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Abstract

Learning physics models in the form of Partial Dif-
ferential Equations (PDEs) is carried out through
back-propagation to match the simulations of the
physics model with experimental observations.
Nevertheless, such matching involves computation
over billions of elements, presenting a significant
computational overhead. We notice many PDEs in
real world problems are sparse and decomposable,
where the temporal updates and the spatial fea-
tures are sparsely concentrated on small interface
regions. We propose RAPID-PDE, an algorithm to
expedite the learning of sparse and decomposable
PDEs. Our RAPID-PDE first uses random pro-
jection to compress the high dimensional sparse
updates and features into low dimensional repre-
sentations and then use these compressed signals
during learning. Crucially, such a conversion is
only carried out once prior to learning and the
entire learning process is conducted in the com-
pressed space. Theoretically, we derive a constant
factor approximation between the projected loss
function and the original one with poly-logarithmic
number of projected dimensions. Empirically, we
demonstrate RAPID-PDE with data compressed
to 0.05% of its original size learns similar models,
compared with uncompressed algorithms in learn-
ing a set of phase-field models, which govern the
spatial-temporal dynamics of nano-scale structures
in metallic materials.

1 INTRODUCTION

Learning physics models in the form of Partial Differential
Equations (PDEs) have numerous applications in the field of
physics, engineering and life sciences. Examples include the
heat and wave equations, Schrodinger’s equation, Navier-

Stokes equation, etc. These PDEs are essential descriptors
of many complex dynamic processes and physical phenom-
ena. Identifying PDEs automatically from experiment data
has attracted great interest recently in the field of AI driven
scientific discovery (Xue et al. [2021], Long et al. [2018],
Sirignano and Spiliopoulos [2018], Qian et al. [2020], Lager-
gren et al. [2020]). PDEs can be learned via minimizing the
mismatch between the ground-truth dynamics reflected in
the experiment data and the predicted dynamics, which is
typically simulated using a neural network with the current
PDE parameters (Xue et al. [2021], Long et al. [2018]).
Back-propagation is then used to minimize such differences
by updating the PDE parameters. Despite its empirical suc-
cess, back-propagating the loss function typically involves
operations over billions of mutually interacting elements,
hence yielding a heavy computational overhead.

We propose a novel randomized algorithm to speed up the
learning of PDEs from experiment data. In particular, we
notice the sparse and decomposable nature of many real-
world PDE systems. More precisely, we find the temporal
updates of many PDE systems can be decomposed into
parameter functions of several sparse features. This is not
a coincidence - the sparsity and decomposability of PDEs
are natural consequences of the interface problems, where
PDE solution updates are concentrated in small interface
regions, where components of different physical properties
meet each other. Outside of the interface regions, the updates
are almost all zero, resulting in rather sparse updates.

We propose Random Projection Based Efficient Learning
of Sparse and Decomposable PDEs (RAPID-PDE), exploit-
ing the sparse nature of the learning problems. Our method
is inspired from the idea of compressed sensing (Donoho
[2006], Candes and Tao [2006], Candès et al. [2006]), rely-
ing on the intuition that as the system changes are sparse,
therefore the change in high dimensional state vectors can
be represented in an efficient manner by projecting into a
lower dimensional space. Different from compressed sens-
ing, which consists of the compression and recovery phases,
RAPID-PDE compresses the updates and features into a
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Figure 1: High-level idea of RAPID-PDE. Step 1: from the extracted PDE trajectories from data, we compute a number of
features and also the difference between consecutive PDE trajectories. Step 2: we use random projection to project the high
dimensional features and trajectory changes to low dimensional space. Step 3: Backpropagation is used to minimize the
difference between the predicted and the ground-truth changes in the compressed space.

reduced space once as a pre-processing step before learn-
ing. The entire learning process is then carried out in the
compressed space with no need for converting back to the
original space.

The high-level idea of RAPID-PDE is shown in Figure 1.
From the PDE trajectories obtained from observations, we
first extract a number of sparse features and also the updates
from experiment data. In the second step, we compress both
the features and the updates using random projection into
low dimensional space. The third step is the final learning
step, where back-propagation is used to minimize the dif-
ference between the predicted updates and the ground-truth
updates in the compressed space.

