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Abstract

We propose denoising diffusion variational inference
(DDVI), a black-box variational inference algorithm
for latent variable models which relies on diffusion
models as flexible approximate posteriors. Specif-
ically, our method introduces an expressive class of
diffusion-based variational posteriors that perform
iterative refinement in latent space; we train these
posteriors with a novel regularized evidence lower
bound (ELBO) on the marginal likelihood inspired
by the wake-sleep algorithm. Our method is easy
to implement (it fits a regularized extension of the
ELBO), is compatible with black-box variational
inference, and outperforms alternative classes of
approximate posteriors based on normalizing flows
or adversarial networks. We find that DDVI im-
proves inference and learning in deep latent variable
models across common benchmarks as well as on a
motivating task in biology—inferring latent ancestry
from human genomes—where it outperforms strong
baselines on the Thousand Genomes dataset.

1. Introduction
We are interested in amortized black-box variational inference
problems of the form

logpθ(x)≥max
ϕ

Eqϕ(z|x)[logpθ(x,z)−logqϕ(z|x)] (1)

:=max
ϕ

ELBO(x,θ,ϕ),

in which we approximate the marginal likelihood log pθ(x)
of a latent variable model pθ(x,z) with an evidence lower
bound ELBO(x,θ,ϕ) that is a function of an approximate

*Equal contribution 1Department of Computer Science, Cornell
University 2The Jacobs Technion-Cornell Institute, Cornell Tech.
Correspondence to: Wasu Top Piriyakulkij<wp237@cornell.edu>,
Yingheng Wang<yw2349@cornell.edu>, Volodymyr Kuleshov
<kuleshov@cornell.edu>.

Accepted by the Structured Probabilistic Inference & Generative Mod-
eling workshop of ICML 2024, Vienna, Austria. Copyright 2024 by
the author(s).

variational posterior qϕ(z|x). We assume that pθ factorizes
as pθ(x|z)pθ(z) and admits efficient sampling: examples of
such pθ include Bayesian networks, topic models (Blei et al.,
2003), variational autoencoders (VAEs), and broad classes of
pθ defined via modern probabilistic programming frameworks
(Gordon et al., 2014).

Maximizing ELBO(x, θ, ϕ) over ϕ yields a variational
posterior qϕ(z|x) that approximates pθ(z|x) as well as a tight
bound on log pθ(x) that serves as a learning objective for
pθ. The approximation gap log pθ(x)−maxϕELBO(x,θ,ϕ)
equals precisely minϕKL(qϕ(z|x)||pθ(z|x)), which motivates
the design of expressive classes of posteriors qϕ(z|x) that
reduce this gap. Recent efforts leverage modern generative
models—including normalizing flows (Rezende and Mohamed,
2015; Kingma et al., 2016) and generative adversarial networks
(Goodfellow et al., 2014; Makhzani et al., 2015)—as expressive
model families for qϕ that tighten the ELBO.

This work seeks to further improve variational inference
via expressive posteriors based on diffusion models (Ho
et al., 2020; Song et al., 2020b). Diffusion methods have
become the de-facto standard for high-quality image synthesis
(Rombach et al., 2022). Here, we use diffusion in latent
space to parameterize qϕ(z|x). We train this distribution
with a denoising diffusion-like objective that does not involve
adversarial training (Makhzani et al., 2015) or constrained
invertible normalizing flow architectures (Kingma et al., 2016).
Samples from qϕ(z|x) are obtained via iterative refinement of
z, starting from a Gaussian distribution, and gradually forming
one that is multi-modal and complex.

Our work expands upon existing diffusion-based approximate
inference methods (Berner et al., 2022; Zhang and Chen, 2021;
Vargas et al., 2023; Zhang et al., 2023; Richter et al., 2023;
Sendera et al., 2024; Akhound-Sadegh et al., 2024) that focus
on the task of drawing samples from unnormalized distributions
p̃(z) and estimating the partition function Z =

∫
z
p̃(z)dz.

While these methods are applicable in our setting—we set the
unnormalized p̃(z) to pθ(x,z) such that Z=pθ(x)—they do
not make use of characteristics of pθ that are common in many
types of models (VAEs, Bayes networks, etc.), namely the
factorization pθ(x|z)pθ(z) and efficient sampling. We find
that leveraging these properties yields simpler algorithms that
avoid backpropagating through a sampling process, and that
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are fast enough to perform learning in addition to inference.

Specifically, we propose denoising diffusion variational infer-
ence (DDVI), an approximate inference algorithm defined by
a class of approximate posterior distribution based on diffusion
as well as a learning objective inspired by the wake-sleep
algorithm (Hinton et al., 1995) that can be interpreted as a
regularized variational inference. We also derive extensions
of our method to semi-supervised learning and clustering.

Our method is easy to implement (it fits a regularized extension
of the ELBO), is compatible with black-box variational
inference, and outperforms alternative classes of approximate
posteriors based on normalizing flows or adversarial networks.
We evaluate DDVI on synthetic benchmarks and on a real
problem in biological data analysis—inferring human ancestry
from genetic data. Our method outperforms strong baselines
on the Thousand Genomes dataset (Siva, 2008) and learns
a low-dimensional latent space that preserves biologically
meaningful structure (Haghverdi et al., 2015).

Contributions. In summary, this work introduces denoising
diffusion variational inference, an approximate inference
algorithm defined by two components: a class of approximate
posteriors q(z|x) parameterized by diffusion, and a lower
bound on the marginal likelihood inspired by wake-sleep. We
complement DDVI with extensions to semi-supervised learning
and clustering. Our method is especially suited for probabilistic
programming, representation learning, and dimensionality
reduction, where it outperforms alternative methods based on
normalizing flows and adversarial training.

2. Background
Deep Latent Variable Models Latent variable models
(LVMs) pθ(x,z) are usually fit by optimizing the evidence
lower bound (ELBO)

logpθ(x)≥Eqϕ(z|x)[logpθ(x|z)]−DKL(qϕ(z|x)||pθ(z)),
(2)

which serves as a tractable surrogate for the marginal
log-likelihood (MLL). The gap between the MLL and the
ELBO equals precisely DKL(qϕ(z|x)||pθ(z|x))—thus, a
more expressive qϕ(z|x) may better fit the true posterior and
induce a tighter ELBO (Kingma and Welling, 2013).

Expressive variational posteriors can be formed by choosing
more expressive model families—including auxiliary variable
methods (Maaløe et al., 2016), MCMC-based methods
(Salimans et al., 2015), normalizing flows (Rezende and
Mohamed, 2015)—or improved learning objectives—e.g.,
adversarial or sample-based losses (Makhzani et al., 2015;
Zhao et al., 2017; Si et al., 2022; 2023).

