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Abstract
The Right to Explanation and the Right to be For-
gotten are two important principles outlined to
regulate algorithmic decision making and data us-
age in real-world applications. While the right
to explanation allows individuals to request an
actionable explanation for an algorithmic deci-
sion, the right to be forgotten grants them the
right to ask for their data to be deleted from all
the databases and models of an organization. In-
tuitively, enforcing the right to be forgotten may
trigger model updates which in turn invalidate pre-
viously provided explanations, thus violating the
right to explanation. In this work, we investigate
the technical implications arising due to the inter-
ference between the two aforementioned regula-
tory principles, and propose the first algorithmic
framework to resolve the tension between them.
To this end, we formulate a novel optimization
problem to generate explanations that are robust to
model updates due to the removal of training data
instances by data deletion requests. We then de-
rive an efficient approximation algorithm to han-
dle the combinatorial complexity of this optimiza-
tion problem. We theoretically demonstrate that
our method generates explanations that are prov-
ably robust to worst-case data deletion requests
with bounded costs in case of linear models and
certain classes of non-linear models. Extensive
experimentation with real-world datasets demon-
strates the efficacy of the proposed framework.

1. Introduction
Over the past decade, machine learning models have been
increasingly deployed in various high-stakes decision mak-
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ing scenarios including hiring and loan approvals. Con-
sequently, a number of regulatory policies and princi-
ples (GDPR, 2016; CCPA, 2018) were introduced to en-
sure that algorithmic decisions and data usage practices
in real-world applications do not cause any undue harm
to individuals. The Right to Explanation and the Right
to be Forgotten are two such notable regulatory principles
which were first introduced by the European Union’s Gen-
eral Data Protection Regulation (GDPR) (GDPR, 2016).
While the right to explanation ensures that individuals who
are negatively impacted by adverse algorithmic outcomes
are provided with an actionable explanation, the right to be
forgotten ensures that individuals have the right to ask for
their data to be removed from all the databases and models
of an organization.

To operationalize the right to explanation in practice, sev-
eral strategies have been considered in recent literature. A
particular class of explanations commonly referred to as
counterfactual explanations or algorithmic recourse are of-
ten considered very promising in this regard. For instance,
when an individual is denied a loan by a predictive model
employed by a bank, a counterfactual explanation (or an
algorithmic recourse) provides them with inputs about what
aspects (features) of their profile should be changed and by
how much in order to obtain a positive outcome. Several
approaches in recent literature tackled the problem of gener-
ating such counterfactual explanations (Wachter et al., 2017;
Ustun et al., 2019; Pawelczyk et al., 2020; Karimi et al.,
2020).

Prior research has also explored various strategies to opera-
tionalize the right to be forgotten (Cao & Yang, 2015; Ginart
et al., 2019; Garg et al., 2020). Since the right to be forgot-
ten requires organizations to delete pertinent user data from
all their databases and models, it often involves retraining
or updating their models. To this end, several methods were
proposed to efficiently update machine learning models in
the face of (training) data deletion requests without having
to retrain them from scratch (Guo et al., 2020; Bourtoule
et al., 2021; Izzo et al., 2021; Neel et al., 2021).

Despite the significance of the two aforementioned regu-
latory principles, there is very little research that explores
potential interference between them. Intuitively, enforcing
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the right to be forgotten may trigger model updates which
in turn invalidate previously provided actionable explana-
tions that end users may act upon, thus violating the right to
explanation. For instance, consider a scenario where a user
was asked to increase their salary by 5K to get a loan and
they start working towards it, but the underlying model gets
updated in the meanwhile to accommodate (training) data
deletion requests. Consequently, the user may no longer
receive the desired outcome even if their salary increases by
5K as the previously prescribed recourse may no longer hold
with respect to the new model. Pawelczyk et al. (2022b)
highlighted this challenge and argued that the right to expla-
nation and the right to be forgotten are in conflict with each
other, and that existing methods are not capable of dealing
with this tension.

In this work, we make one of the first attempts to resolve
the aforementioned tension and bridge the operational gaps
between the right to explanation and the right to be forgotten.
More specifically, we propose the first algorithmic frame-
work, RObust Counterfactual Explanations under the Right
to be Forgotten (ROCERF), to address this problem. To this
end, we formulate a novel optimization problem to generate
counterfactual explanations that remain valid in the face
of model updates (changes) arising due to (training) data
deletion requests. This optimization problem turns out to be
combinatorially complex as it considers n training instances
and k data deletion requests resulting in

(
n
k

)
possible ways

of the model being updated. To mitigate this computational
challenge, we propose a novel algorithm which can effi-
ciently approximate model updates relative to the original
model, and select those with most significant deviations,
thus eliminating the need for retraining

(
n
k

)
models. With

this approximation, we are able to develop a practically
efficient algorithm to learn effective counterfactual explana-
tions that remain valid on model updates triggered by data
deletion requests.

We theoretically and empirically analyze the validity and
costs of the counterfactual explanations generated by our
framework ROCERF. In case of linear models and non-
linear models with certain regularity assumptions, we the-
oretically demonstrate that our method generates counter-
factual explanations that are provably valid in the face of
worst-case data deletion requests, while incurring additional
costs upper bounded by O( kn ). Empirically, we evaluate
the proposed ROCERF and state-of-the-art counterfactual
explanation methods using logistic regression and neural
network models on three real-world datasets. The proposed
method outperforms baseline methods in most experimen-
tal settings. In comparison, baseline methods either fail
dramatically in terms of validity, or achieve high validity
with significantly higher cost. Our results establish that our
framework ROCERF enables us to simultaneously enforce
both the right to explanation as well as the right to be for-

gotten, thus bridging a critical operational gap between the
two regulatory principles.

2. Related Work
Over the past few years, there has been a lot of exciting
research on counterfactual explanations or algorithmic re-
course (Tolomei et al., 2017; Laugel et al., 2017; Wachter
et al., 2017; Ustun et al., 2019; Van Looveren & Klaise,
2019; Mahajan et al., 2019; Mothilal et al., 2020; Karimi
et al., 2020; Rawal & Lakkaraju, 2020; Dandl et al., 2020).
Several of the proposed approaches can be roughly catego-
rized along the following dimensions (Verma et al., 2020):
type of the underlying predictive model (e.g., tree-based vs.
differentiable classifier), whether they encourage sparsity in
counterfactuals (i.e., only a small number of features should
be changed), whether counterfactuals should lie on the data
manifold and whether the underlying causal relationships
should be accounted for when generating counterfactuals.
Most of these approaches assume that the underlying pre-
dictive model remains unchanged before and after the end
users implement the prescribed recourses.

More recently, few studies have investigated the impact of
changes in the underlying predictive models on the the valid-
ity of recourses (Rawal et al., 2021; Upadhyay et al., 2021).
To improve the robustness of the recourses in the face of
such model changes, prior work has proposed adversarial
training methods that generate counterfactual explanations
robust to small (and often Gaussian) perturbations of the un-
derlying model parameters (Upadhyay et al., 2021). While
such methods could potentially be considered to mitigate
the challenges brought about by the right to be forgotten, it
is unclear how the removal of training data points will affect
the model parameters. There is no guarantee that counterfac-
tual explanations robust to Gaussian perturbations of model
parameters will be valid under model updates (changes)
occurring due to data deletion requests.

