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Abstract

We study a fair resource allocation problem with in-
divisible items. The agents’ preferences over items
are assumed to be ordinal and have uncertainties.
We adopt stochastic dominance proportionality as
our fairness notion and study a sequence of prob-
lems related to finding allocations that are fair with
a high probability. We provide complexity analy-
sis for each problem and efficient algorithms for
some problems. Finally, we propose several heuris-
tic algorithms to find an allocation that is fair with
the highest probability. We thoroughly evaluate the
performance of the algorithms on both synthetic
and real datasets.

1 INTRODUCTION

The problem of fairly allocating a set of scarce resources
among multiple agents has been a central research topic in
multi-agent systems and AI. One of the most prominent fair-
ness notions in fair division is proportionality, which states
that each agent should receive enough resources which are
at least 1/n of the utility when she receives all the resources,
where n is the total number of the agents. Proportionality
is one of the first studied fairness concepts in the literature.
The existence of a proportional allocation can always be
guaranteed when the resources are divisible. However, with
indivisible items, proportional allocations may fail to exist
in some cases; a simple example is when there are only two
agents and one item which both agents valued positively.

A classic notion of proportionality is defined under the set-
ting that each agent has a cardinal and deterministic valua-
tion function over the items. In contrast, this paper studies
ordinal and uncertain preferences over items. Considering
only ordinal preferences is a natural and appealing assump-
tion due to several reasons. To name a few, first, it is often
much easier to elicit ordinal preferences from the agents

since it requires significantly less information. Second, some
weaker fairness notions defined for ordinal preferences may
permit more positive computational results for many prob-
lems. Finally, in certain applications, it’s not available to get
the cardinal preferences due to agents’ limited knowledge
on their valuations. In fact, the ordinal preferences have been
widely studied in the resource allocation problems [Kuhn,
1955, Gardenfors, 1973, Demko and Hill, 1988, Bogomol-
naia and Moulin, 2001, Burkard et al., 2009, David, 2013,
Aziz et al., 2019b].

The assumption of uncertain preferences is also practical.
In some settings the ordinal preferences may not be com-
pletely known due to a lack of information or a high cost
to elicit a full preference list. Specifically, it may require
a large number of pairwise comparisons among possible
options to get the full preference order. It can also be dif-
ficult to even rank two close options without additional
costly information [Drummond and Boutilier, 2014]. In ad-
dition, according to the study of uncertain preferences in
[Aziz et al., 2019a], an agent’s preference may be a com-
position of several preference lists from other agents she
represents, or a combination of preferences from different
criteria, where their weights are not determined.

In summary, the problem studied in this paper is to find a
fair allocation for agents that have ordinal and uncertain
preferences over items. In particular, the notion to define
fairness under ordinal preferences is based on stochastic
dominance (SD), a standard way of comparing fractional
allocations. We model the uncertain preferences following a
similar way as in Aziz et al. [2019a] and Aziz et al. [2016].
Specifically, we use tied sets to represent the items that the
agents are not sure of their preferences towards and assume
equal probabilities over each linear order extension of the
preference order in the tied sets. This model of uncertainty
is common for ordinal preferences. It has also been widely
used in the matching literature [Rastegari et al., 2013, 2014,
Drummond and Boutilier, 2014]. To the best of our knowl-
edge, this paper is the first one to consider fair allocations
under such preference settings and provide algorithmic and
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complexity analysis for it.

1.1 OUR RESULTS

In this work, we study how to find proportionally fair allo-
cations when the agents have ordinal and uncertain prefer-
ences. Inspired by Aziz et al. [2017b] which studies Pareto
optimal allocations under similar preference models, we
study the computational complexity of the following four
problems:

• FAIRPROB: What is the probability that a given alloca-
tion is fair under the specific fairness definition?

• EXISTSPOSSIBLYFAIR: Does there exist an allocation
that is fair with non-zero probability?

• EXISTSCERTAINLYFAIR: Does there exist an alloca-
tion that is fair with probability one?

• HIGHESTPROB: How to find an allocation with the
highest probability of being fair under the specific fair-
ness definition?

We focus on two fairness notions introduced in Aziz et al.
[2015]: weak SD proportionality and SD proportionality.
Other proportional notions are also discussed in Aziz et al.
[2015]. But they are shown to be equivalent to either of
these two fairness notions. For each fairness notion, we
present hardness results and efficient algorithms for the
above four questions. Specifically, we show that for both
fairness notions, FAIRPROB and EXISTSPOSSIBLYFAIR can
be solved in polynomial time via dynamic programming and
matching. EXISTSCERTAINLYFAIR and HIGHESTPROB are
NP-hard. But we can provide polynomial-time algorithms
for some special cases. For instance, if the number of agents
is constant or the agents are all identical, we can efficiently
find an allocation satisfying the corresponding condition.
We summarize all the theoretical findings in Table 1.