Theoretically, we show the loss function optimized by
RAPID-PDE is at most (1 + δ)2, a constant approxima-
tion factor times the original loss function, with proba-
bilities scales in the order of 1 − Ω((1/δ)2k exp(−nδ2)).
Here, n is the projected dimensionality and k is the num-
ber of non-zero elements in the updates. This ensures
O(k/δ2 log(1/δ)) of projected dimensions are sufficient
for (1 + δ)2 approximations.

Our RAPID-PDE algorithm is used to speed up the learn-
ing of nano-structure evolution in engineering materials
in action. In particular, we focus on learning the physics
rules which govern the dynamics of void defect evolution
(Figure 2I) and the grain growth (Figure 2II). Experimental
results show that, compared to a baseline method with no
compression, RAPID-PDE can reduce the training times for
learning the phase-field models while preserving the qual-

ity of learned models. RAPID-PDE can reduce the training
times by as much as 70% for grain growth model and by
nearly 50% for void evolution dynamics, when the data is
compressed to 0.05% of the original size. Testing with a
separate test set, we find the mean squared error (MSE) for
both applications after 100 steps of simulation to be very
small, suggesting little to no loss in learning performance
after compression. Upon simulation, we find that the simu-
lated output with trained model parameters matches closely
with the outputs simulated with ground truth physics model.

Our contribution is as follows: 1) We introduce sparse and
decomposable PDEs as a special class of PDEs and show the
sparse and decomposable nature of many real-world PDEs,
2) we propose RAPID-PDE, an efficient method based on
random projection to learn model parameters of sparse and
decomposable PDEs, 3) we provide a theoretic analysis on
the effect of compression on the loss function used to update
model parameter, 4) we show the efficacy of our proposed
solution for two cases - learning the PDE-based phase-field
model parameters for void defect evolution and grain growth
in materials science.

2 BACKGROUND

2.1 DYNAMIC SYSTEMS REPRESENTED IN
PARTIAL DIFFERENTIAL EQUATIONS

Partial Differential Equations (PDEs) are mathematical
equations involving partial derivatives of multi-variable
functions. Multi-variable PDEs are ubiquitous in physics



(I) Nanovoid Defects in Crystalline Materials

(II) Grain growth in Materials during Annealing (Niu et al. [2021])

Figure 2: Void defect evolution and grain growth in engi-
neering materials are real world phenomena learnable by
RAPID-PDE. (I) Void shaped defects in a Cu specimen at
350◦. These defects are dynamic and evolve as such size and
position change, as shown by change of α to α′ between
voids 1,2 and 3, and disappearance of void 4. (II) Grain
growth in Cu/Fe 100 nm multilayer upon annealing at dif-
ferent temperatures. XTEM micrographs and EDS maps
show the microstructure evolution at temperatures 200°C
(a-b), 400°C (c-d), 500°C (e-f), 600°C (g-h). Grooving and
grain growth are observed at 500°C, while layer pinch-off
occurred after 600°C annealing.

and engineering disciplines, and usually involve time and
space. The order of a PDE is the order of the highest par-
tial derivative term in the equation. In practice, we mostly
encounter first or second order differential equations. In gen-
eral, a second order PDE has the following general form:

∂u(p⃗, t)

∂t
=

∑
i

Mi(u)∇2Fi(u) +
∑
j

Nj(u)∇Gj(u) +D(u)

(1)

Here, u(p⃗, t) represents state of the system and is a function
of both spatial coordinate p⃗ ∈ Rd and time t. ∇ represents
the first order spatial derivative, while ∇2 = ∇.∇ repre-
sents the second order spatial derivative Laplace operator.
The functions M,N,F,N,G,D can be either linear or non-
linear in u.

2.2 PHASE-FIELD MODELING

We focus on phase-field models as motivating examples in
this paper, where the state of a physical system is described
using a set of phase-field variables. We point out that our
computational approaches based on random projection gen-
eralize to other PDE systems as well. In phase-field models,
the phase-field variables vary rapidly along phase bound-
aries. In this paper, we consider two example phase-field
modeling for real world application - grain growth and
nanovoid defect evolution in crystalline materials.