On the other hand, the right to be forgotten has also inspired
considerable research in machine learning literature (Cao
& Yang, 2015; Ginart et al., 2019; Garg et al., 2020; Guo
et al., 2020; Bourtoule et al., 2021; Izzo et al., 2021; Neel
et al., 2021). Majority of work along these lines focuses on
developing methods to efficiently update models in the face
of training data deletion requests, without having to retrain
models from scratch. Such approaches are referred to as
Machine Unlearning methods.

To the best of our knowledge, the only prior work at the
intersection of the right to explanation and the right to be
forgotten is by Pawelczyk et al. (2022b). Pawelczyk et al.
(2022b) analyzed the impact of (training) data deletion re-
quests on the validity of counterfactual explanations gener-
ated by existing methods, and concluded that the explana-
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tions generated by state-of-the-art methods become invalid
in the face of model updates due to data deletion requests.
While the above work highlighted the tension between the
right to explanation and the right to be forgotten, they do not
provide a solution to this critical problem. In contrast, our
work proposes the first algorithmic framework to address
this tension.

3. Our Framework ROCERF
In this section, we introduce our framework, RObust Coun-
terfactual Explanations under the Right to be Forgotten (RO-
CERF). Specifically, we first formally define the problem of
finding robust counterfactual explanations in the presence of
training data removal required by the right to be forgotten.
Then, we present an efficient approximation algorithm to
solve this problem. We also discuss practical considerations
including computation costs and further approximations in
implementation.

3.1. Problem Definition

Suppose we have a training dataset D = {(xi, yi)}ni=1 with
n data points, where xi ∈ X , yi ∈ {−1, 1} are respectively
features and labels. Given a family of classifiers fθ : X →
R parameterized by θ ∈ Θ, a classifier fθ predicts 1 on
a data point x if fθ(x) ≥ 0 and predicts −1 otherwise.
Assume B := supx∈X ∥x∥2 is O(1) in terms of n.

To characterize the data removal, we introduce a data weight
vector w ∈ {0, 1}n. For each data point i, let wi = 0 if this
data point is removed, and let wi = 1 otherwise. Specially,
when w = 1, where 1 is an all-one vector, there is no data
point being removed.

Denote the loss of fθ on each data point i as li(θ) and
assume li(θ) has continuous second derivatives. We de-
note the classifier trained on the dataset D as fθ̂1 , where
θ̂1 = argminθ∈Θ

1
n

∑n
i=1 li(θ). A classifier trained on the

dataset with some removals indicated by w can then be de-
noted as fθ̂w , where θ̂w = argminθ∈Θ

1
∥w∥1

∑n
i=1 wili(θ).

To simplify notations, for i = 1, 2, . . . n, define gi(θ) :=
∂li(θ)
∂θ and hi(θ) :=

∂gi(θ)
∂θT . Then H := 1

n

∑n
i=1 hi(θ̂1) is

the Hessian matrix of the loss function on the whole dataset
D. Note that throughout this paper, we focus on the scenario
where the right to be forgotten is enforced by retraining the
classifier. However, adapting the proposed method and
its theoretical guarantees to scenarios employing machine
unlearning methods should be straightforward, as long as
the machine unlearning methods can well approximate the
retraining process.

In the literature (Wachter et al., 2017; Verma et al., 2020),
the problem of finding counterfactual explanations (CFEs)
for the model fθ1 trained on the original full dataset is

often defined as an optimization problem like the following
Definition 3.1.

Definition 3.1 (Counterfactual Explanation (CFE)). For any
data point x0 ∈ X , the CFE (x̃0 ∈ X ) of x0, is defined as
the solution of the following optimization problem

min
x∈X

∥x− x0∥2 (1)

subject to fθ̂1(x) ≥ 0.

Intuitively, we hope to find a valid CFE (classified as 1)
with the minimum cost, as measured by the L2 distance to
x0. In practice, the L2 distance could be replaced by other
distance functions, such as L1 distance or any other metrics
suitable for the application. In this paper, however, we
stick to the L2 distance following the convention of recent
literature (Pawelczyk et al., 2021).

In this paper, we aim to obtain CFEs that is robustly valid
against potential data point removal required by right to be
forgotten. To formalize this problem, we define the follow-
ing k-Removal-Robust CFE (kRR-CFE) that is supposed to
be robust with respect to any removal of k data points.

Definition 3.2 (k-Removal-Robust CFE (kRR-CFE)).
Given an integer k > 0, denote the set of all possible weight
vectors with k data removals as W(k) = {w ∈ {0, 1}n :
∥w∥1 = n− k}. For any data point x0 ∈ X , the k-RR CFE
(x̃(k)

0 ∈ X ) of x0, is defined as the solution of the following
optimization problem

min
x∈X

∥x− x0∥2 (2)

subject to fθ̂w(x) ≥ 0,∀w ∈ W(k).

While the k-RR CFE defined in Definition 3.2 is robust
to any removal of k data points by construction, a naive
implementation to obtain the k-RR CFE requires one to
retrain |W(k)| =

(
n
k

)
classifiers that appear in the constraint

of the optimization problem (2), which is computationally
impractical.

3.2. Approximating k-RR CFE

To address the computational challenge, we propose an
efficient algorithm to approximate k-RR CFE. The proposed
method first efficiently approximates the classifier fθ̂w , for
any w ∈ W(k), without the need of retraining from scratch.
Then we show that, we can reduce the constraint set with(
n
k

)
classifiers to an equivalent constraint that only requires

a linear computation complexity with respect to n.

Approximating the Classifier. A key observation that
makes it possible to efficiently approximate fθ̂w is that these
classifiers can be viewed as leave-k-out (LKO) estimators,
which can be efficiently approximated by leveraging recent
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advances in LKO analysis (Giordano et al., 2019; Broderick
et al., 2020).

For each of the classifier fθ̂w(x) in the constraint set of the
problem 2, note that fθ̂w(x) is also a function of w1. For
any fixed x, we can take a first-order Taylor approximation
of fθ̂w(x) with respect to w at w = 1, and denote this
first-order approximation as f̃θ̂w(x), i.e.,

f̃θ̂w(x) = fθ̂1(x) +
∂fθ̂w(x)

∂w

∣∣∣
w=1

(w − 1) (3)

= fθ̂1(x) +
∂fθ(x)

∂θ

∣∣∣
θ=θ̂1

∂θ̂w
∂w

∣∣∣
w=1

(w − 1), (4)

where from Eq. (3) to Eq. (4), we have applied the chain
rule. Using results in Giordano et al. (2019), we can show
that2

∂θ̂w
∂w

∣∣∣
w=1

(w − 1) =
1

n

∑
i:wi=0

H−1gi(θ̂1). (5)

Therefore, the first-order Taylor approximation can be writ-
ten as

f̃θ̂w(x) = fθ̂1(x) +
1

n

∑
i:wi=0

β(x)TH−1gi(θ̂1), (6)

where β(x) :=

(
∂fθ(x)

∂θ

∣∣∣
θ=θ̂1

)T

is the gradient of fθ(x)

with respect to the model parameters θ at θ = θ̂1.

