a Prolific approval rate of
at least 90%. The average age of participants was 31.43 years (SD = 10.60). In addition, 34.06%
were female (n = 109), 64.69% were male (n = 207), 0.94% identified as non-binary / third
gender (n = 3), and 0.31% preferred not to disclose their gender (n = 1). Furthermore, 39.06%
(n = 125), 35.31% (n = 113), and 22.50% (n = 72) of the subjects had at least moderate
knowledge of programming, computer algorithms, and machine learning, respectively. At the
beginning of the experiment session, we collected informed consent through Prolific. Each
participant was compensated with a payment of £3 for participation in the user study (within 20
minutes).

E.2 Sanity Checks

Understanding Questions. We asked all 320 recruited participants two understanding questions
for Food-101: 1) Which of the following statements is true about the mentioned model? with
the options being

• The model is a protocol to follow in order to classify images of food as oranges or no
oranges.

• The model is a computer program to automatically classify different types of
food.

• The model is a computer program that randomly generates a number.
3https://www.prolific.co/
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and 2) Which of the following statements is true about the mentioned model?

• Blue parts of the image have a high influence on the model’s prediction.
• Red parts of the image have a high influence on the model’s prediction.
• The colored parts of the image have no impact on the prediction of the model.

We rule out n = 8 participants that fail the first understanding question. Of the remaining
participants, an additional n = 3 participants selected an incorrect answer to the second question
which leaves us with a total of 309 valid replies for the study on Food-101.
In the second study (COMPAS), we ask similar questions: and 1) Which of the following
statements is true?

• The attributes in this study can be ignored.
• The attributes will not influence the automated decisions for criminal recidivism.
• The attributes will influence the automated decisions for criminal recidivism.

and 2) Which of the following statements is true?

• Positive values (in red) have a higher impact to the model’s decision that the
defendant is likely to reoffend.

• Negative values (in blue) have a higher impact to the model’s decision that the defendant
is likely to reoffend.

• Positive (in red) and negative values (in blue) have the same impact to the model’s
decision that the defendant is likely to reoffend.

Out of an intial N = 167 paricipants, we rule out n = 6 participants that fail the first
understanding question. Of the remaining participants, a rather large portion of n = 32
participants selected an incorrect answer to the second question which, in hindsight, seems not
to have been as clear as intended. This leaves us with a total of 129 valid replies for the second
study. Prediction of given sample Get explanation and prediction of model

User agreement with model prediction

(a) user prediction of a
given sample

(b) explanation and model
prediction

(c) collect user agreement
with model prediction

Figure 6: Interaction of users with explanations in our main study on COMPAS. First,
participants are asked to predict the class of an example (a). Then, they are presented with
the model’s prediction and an explanation of varying quality (b). Finally, participants vote on
whether they agree with the model’s prediction (c).
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