2.2.1 Case Study 1: Grain Growth

Polycrystalline materials used in many engineering applica-
tions often contain multiple grains with different crystal ori-
entations. These grains evolve over time, some grow bigger
and some shrink, thus changing their interface boundaries.
The understanding of the grain growth dynamics is of high
interest to physicists, as the dynamics affect the physical
and mechanical properties of the material.

Many models have been proposed to model this grain growth
phenomenon. For this study, we focus on the phase-field
model proposed in Fan and Chen [1997]. In this phase-
field model of grain growth, each grain i is represented by
ηi, which takes the value of 1 inside i-th grain, 0 outside
the grain and lies in [0, 1] at the grain boundary. The evo-
lution of ηi is described by the Allen-Cahn equation for
non-conserved variables:

∂ηi
∂t

= L
∂F

∂ηi
, i = 1, 2, 3, . . . , N (2)

Here, L is the mobility coefficient and F is the free energy.
Writing out the expression for F and taking derivatives, this
governing equation can be written as follows:

∂ηi
∂t

= L(1− ηi
2 − 2

∑
i ̸=j

ηj
2)ηi + Lκ∇2ηi. (3)

Here, κ represents the gradient coefficient. These scalar
parameters L, κ affect the way grain volume and shape
change over time and are the parameters to be learned in
this paper. Fitting into the general form given in Equation
1, ηi is the variable u. D(.) takes the form L(1 − ηi

2 −
2
∑

i̸=j ηj
2)ηi. M1(.) is Lκ and F1(.) is ηi.

2.2.2 Case Study 2: Nanvoid Defect Evolution

Nano-sized void defects and dislocation loops are common
phenomena in materials under extreme condition - high heat
and irradiation. Over time, these void defects cause signifi-
cant microstructure evolution and consequently degradation
of materials. The evolution of these void defects is of high
interest to physicists, for designing materials that can better
withstand the extreme environments.



In this paper, we focus on a simplified version of the promi-
nent and widely used void defect evolution model as de-
scribed in Millett et al. [2011]. In this model, the state of the
material is represented by three phase-field variables cv, ci
and η. These phase-field variables are continuous, lie in
range [0, 1] and vary rapidly at the interfaces. cv represents
the percentage of void defects in crystal lattice, resulting
from the absence of atoms at certain crystal lattice locations.
cv takes the value of 1 inside void regions, 0 outside void
regions and values in range [0, 1] at the interface of void
regions. Similarly, ci represents the percentage of interstitial,
another type of crystal defect that results from the presence
of atoms in a normally unoccupied location in the lattice.
ci is 1 inside interstitial region, 0 outside and [0, 1] at the
interface boundary. The phase-field variable η is also con-
tinuous, differentiating the two phases - solid (η = 0) and
void (η = 1). The evolution of the phase-field variables
minimizes the total free energy F :

F = N

∫
V

[
h(η)fs(cv, ci) + j(η)fv(cv, ci)+

κv

2
|∇cv|+

κi

2
|∇ci|+

κη

2
|∇η|

]
dV.

The standard equation for temporal updates to cv, ci and η
are as follows:

∂cv
∂t

=∇ · (Mv∇
1

N

δF

δcv
),

∂ci
∂t

=∇ · (Mi∇
1

N

δF

δci
),

∂η

∂t
=− L

δF

δη
.

Here, Mv,Mi are diffusivities of voids and interstitials de-
pendent upon material property, L is the mobility coefficient.
∂F
∂cv

, ∂F
∂ci

∂F
∂η are functional derivatives of total free energy

F of the system. All of these above expressions for the
temporal updates of the phase-field variables can be rear-
ranged and written in the form as Equation 1. We leave
such derivations to the supplementary materials. The scalar
parameters Mv,Mi, L, κv, κi, κη and parameters included
in fs, fv control system dynamics, and these are the param-
eters we learn from experiment data.