The wake-sleep algorithm (Hinton et al., 1995) optimizes an

alternative objective

Eqϕ(z|x)[logpθ(x|z)]−DKL(pθ(z|x)||qϕ(z|x)), (3)

in which the KL divergence term is reversed. The learning
procedure for wake-sleep involves alternating between ”wake”
phases where the recognition model is updated and ”sleep”
phases where the generative model is refined.

Denoising Diffusion Models A diffusion model is defined
via a user-specified noising process q that maps data x0 into
a sequence of T variables y1:T = y1, ...,yT that represent
increasing levels of corruption to x0. We obtain y1:T by
applying a Markov chain q(y1:T |x0) =

∏T
t=1 q(yt|yt−1),

where we define y0 = x0 for convenience. When x0 is a
continuous vector, a standard choice of transition kernel
is q(xt | xt−1) = N (yt;

√
αtyt−1,

√
1−αtI), which is a

Gaussian centered around a copy of yt−1 to which we added
noise following a schedule 0<α1<α2<...<αT =1.

A diffusion model can then be represented as a la-
tent variable distribution p(x0, y1:T ) that factorizes as
p(x0,y1:T ) = p(yT )

∏T−1
t=0 pθ(yt | yt+1) (again using y0 as

shorthand for x0). This model seeks to approximate the reverse
of the forward diffusion q and map noise yT into data x0.

The true reverse of the process q cannot be expressed in
closed form; as such, we parameterize pθ with θ trained by
maximizing the ELBO:

logpθ(x0)≥Eq

[
logpθ(x0|x1)−

T∑
t=2

DKL(qt||pt)
]

(4)

−DKL(q(xT |x0)||p(xT ))

where qt, pt denote the distributions q(xt−1|xt, x0) and
pθ(xt−1|xt), respectively.

3. Variational
Inference With Denoising Diffusion Models

We introduce denoising diffusion variational inference (DDVI),
which improves variational inference with diffusion-based
techniques. The goal of DDVI is to fit a latent variable model
pθ(x,z). We assume that pθ factorizes as pθ(x|z)pθ(z) and ad-
mits efficient sampling: examples of such pθ include Bayesian
networks and variational autoencoders (VAEs) (Kingma
and Welling, 2013). Our approach is comprised of two key
components: a family of approximate posteriors qϕ(z|x) based
on diffusion and a learning objective that can be seen as a regu-
larized ELBO. The qϕ(z|x) iteratively refines latents z, starting
from a Gaussian distribution. The learning objective trains
qϕ(z|x) to reverse a used-specified forward diffusion process.

3.1. Diffusion-Based Variational Posteriors

Specifically, DDVI performs variational inference using an
approximate posterior qϕ(z|x) =

∫
y
qϕ(z|y, x)qϕ(y|x)dy,
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Figure 1. Denoising diffusion variational inference in a VAE. Between the encoder and decoder, we have a diffusion model to map a simple
distribution into a complex distribution over latents.

which itself contains latent variables y ∈ Y. The models
qϕ(z|y,x),qϕ(y|x) must have tractable densities and support
gradient-based optimization over ϕ.

We choose the latenty=(y1,y2,...,yT ) to be a vector of T vari-
ables that represent progressively simplified versions of z, with
yT corresponding to a simple distribution (e.g., a Gaussian).
The model qϕ(y, z|x) = qϕ(z|y1,x)

∏T−1
t=1 qϕ(yt|yt+1,x)

transforms yT into z via iterative refinement. To sam-
ple from qϕ, we first sample yT—this is an easier task
since we can define yT to have a simple (e.g., Gaussian)
distribution—and then by sampling from the denoising model
qϕ(z|y1,x)

∏T−1
t=1 qϕ(yt|yt+1,x).

We define the relationship between y and z via a forward dif-
fusion process r(y|z)=r(y1:T |z)=r(y1|z)

∏T−1
t=1 r(yt+1|yt),

which transforms z—the latent whose intractable posterior
we seek to approximate—into yT , whose posterior is easier
to model. Examples of r include Gaussian forward diffusion
processes and discrete noising processes (Austin et al., 2021).
The model qϕ is trained to approximately reverse this forward
diffusion process.

3.2. The Wake-Sleep Regularized ELBO

The standard approach to fit auxiliary-variable generative
models (Maaløe et al., 2016) is to apply the ELBO twice:

logpθ(x)≥ logpθ(x)−DKL(qϕ(z|x)||pθ(z|x)) (5)
≥ logpθ(x)−DKL(qϕ(z|x)||pθ(z|x)) (6)
−Eqϕ(z|x)[DKL(qϕ(y|x,z)||r(y|x,z))]

= Eqϕ(y,z|x)[logpθ(x|z)] (7)

−DKL(qϕ(y,z|x)||r(y|x,z)p(z))

In Equation (5), we applied the ELBO over z, and
in Equation (6) we applied the ELBO again over

the latent y of q. Notice that the gap between the
ELBO and log pθ(x) is DKL(qϕ(z|x)||pθ(z|x)) +
Eqϕ(z|x)[DKL(qϕ(y|x, z)||r(y|x, z))]. Thus, if we cor-
rectly match q and r, we will achieve a tight bound.

Wake-Sleep Regularization Notice that optimizing
DKL(qϕ(y, z|x)||r(y|z, x)p(z)) in Equation 7 involves
sampling from the approximate reverse process qϕ(y,z|x) to
match the true reverse process r(y|z,x): this is the opposite of
diffusion training, where we would sample from r to fit q. We
have found the standard ELBO to insufficient to learn a good
qϕ that reverses the noising process r, as illustrated in Table 9.

Instead, our strategy is to introduce a modified ELBO that
yields diffusion-like training. This objective is the ELBO in
Equation 7 augmented with an additional regularizer Lsleep(ϕ).

logpθ(x)≥Eqϕ(y,z|x)[logpθ(x|z)]︸ ︷︷ ︸
wake / recons. term Lrec(x,θ,ϕ)

(8)

−DKL(qϕ(y,z|x)||r(y|x,z)p(z))︸ ︷︷ ︸
prior regularization term Lreg(x,θ,ϕ)

−Epθ(x)[DKL(pθ(z|x)||qϕ(z|x))]︸ ︷︷ ︸
sleep term Lsleep(ϕ)

The optimization of the regularizer Lsleep(ϕ) is similar to the
sleep phase of the wake-sleep algorithm, and closely resembles
diffusion model training (see below). As in wake-sleep, Lsleep is
optimized over ϕ only, and the x are sampled from the model.

3.3. Optimizing the Regularized ELBO

Computing Lsleep(ϕ) still involves intractable distributions
pθ(z|x),qϕ(z|x). To optimize Lsleep(ϕ), we introduce another
lower bound Ldiff(ϕ), which we call the denoising diffusion
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loss (for reasons that will become apparent shortly):

Lsleep(ϕ)=−Epθ(x)[DKL(pθ(z|x)||qϕ(z|x))] (9)
=Epθ(x,z)[logqϕ(z|x)]+H̄(pθ)

≥Epθ(x,z)[Er[log
qϕ(y,z|x)
r(y|z,x)

]+H̄(pθ)=Ldiff(ϕ)

In Equation (10), we applied the ELBO with r(y|z,x) playing
the role of the variational posterior over the latent y in qϕ;
H̄(pθ) is the expected conditional entropy of pθ(z|x), a
constant that does not depend on ϕ.