Finally, noted the importance of HIGHESTPROB in many
real-world scenarios, we propose several heuristic algo-
rithms to find an allocation that is fair with a high prob-
ability. Experiments in both synthetic and real datasets are
conducted to evaluate their performance and computation
efficiency.

1.2 RELATED WORKS

In most existing literature, agents are assumed to have
cardinal and deterministic valuations over items [Lipton
et al., 2004, Brams et al., 2012, Bouveret and Lang, 2008,
Bezáková and Dani, 2005].

Several works have considered ordinal preferences and
weaker fairness notions [Kuhn, 1955, Gardenfors, 1973,
Demko and Hill, 1988, Bogomolnaia and Moulin, 2001,

Burkard et al., 2009, David, 2013, Aziz et al., 2015, Segal-
Halevi et al., 2020, Bouveret et al., 2010]. Aziz et al. [2015]
is the most related one. They used the stochastic dominance
relation between fractional allocations to define various gen-
eralized notions of proportionality and envy-freeness and
investigated the computational complexity of finding a fair
assignment. They assume preferences are completely known
and consider possibly indifferent preferences over items. In
contrast, we assume that agents have strictly different pref-
erences for different items but their preferences may not be
completely known. We name the set of items with unknown
preferences a tie. We model the preferences for items in a
tie using uniformly distributed linear order extensions. It is
worthwhile to note that assuming indifference for items with
unknown preference can be regarded as an alternative way
to model the uncertain preference. But we show that the fair
allocation from such a modeling perspective can only be
mapped to the certainly and possibly fair allocation in weak
SD proportionality and SD proportionality, respectively in
our work, after some small modifications.

Another stream of related literature considers uncertainties
in agents’ knowledge about their valuations [Lumet et al.,
2012, Aziz et al., 2016, 2017b,a, 2019a, Menon and Larson,
2018]. The most related ones are Aziz et al. [2019a] and
Aziz et al. [2017b], in which they study a Pareto optimal
assignment problem. In their problem, agents also express
ordinal and uncertain preferences. We adopt the way how
they model the uncertain preferences but study a proportion-
ally fair allocation problem. Lumet et al. [2012] considered a
different fair division uncertainty model in which each item
could be in either good or bad state with certain probabilities.
They developed algorithms to find ex-post fair allocations
assuming independent states over items and correlated valu-
ations over agents. Different from their paper, we assume
the states of the items are correlated but the agent valuations
are independent.

2 PRELIMINARIES

Consider an allocation problem instance with a set of n
agents N = {1, . . . , n} and a set of m indivisible items
O = {o1, . . . , om}. Each agent i has a complete and tran-
sitive strict preference order �i over O. The ranking of an
item for an agent is defined as the sequence of the item in
the agent’s preference list. Specifically, an item’s ranking in
an agent’s preference equals the number of items preferred
by the agent plus one. An allocation is a partition of items
into n bundles A = (A1, . . . , An), such that each agent
i is allocated a bundle Ai. We also denote [p] as the set
{1, . . . , p} for any positive integer p.

Uncertainty in Preferences. In this work, we allow agents
to express uncertainty in their preferences in terms of “ties”.
Specifically, we adopt an uncertainty model considered in
Aziz et al. [2016] and Aziz et al. [2019a] (termed as a



Table 1: Theorectical results

Weak SD Proportionality SD Proportionality
FAIRPROB in P (Thm 3.1) in P (Thm 4.1)
EXISTSPOSSIBLYFAIR in P (Thm 3.2) in P (Thm 4.2)

EXISTSCERTAINLYFAIR

NP-Hard (Thm 3.3)
in P for constant n (Thm 3.5)
in P for identical agents (Thm 3.4)

NP-Hard (Thm 4.3)
in P when the number of equivalent classes
is at most 4 in all preferences. (Thm 4.4)

HIGHESTPROB
NP-hard (Thm 3.3)
in P for constant n (Thm 3.5) NP-hard (Thm 4.3)

compact indifference model in their paper). In this model,
each agent i is allowed to report a weak preference list. For
instance, consider such a preference list (Si,1) �i . . . �i

(Si,ki
). Each Si,j is a tied set in the weak preference list

that we call the jth equivalent class of agent i. The actual
strict preference �i of agent i is then chosen uniformly at
random from all linear order extensions of this weak order.
The choices of the linear order extensions of different agents
are independent. We denote ki as the number of equivalent
classes of agent i.