Replacing fθ̂w with f̃θ̂w , we approximate the problem (2)
with a new problem below.

min
x∈X

∥x− x0∥2 (7)

subject to f̃θ̂w(x) ≥ δ, ∀w ∈ W(k),

where δ > 0 is a constant accounting for the approximation
error of f̃θ̂w for fθ̂w , which should be chosen in a way such
that for any w ∈ W(k) and x ∈ X , f̃θ̂w(x) ≥ δ implies
fθ̂w(x) ≥ 0. The proper choice of δ is model dependent
and, in practice, can be treated as a hyperparameter selected
using a validation set. We also provide some theoretical
insights on δ in Section 4.

Reducing the Constraint Set. With the first-order Tay-
lor approximate classifier f̃θ̂w , we can further reduce the
constraint set with

(
n
k

)
inequalities to a single inequality.

Note that in Eq. (6), fθ̂1(x), β(x), H , and gi(θ̂1) are all
calculated based on the model fθ̂1 trained on the original

1Strictly speaking, we need to assume uniqueness of θ̂w for any
given w. Although in practice we can often make this assumption
approximately hold locally.

2See Proposition 3 in Appendix A.3 of Giordano et al. (2019).

full dataset D, and are independent of the data weight vector
w. Define a set A(x) := {β(x)TH−1gi(θ̂1)}ni=1. Then
satisfying the constraints in the problem (7) (recall that
w ∈ W(k) has k entries as 0) is equivalent to having the
following condition.

fθ̂1(x) +
1

n
min

B⊆A(x),|B|=k

∑
b∈B

b ≥ δ. (8)

Intuitively, each element β(x)TH−1gi(θ̂1) in A(x) can be
thought as, under first-order Taylor approximation, how
much the retrained model will deviate from the original
model when training data point i is deleted. By having the
sum of bottom k elements in A(x), Eq. (8) estimates the
retrained model with the largest possible negative devia-
tion for any deletion of k data points. Note that obtaining
the bottom-k elements only requires a time complexity of
O(n log k).

Defining

f
(k)
A (x) := fθ̂1(x) +

1

n
min

B⊆A(x),|B|=k

∑
b∈B

b,

we have shown that solving the problem (7) is equivalent to
solving the problem below.

min
x∈X

∥x− x0∥2 (9)

subject to f
(k)
A (x) ≥ δ.

Optimization. To solve the constrained optimization prob-
lem (9), we use the the penalty method (Freund, 2004).
Define the penalty function as ϕ(z) := max(z, 0)2. We
solve a series of unconstrained relaxation of the original
problem (9):

min
x∈X

Jt(x) = λtϕ(δ − f
(k)
A (x)) + ∥x− x0∥2, (10)

for t = 1, 2, . . . T as the iteration index. And λt ≥ 0
is the penalty coefficient controlling the relative strength
between the penalty and the original objective for each
iteration t. Denote the solution of the t-th iteration as x∗

t .
We start with a small λ1 and double it until the first t0
where f (k)

A (x∗
t0) ≥ δ while f (k)

A (x∗
t0−1) < δ. Then we have

a binary search on the penalty coefficient between λt0−1

and λt0 to obtain a feasible solution with as small cost as
possible. Please see Algorithm 1 in Appendix A for more
details.

3.3. Practical Considerations

Computation Costs. Finally, we make a few remarks on
the computation costs of the proposed method. Given the
dataset D and the original model fθ̂1 trained on D, we need
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to first calculate the gradients gi(θ̂1), i = 1, . . . , n and the
Hessian inverse H−1. Calculating the exact Hessian inverse
may be expensive for models with high-dimensional param-
eters, such as neural networks. However, we can leverage
computational tricks calculating influence functions (Koh &
Liang, 2017) to efficiently approximate H−1. In addition,
H−1 and gi(θ̂1)’s only need to be calculated once for the
whole process and are shared for all the test samples.

The major computation cost comes from repeated evalu-
ations of f

(k)
A (x) at different x during the optimization

procedure. For each x, we can use automatic differenti-
ation tools such as PyTorch (Paszke et al., 2017) to evaluate
fθ̂1(x) and β(x) by one forward pass and one backward
pass. Suppose we have pre-computed and stored the values
of H−1gi(θ̂1), i = 1, . . . , n, we can obtain the set A(x)

by n vector multiplications. Finally, evaluating f
(k)
A (x) re-

quires partially sorting A(x) and obtaining the bottom-k
values, which has a complexity of O(n log k). Overall, eval-
uating the constraint of problem (9) has a complexity that
is linear in n, which is much smaller than evaluating the
original constraint set with

(
n
k

)
models.

Hyperparameters. The proposed method has two hyper-
parameters, k and δ. The hyperparameter k should be set
from a rough estimate of the number of data removals, which
relies on domain knowledge of the application. Empirically,
however, we find the method is not very sensitive to the
value of k so there is a good tolerance on the choice of
k. The hyperparameter δ measures how good is the Taylor
approximation of the function. In practice, we can choose δ
on a validation set and simulating a few models trained after
random removals. But in our experiments, we find fixing it
as 0 also works well empirically.

A Special Case: Linear Models. When fθ(x) = θTx is a
linear model, the first-order Taylor approximation in Eq. (6)
simplifies to the following form:

f̃θ̂w(x) = θ̂T1 x+
1

n

∑
i:wi=0

xTH−1gi(θ̂1), (11)

since β(x) = x for linear models. In this special case, we
can avoid going through the backward pass when evaluating
β(x), which makes the optimization much more efficient.

Local Linear Approximation of Nonlinear Models. Ow-
ing to computational efficiency considerations, it is a com-
mon practice in recourse literature to first obtain a local
linear approximation of the underlying model at each test
sample, and then leverage this to compute counterfactual ex-
planations (Upadhyay et al., 2021; Ustun et al., 2019; Rawal
& Lakkaraju, 2020). Along similar lines, we propose to
apply ROCERF on local linear approximations of nonlinear
models to further improve the computational efficiency in

practice. Specifically, we use LIME (Ribeiro et al., 2016) to
obtain local linear approximations of the underlying models.

4. Theoretical Analysis of Validity and Cost
In this section, we provide theoretical guarantees on validity
and cost of CFEs obtained by the proposed method, under
a small fraction of data removal in the training set. In
particular, we characterize the trade-off between validity
and cost and provide upper bounds on the cost needed to
guarantee that the CFE is robustly valid. We first present
an analysis for linear models and then for nonlinear models
with regularity assumptions.

4.1. Analysis on Linear Models

Assume the machine learning models are regularized logis-
tic regression, i.e., li(θ) = log(1+exp(−yiθ

Txi))+γ∥θ∥22,
and the model parameters have bounded norm. In this case,
the following Theorem 4.1 provides theoretical guarantees
on the validity and cost, and the detailed proof of which can
be found in Appendix B.