We define the DDVI learning objective L(x,θ,ϕ) as the sum
of the aforementioned terms:

L(x,θ,ϕ)=Lrec(x,θ,ϕ)+Lreg(x,θ,ϕ)+Ldiff(ϕ) (10)

Terms Lreg and Ldiff may be weighted by hyper-parameters
βreg,βdiff>0, as in the β-VAE framework. In our experiments,
assume βreg =βdiff =1 unless otherwise specified. Note that
since Ldiff ≤Lsleep ≤ 0, L(x,θ,ϕ) is a valid lower bound on
logpθ(x) that is tight when qϕ(z|x)=pθ(z|x).

Wake-Sleep Optimization We optimize our bound on
L(x,θ,ϕ) using gradient descent by alternating between ELBO
optimization and taking sleep steps (see Section 5). Note
that by maximizing Ldiff, we fit qϕ(z|x) to pθ(z|x) via the
forward KL divergence; similarly, by optimizing Lrec +Lreg
(the ELBO), we fit qϕ(z|x) to pθ(z|x) via the reverse KL
divergence. Thus, optimizing L(x,θ,ϕ) encourages qϕ(z|x) to
approximate pθ(z|x), and when the two are equal, the bound
on logpθ(x) is tight.

Simplifying Wake-Sleep We also consider a light-weight
algorithm, in which r(y|z) and qϕ(z|y) do not depend on
x. In this case, Ldiff requires only sampling from p(z), and
the entire loss L can be optimized end-to-end using gradient
descent. This algorithm is a simpler (there is no separate
sleep phase); however, qϕ(z|x) may not perfectly approximate
pθ(z|x), hence L may no longer be a tight bound. We report
results in Appendix B.

3.4. Combining The Wake-Sleep Regularized ELBO With
Diffusion Models

Lastly, we can further simplify Ldiff by leveraging the Markov
structure of the forward and reverse processes r,q. Recall that
each y= (y1,y2,...,yT ) can be a vector of T latents, which
we also denote as y1:T , and that r(y1:T |z)=

∏T
t=1r(yt|yt−1),

where y0 = z and the y1:T are increasingly noised ver-
sions of y0. Similarly, qϕ(y, z|x) is an approximate
reverse diffusion process qϕ(y, z|x) = qϕ(y0:T |x) =

qϕ(yT |x)
∏T

t=1qϕ(yt−1|yt,x) that is trained to reverse r.

In order to fit qϕ, we form a lower bound Ldiff(x,ϕ) on the
sleep term Ep(x,z)logqϕ(z|x) in Equation (10). This bound is

identical to the ELBO of a diffusion model, and has the same
derivation.

Ldiff= Er

[
logqϕ(z|y1,x)−

T∑
t=2

DKL(rt||qt)

]
(11)

−DKL(r(yT |z)||qϕ(y|x)).

where rt, qt denote the distributions r(yt−1|yt, y0) and
qϕ(yt−1|yt,x).

Parameterizing Diffusion-Based Encoders A common
type of noising process compatible with this bound when
z is continuous is Gaussian diffusion, where we define
r(yt|yt−1) = N (yt;

√
1−αtyt−1, αtI) for a suitable

schedule (αt)
T
t=1. We then adopt the parameterization

qϕ(yt−1|yt,x)=N (yt−1;µϕ(yt,x,t),Σϕ(yt,x,t)). It is then
common to parameterize qϕ with a noise prediction network
ϵϕ (Ho et al., 2020); the sum of KL divergences can be approx-
imated by Et,ϵt∼r(y0,t)||ϵt−ϵϕ(

√
ᾱty0+

√
1−ᾱtϵt,x,t)||2.

Lastly, in order to use diffusion-based encoders with our
ELBO-based objective, we need to show that we can
tractably compute −DKL(qϕ(y,z|x)||r(y|x,z)p(z)), which
we equivalently rewrite as:

−DKL(qϕ||r·p)=Eqϕ(y,z|x)[log(r(y|x,z)p(z))]+H(q).

(12)

The term H(q) denotes the entropy. We approximate the first
term using Monte-Carlo; the entropy is computed as

H(q)=−
T+1∑
t=1

Eq[logqϕ(yt−1|yt,x)] (13)

=

T+1∑
t=1

Eq

[
d

2
(1+log(2π))+

1

2
log|Σϕ(yt,x)|

]

where d is the dimension ofy and we use the notationyT+1=x.
The right-hand term can be approximated using Monte Carlo; it
is also common to leave the variance Σϕ fixed (as we typically
do in our experiments), in which case H(q) is a constant.

4. Extensions
4.1. Semi-Supervised Learning

Following Makhzani et al. (2015), we extend our algorithm to
the semi-supervised learning setting where some data points
have labels denoted by l. We assume the user provides a model
of the form pθ(x,y,z,l)=pθ(x|z,l)r(y|z,l)pθ(z|l)p(l); we set
the variational distributions to qϕ(z|x,y,l),qϕ(y|x),qϕ(l|x). In
this setting, we consider two cases, depending on whether the la-
bel is observed (Kingma et al., 2014). We extend Equation (9) to
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incorporate the label l corresponding to a data point as follows:

Lsemi= Eqϕ(y,z|x,l)[logpθ(x|z,l)] (14)

−DKL(qϕ(y,z|x,l)||pθ(y,z|l))
−Epθ(x)[DKL(pθ(z|x,l)||qϕ(z|x,l))]

When the label c cannot be observed, we treat it as a
latent variable and modify the learning objective Usemi =∑

cqϕ(l|x)Lsemi(x,l,θ,ϕ)+DKL(qϕ(l|x)||p(l)). Therefore,
we can conclude a marginal likelihood on our dataset as fol-
lows: L̃semi=

∑
(x,l)∈LLsemi(x,l,θ,ϕ)+

∑
x∈UUsemi(x,θ,ϕ).

where L and U are the sets of data with and without labels,
respectively.

We also want to guarantee that all model parameters can
be learned in all cases, including qϕ(l|x), such that this
posterior can be applied as a classifier during inference.
Thus, we combine the marginal likelihood with a clas-
sification loss to form an extended learning objective:
L̃semiα =L̃semi+α·Ep̃(x,l)[−logqϕ(l|x)]

4.2. Clustering

We have further extended our algorithm to encompass the
clustering paradigm. We propose two distinct strategies. In
the first approach, we simply fir a model in which pθ(z) as
a mixture of desired priors. The means of these priors are
characterized by θ. From these means, cluster membership,
denoted as c can be deduced. This approach requires no
alteration to the existing learning objective.