Example 1. Consider the following allocation problem
with 2 agents and 4 items: agent 1 has preference (a, b) �1

(c, d), agent 2 has preference (a) �2 (b, c, d). In this in-
stance, the strict preference of agent 1 may be a �1 b �1

c �1 d or a �1 b �1 d �1 c or b �1 a �1 c �1 d or
b �1 a �1 d �1 c, each with probability 1/4, while the
strict preference of agent 2 may be a �2 b �2 c �2 d or
a �2 b �2 d �2 c, or the rest 4 preferences generated by
the permutation of b, c, d, each with probability 1/6.

Proportional Fairness. When only ordinal preferences are
available, Aziz et al. [2015] defined several fairness notions
that generalize proportionality to the ordinal setting. In this
work we consider the following two definitions based on
stochastic dominance(SD).

• Weak Stochastic Dominance (SD) proportionality: an
allocation satisfies weak SD proportionality if for each
agent i, there exists 1 ≤ k ≤ m such that agent i is
allocated at least b kn + 1c of her top k items.

• Stochastic Dominance (SD) proportionality: an alloca-
tion satisfies SD proportionality if for each agent i and
1 ≤ k ≤ m, agent i is allocated at least d kne of her top
k items.

The above definitions of weak SD proportionality and SD
proportionality are the simplifications of that in Aziz et al.
[2015] when only considering strict preferences. This is
when comparing a uniform allocation with another alloca-
tion of an agent using the original SD preference definition
in Aziz et al. [2015], it reduces to the comparison between
k
n and the number of items allocated to this agent in her top
k favorites for every 1 ≤ k ≤ m under strict preferences.

Example 1 (continued). For our example above, when
considering weak SD proportionality, one certainly fair al-
location is to assign items b, c, d to agent 1 and item a to
agent 2. However, when considering SD proportionality,
this allocation has probability 0 to be fair for agent 2. The
allocation that has the highest probability to be SD propor-
tional is to assign b, c to agent 1 and a, d to agent 2, with
fair probability 1

4 ·
2
3 = 1

6 .

3 WEAK SD PROPORTIONALITY

In this section, we consider the weak SD proportionality.
First we show that given an allocation, one can efficiently
compute the probability that this allocation is weak SD
proportional.

Theorem 3.1. FAIRPROB with regard to weak SD propor-
tionality can be solved in polynomial time.

Proof. Because the uncertainty in each agent’s preference
is independent, it suffices to show that the probability that
the fairness condition is met for each agent i ∈ N can
be computed in polynomial time. In the following, we use
dynamic programming to calculate this probability.

For one specific agent i ∈ N , there are K := ki equivalent
classes and the j-th equivalent class has sj := |Si,j | items.
Firstly, we calculate the number of items owned by i in the
j-th equivalent class of i and we denote it by rj ≤ sj .

The key to this dynamic programming algorithm is to iden-
tify the subproblem structure. We use Pnum,tot,dis to repre-
sent the probability that there are tot items owned by agent
i arranged in the top num items with a fair verification pa-
rameter dis defined as follows:

dis =

0, if it’s tranferred from the state with dis′ = 0

max
{
0,
⌊num

n
+ 1

⌋
− tot

}
, otherwise

Intuitively, dis shows the distance to weak SD proportional-
ity and once it reaches 0, it will keep at 0.

The complete algorithm is shown in Algorithm 1. The key
steps in this algorithm are the state transfers in Steps 3-21.
We let sta represent the equivalent class that the (num+ 1)-
ranked item belongs to, and let p represent the probability



Algorithm 1 FAIRPROB Algorithm

Require:
m: number of items
n: number of agents
K: number of equivalent classes of agent i
s1,...,K : number of items in each equivalent classes
r1,...,K : number of items owned by agent i in each
equivalent classes

1: Pnum,tot,dis ← 0 ∀0 ≤ num, tot ≤ m, 0 ≤ dis ≤
bmn + 1c

2: P0,0,1 ← 1
3: for num← 0 to m− 1 do
4: for tot← 0 to num do
5: for dis← 0 to bmn + 1c do
6: if Pnum,tot,dis 6= 0 then
7: Let sta be the minimum integer such that∑

j∈[sta] sj ≥ num+ 1.
8: PrevP← Pnum,tot,dis

9: p←
∑

j∈[sta] rj−tot∑
j∈[sta] sj−num

10: if dis = 0 then
11: Pnum+1,tot+1,dis += PrevP · p
12: Pnum+1,tot,dis += PrevP · (1− p)
13: else
14: Let id be 1 if num + 1 is a multiple of n

and
0 otherwise.