2.2.3 Finite Difference for PDE Simulation

Finite difference method is a widely used technique to simu-
late PDEs in discrete form. Using this technique, we divide
space into meshes, and replace the derivatives with finite dif-
ference quotients. For example, the derivative with respect
to time ∂u(p⃗,t)

∂t can be approximated using u(p⃗,t+dt)−u(p⃗,t)
dt

,
where dt is a small constant. The spatial derivative can be
approximated similarly. For example, ∂u

∂x (x, y, t) can be
approximated by u(x+ds,y,t)−u(x,y,t)

ds
.

3 SPARSE DECOMPOSABLE PDES

Our RAPID-PDE algorithm is based on an interesting ob-
servation that the governing equations of many real-world
PDE systems can be written in the following sparse and
decomposable form, i.e., as a linear combination of sparse
features times coefficient terms:

∂u(p⃗, t)

∂t
= [ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)]


W1(u)
W2(u)

...
Wn(u)

 (4)

We would like to point out two aspects of this formulation:
(i) separation of learning parameters from observational fea-
tures: in this form, θ are the parameters to be learned. Only
ϕ1(θ), . . . , ϕn(θ) depend on θ, while W1, . . . ,Wn, only de-
pends on the current system state u. (ii) sparse nature of ob-
servational features: We observe that observational features
W1, . . . ,Wn are sparse in nature, with very few non-zero
entries. This is actually not a coincidence. Rather, it is be-
cause of the nature of our interface problems, where most
of the updates are around the interfaces of different material
compositions. Such interfaces, by nature, only account for a
small region of the entire space.

Sparse Decomposition for Grain Growth. For example,
in the phase-field model of grain growth in materials with
d-grains, the temporal evolution of the phase-field variable
describing the i-th grain ηi is described by Equation 3:

∂ηi
∂t

= L(1− ηi
2 − 2

∑
i̸=j

ηj
2)ηi + Lκ∇2ηi

Comparing this with Equation 4, we can write the following:

ϕi,1 = L, ϕi,2 = Lκ,

Wi,1 = (1− ηi
2 − 2

∑
i̸=j

ηj
2)ηi, Wi,2 = ∇2ηi.

We use subscript i to indicate this equation holds for evolu-
tion of the i-th grain. Inside grain i, only ηi is 1, the rest are
0. Hence, Wi,1 is zero because the terms inside the summa-
tion is just the sum of 0s, while the η2i cancels out the 1 at
the beginning. The multiplication with ηi ensures that Wi,1

is 0 outside the i-th grain as well. The other feature Wi,2

is 0 both inside and outside grain i, because second order
Laplacian is 0 when applied to a region of the same value.
We can see a visual representation of these Wi,1,Wi,2 fea-
tures for grain growth in Figure 3I. In summary, we can see
that the computed features are all sparse and only non-zero
at the interface boundaries of the grains.

We leave the sparse decomposition of the nanovoid evolu-
tion to the supplementary materials. Despite a more com-
plex form, the PDEs describing nanovoid evolution can be



(I) Feature Extraction

(II) Relation between system state change and features

Figure 3: The PDEs for grain growth can be decomposed
into a couple of sparse features. We show such feature com-
putation for grain growth in materials with 3 grains, repre-
sented by 3 different colors. (I) Sparse features computed
from the system state variable η, (II) Change in η1 repre-
sented by sum of sparse features.

written in the sparse and decomposable form as well. All
observational features are also sparse.

4 LEARNING SPARSE DECOMPOSABLE
PDE WITH RANDOM PROJECTION

4.1 LEARNING VIA MATCHING EXPERIMENTS
AND SIMULATION

Data-driven scientific discovery attracted recent interest to
learn physics models automatically from data. The learn-
ing of physics systems can be achieved in the matching
of forward simulations of the current physics model with
data from physical experiments. In particular, the data col-
lected from physics experiments are typically in the form
of {ut1 , ut2 , . . . , utN+1

}, where uti is the system state at
time ti. For this paper, we assume the time lapse between
consecutive states, dt = ti+1 − ti, are all equal and very
small. Using finite difference form of Equation 4, we can
predict the system state change as:

∆u′
ti = dt[ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)]


W1(uti)
W2(uti)

...
Wn(uti)

 .