Alternatively, the second method retains the original prior
but introduces an additional cluster latent variable c where∑

ici=1. Thus, the model can be specified as pθ(x,y,z,c)=
pθ(x|z,c)r(y|z)pθ(z)p(c) with p(c)=Dir(ϵ). Consequently,
the variational distributions become qϕ(z|y,c,x),qϕ(y,c|x).
This reformulates the learning objective as:

Lclus(x)= Eqϕ(y,z,c|x)[logpθ(x|z,c)] (15)

−DKL(qϕ(y,z,c|x)||pθ(y,z,c))
−Epθ(x)[DKL(pθ(z|x)||qϕ(z|x))]

5. Experiments
We compare DDVI with Auto-Encoding Variational Bayes
(AEVB) (Kingma and Welling, 2013), AEVB with inverse au-
toregressive flow posteriors (AEVB-IAF) (Kingma et al., 2016),
Adversarial Auto-Encoding Bayes (AAEB) (Makhzani et al.,
2015), and Path Integral Sampler (PIS) (Zhang and Chen, 2021)
on MNIST (Lecun et al., 1998) and CIFAR-10 (Krizhevsky and
Hinton, 2009) in unsupervised and semi-supervised learning set-
tings, and also on the Thousand Genomes dataset (Siva, 2008).
We also compare with Hierachical Auto-Encoding Variational

Bayes (H-AEVB) (Ranganath et al., 2016; Vahdat and Kautz,
2020) in unsupervised setting. We discuss the computational
costs of all methods in Appendix D. The priors, model archi-
tecture, and training details can be founded in Appendix F, Ap-
pendix G, and Appendix H respectively. All results below are
reported with 95% confidence interval using 3 different seeds.

5.1. Unsupervised learning

We start with synthetic experiments that are aimed at
benchmarking the expressivity of diffusion-based posteriors
and their ability to improve fitting p, a distribution with a
complex structured prior, like one might find in probabilistic
programming, scientific analysis, or other applications. We fit
a model pθ(x,z) on the MNIST and CIFAR-10 datasets with
three priors p(z): pinwheel, swiss roll, and square and report
our results in Table 1 and Table 7. The model distribution
pθ is instantiated by a deep Gaussian latent variable model
(DGLVM) with multi-layer perceptrons (MLPs) on MNIST
and convolutional neural networks (CNNs) on CIFAR-10. The
details of model architecture are provided in Appendix G.

Our first set of metrics (ELBO and MMD) seeks to evaluate the
learned generative model pθ is good. In the ELBO calculation,
we average the reconstruction loss across image pixels. We use
MMD to measure sample quality: we generate images with
the trained model and calculate MMD between the generated
images and test images using a mixture of Gaussian kernel1.
We only report MMD for MNIST, since CIFAR-10 generated
samples are very low-quality for all methods because the latent
dimension is 2.

Our last metric seeks to directly evaluate the expressivity of the
posterior. We measure latent negative log-likelihood (Latent
NLL) by fitting a kernel density estimator (KDE) on the latents
produced by the model with test data as input and compute
the log-likelihood of the latents sampled from the prior under
the fitted KDE.

From Tables 1 and 7, we see our method DDVI achieve
best ELBO in all but one scenario, in which it still performs
competitively. We also see strong results in Latent NLL and
Acc in many scenarios, except for Swiss Roll where AAEB
does well. We present visualizations of MNIST using the
baseline methods and our method in Figure 2.

5.2. Semi-supervised Learning

We also evaluate the performance of our method and the
baselines under semi-supervised learning setting where
some labels are observed (1,000 for MNIST and 10,000 for
CIFAR-10) and the partitions of the priors are known.

For this setting, we evaluate ELBO, latent negative
log-likelihood (Latent NLL), and a k-nearest neighbors

1with sigma equal to [2, 5, 10, 20, 40, 80]
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   PIS      AEVB    AEVB-IAF AAEB DDVI Prior (Oracle)
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Figure 2. Unsupervised visualization on MNIST using three different priors (pinwheel, swiss roll, and square). Each color indicates a class.

Method Pinwheel Swiss Roll Square

ELBO MMD Latent NLL ELBO MMD Latent NLL ELBO MMD Latent NLL

AEVB −12.13±0.41 0.77±0.04 1.68±0.31 −14.80±0.23 0.78±0.17 5.65±1.58 −7.85±0.29 1.10±0.66 2.78±0.61
AEVB-IAF −4.19±0.05 0.77±0.00 1.64±0.73 −5.10±0.30 0.61±0.15 4.43±1.09 −3.97±0.22 0.75±0.12 1.68±0.27

AAEB N/A 0.68±0.02 1.54±0.19 N/A 0.52±0.03 3.34±0.16 N/A 0.80±0.02 2.46±0.46
H-AEVB −7.03±3.13 0.74±0.02 2.25±3.02 −7.21±4.62 0.70±0.22 4.04±4.62 −5.71±3.05 0.76±0.21 2.22±2.03

PIS −7.83±0.64 0.75±0.14 6.50±1.11 −9.83±0.61 0.61±0.03 2.40±1.01 −7.06±0.06 0.77±0.04 3.67±0.08
DDVI −3.88±0.96 0.67±0.04 1.27±0.21 −5.03±0.58 0.62±0.33 3.86±0.17 −3.79±0.14 0.66±0.07 1.56±0.09

Table 1. Unsupervised learning on MNIST. We report ELBO, MMD between generated images and test images, and latent negative log-likelihood
(Latent NLL) with pinwheel, swiss roll, and square priors.

Method Pinwheel Swiss Roll Square

ELBO Acc Latent NLL ELBO Acc Latent NLL ELBO Acc Latent NLL

AEVB −11.15±0.53 0.93±0.01 1.36±0.03 −15.29±1.33 0.68±0.01 4.60±0.23 −10.26±0.25 0.86±0.01 1.68±0.02
AEVB-IAF −2.10±0.26 0.95±0.00 1.06±0.03 −5.38±1.78 0.90±0.02 2.75±0.14 −2.67±0.83 0.91±0.01 0.90±0.02

AAEB N/A 0.89±0.01 1.55±0.01 N/A 0.88±0.01 3.07±0.05 N/A 1.94±0.38 0.76±0.13
DDVI −0.24±0.13 0.95±0.00 1.06±0.01 −2.89±0.33 0.92±0.01 2.09±0.00 0.02±0.09 0.90±0.01 1.49±0.03

Table 2. Semi-supervised learning on MNIST (1,000 labels). We report ELBO, accuracy using KNN (K=20) classifier (Acc), and latent negative
log-likelihood (Latent NLL) with pinwheel, swiss roll, and square priors.

classification accuracy of the latents (Acc). We choose
classification accuracy since classification is a common
downstream task for semi-supervised learning. We use the
same set of priors and baselines. Details on how we partition
each prior into pθ(z|x,l) can be founded in Appendix F. The
partitions defined for our priors are local parts of the priors. We
note that unlike unsupervised learning, we use the simplified
sleep term from Appendix B in our objective for this setting,
since qϕ already gets extra information from l here.

