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Abstract

Recent studies in fair Representation Learning001
have observed a strong inclination for Natural002
Language Processing (NLP) models to exhibit003
discriminatory stereotypes across gender, re-004
ligion, race and many such social constructs.005
In comparison to the progress made in reduc-006
ing bias from static word embeddings, fairness007
in sentence-level text encoders received little008
consideration despite their wider applicability009
in contemporary NLP tasks. In this paper, we010
propose a debiasing method for pre-trained text011
encoders that both reduces social stereotypes,012
and inflicts next to no semantic damage. Un-013
like previous studies that directly manipulate014
the embeddings, we suggest to dive deeper into015
the operation of these encoders, and pay more016
attention to the way they pay attention to differ-017
ent social groups. We find that most stereotypes018
are also encoded in the attention layer. Then,019
we work on model debiasing by redistributing020
the attention scores of a text encoder such that021
it forgets any preference to historically advan-022
taged groups, and attends to all social classes023
with the same intensity. Our experiments con-024
firm that we successfully reduce bias with little025
damage to semantic representation.026

1 Introduction027

Natural Language Processing (NLP) is increasingly028

penetrating real-world processes such as recruit-029

ment (Hansen et al., 2015), legal systems (Dale,030

2019), healthcare (Velupillai et al., 2018) and Web031

Search (Nalisnick et al., 2016). Part of this suc-032

cess is attributed to the underlying embedding layer033

which encodes sophisticated semantic representa-034

tions of language (Camacho-Collados and Pilehvar,035

2018). The wide adoption of modern NLP models036

in critical domains has also inflicted a more thor-037

ough scrutiny. Recent research has uncovered some038

propensities of NLP models to replicate discrimina-039

tory social biases (Bolukbasi et al., 2016; Caliskan040

et al., 2017; May et al., 2019) which may cause041

unintended and undesired model behaviors with re- 042

spect to social groups. Social bias in NLP is mainly 043

caused by unbalanced mentions of attributes near 044

advantaged groups in training data (Zhao et al., 045

2018a). For example, in most existing text corpora, 046

very few cooks are referred to by male pronouns 047

(e.g. he, him, himself) (Zhao et al., 2017). Accord- 048

ingly, text encoders or language models trained on 049

such data may use this shortcut to inadvertently dis- 050

associate cooks from men, and learn that cooking 051

is a female attribute. 052

Methods to debias static word embeddings such 053

as Word2vec (Mikolov et al., 2013) or GloVe (Pen- 054

nington et al., 2014) have been applied for various 055

bias types like gender, race and religion (Boluk- 056

basi et al., 2016; Zhao et al., 2018b; Kaneko and 057

Bollegala, 2019; Ravfogel et al., 2020). However, 058

by the time NLP practitioners started casting more 059

attention to the fairness problem of their models, 060

they had already switched to the more powerful 061

sentence-level transformers in the likes of BERT 062

(Devlin et al., 2018), GPT3 (Brown et al., 2020) or 063

T5 (Raffel et al., 2020) which owe their success to 064

the novel self-attention mechanism (Vaswani et al., 065

2017). This leap in performance in several NLP 066

tasks does not extend to fairness since research dis- 067

covered social stereotypes in modern text encoders 068

(May et al., 2019; Nadeem et al., 2020; Nangia 069

et al.). To date, debiasing them remains compara- 070

tively under-explored. 071

Mitigating biases in text encoders is difficult 072

for four reasons: (1) They are expensive to re- 073

train, so conventional methods based on Counter- 074

factual Data Augmentation (CDA) to rebalance 075

group-attribute mentions (Zhao et al., 2018a; Web- 076

ster et al., 2020) become prohibitive as they gener- 077

ate more training data, and all debiasing attempts 078

might be limited to either finetuning or adapting 079

(Houlsby et al., 2019; Lauscher et al., 2021). (2) 080

Static embeddings encode words whereas text en- 081

coders need context . Thus, it is not straightfor- 082
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ward to use existing debiasing techniques for static083