Theorem 4.1 (Validity and Cost on Logistic Regression).
For any data point x0 ∈ X , let x̃0 be the CFE of x0, and let
x̃
(k)
0 be the solution of the optimization problem (9) when

the classifiers are regularized logistic regression. Then we
can properly choose δ such that, if x̃(k)

0 exists, x̃(k)
0 remains

a valid CFE for all possible removal of k data points, i.e.,

fθ̂w(x̃
(k)
0 ) ≥ 0,∀w ∈ W(k).

Furthermore, the cost of implementing x̃
(k)
0 is upper

bounded as following,

∥x̃(k)
0 − x0∥2 ≤ ∥x̃0 − x0∥2 +

kC

n∥θ̂1∥2
, (12)

where C is a constant independent of n.

Proof Sketch. The proof of Theorem 4.1 involves two key
steps. The first step is to derive a bound on the difference
between the actual retrained model fθ̂w and its Taylor ap-
proximation model f̃θ̂w . This bound gives us an estimate
on how large δ is needed in the optimization problem (9) in
order to ensure validity. The second step is to derive a bound
on the difference between the Taylor approximation model
f̃θ̂w and the original model fθ̂1 . For regularized logistic
regression, both differences can be well bounded without
further assumptions. Note that the difference between x̃

(k)
0

and x̃0 is that the former is constrained by f̃θ̂w(x̃
(k)
0 ) ≥ δ

while the latter is constrained by fθ̂1(x̃0) ≥ 0. So together
with the estimate on δ, the bound on the difference between
f̃θ̂w and fθ̂1 allows us to bound the additional cost of x̃(k)

0

in comparison to x̃0.
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This result states that the additional cost needed to achieve
robust validity has an upper bound of O( kn ), and this ad-
ditional cost vanishes when the training set size n is very
large and the number of removals k is relatively small. As a
sanity check, in the degenerate case where there is no data
removed, i.e., k = 0, there is also no additional cost.

This result also indicates that for simple models trained
on abundant data, it is possible to provide robustly valid
recourses to users with little additional costs, thus paving
the way for bridging critical operational gaps between the
right to explanation and the right to be forgotten. The
technical insight behind this strong guarantee is that, when
the number of data removals is not too large compared to the
training set, the retrained model will not change too much
(difference between fθ̂w and fθ̂1), and the change can be
efficiently estimated (through f̃θ̂w ).
Remark 4.2. Technically, neither the problem (2) nor its
approximation (9) is guaranteed to be feasible. However,
especially for linear models, we find that they are always
feasible on the datasets we empirically tested. This is possi-
bly because the difference among fθ̂w for all w ∈ W(k) is
not dramatically large.

4.2. Analysis on Nonlinear Models

Next, we generalize Theorem 4.1 to nonlinear models with
the following assumptions.

Assumption 4.3. Assume that there exist universal finite
constants C1, C2, C3, C4, C5 independent of n such that

1. supθ∈Θ
1
n

∑n
i=1 ∥hi(θ)∥F ≤ C1;

2. supθ∈Θ ∥gi(θ)∥2 ≤ C2, i = 1, . . . , n;

3. supx∈X ∥β(x)∥2 ≤ C3;

4. H(θ) := 1
n

∑n
i=1 hi(θ) is nonsingular and

sup
θ∈Θ

∥H(θ)−1∥op ≤ C4;

5. there exists suitable ∆ > 0, such that

sup
∥θ−θ̂1∥2<∆

1

n

n∑
i=1

∥hi(θ)−hi(θ̂1)∥F ≤ C5∥θ− θ̂1∥2.

Theorem 4.4 (Validity and Cost on Nonlinear Models). For
any data point x0 ∈ X , let x̃0 be the CFE of x0, and let
x̃
(k)
0 be the solution of the optimization problem (9). Assume

the classifiers satisfy Assumption 4.3. Then we can properly
choose δ such that, if x̃(k)

0 exists, x̃(k)
0 remains a valid CFE

for all possible removal of k data points, i.e.,

fθ̂w(x̃
(k)
0 ) ≥ 0,∀w ∈ W(k).

Furthermore, the cost of implementing x̃
(k)
0 is upper

bounded as following,

∥x̃(k)
0 − x0∥2

≤∥x̃0 − x0∥2 + min
x∈X ,

fθ̂1
(x)−fθ̂1

(x̃0)≥ kC
n

∥x− x̃0∥2, (13)

where C is a constant independent of n.

Specially, if fθ̂1 is µ-strongly convex, then

∥x̃(k)
0 − x0∥2 ≤ ∥x̃0 − x0∥2 +

2kC

nµ
. (14)

The proof of Theorem 4.4 follows similar steps as Theo-
rem 4.1. Assumption 4.3 is specifically baked to bound the
difference |f̃θ̂w(x)− fθ̂w(x)| and the difference |f̃θ̂w(x)−
fθ̂1(x)|. The detailed proof can be found in Appendix C.

Theorem 4.4 shares similar insights as the linear case while
generalizing the results to a broader family of models be-
yond linear models. Admittedly, the assumptions are rela-
tively strong for them to be held on very complex models
such as neural networks. However, in applications where
explainability is of major interest, simpler models are often
preferred (Srinivas et al., 2022). So this result still provides
valuable insights in practice.

5. Experimental Evaluation
In this section, we empirically evaluate the validity and cost
of the counterfactual explanations output by our framework,
and compare them with other state-of-the-art counterfac-
tual explanation methods. We first introduce the general
experimental setup and then present experimental results on
three real-world datasets with logistic regression and neural
network models.

5.1. Experimental Setup

We conduct experiments on three real-world datasets that are
commonly used to benchmark counterfactual explanation
methods. For each dataset, we split the dataset into training,
validation, and test sets. We train a machine learning model
(which we will refer as the original model) using the training
set, and select the negative samples (data points classified
as −1) in the test set. Then we apply different counterfac-
tual explanation methods on these negative test samples to
obtain a CFE for each of the sample. We calculate and
report the average cost of the CFEs over all the negative
test samples. To evaluate the validity under the right to be
forgotten, we remove a small fraction, α, of the training
data points and retrain a new model (which we will refer as
the retrained model), and then we evaluate the validity over
all the negative test samples under the retrained model. We

6
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(a) German Credit. (b) COMPAS. (c) Adult.

Figure 1. Average validity of different counterfactual explanation methods applied to logistic regression models on three datasets. In each
figure, the x-axis corresponds to the fraction of data removal α and the y-axis corresponds to the average validity. The error bars indicate
the standard errors across M = 100 trials with each trial having an α fraction of training data points randomly removed.

(a) German Credit. (b) COMPAS. (c) Adult.

Figure 2. Average validity of different counterfactual explanation methods applied to neural network models on three datasets. See
Figure 1 for more details about the plot setting.

repeat this process of removal of training data points, model
retraining, and validity evaluation for M times and report
the average validity. We fix M = 100 on all experiments
and vary α ∈ {0.5%, 1%, 2%, 3%, 5%}.