The results are shown in Tables 2 and 8. DDVI mostly
outperforms the baselines across different priors and metrics,
especially on CIFAR-10 where DDVI is best across the board.
For MNIST, DDVI always achieves the best ELBO, and it also
performs competitively with other baselines in classification
accuracy. We also show the visualizations of the latents in
Figure 3 where DDVI matches the prior almost perfectly.

Method Cluster Purity Cluster Completeness NMI

AEVB 0.28±0.02 0.78±0.16 0.59±0.08
AEVB-IAF 0.29±0.04 0.73±0.06 0.55±0.06

AAEB 0.37±0.06 0.76±0.11 0.63±0.02
DDVI 0.45±0.03 0.75±0.05 0.66±0.04

Table 3. Quantitative genotype clustering results.

5.3. Clustering and Visualization for Genotype Analysis

In this section, we report results on an real-world task in
genome analysis. Visualizing genotype data reveals patterns in
the latent ancestry of individuals. We instantiate DDVI with a
deep Gaussian latent variable model (DGLVM) and compare it
against with the three strong clustering baselines using the 1000
Genomes dataset. We also report visualizations from three
dimensionality reduction algorithms: PCA, TSNE, and UMAP.
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AEVB AEVB-IAF AAEB DDVI Prior (Oracle)

Pinwheel

Swiss 
Roll

Square

Figure 3. Semi-supervised visualization on MNIST with 1,000 labels using three different priors (pinwheel, swiss roll, and square). Each a
indicates one class.

AEVB AEVB-IAF AAEB

PCA TSNE UMAP

DDVI

Figure 4. Visualization of genotype clusters. A color represents one ethnicity.

For each clustering algorithm, we seek to discover up to 20
clusters. We report quantitative results in terms of cluster purity,
cluster completeness, and normalized mutual information
(NMI). There is an inherent trade-off between cluster purity
completeness. The overall clustering performance can be
captured with NMI.

In Table 3, we see that DDVI attains the best performance on
cluster purity and NMI. For cluster completeness, VAE and
AAE have better means but much larger confidence interval.
Furthermore, we visualize our genotype clustering results in
latent space, shown in Figure 4, and also report results from
classical dimensionality reduction and visualization methods
that do not perform clustering (PCA (Wold et al., 1987), t-SNE

(Van der Maaten and Hinton, 2008), and UMAP (McInnes et al.,
2018)). The legend of Figure 4 can be founded at Figure 5.

6. Discussion
Diffusion vs. Normalizing Flows Our approach is most simi-
lar to flow-based approximators (Rezende and Mohamed, 2015;
Kingma et al., 2016); in fact when T→∞, our diffusion-based
posterior effectively becomes a continuous-time normalizing
flow (Song et al., 2020a). However, classical flow-based
methods require invertible architectures for each flow layer:
this constrains their expressivity and requires backpropagating
through potentially a very deep network. Our approach, on
the other hand, trains a model (a continuous-time flow when

7
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T→∞) via a denoising objective (similar to score matching)
that does not require invertible architectures and effectively
admits an infinite number of layers (with weight sharing). This
model is trained not by backpropagating through the ELBO,
but rather via an auxiliary diffusion loss term (effectively, a
score matching objective).

Despite training with a modified loss, we observe in Section 5
that a diffusion model with an expressive denoising architecture
yields an improved ELBO relative to regular flows. Also, our
modified loss based on the forward KL divergence reduces
posterior collapse (i.e., all modes of the prior are covered well),
and thus produces better samples.

Diffusion vs. Other Generative Models Variational
posteriors based on GANs (Makhzani et al., 2015) also admit
expressive architectures and require only sample-based access
to the prior p(z). Our diffusion-based approach admits a
more stable loss, and is potentially more expressive, as it
effectively supports an infnite number of layers (with shared
parameters when T →∞). Unlike GANs, our models also
admit explicit likelihoods and allow us to compute the ELBO
for model evaluation. Our approach is similar to variational
MCMC (Salimans et al., 2015); however, we train with a
better objective augmented with a diffusion loss, and we adopt
improved architectures with shared weights across layers.

Diffusion for Approximate Inference Existing diffusion-
based approximate inference methods (Berner et al., 2022;
Zhang and Chen, 2021; Vargas et al., 2023; Zhang et al., 2023;
Richter et al., 2023; Sendera et al., 2024; Akhound-Sadegh et al.,
2024) focus on the task of drawing samples from unnormalized
distributions p̃(z) and estimating the partition function Z =∫
z
p̃(z)dz. While these methods are applicable in our setting—

we set the unnormalized p̃(z) to pθ(x,z) such that Z=pθ(x)—
they also tackle a more challenging problem (drawing samples
from energy-based models) in more general classes of models
(arbitrary unnormalized distributions). In contrast, we focus on
restricted but still important classes of models (VAEs, Bayes net-
works, etc.), and we solve more challenging sets of tasks (e.g.,
maximum-likelihood learning) by using properties of pθ (the
factorization pθ(x|z)pθ(z) and efficient sampling from pθ).

Our algorithms are also simpler. For example, diffusion
sampling methods require backpropagating through a sampling
process to minimize the reverse KL(qϕ||pθ), which poses
challenges with optimization and credit assignment. Some
methods based on Schrodinger bridges require an iterative
optimization process generalizing the sinkhorn algorithm or
computationally expensive on-policy or off-policy (Malkin
et al., 2022) trajectory-based optimization. In contrast, DDVI
optimizes the forward KL(pθ||qϕ) using simple gradient-based
optimization that directly emulates diffusion-based training.

7. Related Work
Latent Diffusion Vahdat et al. (2021); Wehenkel and Louppe

(2021); Rombach et al. (2022) perform diffusion in the latent
space of a VAE. Their goal is high sample quality, and they
introduce into p hierarchical latents with simple Gaussian priors.
Our goal is different: we seek a method to fit a pwith structured
latents (e.g., in probabilistic programming or in science applica-
tions, users introduce prior knowledge via hand-crafted p), and
we improve variational inference in this structured model by
introducing auxiliary latents into q. Recent work (Preechakul
et al., 2022; Zhang et al., 2022; Wang et al., 2023) has also
melded auto-encoders with diffusion models, focusing on se-
mantically meaningful low-dimensional latents in a diffuser
p. Cohen et al. (2022) crafts a diffusion bridge linking a con-
tinuous coded vector to a non-informative prior distribution.