embeddings off-the-shelf as it is not clear how to084

generate context for single words. Previous work085

tackled this problem by either designing bleached086

sentence templates (May et al., 2019; Kurita et al.,087

2019) where they fill in the blanks with words of088

interest, or sampling sentences from large corpora089

where the words are mentioned (Liang et al., 2020a;090

Cheng et al., 2020), thus creating context. The091

former betrays the expressiveness of natural lan-092

guage while the latter suffers from sampling and093

pre-processing bias (Liang et al., 2020a). (3) The094

input space of text encoders is the set of all possible095

sentences, so we cannot debias every single input096

as it is done with static embeddings. (4) Text en-097

coders are larger in capacity and complexity. This098

suggests that they can accommodate subtler and099

more sophisticated forms of stereotype, especially100

in their attention component, which renders bias101

imperceptible to existing detection methods as they102

are not designed to operate on attention.103

Despite these difficulties, previous works ad-104

dressed the problem of reducing bias from mod-105

ern text encoders with different techniques (Liang106

et al., 2020a; Webster et al., 2020; Liang et al.,107

2020b; Cheng et al., 2020; Kaneko and Bollegala,108

2021; Lauscher et al., 2021). However, most of109

them make strong assumptions about the linearity110

of bias. Moreover, they operate on the embeddings111

produced by text encoders, and leave their most112

important block - attention - largely unrectified.113

In this paper we explore attention-based debi-114

asing. This approach stems from our observation115

that attention exhibits a great deal of social biases.116

We illustrate this finding with examples, propose a117

novel method to reduce stereotypes from attention118

blocks, and demonstrate that it is effective in mit-119

igating biases from sentence representations as a120

whole. Given an input sentence, our method com-121

pels the text encoder of interest to redistribute its122

internal attention scores such that each word in the123

input allocates the same attention for different so-124

cial groups. Thus, it learns to forget previously125

encoded preferences, and generate fair representa-126

tions, free of stereotypical influence. We also keep127

semantic information loss at a minimum while de-128

biasing by distilling knowledge from an unaltered129

teacher text encoder (Hinton et al., 2015; Gou et al.,130

2021). In this setting, we encourage the debiased131

model to copy the original attention from its teacher132

to minimize semantic offset. Unlike most previous133

work which focus only on gender, we address five 134

bias types in our experiments (gender, race, re- 135

ligion, age and sexual orientation). We conduct 136

likelihood- and inference-based evaluations to mea- 137

sure the intensity of bias in our final debiased mod- 138

els. Experiments demonstrate that the technique we 139

propose effectively reduces bias, and outperforms 140

existing debiasing methods. 141

2 Related Work 142

In this section, we discuss related work about de- 143

biasing static word embeddings and sentence-level 144

text encoders. It should be noted that bias at data 145

level (Pryzant et al., 2020; Cryan et al., 2020) and in 146

language generation tasks (Sheng et al., 2020; Sap 147

et al., 2020; Dhamala et al., 2021) are also active 148

and complementary areas of research. However, 149

due to space limitations, they will not be discussed 150

further in this paper. 151

2.1 Bias in Static word embeddings 152

The work of Bolukbasi et al. (2016) pioneered bias 153

research in NLP by discovering that static word em- 154

beddings such as Word2Vec (Mikolov et al., 2013) 155

or GloVe (Pennington et al., 2014) encode signif- 156

icant amounts of binary gender bias. They pro- 157

posed Hard-Debias: a method to remove biases by 158

projecting gender-neutral word embeddings onto 159

a gender-free direction. Manzini et al. (2019) ex- 160

tended Hard-Debias to the multiclass setting where 161

they also treat racial and religious stereotypes. In 162

both works, the bias direction is defined by a manu- 163

ally pre-compiled list of stereotyped words. In con- 164

trast, Ravfogel et al. (2020) suggest a data-driven 165

approach to learn bias directions with a linear clas- 166

sifier. Debiasing is then conducted by iteratively 167

projecting word embeddings on the null space of 168

the classifier’s matrix. On the other hand, fine- 169

tuning is the debiasing approach that attracted the 170

widest adoption, either by using an autoencoder 171

(Kaneko and Bollegala, 2019), attraction-repulsion 172

mechanism (Kumar et al., 2020), or adversarial 173

attacks (Xie et al., 2017; Li et al., 2018; Elazar 174

and Goldberg, 2018). Unlike these post-processing 175

methods, Zhao et al. (2018b) added a new fairness 176

constraint to GloVe loss function, and retrained 177

their fair word embeddings from scratch. 178

2.2 Bias in Text encoders 179

Research on biases in sentence representations 180

is dominated by detection rather than correction 181
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and mitigation. To date, there are three main ap-182