Datasets. We use three real-world binary classification
datasets collected from high-stakes decision making sce-
narios. 1) German Credit (Dua & Graff, 2017) comprises
of 1000 data points where each data point has 60 features
including demographic (age, gender), personal (marital sta-
tus), and financial (income, credit duration) information
of a customer. These data points are labeled as “good” or
“bad” in terms of credit risk. 2) Adult (Yeh & Lien, 2009)
contains samples from 48,842 individuals, and each sample
contains demographic (e.g., age, race, and gender), educa-
tion (degree), employment (occupation, hours-per week),
personal (marital status, relationship), and financial (capi-
tal gain/loss) features. 3) COMPAS (Jordan & Freiburger,

2015) comprises of criminal records and demographic fea-
tures of 18,876 defendants who were released on bail at the
US state courts during the period 1990-2009. The prediction
target is “bail” or “no bail” given the defendant’s data.

Predictive Models. We experiment with regularized lo-
gistic regression, gradient boosted trees, and deep neural
networks. For regularized logistic regression and gradient
boosted trees, we use the default implementation from the
Scikit-Learn package3. For neural networks, we use a 3-
layer fully-connected feedforward neural network. Please
see Appendix D.1 for more details about implementation.

Evaluation Metrics. We evaluate the counterfactual ex-
planation methods in terms of average validity and cost,
which are the two most commonly used metrics in the

3https://scikit-learn.org/stable/.
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Methods German Credit COMPAS Adult

SCFE 0.82 ± 0.12 0.78 ± 0.02 1.04 ± 0.006
C-CHVAE 8.51 ± 0.38 5.93 ± 0.11 3.79 ± 0.013
ROAR 1.45 ± 0.09 1.08 ± 0.01 1.07 ± 0.006
ROCERF (ours) 1.35 ± 0.14 0.87 ± 0.02 1.14 ± 0.006

Table 1. Average cost of different recourse methods applied to
logistic regression models on three datasets. The cost is measured
in terms of L2 norm.

counterfactual explanation literature (Verma et al., 2020).
Denote the set of negative samples under the original
model fθ̂1 as T and the set of M random removals as
V ⊆ W(⌈αn⌉), |V| = M . Suppose the CFE of a sample
x is denoted as c(x). Then the average validity is defined as

1

M

∑
w∈V

1

|T |
∑
x∈T

1[fθ̂w(c(x)) = 1],

where 1[·] is the indicator function. And the average cost is
defined as

1

|T |
∑
x∈T

∥c(x)− x∥2.

In Appendix D.2, we also report an alternative average cost
with the L2 norm being replaced by L1 norm.

Baseline Methods. We compare the proposed method
against three state-of-the-art counterfactual explanation
methods, SCFE (Wachter et al., 2017), C-CHVAE (Pawel-
czyk et al., 2020), and ROAR (Upadhyay et al., 2021).
SCFE uses gradient-based optimization to search for CFEs
closest to the input sample, which can be viewed as the
solution of the problem (1). C-CHVAE is a manifold-based
method that searches for CFEs in a latent space. ROAR gen-
erates CFEs that are robust to small perturbations in model
parameters, which is a strong baseline for the problem of
interest in this paper.

Hyperparameters. For the proposed method, ROCERF,
we set the hyperparameter k as 0.5% of the training set
size and fix δ = 0 in all experiments in this section. For
SCFE, we use the hyper-parameter setting from Pawelczyk
et al. (2022a). For C-CHVAE, we use the recommendations
from Pawelczyk et al. (2020). We also use the same hyper-
parameter setting for ROAR as suggested in Upadhyay et al.
(2021). We refer the readers to Appendix D.1 for more
details.

5.2. Evaluating the Effectiveness of Our Framework

To evaluate the efficacy of the proposed framework, we ran-
domly delete α% of training data instances, and then plot
average validity vs. fraction of removal (α%) for ROCERF

Methods German Credit COMPAS Adult

SCFE 1.18 ± 0.08 0.97 ± 0.11 1.00 ± 0.09
C-CHVAE 4.45 ± 0.18 5.98 ± 0.12 8.83 ± 0.31
ROAR 3.84 ± 0.33 1.09 ± 0.13 4.07 ± 0.55
ROCERF (ours) 2.76 ± 0.22 3.07 ± 0.08 4.06 ± 0.52

Table 2. Average cost of different recourse methods applied to
neural network models on three datasets. The cost is measured in
terms of L2 norm.

and other baseline methods (See Figures 1 and 2) as dis-
cussed in Section 5.1. We also compute average cost of the
resulting recourses for all the methods (See Tables 1 and 2).
Due to space constraints, we present results with logistic
regression and neural networks in the main paper, and defer
results with gradient boosted trees to Appendix D.2.

We first look at the results on logistic regression models. As
can be seen in Figure 1, the proposed method, ROCERF,
achieves 100% average validity in almost all experimen-
tal settings for logistic regression. This result validates
the strong theoretical guarantee on validity stated in Theo-
rem 4.1. As a comparison, all the baseline methods suffer
from significant drops in terms of average validity in some
or all experimental settings.

In terms of the tradeoff between cost (Table 1) and valid-
ity (Figure 1), while SCFE always has the lowest cost,
it has significantly worse validity than all other methods
even for α = 0.5%; C-CHVAE is also inferior to the pro-
posed method as it has both significantly higher costs on all
datasets and worse validity on COMPAS and Adult; ROAR
is closer to our method but our method consistently outper-
forms ROAR in terms of validity and has smaller or similar
costs than ROAR. Overall, the empirical results both vali-
date our theoretical analysis in Theorem 4.1 and verify that
the proposed method outperforms baseline methods.

Next, we look at the results on neural network models. As
the change of models after data removals becomes less
predictable for these complex models, the performance of
counterfactual explanation methods is more dataset depen-
dent. However, we still see that the proposed method is
consistently among the best performing methods.

On COMPAS dataset (Figure 2b), the proposed method
clearly outperforms baseline methods in terms of validity.
On Adult dataset (Figure 2c), SCFE and C-CHVAE are
significantly worse in validity except for on the original
model (α = 0%); the proposed method performs similarly
as ROAR in terms of both validity and cost. On German
Credit dataset (Figure 2a), the results of validity seem to be
counter-intuitive: the average validity becomes 100% for
all methods after removing a larger fraction of training data.
This is possibly because the dataset is small and the deci-
sion boundary of the complex models changes dramatically

8
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(a) German Credit. (b) COMPAS. (c) Adult.

Figure 3. Validity of counterfactuals generated for a logistic regression model when samples for deletion are chosen adversarially as
opposed to randomly (Pawelczyk et al., 2022b). Counterfactuals generated using ROCERF achieve the highest validity.

after data removal. In addition, there are only 27 negative
test samples under the original neural network model. The
dramatical change in decision boundary may make all the
test samples suddenly lie in a positive area. Nevertheless,
on this dataset, C-CHVAE has the best validity but also with
the highest cost. The proposed method has a similar validity
as ROAR with a smaller cost.

5.3. Evaluating Robustness to Worst-Case Deletions

Here, we further evaluate the recourse methods in a sce-
nario where the training samples to be deleted are adver-
sarially chosen to maximize the invalidation of recourses,
similar to the evaluation setting considered in Pawelczyk
et al. (2022b). This setting corresponds to worst-case scenar-
ios encountered in real-world applications. Recall that our
theoretical analysis (in particular, Theorem 4.1) provides
validity guarantees for the proposed framework under the
aforementioned worst-case scenario.