Diffusion for Approximate Inference Diffusion sampling
(Berner et al., 2022; Zhang and Chen, 2021; Vargas et al.,
2023; Zhang et al., 2023; Richter et al., 2023; Sendera et al.,
2024; Akhound-Sadegh et al., 2024) mainly focuses on the
task of drawing samples from unnormalized distributions
and estimating the partition function. These works draw
connections between diffusion (learning the denoising process)
and stochastic control (learning the Föllmer drift). Some
other works (Zhang et al., 2023; Akhound-Sadegh et al., 2024;
Sendera et al., 2024) use continuous generative flow networks
(GFlowNets) – deep reinforcement learning algorithms adapted
to variational inference that offers stable off-policy training and
thus flexible exploration.

Dimensionality Reduction Latent variable models in
general are an attractive alternative to visualization methods
like PCA, UMAP, and t-SNE (McInnes et al., 2018; Van der
Maaten and Hinton, 2008). Domain-specific knowledge can
be injected through the prior, and deep neural networks can
be utilized to achieve a more expressive mapping from the data
space to the latent space. Nevertheless, downsides of LVMs
are that they are more computationally expensive and require
careful hyperparameter tuning.

8. Conclusion
While this paper focuses on applications of DDVI to dimension-
ality reduction and visualization, there exist other tasks for the
algorithm, e.g., density estimation or sample quality. Accurate
variational inference has the potential to improve downstream
applications of generative modeling, e.g., decision making
(Nguyen and Grover, 2022; Deshpande and Kuleshov, 2023),
meta-learning (Rastogi et al., 2023), or causal effect estimation
(Deshpande et al., 2022). Since our learning objective differs
from the ELBO (it adds a regularizer), we anticipate gains
on models whose training benefits from regularization, but
perhaps not on all models. Also, attaining competitive
likelihood estimation requires architecture improvements that
are orthogonal to this paper. However, our ability to generate
diverse samples and achieve class separation in latent space
hints at the method’s potential on these tasks.
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Appendix

July 17, 2024

A. Pseudocode
Here we provide a pseudocode to illustrate the training process of DDVI. We release anonymized code repo at
https://anonymous.4open.science/r/vi-with-diffusion-D70F.

Algorithm 1 DDVI Pseudocode
0: (Optional) Pre-train pθ(x|z) and qϕ(y|x) with DDVI but with unconditional diffusion model qϕ(z|y)
0: for epoch =1,...,n do
0: for x1,...,xk∼pD(x) do
0: yi∼qϕ(y|xi) and zi∼q(z|yi,xi) for i=1,...,k
0: Optimize θ,ϕ with respect to a Monte Carlo estimate of Eqϕ(y,z|x)[logpθ(x|z)]−KL(qϕ(y,z|x)∥pθ(y,z)) for each

xi{Standard ELBO training part}
0: for iteration =1,...,m do{Do sleep for m iterations}
0: z1,...,zk∼p(z){Batch-sample latents from prior}
0: x̂i∼p(x|zi) for i=1,...,k{Construct fantasy inputs}
0: yi∼r(y|zi) for i=1,...,k{Construct fantasy inputs}
0: Optimize ϕ using the standard diffusion noise prediction loss on qϕ(z|yi,x̂i)
0: end for
0: end for
0: end for=0

B. Simplifying Wake-Sleep
In wake-sleep, sampling x from pθ to obtain gradients for the sleep term introduces computational overhead. To address this
issue, we propose wake-sleep in latent space, an algorithm that optimizes an approximation L̂(x,θ,ϕ) of L:

L̂(x,θ,ϕ)= Eqϕ(y,z|x)[logpθ(x|z)]︸ ︷︷ ︸
wake / reconstr. term Lrec(x,θ,ϕ)

−DKL(qϕ(y,z|x)||pθ(y,z))︸ ︷︷ ︸
prior regularization term Lreg(x,θ,ϕ)

−DKL(pθ(z)||qϕ(z|x))︸ ︷︷ ︸
latent sleep term Lsleep(x,ϕ)

. (16)

We have replaced Lsleep(ϕ) with a latent sleep term Lsleep(x,ϕ), in which x is given, and we only seek to fit the true reverse
noising process r(z|y) independently of x. We can similarly show that

Lsleep(x,ϕ)=Epθ(z)[logqϕ(z|x)]+H̄(pθ)≥Epθ(z)r(y|z)[log(qϕ(y,z|x)/r(y|z))]+H̄(pθ) (17)
=−Epθ(z)[DKL(r(y|z)||qϕ(y|z,x))]−DKL(pθ(z)||q(z|x)), (18)

where H̄(pθ) is an entropy term constant in ϕ. Thus, we minimize the forward KL divergence by sampling z, and applying the
noising process to get y; the qϕ is fit to denoise z from y as in Equation (10).

We optimize our bound on L̂(x,θ,ϕ) end-to-end using minibatch gradient descent over θ,ϕ. While the wake term is a
reconstruction loss as in wake-sleep, the sleep term generates latent samples z,y from r(y|z)pθ(z) (by analogy with pθ(x|z)pθ(z)
in normal wake-sleep); the denoiser qϕ is trained to recover z from y. Thus, we perform wake-sleep in latent space, which obviates
the need for alternating wake and sleep phases, and allows efficient end-to-end training. A limitation of this approximation is
that the sleep term does not fit qϕ to the true pθ(z|x,y), and as a consequence L̂ is not a tight lower bound on logpθ(x). We
may think of Lsleep(x,ϕ) as a regularizer to the ELBO.
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C. Comparision of Methods
We provide a comprehensive comparison of different methods in Table 4. Vahdat et al. (2021); Wehenkel and Louppe (2021);
Rombach et al. (2022) perform diffusion in the latent space of a VAE to improve the efficiency of image generation. Their goal
is high sample quality, and they introduce into p hierarchical latents with simple Gaussian priors. Our goal is different: we seek
a method to fit a p with structured latents (e.g., in probabilistic programming or in science applications, users introduce prior
knowledge via hand-crafted p), and we improve variational inference in this structured model by introducing auxiliary latents into q.

Recent work (Preechakul et al., 2022; Zhang et al., 2022; Wang et al., 2023) has also melded auto-encoders with diffusion models,
focusing on semantically meaningful low-dimensional latents in a diffuser p. Cohen et al. (2022) crafts a diffusion bridge linking
a continuous coded vector to a non-informative prior distribution.