proaches to detect stereotypes in text encoders: (1)183

representation-based: where vector relationships184

between different types of inputs are measured. For185

example, May et al. (2019) extended the WEAT186

test (Caliskan et al., 2017) into sentence vector187

space (SEAT), and compared the cosine similarity188

between representations of two sets of targets and189

two sets of attributes. All sentences in SEAT fol-190

low a predefined template. (2) likelihood-based:191

These approaches examine how often text encoders192

prefer stereotypes over anti-stereotypes. Prefer-193

ences in this case are defined in terms of higher194

likelihoods as produced by language models us-195

ing embeddings of the text encoders under study.196

Two benchmarks are widely used for measuring197

bias: StereoSet (Nadeem et al., 2020) and Crows-198

Pairs (Nangia et al.). Both datasets are organized199

in pairs or triples of minimally-distant sentences200

which differ only in the word(s) carrying a stereo-201

typical connotation. (3) inference-based: These202

methods employ text encoders in downstream NLP203

tasks (Blodgett et al., 2020) such as natural lan-204

guage inference (Dev et al., 2020), sentiment anal-205

ysis (Díaz et al., 2018) or language generation (Sap206

et al., 2020; Sheng et al., 2020). Bias in such set-207

tings is declared as the difference in outcome when208

the models are tested with the same input sentence,209

differing only in social groups.210

Bias mitigation approaches are mostly inspired211

by debiasing static embeddings. In projection-212

based methods, Liang et al. (2020a) contextualize213

words into sentences by sampling them from exist-214

ing corpora before applying Hard-Debias. Kaneko215

and Bollegala (2021) minimize the projection of216

sentence representations on a learned bias sub-217

space, while Qian et al. (2019); Bordia and Bow-218

man (2019); Liang et al. (2020b) add bias-reduction219

objectives to their loss functions. Another line of220

research uses CDA (Webster et al., 2020) to balance221

gender correlations in training data, while Lauscher222

et al. (2021) use adapters to reduce the large train-223

ing time that CDA incurs. Finally, Cheng et al.224

(2020) use contrastive learning, and add a fair filter225

that minimizes mutual information between stereo-226

types and anti-stereotypes. In our work, rather than227

extending approaches from static embeddings, we228

focus on the self-attention mechanism which is229

characteristic of many text encoders, and show that230

fair attention leads to fair representations.231

3 Debiasing Method 232

3.1 Motivating example & Intuition 233

Despite the applicability of our work on any model 234

that is built upon self-attention, we focus in this 235

paper on models based on the encoder side of the 236

transformer architecture, such as BERT (Devlin 237

et al., 2018), RoBERTa (Liu et al., 2019), or AL- 238

BERT (Lan et al., 2019). This owes to the de- 239

coder side being usually used in auto-regression 240

tasks, and less often to encode text. Transformers 241

consist of multiple layers, each composed of a self- 242

attention block followed by a feed-forward block to 243

make embeddings. A self-attention block contains 244

multiple heads. Each head transforms the input into 245

attention weights between all pairs of tokens in the 246

input sequence (Vaswani et al., 2017), such that 247

each token learns to attend to its most related to- 248

kens, hence the prevalence of attention in defining 249

the understanding of natural language. In this work, 250

we hypothesise that undesired social stereotypes 251

are primarily encoded in the self-attention block. 252

In order to verify this hypothesis, we show and 253