15: Pnum+1,tot+1,max{0,dis+id−1} += PrevP ·
p

16: Pnum+1,tot,dis+id += PrevP · (1− p)
17: end if
18: end if
19: end for
20: end for
21: end for
22: return Pm,

∑
j∈[K] rj ,0

of the item with ranking (num + 1) owned by i under the
present state in Steps 7-9.

We consider the specific transfers in two cases. Steps 11-12
solve the first case with dis = 0 where we have already
reached fairness and the remaining is to arrange the order
of the rest items. Steps 14-16 solve the second case with
dis > 0 where dis has never met 0 before and we need to
update it based on the definition. In both these two cases, we
need to update the state based on the situation of whether the
next item is owned by agent i. Specifically, when dis = 0,
if the next item is owned by agent i, there are tot+ 1 items
owned by i arranged in the top num+1 items, so we transfer
the state to Pnum+1,tot+1,dis in Step 11, otherwise only tot
items in i’s bundle are arranged in the top num+ 1 items,
which corresponds to the state Pnum+1,tot,dis in Step 12. For
the case of dis > 0, on top of the change of tot, we also use
id to record the change of the term b numn + 1c in the above

definition of dis in Step 14. Then, we transfer the state to
Pnum+1,tot+1,max{0,dis+id−1} in Step 15 if the next item is
owned by i, or Pnum+1,tot,dis+id in Step 16 otherwise.

Finally, Step 22 returns the probability that the fairness
condition is met for agent i with her all owned items.

We further show that EXISTSPOSSIBLYFAIR can also be
solved in polynomial time based on Theorem 7 in Aziz et al.
[2015]. We defer the detailed proof to the online supplement.

Theorem 3.2. EXISTSPOSSIBLYFAIR with regard to weak
SD proportionality can be solved in polynomial time.

Next we turn to EXISTSCERTAINLYFAIR problem. Unlike
EXISTSPOSSIBLYFAIR, we show that it is NP-hard to de-
termine whether there exists an allocation that is weak SD
proportional with probability one. To prove this hardness
result, we reduce from a known NP-hard problem denote as
(2,2)-E3-SAT [Berman et al., 2004].

(2,2)-E3-SAT: Given a boolean formula in conjunctive
normal form in which each clause has three literals and each
variable occurs exactly twice positive and twice negative,
decide whether this boolean formula is satisfiable.

Theorem 3.3. EXISTSCERTAINLYFAIR and HIGHEST-
PROB with regard to weak SD proportionality are NP-hard.

Proof. We reduce from (2,2)-E3-SAT to EXISTSCERTAIN-
LYFAIR, which can also imply NP-hardness for HIGHEST-
PROB. Considering a (2,2)-E3-SAT instance F with s
variables X = {x1, . . . , xs} and t clauses which satisfies
4s = 3t. Based on F we construct a problem instance of
EXISTSCERTAINLYFAIR with 6s agents and 12s items.

The agents are divided into two sets. The first is a set of
2s agents A = {A1, . . . , A2s} where A2k−1 corresponds to
the true valuation of xk and A2k corresponds to the false
valuation of xk for each k ∈ [s]. The second set is the set of
the remaining 4s dummy agents A′ = {A′1, . . . , A′4s}.

The 12s items are divided into five sets as follows:

• A set of t items C = {C1, . . . , Ct}, where Ci corre-
sponds to the i-th clause in (2,2)-E3-SAT;

• A set of t/2 items T = {T1, . . . , Tt/2}, given to the
agents corresponding to the correct value of variables
together with the items in C;

• A set of s items S = {S1, . . . , Ss}, compensated for
the agents representing the wrong value of variables;

• A set of 6s dummy items B = {B1, . . . , B6s}, where
each 2 items are bound to 3s agents in A′;

• A set of 3s dummy items Q = {Q1, . . . , Q3s}, where
each 3 items are bound to the remaining s agents in A′.



Next, we construct the preference lists for agents. For each
agent Ai ∈ A, we denote Ri as a set of items such that: for
each k ∈ [s], R2k−1 and R2k consist of the two items in C
corresponding to the clauses containing the positive xk and
the negative xk respectively. The preference of each agent
Ai in A is: Sdi/2e � (Ri, T, B) � (others). The preference
of each dummy agent A′i in A′ is: (B) � (others).

An example of this construction is shown below.