On the other hand, we can obtain the true value ∆uti =
uti+1−uti of the state changes from experiment data. Hence,
typically the learning algorithm minimizes the following
loss function to match the predicted changes with the ob-
served changes:

min
θ

L(θ) =

N∑
i=1

||∆u′
ti −∆uti ||22 (5)

Stochastic gradient descent is used to minimize the afore-
mentioned loss function.

4.2 RAPID-PDE: ACCELERATE LEARNING
WITH RANDOM PROJECTION

RAPID-PDE makes the loss function computation and back-
propagation more efficient by exploiting the sparsity of
changes. It compresses the temporal updates and sparse fea-
tures from a high dimensional space into a low dimensional
representation using random projection. As both the ex-
pected system change and ground truth changes are sparse,
the loss computation involves many redundant subtraction
in the form (0−0). Therefore, trivial implementation of loss
function computing loss for each point in space and then
summing them up introduces heavy redundant computation.

To illustrate RAPID-PDE, we assume each uti and their
associated W1(uti), . . ., WN (uti) are all represented as
vectors. In practice, these quantities are often represented
as matrices (or tensors) if the systems under consideration
are 2D (or 3D). Nevertheless, it is simple to vectorize such
matrices (or tensors). To avoid clutter of notations, we still
use uti and W1(uti), . . ., WN (uti) to represent the vector
form of these matrices (tensors).

Let P be a randomly initialized projection matrix. Instead
of minimizing the loss function in Equation 5, RAPID-
PDE minimizes the following projected loss using SGD:

min
θ

L′(θ) =

N∑
i=1

||P∆u′
ti − P∆uti ||22 (6)

One Time Projection Overhead. Our approach RAPID-
PDE only incurs projections as a one-time pre-processing
step before the beginning of training epochs. No additional
projections are needed during training. Notice that P∆uti

is observed dynamics from data, which does not change
during training. Hence P∆uti can be computed in a pre-
processing step. It is straightforward to verify that:

P∆u′
ti = dt[ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)]


PW1(uti)
PW2(uti)

...
PWn(uti)


(7)



Algorithm 1: RAPID-PDE: Learning Sparse and De-
composable PDE Models from Compressed Features
Input :PDE trajectories ut at times

t = 1, 2, 3, . . . (T + 1), Compression ratio r
Output :PDE model parameters θ

1: for t← 1 to T do
2: ∆ut ← ut+1 − ut

3: Wt ← EXTRACT_FEATURES(ut)

4: end
5: Initialize random projection matrix P of appropriate

dimension computed from original ut size and r
6: for t← 1 to T do
7: ∆ut(compressed) ← P∆ut

8: Wt(compressed) ← PWt

9: end
10: Initialize neural network (NN) PDE model parameters θ
11: repeat
12: ∆u′

t(compressed) = NN(Wt(compressed), θ)

13: Loss L′(θ) =∑T
t=1 ||∆u′

t(compressed) −∆ut(compressed)||22
14: Update θ by backpropagating error gradients ∆θL

′

15: until converge
16: return θ

Luckily, due to the separation of learning parameters
with observational features, the only terms that are chang-
ing during training are [ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)]. Exploit-
ing this formulation, we can pre-compute PW1(uti),
. . ., PWn(uti) in a pre-processing step as well. Only
[ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)] are updated during training.

Algorithm 1 shows the pseudocode of RAPID-PDE to learn
Sparse and Decomposable PDEs. With a given set of PDE
trajectories ut at times t = 1, 2, . . . , (T + 1), and given
compression ratio of the compressed new dimensions for
features, this algorithm outputs the model parameters θ that
minimizes the loss function defined in Equation 6. In line
1− 4, we compute the changes in PDE trajectory ∆ut and
features Wt for times t = 1, 2, . . . , T . In line 5-9, we initial-
ize a random matrix P of appropriate dimensions and then
compress the ∆ut and Wt by random projection with P . In
line 10-15, we randomly initialize PDE model parameters
θ, then update the parameters θ by backpropagating error
gradients of the loss function given in Equation 6.