analyze some attention maps of BERT in Figure 11. 254

Consider the following sentence "The doctor asked 255

the nurse a question." Aiming to analyze how ev- 256

ery word representation relates to different social 257

groups, we add a dummy second input consisting 258

of words representing two distinct genders (he and 259

she after the [SEP] token). Figure 1(a) illustrates 260

that doctor pays much more attention to he than to 261

she2, while Figure 1(b) reveals that nurse attends to 262

she. This finding suggests that gender stereotypes 263

are deeply encoded in attention weights. Likewise, 264

in Figure 1(c), math is more related to asian than 265

to white or black, conforming to the famous racial 266

stereotype casting asians as really good mathemati- 267

cians. These examples align with our intuition that 268

social stereotypes are first and foremost encoded in 269

the self-attention block of text encoders before they 270

propagate to their embeddings or predictions in 271

downstream NLP tasks. Consequently, we propose 272

Att-D, a finetuning method for reducing undesired 273

biases of text encoders from their attention compo- 274

nent, that we describe in the next section. 275

The intuition of our debiasing strategy is as fol- 276

lows: Given that attention weights conform with 277

undesired biases (e.g., doctor attending to he, and 278

1The figures are produced using bertviz tool:
https://github.com/jessevig/bertviz

2Dark colors correspond to high attention scores, and light
colors indicate low attention scores
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(a) (b) (c)

Figure 1: Attention patterns in BERT suggest the existence of potential gender and racial biases

nurse to she in Figure 1), we aim to equalize the279

attention scores of every word in the input sen-280

tence with respect to social groups. Following the281

examples of Figure 1, Att-D redistributes the at-282

tention scores of doctor such that it attends to he283

and she with the same intensity, thus eliminating284

any preference toward one of the groups. However,285

alterations to the attention of doctor on the remain-286

ing words of the input sentence must be kept to287

a minimum in order not to corrupt the semantic288

understanding of the original text encoder.289

3.2 Debiasing Workflow290

Att-D consists of three steps: First, for each input291

sentence s in the training corpus S, we make an292

artificial second input sg consisting of words re-293

lated to social groups (similar to the examples on294

Figure 1). Pretrained text encoders expect either295

one or two inputs before they produce attentions296

and embeddings (Devlin et al., 2018). In this work,297

we use both s (as first input) and sg (as second298

input) separated by [SEP] token. Consequently,299

the resulting self-attention includes both s and sg.300

The second step of Att-D equalizes the attention301

weights of all heads in all the layers of the text en-302

coder of interest such that each token in s pays the303

same amount of attention to tokens of sg, thus elim-304

inating preferences and stereotypes. Finally, we305

minimize semantic loss by compelling our model306

to learn the original semantics from an unaltered307

teacher model by copying its internal attention in a308

knowledge distillation setting (Hinton et al., 2015).309

We schematize the operation of Att-D in Fig-310

ure 2. Gr1, Gr2 and Grn in the figure correspond311

to the tokens of sg. Both matrices represent one312

attention head of the text encoder before (left) and313

after (right) debiasing. The matrices should be read314

in rows. Each row depicts the attention weights of315

the corresponding token on all the other tokens of316

(a) (b)