Example 2. Consider a simple (2,2)-E3-SAT problem
instance with s = 3 variables and t = 4 clauses:

1. x1 ∨ x2 ∨ ¬x3 2. x1 ∨ ¬x2 ∨ x3

3. ¬x1 ∨ x2 ∨ x3 4. ¬x1 ∨ ¬x2 ∨ ¬x3

The corresponding instance of EXISTSCERTAINLYFAIR has
18 agents and 36 items. The preference lists are as follows:

• Agent 1: S1 � (C1, C2, T1, T2, B1, . . . , B18) �
(S2, S3, C3, C4, Q1, . . . , Q9)

• Agent 2: S1 � (C3, C4, T1, T2, B1, . . . , B18) �
(S2, S3, C1, C2, Q1, . . . , Q9)

• Agent 3: S2 � (C1, C3, T1, T2, B1, . . . , B18) �
(S1, S3, C2, C4, Q1, . . . , Q9)

• Agent 4: S2 � (C2, C4, T1, T2, B1, . . . , B18) �
(S1, S3, C1, C3, Q1, . . . , Q9)

• Agent 5: S3 � (C2, C3, T1, T2, B1, . . . , B18) �
(S1, S2, C1, C4, Q1, . . . , Q9)

• Agent 6: S3 � (C1, C4, T1, T2, B1, . . . , B18) �
(S1, S2, C2, C3, Q1, . . . , Q9)

• Agent 7-18: (B1, . . . , B18) � (S1, S2, S3, C1, . . . ,
C4, T1, T2, Q1, . . . , Q9)

If the (2,2)-E3-SAT instance has a satisfying assignment,
we can construct an allocation as follows:

• If variable xi is TRUE, we assign Si to A2i, otherwise
we assign Si to A2i−1;

• For the j-th clause, suppose the first true term in it is
about xi. Then, if this term is positive xi, we assign
Cj to A2i−1, otherwise we assign Cj to A2i.

• For agents in A who do not receive any Si, we assign
items in T to them so that these agents can each re-
ceive exactly two items. We know this can be satisfied
because 2s = t+ t/2.

• Finally, we assign two items in B to each of the first
3s agents in A′ and assign three items in Q to each of
the remaining s agents in A′ arbitrarily.

For the agents in A who get an item in S, their fairness con-
ditions are met because they get their unique most preferred

item respectively. Each of the remaining agents in A gets ex-
actly two items that are not least preferred by them, so their
fair conditions are also met. Finally, agents in A′ also meet
the fair conditions because either they receive two items
that they do not prefer the least, or they receive three items.
Thus, this allocation must satisfy weak SD proportionality.

On the other hand, assume there is an allocation that is weak
SD proportional with probability one, we can construct a
satisfying assignment for the (2,2)-E3-SAT instance. First,
the agents in A who do not receive their most preferred
item must get at least two items to meet the fair condition.
Because there are at most s agents that can receive items
in S, at least s agents in A need at least two items. Next,
for the agents in A′, they can meet the fairness condition if
and only if they receive either two items in B or three items.
Because of the limit of the number of items in B, at most 3s
agents in B can meet the fair condition with only two items.

We can consider the most optimistic situation: s agents in A
each get their most preferred item in S and the remaining s
agents in A get exactly two items in their respective second
equivalent class but not in B; 3s agents in A′ each get
exactly two items in B while the remaining s agents in A′

each get three items. The number of items needed in total is
12s, which means that this situation is necessary.

Therefore, for any k ∈ [s], exactly one agent between A2k−1
and A2k gets the corresponding Sk while the other one needs
to get two items from C ∪ T , whose size is t/2 + t = 2s.
This means each item in C must be chosen by the agents in
A, and this will lead to a satisfying assignment for (2,2)-
E3-SAT with such value scheme: for each pair A2k−1 and
A2k with k ∈ [s], we set xk = FALSE if A2k−1 gets Sk

otherwise we set xk = TRUE.

Example 2 (continued). The above mentioned (2,2)-E3-
SAT instance is satisfiable by setting x1 = TRUE, x2 =
TRUE, x3 = FALSE. We can get the corresponding allo-
cation for the EXISTSCERTAINLYFAIR instance:

• The agent representing the wrong valuation of each
variable takes the corresponding item in S: agent 2, 4
and 5 takes their respective S1, S2, S3.

• Each item representing the clause is taken by the agent
representing the first true term: agent 1 takes C1, C2,
agent 3 takes C3, and agent 6 takes C4, and T1, T2 are
given to agent 3 and 6 as a compensation.

• Each two of B1,...,18 are assigned to agent 7− 15, and
each three of Q1,...,9 are assigned to agent 16− 18.

One can check that this is a certainly fair allocation in our
EXISTSCERTAINLYFAIR instance.