5 THEORETICAL ANALYSIS

RAPID-PDE guarantees learning performance. We know
from the Johnson-Lindenstrauss lemma Johnson and Lin-
denstrauss [1984] that high dimensional points can be em-
bedded into lower dimensional space, while nearly preserv-
ing distance. For compressed sensing, restricted isometry
property as introduced in Candes and Tao [2005] provides

the necessary and sufficient condition for the compressed
sensing matrix, which transforms high dimensional sparse
vectors into low dimensional vectors. We can construct ran-
dom matrices in similar manner for our purposes as well and
we will show this in this section. Such analysis are available
for many other applications which also use dimensionality
reduction Clarkson and Woodruff [2017], Shi et al. [2009],
Razenshteyn et al. [2016]. In the following theoretic analy-
sis, we show a constant approximation guarantee between
the projected loss and the original one. Hence, an algorithm
optimizing for the surrogate loss function (Equation 6) in-
directly optimizes the original loss function (Equation 5).
First, it is easy to see:

Claim 5.1. For optimal parameter value θ∗ with L(θ∗) = 0,
we will also have L′(θ∗) = 0.

In practice, we may not be able to find a θ which reduces
the loss function to zero. However, a more careful theo-
retic derivation shows the projected loss function is only a
multiplicative factor away from the original loss function
(Theorem 5.1). Before introducing the theorem, we first
introduce the notion of sub-exponential random variables,
which are widely used in analyzing random projections, e.g.,
in Boucheron et al. [2003]:

Definition 5.1. X is a random variable, E(x) = µ.
Mx−µ(λ) = E[exp(λ(X − µ))] is the moment generat-
ing function of X −µ. X is sub-exponential with parameter
(σ2, b) if for all |λ| < 1/b, lnMx−µ(λ) ≤ λ2σ2/2.

Theorem 5.1. Suppose the projection matrix P =
(pi,j)n×d, pi,j = yi,j/

√
n. yi,j are sampled i.i.d. from

a given distribution. yTi = (yi,1, . . . , yi,d), Y =
(y1, . . . , yn)

T . E(yi,j) = 0, V ar(yi,j) = 1. For any x,
||yTi x||2/||x||22 is sub-exponential with parameter (σ2, b).
All ∆u′

ti and ∆uti have at most k non-zero elements, 2k <
n. 0 < δ < min{1, σ2/b}. Suppose θ∗ is the optimal param-
eter which minimizes L(θ), i.e., θ∗ = argminL(θ). Then
with probability at least 1− 2(12/δ)2k exp(−nδ2/(8σ2)),
we have:

(1− δ)2L(θ∗) ≤ L′(θ∗) ≤ (1 + δ)2L(θ∗). (8)

On the opposite side, suppose θ′ is the local optimal solution
found by RAPID-PDE, with the same probability we have:

(1− δ)2L(θ′) ≤ L′(θ′) ≤ (1 + δ)2L(θ′). (9)

Theorem 5.1 guarantees that RAPID-PDE will find a so-
lution that is at most (1 + δ)2 times the optimal solution
L(θ∗), if stochastic gradient descent is not trapped in local
minima when optimizing for the surrogate loss function
L′(θ). Conversely, suppose RAPID-PDE finds a solution θ′,
if again we assume this solution is at the global minimum,
then the global minimum of the original loss function L(θ∗)
is at most a multiplicative factor away. The proofs of all



the theorems and corollaries are left to the supplementary
materials.

We can prove more concrete guarantees based on Theorem
5.1 when pi,j are sampled from a few well-known proba-
bilistic distributions. For example, when pi,j are sampled
i.i.d. from the Gaussian distribution N(0, 1/n), we have:

Corollary 5.1. Suppose the projection matrix P =
(pi,j)n×d, pi,j are sampled i.i.d. from N(0, 1/n). All ∆u′

ti
and ∆uti have at most k non-zero elements, k < n,
0 < δ < 1. θ∗ and θ′ are defined the same as in Theo-
rem 5.1, with probability 1− 2(12/δ)2k exp(−nδ2/32), we
have:

(1− δ)2L(θ∗) ≤ L′(θ∗) ≤ (1 + δ)2L(θ∗). (10)