Figure 2: Overview of an attention head before (a) and
after (b) debiasing

the input (s + sg)3. 317

The matrices are conceptually split in four 318

blocks: (1) attentions of s on s, (2) attentions of s 319

on sg, (3) attentions of sg on s, and (4) attentions of 320

sg on sg. Debiasing consists in making the columns 321

of block 2 equal. In other words, each token in s 322

pays the same amount of attention to all the groups 323

as indicated in the right side of Figure 2. Ideally, 324

debiasing should also preserve the semantics of the 325

original text encoder. That is why block 1 of Fig- 326

ure 2 should be kept unchanged. Both blocks 3 and 327

4 are irrelevant to the results, since they denote at- 328

tentions of our artificially inserted second input sg. 329

Besides, they do not participate in defining neither 330

fairness nor representativeness of text encoders. So, 331

we do not impose any restrictions on them. In the 332

following, we describe each step of Att-D in detail. 333

3.2.1 Generating augmented inputs 334

The first step involves identifying bias types that 335

we want to mitigate from pretrained text encoders, 336

such as gender, race, religion. This is achieved 337

by defining a set of tuples G such that G = 338

{T1, T2, ..., Tk} where each Ti describes social 339

3[CLS] token (vector representation of s) is also included
for attention calibration. Details in Appendix
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Table 1: Examples of group tuples per bias

religion age

muslim, christian, jewish old, young
quran, bible, torah elderly, youth

groups of a given bias type, or their attributes. In340

the case of binary gender, Ti = {"male", "female"}341

or Ti = {"he", "she"} are both possible definitions342

(and many others are possible for non-binary cases).343

Table 1 shows some tuples that we use in Att-D.344

During debiasing, we pick a tuple Ti from G345

randomly and construct sg, a bleached sentence346

formed by words of Ti. For example, given Ta-347

ble 1, sg can be "muslim, christian, jewish" or "old,348

young". The input to the text encoder is both the349

original input sentence s and the artificial one sg.350

Pretrained text encoders separate the two halves of351

the input with a special token [SEP] as illustrated352

in Figure 1, and compute attention maps for the353

entire sequence (s + sg).354

3.2.2 Equalizing attentions on social groups355

After obtaining attention maps of the augmented356

input from Section 3.2.1, which is produced by the357

pretrained text encoder of interest E, we make each358

token of s pay equal amounts of attention to the359

tokens of sg which define social groups. The ratio-360

nale is to eliminate any inclination for E to prefer361

a social group to the detriment of others. Suppose362

Al,h,s,sg = Attn(s, sg; l, h) is the attention ma-363

trix at layer l, head h of the encoder E, computed364

from the input s + sg. Here, we make the reason-365

able assumption that sg contains at least two social366

groups.4 In this spirit, equalizing attention vectors367

of block 2 (as defined in Figure 2) is equivalent to368

making them equal to a pivot vector. In our method,369

we consider the attention vector of s on the first370

social group as the pivot (first column in block 2371

of Figure 2), and minimize the mean square error372

between the pivot and the attention vectors of s on373

the other groups, one at a time. The equalization374

loss is given by Equation 1.375

Lequ =
∑
s∈S

L∑
l=1

H∑
h=1

||sg ||∑
i=2

||Al,h,s,sg
:σ,σ+1 −A

l,h,s,sg
:σ,σ+i ||

2
2

(1)376

4Biases are usually about making one or more groups
(dis)advantaged with respect to the others, hence the existence
of at least two groups per bias type