Next we present several positive results and short discus-
sions on solving EXISTSCERTAINLYFAIR and HIGHEST-
PROB for special cases.

Theorem 3.4. EXISTSCERTAINLYFAIR with regard to
weak SD proportionality can be solved in polynomial time
when all agents have identical preferences.

When all agents have identical preferences, we can derive
an optimal greedy algorithm that assigns items to agents
such that each agent receives consecutive items in a prefer-
ence order from the most to the least preferred items. This
demonstrates the polynomial-time solvability of the EX-
ISTSCERTAINLYFAIR. In this analysis, the assumption of
identical preferences is critical since it allows us to sort all
items before the allocation, which is a crucial step in the
follow-up analysis.

Theorem 3.5. EXISTSCERTAINLYFAIR and HIGHEST-
PROB with regard to weak SD proportionality can be solved
in polynomial time when the number of agents is constant.

When the number of agents n is a constant, we can de-
rive the following exact algorithm. First, we enumerate the
number of items assigned to each agent from each equiv-
alent class. Next, we use a perfect matching algorithm to
find a corresponding allocation scheme and apply FAIR-
PROB to calculate the fair probability. The total number
of enumerations is in the order of O(n4n2+n+1) which is
a constant. However, this is no longer true if n is a super-
constant. Therefore, the constant assumption is an important
assumption to get a polynomial-time solvable algorithm.

4 SD PROPORTIONALITY

In this section, we turn our focus to SD proportionality. This
is a stronger fairness requirement than weak SD propor-
tionality. Similar to the weak SD proportionality case, we
show that with regard to SD proportionality, FAIRPROB
and EXISTSPOSSIBLYFAIR can be solved in polynomial
time, while EXISTSCERTAINLYFAIR and HIGHESTPROB
are both NP-hard. The techniques we use to prove these
results are similar in spirit to those for weak SD propor-
tionality. However, due to the difference between these two
fairness concepts, adjustments need to be made to the proofs
to make them work in the SD proportionality setting. For
example, to prove the NP-hardness for EXISTSCERTAINLY-
FAIR and HIGHESTPROB with regard to SD proportionality,
we need to reduce from another NP-hard problem known as
X3C from Johnson and Garey [1979].

Below we list all the results in this section. The details of
all proofs, except the proof of Theorem 4.4, are deferred to
the supplementary material due to page limits.

Theorem 4.1. FAIRPROB with regard to SD proportionality
can be solved in polynomial time.

Theorem 4.2. EXISTSPOSSIBLYFAIR with regard to SD
proportionality can be solved in polynomial time.

Theorem 4.3. EXISTSCERTAINLYFAIR and HIGHEST-
PROB with regard to SD proportionality are NP-hard.

In the proof of Theorem 4.3, we can see even if the number
of equivalent classes of each agent is 6, EXISTSCERTAIN-
LYFAIR is still NP-hard.

Theorem 4.4. EXISTSCERTAINLYFAIR with regard to SD
proportionality can be solved in polynomial time if the num-
ber of equivalent classes of each agent is at most 4.

Proof. SD proportionality with probability one is a very
demanding condition. We first list some properties that such
an allocation must satisfy. First, a direct corollary from Aziz
et al. [2015] shows that such an allocation may exist only
when m = qn for some integer q and each agent gets exactly
q items.

Second, each agent must get all items in her first equivalent
class to meet the fair condition with k = 1. Each agent also
cannot get any items in her last equivalent class. This is
because, suppose agent i gets at least one item in her last
equivalent class, we can make this item her least favorite
item, so we need to use the other q − 1 items to satisfy all
fair conditions with k ≤ qn− 1, which is impossible when
n > 1. These two conditions also imply that the number of
equivalent classes for each agent must be greater than 1 and
the number of items in the first equivalent class must be no
more than q for a certainly fair allocation to exist.

We will utilize the above characterizations to determine the
existence of a certainly SD proportional allocation. More
specifically, we will reduce the EXISTSCERTAINLYFAIR
problem to a max-flow problem in a flow network G. The
construction is as follows. Let the flow network G = (V,E)
with a capacity function c : E 7→ R+. V consists of a source
vertex s, a target vertex t, a vertex set A defined later and
a vertex set B of m vertices representing the m items. For
each vertex j in B, we create an edge (j, t) with capacity
c = 1. Next, for each agent i, we construct its vertices in A
depending on the number ki of its equivalent classes.

• ki = 2: Because we cannot give agent i any items
in her last equivalent class and each agent must get
all items in her first equivalent class, we must have
|Si,1| = q, otherwise there is no certainly fair alloca-
tion. Thus, we create a vertex i in A representing agent
i, and construct edges (i, j) with capacity c = 1 for
each vertex j ∈ Si,1 in B. We also construct an edge
pointing from the source s to i with capacity c = q.