To carry out the aforementioned experiment, we greedily
choose a set of instances which maximize the invalidation
of recourses. To this end, we first simulate the removal
of each training sample from the training set and identify
an instance whose removal results in a classifier with the
lowest recourse validity. We then add this instance to the
set of instances to be deleted. Next, we greedily choose
another instance, which in conjunction with the previously
chosen instance, leads to a classifier with the lowest recourse
validity. By repeating this process, we obtain a sequence of
worst-case adversarial instances to be deleted.

Figure 3 shows validity results of the above experiment
with logistic regression model. Results with neural network
model are included in the Appendix D.3. It can be seen
from Figure 3 that the our framework ROCERF not only
outperforms all baseline methods but also achieves 100%
validity when the number of deletions is smaller than or

equal to 0.5% on all three datasets. Since we set the hyper-
parameter k of ROCERF to 0.5% of the training set, the
aforementioned empirical results validate our theoretical
guarantee in Theorem 4.1.

6. Conclusions
In this work, we make one of the initial attempts at address-
ing the operational gaps between the right to explanation and
the right to be forgotten. In particular, enforcing the right
to be forgotten may invalidate actionable (counterfactual)
explanations, which in turn violates the right to explanation.
To resolve the tension between these two principles, we
propose the first algorithmic framework, ROCERF, which
generates counterfactual explanations that are provably ro-
bust to model updates triggered as a consequence of data
deletion requests. The proposed framework not only en-
joys theoretical guarantees on validity and cost, but also
outperforms several other state-of-the-art counterfactual ex-
planation methods. Our theoretical and empirical results
establish that our framework ROCERF enables us to simul-
taneously enforce both the right to explanation as well as
the right to be forgotten, thus bridging a critical operational
gap between the two regulatory principles.
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A. The Optimization Algorithm

Algorithm 1 ROCERF.

Input: x0, f
(k)
A , δ,X , T .

Output: x̃(k)
0 .

1: Set λ = 0.1;
2: Set x′ = argminx∈X λϕ(δ − f

(k)
A (x)) + ∥x− x0∥2;

3: // Find initial left value λ
4: while f

(k)
A (x′) ≥ δ do

5: Set λ = λ/2;
6: Set x′ = argminx∈X λϕ(δ − f

(k)
A (x)) + ∥x− x0∥2;

7: end while
8: Set λ′ = λ;
9: // Find initial right value λ′

10: while f
(k)
A (x′) < δ do

11: Set λ′ = λ′ × 2;
12: Set x′ = argminx∈X λϕ(δ − f

(k)
A (x)) + ∥x− x0∥2;

13: end while
14: // Binary search between λ and λ′

15: for t = 1, 2, . . . , T do
16: Set λt = (λ+ λ′)/2;
17: Set xt = argminx∈X λtϕ(δ − f

(k)
A (x)) + ∥x− x0∥2;

18: if f (k)
A (xt) < δ then

19: Set λ = λt;
20: else
21: Set λ′ = λt;
22: end if
23: end for
24: Set x̃(k)

0 = argminx∈X λϕ(δ − f
(k)
A (x)) + ∥x− x0∥2;

25: Return x̃
(k)
0 ;

B. Proof of Theorem 4.1
B.1. Lemmas

We start by introducing a few useful lemmas.

For any w ∈ W(k), define the following LKO estimator of θ̂w:

θ̃w := θ̂1 +H−1

(
1

n

∑
i:wi=0

gi(θ̂1)

)
. (15)

Note that for linear models, Eq. (11) can be rewritten as f̃θ̂w(x) = θ̃Twx.

The difference between θ̃w and θ̂w can be bounded by the following lemma.

Lemma B.1 (Corollary 1 in Giordano et al. (2019)). Let H(θ) = 1
n

∑n
i=1 hi(θ). Assume the following quantities are

bounded by constants independent of n: (1) supθ∈Θ ∥H(θ)−1∥op; (2) 1
n

∑n
i=1 ∥gi(θ)∥22; (3) 1

n

∑n
i=1 ∥hi(θ)∥2F . Also

assume that there exists a suitable ∆ > 0, such that the following quantity is bounded by a constant independent of n:
sup∥θ−θ̂1∥2<∆

1
n

∑n
i=1 ∥hi(θ)−hi(θ̂1)∥F /∥θ− θ̂1∥2. Then for any small integer k, there exists a constant C1 independent

of n, such that

sup
w∈W(k)

∥θ̃w − θ̂w∥2 ≤ kC1

n
. (16)
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We also have the following results for strongly convex models.

Lemma B.2 (Lemma 8 in Neel et al. (2021)). Suppose l : Θ → R is µ-strongly convex and let θ∗ = argminθ∈Θ l(θ). We
have that for any θ ∈ Θ, l(θ) ≥ l(θ∗) + µ

2 ∥θ − θ∗∥22.

Lemma B.3. Assume li, i = 1, . . . , n are L-Lipschitz and µ-strongly convex. For a fixed positive integer k, there exists a
constant C2 independent of n, such that for any w ∈ Wk,

∥θ̃w − θ̂1∥2 ≤ kC2

n
. (17)

Proof of Lemma B.3. We bound ∥θ̃w − θ̂1∥2 by the summation of ∥θ̃w − θ̂w∥2 and ∥θ̂w − θ̂1∥2. From Lemma B.1, we
already have ∥θ̃w − θ̂w∥2 ≤ kC1

n . We now bound ∥θ̂w − θ̂1∥2 largely following the proof of Lemma 8 (Sensitivity) in Neel
et al. (2021).

WLOG, assume the the first k data points are removed in w, i.e., w1 = w2 = . . . = wk = 0 while wk+1 = . . . = wn = 1.
Then we have

1

n

n∑
i=1

li(θ̂w) =
n− k

n

1

n− k

n∑
i=k+1

li(θ̂w) +
1

n

k∑
i=1

li(θ̂w)

≤ n− k

n

1

n− k

n∑
i=k+1

li(θ̂1) +
1

n

k∑
i=1

li(θ̂w) (18)

=
1

n

n∑
i=1

li(θ̂1) +
1

n

k∑
i=1

(
li(θ̂w)− li(θ̂1)

)
≤ 1

n

n∑
i=1

li(θ̂1) +
kL

n
∥θ̂w − θ̂1∥2, (19)

where (18) is because θ̂w is the minimizer of 1
n−k

∑n
i=k+1 li(θ), while in (19) we have utilized the fact that each li is

L-Lipschitz.

On the other hand, by Lemma B.2, we have

1

n

n∑
i=1

li(θ̂w) ≥
1

n

n∑
i=1

li(θ̂1) +
µ

2
∥θ̂w − θ̂1∥22.

Combining the two inequalities above, we have ∥θ̂w − θ̂1∥2 ≤ k(2L/µ)
n .