where L is the number of layers of the text en- 377

coder, H the number of heads, ||sg|| the number 378

of social groups in sg and σ is the position of the 379

special token [SEP] that marks the end of s and the 380

beginning of sg. As can be seen, Al,h,s,sg
:σ,σ+1 is the 381

pivot vector containing attention scores of s on the 382

first social group token (whose position is directly 383

after [SEP], i.e., σ+1). Equation 1 forces attention 384

scores on subsequent social groups to be the same 385

as on the first one, thus making them all equal. 386

3.2.3 Preserving semantic information 387

Text encoders must preserve their ability to rep- 388

resent natural language and keep the same perfor- 389

mance on downstream NLP tasks. For this reason, 390

debiasing must ensure that useful information is 391

preserved as much as possible. We minimize se- 392

mantic information loss in a knowledge distillation 393

setting (Hinton et al., 2015; Gou et al., 2021). We 394

cast the text encoder that we want to debias as the 395

student model, and recruit another model to play 396

the role of the teacher. We do not apply our de- 397

biasing strategy on the teacher since it provides a 398

reference to the original unaltered language repre- 399

sentations. We distill semantic information in the 400

form of attention maps from the teacher and instill 401

it in the student. Stated differently, we compel the 402

student to learn from the teacher and reproduce 403

its attention scores for every input sentence in the 404

training corpus S. 405

As in Section 3.2.2, let Al,h,s,sg be the atten- 406

tion of the student model at layer l, head h with s 407

and sg as input. Likewise, let Ol,h,s,sg define the 408

same attention matrix, but for the original teacher 409

model. We formalize the preservation of semantic 410

information as a regularizer where we minimize 411

the squared l2 distance between the student’s and 412

the teacher’s attention scores. 413

Ldistil =
∑
s∈S

L∑
l=1

H∑
h=1

||Al,h,s,sg
:σ,:σ −O

l,h,s,sg
:σ,:σ ||22 (2) 414

where L is the number of layers, H is the num- 415

ber of heads, and σ is the position of the [SEP] 416

token. As can be seen from Equation 2, the student 417

learns only to replicate block 1 (as in Figure 2) of 418

the attention matrices. This is because block 1 con- 419

tains attention scores of the original input sentence 420

s on itself, thus encoding an important aspect of 421

semantics. We force the student not to reproduce 422

the attention distribution on social groups (block 2) 423
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from the teacher since these are supposedly biased,424