• ki = 3: Similar to the case ki = 2, agent i must get all
items in Si,1 and the remaining q − |Si,1| items from
Si,2. We can use the algorithm for FAIRPROB to check
whether such an allocation can meet agent i’s fairness



condition with probability one. If not, it means there
does not exist a certainly fair allocation. Otherwise, we
create two vertices i1, i2 in A for agent i.

– The first vertex i1 has an edge (s, i1) with c =
|Si,1|, and edges (i1, j) with c = 1 for each ver-
tex j ∈ Si,1 in B;

– The second vertex i2 has an edge (s, i2) with
c = q − |Si,1|, and edges (i2, j) with c = 1 for
each vertex j ∈ Si,2 in B.

• ki = 4: This is the most complicated case. We assume
that the numbers of items owned by agent i in the first
three equivalence classes are x, y, z. It must satisfies
x = |Si,1| and x+ y + z = q. Once the value of x is
fixed, we observe that the probability that agent i meets
the fair condition increases with y. So we can find the
minimum y′ ≤ min{q − x, |Si,2|} such that i can
meet her fair condition with probability one. If there
exists no such y′, there is no certainly fair allocation
for this instance. Otherwise, we know for all eligible
y ≥ y′, agent i can always meet the fair condition
with probability 1. Following this idea, we create three
vertices i1, i2, i3 in A for i:

– the first vertex i1 has an edge (s, i1) with c = x,
and edges (i1, j) with c = 1 for each vertex j ∈
Si,1 in B;

– the second vertex i2 has an edge (s, i2) with c =
y′, and edges (i2, j) with c = 1 for each vertex
j ∈ Si,2 in B;

– the third vertex i3 has an edge (s, i3) with c =
q − x− y′, and edges (i3, j) with c = 1 for each
vertex j ∈ Si,2 ∪ Si,3 in B. The intuition for this
step is to allow the allocation to give more items
to agent i in Si,2.

With this construction, one can check that if there exists
a maximum flow with value m = qn, the corresponding
allocation must be SD proportional with probability one,
because it meets all fair conditions for each agent according
to our analysis.

Remark: The algorithm can not be directly generalized to
the case when some agent i has more than 4 equivalent
classes. To see it, note that if we continue to use this ap-
proach and assume that the number of items owned by agent
i in her top four equivalent classes are x, y, z, w, we still
have x = |Si,1| and x + y + z + w = q. But it is no
longer true that the fair probability is monotone increasing
with both y and z. This is because the fair probability may
decrease if z decreases even when y increases.

5 EXPERIMENTS

In this section, we focus on HIGHESTPROB with respect to
weak SD proportionality given the importance of finding al-

locations with a high fair probability. Since we have shown
this problem is NP-hard, we will only present several heuris-
tic algorithms for it. The performance and computational
efficiency are evaluated on both synthetic and real datasets.

5.1 ALGORITHMS

We design and evaluate four algorithms for HIGHESTPROB.
The details and parameters used in each algorithm can be
found in the supplementary material.

1. BASELINE (B): This is a baseline algorithm that as-
signs each item to a random agent to get a random
allocation.

2. LOCALSEARCH (LS): This is a local search algo-
rithm that repeatedly move one item from one agent to
another until the allocation reaches a local optima.

3. MATCHING (M): This is a multi-round matching algo-
rithm that matches each agent to an item in each round.
In particular, the weight of each arc linking an agent
to an item is based on a function of the item’s possible
rankings in the agent’s preference list. We apply multi-
round maximum weight matching algorithms to assign
the items to each agent.

4. GREEDY (G): This algorithm first converts HIGHEST-
PROB to a submodular welfare maximization problem
and then uses a greedy algorithm from Lehmann et al.
[2006] to output a 2-approximation solution.

5.2 DATASETS

We test the above four algorithms on both synthetic and real
datasets.

1. Synthetic dataset: We enumerate n from 2 to
20 and m from n to 5n. For each p ∈
{0.02, 0.03, 0.04, 0.05, 0.06}, we create 30 datasets in
the following way: For each agent we create a ran-
dom permutation of all items. For each pair of adjacent
items in the permutation, we separate them into two
equivalent classes with probability p. We choose p to
be in this range because when p becomes larger, all
the four algorithms can easily find an almost certainly
fair assignment and there is no significant difference in
their performance.