Therefore, letting C2 = C1 +
2L
µ , we have

∥θ̃w − θ̂1∥2 ≤ ∥θ̃w − θ̂w∥2 + ∥θ̂w − θ̂1∥2 ≤ kC2

n
.

B.2. Useful Facts of Regularized Logistic Regression

Define σ(x; θ) = 1
1+exp(−θT x)

. For regularized logistic regression with the loss defined as li(θ) = log(1+exp(−yiθ
Txi))+

γ∥θ∥22, we have

gi(θ) = − 1

1 + exp(yiθTxi)
(yixi) + γθ, (20)

hi(θ) = σ(xi; θ)(1− σ(xi; θ))xix
T
i + γI. (21)
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We can verify that regularized logistic regression satisfies all the assumptions in Lemma B.1. First, we know that the
eigen value of the Hessian is lower-bounded by γ, so the eigen value of the inverse Hessian is upper bounded by 1/γ.
Hence supθ∈Θ ∥H(θ)−1∥op is bounded. Next, under the assumption that both the feature vector and model parameters
have bounded norm, it is easy to show that ∥gi(θ)∥2 and ∥hi(θ)∥F are bounded from Eq. (20) and Eq. (21). Hence both
1
n

∑n
i=1 ∥gi(θ)∥22 and 1

n

∑n
i=1 ∥hi(θ)∥2F are bounded. Finally, hi(θ) is Lipschitz continuous so the last assumption is also

verified.

We can also verify that li are Lipschitz and strongly convex so the regularized logistic regression satisfies the assumptions in
Lemma B.3.

B.3. Proof of Theorem 4.1

Next, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. The validity of x̃(k)
0 holds if for any w ∈ W(k) and x ∈ X , f̃θ̂w(x) ≥ δ implies fθ̂w(x) ≥ 0. Now

we investigate the choice of δ that guarantees the above condition holds while not being too large.

Under the linear model assumption, for any w ∈ W(k), we have

fθ̂w(x) = θ̂Twx

= θ̃Twx+ (θ̂w − θ̃w)
Tx

≥ f̃θ̂w(x)− ∥θ̂w − θ̃w∥2∥x∥2

≥ f̃θ̂w(x)−
kC1

n
·B,

where recall that B = supx∈X ∥x∥2.

If we set δ = kC1B
n , then f̃θ̂w(x) ≥ δ implies fθ̂w(x) ≥ 0, in which case the validity of x̃(k)

0 is guaranteed.

For the cost, as x̃(k)
0 is the minimizer of the problem (7), we have ∥x̃(k)

0 − x0∥2 ≤ ∥x− x0∥2 for any x in the feasible set of
the the problem (7). Furthermore, for any x, ∥x− x0∥2 ≤ ∥x̃0 − x0∥+ ∥x− x̃0∥. So we only need to focus on the bound
of ∥x− x̃0∥2 for some x in the feasible set.

To begin with, we make the following transformation of f̃θ̂w(x).

f̃θ̂w(x) = θ̃Twx

= θ̂T1 x̃0 + θ̂T1 (x− x̃0) + (θ̃w − θ̂1)
Tx

≥ θ̂T1 (x− x̃0) + (θ̃w − θ̂1)
Tx θ̂T1 x̃0 ≥ 0 by Definition 3.1

≥ θ̂T1 (x− x̃0)− ∥θ̃w − θ̂1∥2∥x∥2

≥ θ̂T1 (x− x̃0)−
kC2B

n
. Lemma B.3

For x to be in a feasible set, it suffices to have f̃θ̂w(x) ≥ δ for all w ∈ W(k). Set δ = kC1B
n and let x′ = x̃0 +

kC
n∥θ̂1∥2

2

θ̂1,

where C := (C1 + C2)B. Then for any w, we have

f̃θ̂w(x
′)− δ ≥ θ̂T1 (x

′ − x̃0)−
kC2B

n
− kC1B

n
= 0.

So x′ is in the feasible set. Therefore,

∥x̃(k)
0 − x0∥2 ≤ ∥x′ − x0∥2 ≤ ∥x̃0 − x0∥2 +

kC

n∥θ̂1∥2
.
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C. Proof of Theorem 4.4
We first apply a result from Broderick et al. (2020) to bound the difference |f̃θ̂w(x)− fθ̂w(x)|.
Lemma C.1 (Direct Application of Theorem 1 in Broderick et al. (2020)). Under Assumption 4.3, there exists a constant
Cf independent of n, such that

sup
x∈X ,w∈W(k)

|f̃θ̂w(x)− fθ̂w(x)| <
kCf

n
.

Next, we use this result to prove Theorem 4.4.

Proof of Theorem 4.4. Similarly as Theorem 4.1, the validity of x̃(k)
0 holds if for any w ∈ W(k) and x ∈ X , f̃θ̂w(x) ≥ δ

implies fθ̂w(x) ≥ 0. By Lemma C.1, we know that setting δ =
kCf

n suffices to guarantee the validity.

For the cost, similarly as Theorem 4.1, we only need to bound ∥x− x̃0∥2 for some feasible x in problem 7.

For any x ∈ X and w ∈ W(k), we have

f̃θ̂w(x) = fθ̂1(x̃0) + fθ̂1(x)− fθ̂1(x̃0) + f̃θ̂w(x)− fθ̂1(x)

≥ fθ̂1(x)− fθ̂1(x̃0) + f̃θ̂w(x)− fθ1(x) fθ̂1(x̃0) ≥ 0 by Definition 3.1

= fθ̂1(x)− fθ̂1(x̃0) +
1

n

∑
i:wi=0

β(x)TH−1gi(θ̂1) Eq. (6)

≥ fθ̂1(x)− fθ̂1(x̃0)−
kC2C3C4

n
. Assumption 4.3

For an x to be feasible, it needs to satisfy f̃θ̂w(x) ≥ δ for all w ∈ W(k). Set δ =
kCf

n and let

x′ = arg min
x∈X ,

fθ̂1
(x)−fθ̂1

(x̃0)≥ kC
n

∥x− x̃0∥2,

where C := Cf + C2C3C4. Then for any w, we have

f̃θ̂w(x
′)− δ ≥ fθ̂1(x

′)− fθ̂1(x̃0)−
kC

n
≥ 0.

So x′ is in the feasible set. Therefore,

∥x̃(k)
0 − x0∥2 ≤ ∥x′ − x0∥2 ≤ ∥x̃0 − x0∥2 + min

x∈X ,
fθ̂1

(x)−fθ̂1
(x̃0)≥ kC

n

∥x− x̃0∥2.

Finally, if fθ̂1 is µ-strongly convex, then for any z ∈ X ,

fθ̂1(z) ≥ fθ̂1(x̃0) +
∂fθ̂1(x)

∂x

∣∣∣
x̃0

(z − x̃0) +
µ

2
∥z − x̃0∥2.

Denote v =

(
∂fθ̂1

(x)

∂x

∣∣∣
x̃0

)T

. Let z = x̃0 +
2kC
nµ

v
∥v∥2

, then

fθ̂1(z)− fθ̂1(x̃0) ≥
kC

n
.