and are left to the care of our debiasing objective.425

We describe the overall training objective as a lin-426

ear combination of the previously defined losses,427

with λ as a hyperparameter to control the weight428

of debiasing over semantic preservation.429

Loss = Ldistil + λLequ (3)430

3.3 Negative Sampling & Layer Selection431

The strict application of Att-D as discussed so far432

may accidentally lead to some undesired spurious433

phenomena. While learning to equalize attention434

on social groups that constitute the second half of435

the input, the text encoder might potentially bear436

the risk of distributing its attention uniformly on437

any second half of the input, no matter what it is.438

This is particularly alarming when the text encoder439

is subsequently employed in double-sentence tasks440

(Wang et al., 2018) such as semantic textual simi-441

larity, paraphrase detection or sentence entailment.442

To overcome the above obstacle, we introduce443

negative sampling. Instead of using words related444

to social groups in order to generate the artificial445

second input sg, we randomly sample words (neg-446

ative examples) from the vocabulary. In this case,447

we do not equalize the attentions but compel the448

student to copy its teacher even for blocks 2, 3 and449

4. We do this in order to prevent the text encoder450

from learning to assign the same attention weight451

to all tokens of the second input when these do452

not define social groups. We control the ratio of453

negative examples with a hyperparameter η.454

Another concern when debiasing text encoders455

is that their layers do not necessarily encode the456

same information. Bhardwaj et al. (2021) found457

that BERT layers display widely different reac-458

tions when probed with a gender-detection clas-459

sifier. This means that they do not encode gender460

stereotype identically. Therefore, it is not clear461

which layers and/or attention heads are best for462

debiasing. To investigate this issue, we consider463

seven settings: debiasing all layers, first 6, first464

3, last 6, last 3, and alternating layers with strides465

of one5 or two6. We find that debiasing all layers466

works best. So, unless otherwise specified in this467

paper, debiasing concerns all the layers.468

5Layers 2, 4, 6, 8, 10 and 12 of BERT
6Layers 4, 8 and 12 of BERT

4 Evaluation 469

In this section, we first describe our experimental 470

setup, then evaluate Att-D from two viewpoints: 471

fairness and representativeness. Fairness is tradi- 472

tionally evaluated with two types of metrics: intrin- 473

sic metrics that measure bias in text representations 474

regardless of their application, and extrinsic metrics 475

that quantify bias in downstream tasks that text rep- 476

resentations enable. We acknowledge that intrinsic 477

metrics have recently been criticized (Goldfarb- 478

Tarrant et al., 2020; Aribandi et al., 2021; Blodgett 479

et al., 2021). However, we believe that a strong 480

evaluation of bias should include both intrinsic, ex- 481

trinsic and qualitative methods to draw a complete 482

evaluative picture. Since Aribandi et al. (2021) 483

surmise that StereoSet and Crows-Pairs are more 484

stable than other intrinsic measures of bias (e.g. 485

WEAT (Caliskan et al., 2017) or SEAT (May et al., 486

2019)), we use them in this work. For extrinsic 487

metrics, we evaluate our method on the tasks of 488

textual inference and hate speech detection. Due to 489

space limitations, we ship the second one to the ap- 490

pendix, in addition to qualitative evaluations (visu- 491

alizations) and several other experiments/ablation 492

studies7. 493

4.1 Debiasing setup 494

To facilitate comparison, we follow existing litera- 495

ture (Nadeem et al., 2020; Nangia et al.) in defining 496

social groups for each type of bias, although the ap- 497

proach presented here is not restricted to that, and 498

can be leveraged for both other kinds of biases and 499

for a more inclusive definition of the groups. In the 500

experiments, we show results of debiasing based on 501

(binary) gender (male, female), race (white, black, 502

asian, hispanic), religion (muslim, christian, jew- 503

ish, buddhist), age (young, old) and sexual orienta- 504

tion (heterosexual, non-heterosexual). We leverage 505

the definition words from previous work (Liang 506

et al., 2020a) and augment them with our own tu- 507

ples. The full list can be found in the appendix. 508

We apply our debiasing method on BERT8 (Devlin 509

et al., 2018), and use the News-commentary-v15 510

corpus9 as training data. It contains 223,153 sen- 511

tences of which we use 80% for training and 20% 512

for development. 513

7We provide code and data as supplementary material
8In the appendix, we also apply Att-D on ALBERT,

RoBERTa, DistilBERT and SqueezeBERT
9http://www.statmt.org/wmt20/translation-task.html
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Table 2: Language modeling (lm) and Stereotype scores
(ss) of different text encoders on StereoSet

Models Original BERT Sent-D Kaneko Att-D- Att-D

Overall (lm/ss) 83.70 56.04 81.39 54.71 85.58 56.04 80.92 53.37 83.34 53.04

gender (lm/ss) 82.35 62.75 76.67 53.33 83.73 58.82 73.33 51.37 78.24 53.73
race (lm/ss) 86.28 54.68 85.40 55.09 87.47 56.24 85.03 54.37 86.28 51.87

religion (lm/ss) 87.82 56.41 88.46 51.28 85.90 57.69 85.90 55.13 88.46 53.85
profession (lm/ss) 80.66 55.50 77.44 55.01 83.87 54.76 77.94 52.66 80.96 54.14