2. Real dataset: We use the Preflib database from Mattei
and Walsh [2013], which is an online database of real-
world preference profiles to test our algorithms. We
select 11 datasets from two categories in this database:

(a) Matching Data (MD-00002): This category con-
tains bidding preferences of reviewers over a sub-
set of papers at Computer Science conferences.
Each preference is an incomplete list with ties.



We convert each preference into a complete list
with ties by adding the remaining items as the
last equivalent class. This category has 3 datasets
corresponding to 3 different conferences.

(b) Matching Data (MD-00003): This category con-
tains bids of students over a set of projects
for student/project allocations at a university. It
has 8 datasets in total, all with complete prefer-
ences with ties, with 31-51 students and 56-155
projects.

5.3 RESULTS AND DISCUSSIONS

5.3.1 Synthetic dataset

We measure the performance of each algorithm by the aver-
age fair probability across various tested datasets. Figure 1
shows the average fair probability generated by each algo-
rithm for each n from 2 to 20. Each average fair probability
is taken over multiple datasets with different m and p. Fig-
ure 2 presents the average running time of each algorithm.
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Figure 1: Algorithm performance over synthetic data
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Figure 2: Algorithm running time over synthetic data

From the figures, one can see that LOCALSEARCH, MATCH-
ING and GREEDY generate allocations with a much higher
average fair probability than BASELINE when the number

of agents is at least 5. Besides, when the number of agents
n increases, the running time of LOCALSEARCH increases
significantly, while BASELINE, MATCHING, and GREEDY
keep low running time. In summary, GREEDY and MATCH-
ING require the least running time and perform the best
consistently for different values of n.

5.3.2 Real dataset

Table 2 presents the fair probabilities of the suggested al-
locations by each algorithm on 11 real datasets. Table 3
further provides their running times. In the real datasets,
BASELINE still performs the worst. The other three algo-
rithms can generate allocations that are fair with probability
1 for most cases, with two exceptions for LOCALSEARCH
and one exception for GREEDY. MATCHING is the only
algorithm that performs consistently well. In terms of the
running time, LOCALSEARCH takes much longer than the
other three. The BASELINE and MATCHING take a little
more time than GREEDY. But it is still acceptable.

Table 2: Fair probability of all algorithms over real data
(sorted by the number of agents n)

no. n m B LS M G
1 24 52 0.03 1.00 1.00 1.00
2 31 54 0.11 1.00 1.00 1.00
3 31 103 0.02 1.00 1.00 1.00
4 32 102 0.06 1.00 1.00 1.00
5 34 63 0.23 1.00 1.00 1.00
6 35 61 0.01 1.00 1.00 1.00
7 37 56 0.00 0.01 1.00 1.00
8 38 133 0.03 1.00 1.00 1.00
9 51 147 0.28 1.00 1.00 1.00

10 51 155 0.00 1.00 1.00 1.00
11 146 176 0.00 0.00 1.00 0.37

Table 3: Running time(s) of all algorithms over real data
(sorted by the number of agents n)

no. n m B LS M G
1 24 52 0.074 0.908 0.058 0.003
2 31 54 0.078 1.017 0.075 0.005
3 31 103 1.008 29.54 0.212 0.024
4 32 102 1.127 40.02 0.264 0.025
5 34 63 0.143 0.738 0.120 0.006
6 35 61 0.172 1.798 0.140 0.006
7 37 56 0.126 2.531 0.131 0.006
8 38 133 2.148 63.73 0.388 0.039
9 51 147 2.410 9.612 0.618 0.039

10 51 155 3.250 480.7 0.687 0.055
11 146 176 3.559 9255 5.533 0.064

In conclusion, according to the results from both synthetic
and real data, LOCALSEARCH has a good performance at
a high computation cost. GREEDY has decent performance
with the best computation efficiency. MATCHING is a bal-
anced algorithm with consistently good performance and
high computation efficiency.



6 CONCLUSIONS

In this paper, we present algorithmic and complexity results
in computing fair allocations assuming agents’ preferences
over items are ordinal and have uncertainties. Under the
proposed fair notions, we provide polynomial-time solvable
algorithms to find the probability that a given allocation is
fair and determine whether there exists an allocation with
non-zero fair probability. We show that it is NP-hard to see
whether there exists an allocation that is fair with proba-
bility one. Finally, we show that to find an allocation with
the highest fair probability is NP-hard. We further provide
several heuristics for this problem. The performance of the
heuristics is examined thoroughly on both synthetic and real
datasets. One possible direction for future work is to con-
sider other fairness concepts in the context of ordinal and
uncertain preferences and study approximation algorithms
to find fair allocations. It is also interesting to combine the
fairness notions with other properties such as stability in the
uncertain ordinal preference setting.
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