Model Training
Objective

Approximating
Family

Sample-based
Prior

Auxiliary
Variable

Tasks Simplified Graphical
Illustration

AEVB ELBO Diagonal Gaussian ✖ ✖ Density estimation x→z→x

AEVB-IAF ELBO Normalizing flow ✖ ✔ Density estimation /
Visualization

x→z0→zT →x

AAEB Adversarial
training

Adversarial
generator

✔ ✖ Visualization x→z→x

H-AEVB-
(IAF)

ELBO Factorial Normal /
Normalizing flow

✖ ✔ Density estimation /
High-quality sample

generation

x→z0→zT →z0→x

ADGM ELBO Non-Gaussian ✖ ✔ Density estimation x→a→z→x

LDM ELBO Diagonal Gaussian ✖ ✔ High-quality sample
generation

x→z0→zT →z0→x

LSGM ELBO & score
matching

Diagonal Gaussian ✖ ✔ High-quality sample
generation

x→z0→zT →z0→x

DDVI ELBO & sleep
term

Denoising diffusion ✔ ✔ Density estimation /
Visualization

x→zT (y)→z0(z)→x

Table 4. Comparison of DDVI to other relevant methods. x represents the original data input to the model. z denotes the latent (hidden)
representation of the input data. a represents an auxiliary variable introduced in some models (like ADGM) to capture additional aspects of the
data distribution or to assist in the model’s learning process.

D. Computational Cost Analysis

Method NMI values at different wall-clock training times

NMI @ 10 min NMI @ 20 min NMI @ 30 min NMI @ 40 min NMI @ 50 min NMI @ 60 min

AEVB 0.52 0.52 0.52 0.52 0.52 0.52
AEVB-IAF 0.54 0.52 0.52 0.52 0.52 0.52

AAEB 0.61 0.57 0.57 0.57 0.57 0.57
DDVI (T=5) warm up 0.63 0.63 0.66 0.66 0.66
DDVI (T=10) warm up 0.64 0.68 0.70 0.70 0.70
DDVI (T=20) warm up 0.50 0.51 0.56 0.64 0.68
DDVI (T=50) warm up 0.52 0.54 0.51 0.59 0.59

Table 5. Computational cost trade-off on 1kgenome: NMI vs wall-clock training time

We conduct a computational cost analysis between the baselines and DDVI with various timesteps on the genotype clustering/vi-
sualization experiments. Table 5 shows that DDVI outperforms baselines at all timestamps and continues to improve after the
baselines have plateaued.
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E. Connections to Diffusion Samplers
Diffusion sampling (Berner et al., 2022; Zhang and Chen, 2021; Vargas et al., 2023; Zhang et al., 2023; Richter et al., 2023;
Sendera et al., 2024; Akhound-Sadegh et al., 2024) mainly focuses on the task of drawing samples from unnormalized distributions
and estimating the partition function. These works draw connections between diffusion (learning the denoising process) and
stochastic control (learning the Föllmer drift), leading to several approaches, e.g., path integral sampler (PIS) (Zhang and Chen,
2021), denoising diffusion sampler (DDS) (Vargas et al., 2023), and time-reversed diffusion sampler (DIS) (Berner et al., 2022),
which have been unified by Richter et al. (2023). Some other works (Zhang et al., 2023; Akhound-Sadegh et al., 2024) use
continuous generative flow networks (GFlowNets) – deep reinforcement learning algorithms adapted to variational inference that
offers stable off-policy training and thus flexible exploration. Sendera et al. (2024) benchmarked these previous diffusion-structured
amortized inference methods and studied how to improve credit assignment in diffusion samplers, which refers to the propagation
of learning signals from the target density to the parameters of earlier sampling steps. Overall, there are indeed some strong
connections between these works and ours:

• They also focus on variational methods that directly fit a parametric family of tractable distributions (given by controlled
SDEs) to the target density.

• They cast the density estimation/sampling problem into an optimization problem over a control objective, which learns control
drifts (and diffusion) parameterized by neural networks.

But we would like to clarify that there are also some clear differences between them:

• The diffusion-structured samplers only focus on density estimation/sampling but ignore the problem of learning a generative
model, which is one of the main focuses of our work. We aim to perform more accurate variational inference using an auxiliary
variable model augmented by diffusion models to improve generative modeling. In our setting, pθ(z|x) is a moving target
density, as we jointly learnθ withϕ, as opposed to a static target density that diffusion-structured samplers are designed to solve.

• To tackle the challenge of credit assignment – propagating weak learning signals through the sampling trajectory, the
techniques proposed in diffusion-structured samplers are mostly based on partial trajectory information, which has higher
training costs over on-policy (Zhang and Chen, 2021) or off-policy (Malkin et al., 2022) trajectory-based optimization.
Instead, we introduce a wake-sleep optimization algorithm and its simplified version to alleviate the weak learning signal
issue and optimize the evidence lower bound in a better way.

• In Equation (10), we are minimizing the forward KL divergence DKL(pθ||qϕ), where diffusion samplers are minimizing
the reverse DKL(qϕ||pθ).

We also summarize the connections and differences in the table below.

F. Priors
Below we describe the sampling process for each prior.

Pinwheel. This distribution was used in (Johnson et al., 2016). We define the number of clusters to be 10. For semi-supervised
learning experiments, this prior is partitioned into 10 partitions, each partition being a cluster.

Swiss Roll. This distribution was used in (Marsland, 2014). For semi-supervised learning experiments, this prior is partitioned
into 10 partitions. The samples from the prior can actually be characterized by a single scalar representing how far you are long
the swiss roll from the center. The paritioning is done by creating 10 equal-length intervals in this 1D space.

Square. This distribution has the shaped of a square going from -1 to 1 in both axes. Each position on the square can be
characterized by a single scalar representing how far you are from the top left corner. Sampling is done by sampling the position
uniformly and turn the 1D position to 2D latent. We add noise σ=0.06 to the prior. For semi-supervised learning experiments,
this prior is partitioned into 10 partitions. The partitioning is done by creating 10 equal-length intervals in the 1D position space.

AEVB and AEVB-IAF requires that we can evaluate the prior density. To do this, for all priors, we evaluate the density by fitting
a kernel density estimator with mixture of gaussian kernel with bandwidth equal to 0.005, 0.008, 0.01, 0.03, and 0.05.
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Diffusion Samplers GFlowNet-based DDVI (ours)
(Berner et al., 2022; Zhang
and Chen, 2021; Vargas et al.,
2023; Akhound-Sadegh et al.,
2024)

(Zhang et al., 2023; Richter
et al., 2023; Sendera et al.,
2024; Malkin et al., 2022)

Tasks Sampling, density estimation Sampling, density estimation Learning, Sampling, Dimen-
sionality reduction

Model Family
for p

Any energy-based Any energy-based Latent with tractable
p(x|z),p(z)

Model Family
for q

Markov chain Markov chain Markov chain

Objective DKL(q||p) with regularizer Trajectory balance objective DKL(p||q) with ELBO
Algorithm Gradient descent (with ref-

erence process), importance
sampling

RL-motivated off-policy
optimization (replay buffers,
Thompson sampling, etc.)