With the same probability, we have:

(1− δ)2L(θ′) ≤ L′(θ′) ≤ (1 + δ)2L(θ′). (11)

Also, when pi,j are uniform i.i.d. distributed, we have:

Corollary 5.2. Suppose the projection matrix P =
(pi,j)n×d, pi,j are instead sampled i.i.d. from uniform dis-
tribution with mean µ and variance σ2. Let cd = d(5d+4)

5 −
1, bd = 3d − 1. Then, for 0 < δ < min{1, cd/bd} with
probability at least 1 − 2(12/δ)2k exp(−nδ2/(16cd)) we
have:

(σ(1− δ)− µ)2L(θ∗) ≤ L′(θ∗) ≤ (σ(1 + δ) + µ)2L(θ∗).

With the same probability, we have:

(σ(1− δ)− µ)2L(θ′) ≤ L′(θ′) ≤ (σ(1 + δ) + µ)2L(θ′).

6 RELATED WORKS

Learning PDEs and ODEs PDEs arise in diverse systems
and applications such as face recognition Fang et al. [2017],
turbulence prediction Portwood et al. [2019], sea surface
temperature forecasting de Bezenac et al. [2018] etc. Pre-
viously different approaches have been proposed to learn
differential equations via machine learning. Bar-Sinai et al.
[2019] proposed to replace classical fixed finite difference
formulae with data driven discretization to approximate so-
lution to PDEs. Our work is similar to Schaeffer [2017],
where spatial derivatives are computed and then fitted with
time derivatives using compressed sensing. Our method on
the other hand assumes prior knowledge about the PDE
terms, and does not need the signal recovery step via L1

optimization as in compressed sensing. Neural networks,
in different forms have also been explored to solve PDEs
in different dynamic systems (Sirignano and Spiliopoulos
[2018],Raissi et al. [2019], Lutter et al. [2018], Demeester
[2019], Long et al. [2018]). Besides learning PDEs, neural
networks have also been used for learning ODEs. Recent

work on Neural ODEs (Chen et al. [2018]) and their variants
as proposed in Kidger et al. [2020], Lee and Parish [2021],
Jia and Benson [2019], Chen et al. [2020], Yin et al. [2021]
aim to learn dynamics of a system using neural network.
Besides neural networks, Raissi and Karniadakis [2018] as-
sumes the PDE solution is gaussian distributed and proposes
using Gaussian process for solution. Other prominent works
in solving PDE systems include Han et al. [2018], Beck
et al. [2019]. All the aforementioned methods use the full
dimension of the data, while our algorithm first performs
compression and then uses the compressed data for learning.

Physics Learning There have been a significant research
effort in learning physics models from data such as Hamilto-
nian neural networks (Greydanus et al. [2019]), Lagrangian
neural networks (Cranmer et al. [2020]), Deep lagrangian
neural networks (Lutter et al. [2018]). Neural networks have
been used to analyze in-situ experiment data for materials
under extreme heat and irradiation (Niu et al. [2020]). Simi-
lar to our work, Xue et al. [2021] proposes to make physics
learning more efficient by combining 2 step PDE trajectory
extraction and model learning into a single learning method,
and Sima and Xue [2021] proposes to use locality sensitive
hashing to avoid redundant computations for similar data
points make forward simulation more efficient. In our work,
we assume that the PDE trajectories are already extracted,
and we do not presume any knowledge about similarity of
data points. Rather we only assume that the corresponding
PDE model can be decomposed into sparse features and
parameter functions.

Random Projections based Methods. Random projection
has a wide variety of applications and forms the basis of
techniques such as compressed sensing (Donoho [2006],
Candes and Tao [2006], Candès et al. [2006]) and locality
sensitive hashing (Indyk and Motwani [1998], Gionis et al.
[1999]). Random projection based method is also used for
classification Cannings and Samworth [2017], clustering
Dasgupta [1999] and regression Dobriban and Liu [2019] as
well. We only mention a few example of random projections
applications here, although the total number of such works
is pretty large.