So z is in the feasible set. Therefore,

∥x̃(k)
0 − x0∥2 ≤ ∥x′ − x0∥2 ≤ ∥x̃0 − x0∥2 +

2kC

nµ
.
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D. Experiment Details
D.1. More Detailed Experimental Setup

Model Training. We train two models for our experiments : (1) Logistic Regression (LR), and (2) Neural Network (NN).
For NN, we have three intermediate layers with twice the number of input nodes for each intermediate layer. We apply
softplus activation for each intermediate layer output. The training procedure involved minimizing the standard cross entropy
loss using stochastic gradient descent with 0.01 as the learning rate. The accuracy achieved after training for all the datasets
is shown in Table 3.

Table 3. The accuracy of LR and ANN models trained on the datasets.
Dataset LR NN
German Credit
COMPAS
Adult

72.2%
85.8%
84.0%

73.9%
85.1%
84.7%

Recourse Method Hyperparameters. We use default hyper-parameter setting for most baseline methods aligned with
authors’ guidelines. Specifically, we use step size = 0.05 with a sample size of 1000 per iteration for C-CHVAE, δmax = 0.1
for ROAR.

LIME Approximation of Neural Network Models. For neural network, we learn a local linear approximation of the
model using the perturbation-based framework in LIME (Ribeiro et al., 2016). Specifically, we train a logistic regression
model on 10,000 perturbations sampled from N (0, 0.1) around the input sample.

D.2. Additional Results on Random Deletions

Average cost in terms of L1 norm. We provide the L1-norm based average cost of different recourse methods in Table 4
and Table 5, respectively for logistic regression and neural network models. The relative trend is almost the same as the
results of L2-norm based average cost reported in the main paper.

Methods German Credit COMPAS Adult

SCFE 5.76 ± 0.92 1.91 ± 0.06 2.98 ± 0.01
C-CHVAE 48.04 ± 1.83 11.71 ± 0.23 10.37 ± 0.03
ROAR 9.61 ± 0.61 2.47 ± 0.04 2.61 ± 0.01
ROCERF (ours) 9.44 ± 1.08 2.13 ± 0.05 3.33 ± 0.02

Table 4. Average cost of different recourse methods applied to logistic regression models on three datasets. The cost is measured in terms
of L1 norm.

Methods German Credit COMPAS Adult

SCFE 2.97 ± 1.14 2.01 ± 0.23 7.03 ± 0.87
C-CHVAE 12.56 ± 0.53 11.31± 0.19 49.45 ± 1.88
ROAR 13.46 ± 0.25 2.25 ± 0.25 23.04 ± 3.68
ROCERF (ours) 7.85 ± 0.58 6.35 ± 0.14 19.61 ± 3.07

Table 5. Average cost of different recourse methods applied to neural network models on three datasets. The cost is measured in terms of
L2 norm.

Sensitivity analysis with respect to the hyperparameter k in the proposed ROCERF method. We also conduct a
sensitivity analysis of our method with respect to different choices of the hyperparameter k. Figure 4 shows the results
on logistic regression models. All variants of ROCERF with different k achieve 100% validity COMPAS and Adult. On
German Credit, the variant with the lowest k has a slight drop in validity for higher fraction of removal, which is fixed by
for variants of higher k values. Notably, k = 0.005n corresponds to α = 0.5% and similarly for other values of k and α.
The value of k refers to the hyperparameter of our method while the value of α refers to the actual fraction of data removal
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(a) German Credit. (b) COMPAS. (c) Adult.

Figure 4. Sensitivity analysis of ROCERF with respect to the hyperparameter k. Each curve corresponds to ROCERF with a specific
choice of k.

(a) German Credit. (b) COMPAS. (c) Adult.

Figure 5. Validity of counterfactuals generated for a Gradient Boosted Trees (GBT) model when samples for deletion are chosen randomly.
We observe that counterfactuals generated using ROCERF achieve the highest validity compared to other baselines.

in the evaluation. In reality, our selection of hyperparameter k may not exactly match the actual fraction of removals in
the future. However, we note that, in Figure 4, the variants of our method always achieve 100% validity for αn below the
hyperparamter k, e.g., k = 0.01n achieves 100% validity for any α ≤ 1% and k = 0.02n achieves 100% validity for any
α ≤ 2%.

Experiments on Gradient Boosted Trees (GBT). We further conduct experiments on another popular nonlinear model,
Gradient Boosted Trees (GBT). As GBT is not end-to-end differentiable, while all the recourse methods require access
to gradients to calculate the counterfactuals, we apply the recourse methods to the LIME approximations of GBT in our
experiments. As can be seen in Figure 5, the proposed method, ROCERF, still outperforms the baseline methods in terms of
validity in most cases. In addition, ROCERF has a much smaller cost in comparison to C-CHVAE as can be seen in Table 2.

D.3. Additional Results on Worst-Case Deletions

Validity results on neural network model. We report in Figure 6 the validity results on neural network model in the
worst-case deletion setting, as introduced in Section 5.3. While we do not have theoretical guarantees for the complex neural
network models, empirically ROCERF still outperforms all the baseline recourse methods in most cases.

Sensitivity analysis with respect to the hyperparameter δmax in the baseline ROAR method. In all the experiments
in this paper, for the baseline ROAR method, we have been using the hyperparameter choice used in the original paper
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(a) German Credit. (b) COMPAS. (c) Adult.

Figure 6. Validity of counterfactuals generated for a Neural Network (NN) model when samples for deletion are chosen adversarially, as
per Pawelczyk et al. (2022b), instead of using random deletion of data samples. We observe that counterfactuals generated using ROCERF
achieve the highest validity compared to other baselines.

Methods German Credit

SCFE 1.95 ± 0.89
C-CHVAE 7.89 ± 1.29
ROAR 1.97 ± 0.82
ROCERF (ours) 2.09 ± 0.86

Table 6. Average cost of different recourse methods applied to Gradient Boosted Trees (GBT) model on German Credit. The cost is
measured in terms of L2 norm.

introducing ROAR (Upadhyay et al., 2021). Note that the hyperparameters in ROAR are generally difficult to optimize as it
lacks clear interpretation in the context of data deletion. However, following the anonymous reviewers’ suggestions, we
further report the validity of ROAR with different choices of the hyperparameter δmax (choosing from {0.1, 0.15, 0.2, 0.25}).
The validity and cost are respectively shown in Figure 7 and Table 7. As can be seen, ROCERF still outperforms ROAR for
a wide range of hyperparameter choices.
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Methods COMPAS

ROAR-0.25 1.43 ± 0.02
ROAR-0.2 1.28 ± 0.02
ROAR-0.15 1.14 ± 0.02
ROAR-0.1 1.08 ± 0.02
ROCERF (ours) 0.87 ± 0.02

Table 7. Average cost of counterfactuals generated using ROAR-δmax with different δmax ∈ {0.1, 0.15, 0.2, 0.25} and ROCERF for
logistic regression model trained on COMPAS data. The cost is measured in terms of L2 norm.

Figure 7. Validity of counterfactuals generated using ROAR with different values of δmax choosing from {0.1, 0.15, 0.2, 0.25} for logistic
regression model trained on COMPAS data. The result of the proposed ROCERF is also included for reference.
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