Gradient descent with wake-
sleep

Compatible
Models

Anything energy-based Anything energy-based LDA, deep latent-variable
models

Applications Sampling from physics-based
models, model selection based
on NLL

Sampling from physics-based
models, model selection based
on NLL

Probabilistic programming, vi-
sualization

Table 6. Comparison of Diffusion-structured Samplers, GFlowNet-based Approaches, and DDVI

G. Model Architecture
All methods use the same architecture for encoder qϕ(z|x) and decoder pθ(x|z), excluding the extra parts specific to each method
which we describe below, for the same dataset. For MNIST, the encoder and decoder are multi-layer perceptron with two hidden
layers, each with 1000 hidden units. For CIFAR-10, the encoder is a 4-layer convolutional neural network with (16, 32, 64,
128) channels with a linear layer on top, and the decoder is a 4-layer tranposed convolutional neural network with (64, 32, 16,
3) channels where a linear layer is used to first turn the feature dimension from 2 to 64.

AEVB-IAF employs 4 IAF transformations on top of the encoder, each is implemented with a 4-layer MADE. The number of
hidden units in MADE is 128. The ordering is reversed between every other IAF transformation.

AAEB has a discriminator, used in adversarial training, which is a multi-layer perceptron with two hidden layers, each with 1000
hidden units.

DDVI has a diffusion model on top of the encoder. The time-conditioned reverse diffusion distribution is implemented with a
5-layer time-conditioned multi-layer perceptron, each with 128 hidden units. A time-conditioned linear layer learns an additional
embedding for each timestep and adds it to the output of the linear layer.

H. Training Details
For training, we update the parameters for each batch of inputs by alternating between the ELBO phase (optimizing θ and ϕ
with respect to the ELBO, i.e., the reconstruction term and the prior matching term) and the sleep phase (optimizing ϕ with respect
to the sleep term). We use Adam optimizer and latent size of 2 for all of our experiments. Each algorithm takes roughly 2 hours on
a single Nvidia GeForce RTX 3090 to complete one run of experiment. The training details of each algorithm are detailed below:

AEVB. The batch size is set to 128. The number of epochs is 200 for unsupervised and clustering experiments and 50 for
semi-supervised experiments. The learning rate is 0.0001. The loss is BCE for MNIST and CIFAR-10 experiments and MSE
for genotype analysis experiments. For semi-supervised MNIST experiments, the kl divergence weight is set to be 0.01, while for
semi-supervised CIFAR-10 experiments, the kl divergence weight is set to be 0.01. For other experiments, the KL divergence weight
is set with a schedule linear on number of epochs going from 0 to 0.01. We also have a weight of 5 multiplied to the prior density.

AEVB-IAF. The batch size, number of epochs, learning rate, loss, KL divergence weight, and prior density weight are the same
as VAE. The context size, i.e., the size of features used to initialize the flow layers for different datat point, is 10.
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Figure 5. Legend showing what ethnicity each color corresponds to in the 1000 Genomes dataset

AAEB. The batch size is set to 128. The number of epochs is 200 for all experiments. The learning rate is 0.0002. The loss is
MSE for all experiments. To stabilize the training, we add noise to the input to the discriminator with sigma 0.3 at the start and
lower it by 0.1 for every 50 epochs. The noise equals to 0 at epoch 150.

DDVI. The batch size is set to 128 for most experiments, except for semi-supervied experiments where the batch size is 1024. The
number of epochs is 200 for unsupervised and clustering experiments and 30 for semi-supervised experiments. The learning rate
is 0.0001. The loss is BCE for MNIST and CIFAR-10 experiments and MSE for genotype analysis experiments. For unsupervised
MNIST and CIFAR-10 experiments, the KL divergence weight is set to 0.003. For semi-supervised MNIST experiment, we
use KL divergence weight of 0.1. For semi-supervised CIFAR-10 experiment, we use KL divergence weight of 0.5. For clustering
experiment, we use KL divergence weight of 0.005. The number of timesteps is 20 for unsupervised and clustering experiments
and 100 for semi-supervised experiments.

I. Genotype Analysis Experiments Details
Before inputting the data points into any of the visualization methods, we first pre-process it by running a PCA and keep only
the first 1000 principal components of the data points. We further divide the features by 30 for all latent variables model methods.

The legend of the 1000 Genomes Visualization plot can be found at Figure 5.

Method Pinwheel Swiss Roll Square

ELBO Latent NLL ELBO Latent NLL ELBO Latent NLL

AEVB −12.96±1.81 3.26±0.60 −12.87±4.55 6.25±1.58 −7.91±0.11 2.91±0.17
AEVB-IAF −3.24±0.16 1.71±0.84 −4.03±0.73 5.51±0.51 −2.10±0.31 1.71±0.77

AAEB N/A 1.70±0.41 N/A 3.18±0.22 N/A 1.67±0.17
H-AEVB −4.42±0.46 1.69±0.17 −5.36±0.77 5.74±0.55 −2.86±0.11 1.64±0.09

PIS −2.92±1.23 3.61±0.62 −4.14±0.49 7.14±0.14 −4.85±0.06 3.91±0.06
DDVI −1.38±0.44 1.75±0.53 −3.05±0.65 5.66±2.63 −2.47±0.30 1.58±0.09

Table 7. Unsupervised learning on CIFAR-10. We report ELBO and latent negative log-likelihood (Latent NLL) with pinwheel, swiss roll, and
square priors.

Method Pinwheel Swiss Roll Square

ELBO Acc Latent NLL ELBO Acc Latent NLL ELBO Acc Latent NLL

AEVB −17.14±1.46 0.30±0.05 2.32±0.27 −17.89±5.21 0.20±0.07 6.56±2.25 −13.30±1.50 0.30±0.05 1.95±0.28
AEVB-IAF −5.70±0.07 0.47±0.01 1.62±0.05 −5.53±2.82 0.28±0.08 6.82±1.90 −4.41±0.53 0.36±0.01 1.58±0.15

AAEB N/A 0.25±0.01 1.77±0.14 N/A 0.23±0.01 3.38±0.30 N/A 0.23±0.04 1.74±0.15
DDVI −1.60±0.29 0.49±0.01 1.09±0.05 −4.13±1.51 0.47±0.09 2.29±0.08 −1.73±0.64 0.49±0.01 1.48±0.02

Table 8. Semi-supervised learning on CIFAR-10 (10,000 labels). We report ELBO, accuracy using KNN (K=20) classifier (Acc), and latent
negative log-likelihood (Latent NLL) with pinwheel, swiss roll, and square priors.
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Method Latent NLL - Pinwheel Latent NLL - Swiss Roll Latent NLL - Square

AEVB 1.68±0.31 5.65±1.58 2.78±0.61
AEVB-IAF 1.64±0.73 4.43±1.09 1.68±0.27

AAEB − − −
H-AEVB 2.25±3.02 4.04±4.62 2.22±2.03

DDVI 1.27±0.21 3.86±1.17 1.56±0.09
DDVI (w/o sleep term) 2.12 5.25 2.97

Table 9. Unsupervised learning on MNIST, including the results of DDVI without the sleep term.
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