7 EXPERIMENTS

We tested the efficacy of RAPID-PDE on learning the phase-
field models of grain growth and void defect evolution for
metallic materials. Overall, RAPID-PDE is able to learn
models of comparable quality with algorithms without com-
pression, even with data compressed to 0.05% of the original
size. In this way, RAPID-PDE reduces training times by as
much as 70% for the grain growth model and as much as
50% for the nanovoid evolution.

Dataset. We used synthetic data for experimenting on
both grain growth and nanovoid defect evolution in ma-
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Figure 4: RAPID-PDE algorithm saves 50% to 70% of training times compared to algorithms without compression (Figures
I, II) while preserving comparable learning performance (Figures III, IV) when tested on a separate testing set. r in the
figures are the compression ratio to the original data. (I-II) Training times for grain growth and nanovoid defect evolution
for 1000 epochs. (III-IV) Mean squared error (MSE) for grain growth and void defect evolution. The MSE was calculated
by performing simulation for 100 timesteps with the same initial conditions for different algorithms and then comparing the
simulated output with ground truth states. The MSE shown in (IV) for different r values are overlapping, the learned models
are very close to each other, and only provides significant difference in output when simulated for timesteps >> 100.

Figure 5: RAPID-PDE learns the ground truth model pa-
rameters governing the grain growth dynamics. The learned
model demonstrate similar dynamics as the ground-truth
model when simulating from the same initial condition.

terials. For generating data for grain growth, we used the
model described in Fan and Chen [1997] to simulate the
dynamics of 3 grains in a specimen. For the nanovoid de-
fect evolution, we used a simplified version of the evolu-
tion model described in Millett et al. [2011] to simulate
the dynamics of a single void shaped defect. It is sim-
plified in the sense that we excluded the random thermal
fluctuation and random introduction of the void intersti-
tial part of the model, to ensure fair comparison between
our model and the baseline model. For the grain growth
application, we generated data for 5 different N × N 2-
dimensional grids, for N = 100, 300, 500, 650, 800. For

Figure 6: RAPID-PDE learns the ground truth model param-
eters governing the nanovoid defect evolution. The learned
model demonstrates similar dynamics as the ground-truth
model when simulating from the same initial condition.

nanovoid evolution, we generated similar 2-dimensional
grid data for N = 100, 300, 500, 650. During training we
used 1000 grids/frames from simulated data, and a seperate
300 grids/frames for testing.

Baseline method. To ensure fair comparison, we test our
method against a baseline method that does not perform
any compression of the extracted features. Thus the only
difference between our method and the baseline method is
the presence of the intermediate compression step.

Faster training. Our training method using compressed
data provides faster training time compared to a baseline
method that uses original uncompressed data. The training
times for grain growth dynamics in various dimensions



are shown in Figure 4I. For nanovoid defect evolution, the
training times are shown in Figure 4II. We used uniform
distribution U(1, 50) to sample the projection matrix P . As
the compressed data becomes smaller, the training times
become shorter.

High accuracy of learned model. To evaluate the accuracy
of learned models, we computed mean square error (MSE)
of the simulated output with ground truth data after 100 steps
of simulation. We also simulated the evolution dynamics
for 200 seconds using the learned model parameters for
both grain growth and void evolution. We can see the MSE
for grain growth in Figure 4III and for void evolution in
Figure 4IV. The simulation outputs are shown in Figure 5
and Figure 6. As we can see from these results, the MSE for
both baseline method and our method are reasonably small,
and the simulation results match closely with the actual
ground truth data. Our method however is more efficient as
it saves 50% to 70% computation time.

8 CONCLUSION

In this paper, we introduced RAPID-PDE, an efficient al-
gorithm to learn Sparse and Decomposable PDEs from ex-
perimental data using random projection of features. Our
method takes advantage of the sparsity of updates to com-
press high dimensional PDE trajectories into low dimen-
sional representation, thus saving computation time while
preserving learning performance. Experiments with two
phase-field models - one for grain growth and another for
nanovoid defect evolution in materials prove that our method
leads to faster learning of underlying physics models, and
the learned model provides reasonable matches with the
ground truth observation when tested. We hope in the fu-
ture, we can explore the application of RAPID-PDE to other
exciting domains.
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