4.2 Evaluations of Fairness514

4.2.1 Intrinsic Evaluation515

We use the publicly available subsets of two stereo-516

type benchmarks: StereoSet (Nadeem et al., 2020)517

and Crows-Pairs (Nangia et al.). Both provide518

likelihood-based diagnostics to measure how often519

stereotypes are considered more likely than anti-520

stereotypes by the text encoder of interest. Crows-521

Pairs is organized in pairs of minimally distant522

sentences, i.e. sentences that differ only in one523

word. We pick the following example from the524

dataset: Jews are such greedy people (Stereotype)525

versus Christians are such greedy people (Anti-526

stereotype). Crows-Pairs uses word likelihoods527

produced by the text encoder to measure how often528

stereotypes are ranked higher than anti-stereotypes.529

An ideal unbiased text encoder should score 50% in530

the Crows-Pairs challenge, meaning that it prefers531

neither stereotypes nor anti-stereotypes. In contrast,532

StereoSet adds a third absurd sentence to capture533

the language modeling capabilities of the text en-534

coder in addition to measuring bias. So, an ideal535

model should have a stereotype score (ss) of 50%536

and a language modeling (lm) of 100%.537

We compare our method against the original538

BERT base model to see the effect of debiasing10.539

Also, for accurate comparisons against previous540

work, we decided to include the baselines whose541

final debiased models have been published in order542

to avoid errors of training and/or tuning hyperpa-543

rameters. Thus, we compare Att-D against Sent-D544

(Liang et al., 2020a) and the debiasing procedure545

proposed by Kaneko and Bollegala (2021). We also546

conduct a simple ablation study by training with-547

out negative examples (Att-D-). We finetune Att-D548

and the baselines on language modeling to produce549

likelihoods. Tables 2 and 3 report the evaluation550

results on StereoSet and Crows-Pairs respectively.551

We found that the original BERT contains signif-552

icant levels of biases (56.04 in StereoSet and 60.48553

in Crows-Pairs). It is important to note that Kaneko554

10Results of BERT large, ALBERT, RoBERTa, DistilBERT
and SqueezeBERT are in the appendix

Table 3: Bias measurements of different text encoders
on Crows-Pairs

Models BERT Sent-D Kaneko Att-D- Att-D

Overall 60.48 56.90 57.82 57.23 55.7

gender 58.02 51.53 57.63 53.05 57.36
race 58.14 55.23 53.68 53.68 51.15

religion 71.43 60.0 64.76 69.52 64.76
age 55.17 51.72 54.02 54.02 43.68

sexual orientation 67.86 70.24 69.05 66.67 58.33
nationality 62.89 56.6 59.12 61.01 57.86
disability 61.67 65.0 68.33 63.33 60.0

and Bollegala (2021) only focused on gender bias, 555

which is clear in Table 2 where only gender stereo- 556

type has been reduced. We observe that focusing on 557

one bias type can make text representations even 558

more biased for the other dimensions as can be 559

seen in Kaneko and Bollegala (2021) for race and 560

religion (Table 2), and for sexual orientation and 561

disability (Table 3). In contrast, Att-D always re- 562

duces the intensity of stereotyping in BERT (up to 563

9.53%), and yields the best results overall11. We 564

notice that we manage to reduce biases linked to di- 565

mensions we did not include in our design such as 566

nationality and disability. We speculate that these 567

bias types are connected to those we worked on 568

mitigating. Therefore, we conjecture that reduc- 569

ing multiple biases at the same time meets better 570

success in mitigating unforeseen stereotypes than 571

working on every bias type separately. 572

4.2.2 Extrinsic Evaluation 573

This approach of measuring bias builds on the in- 574

tuition of Dev et al. (2020) stating that biased rep- 575

resentations lead to invalid inferences, whose ratio 576

quantifies bias. They construct a challenge bench- 577

mark for the natural language inference task where 578

every hypothesis should be neutral to its premise. 579

For example, suppose that the premise is The driver 580

owns a van and the hypothesis is The man owns a 581

van. The hypothesis neither entails nor contradicts 582

the premise. If the predictions of a classifier devi- 583

ate from neutrality, the underlying text encoder is 584

doomed as biased. Suppose that the set contains M 585

instances, and let the predictor’s probabilities of the 586

ith instance for entail, contradict and neutral be ei, 587

ci and ni. Following Dev et al. (2020), we report 588

three measures of inference-based bias: (1) Net 589

Neutral (NN): NN = 1
M

∑M
i=1 ni; (2) Fraction 590

Neutral (FN): FN = 1
M

∑M
i=1 1ni=max(ei,ci,ni); 591

(3) Threshold τ (T:τ ): T : τ = 1
M

∑M
i=1 1ni>τ . 592

11The closer the stereotype score is to 50%, the better
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Table 4: Performance of different models on GLUE tasks. The table shows accuracy scores for sst2, rte, wnli,
and mnli for both matched and mismatched instances; f1 for mrpc; spearman correlation for stsb; and matthews
correlation for cola

Models Single sentence tasks Double sentence tasks
sst2 cola stsb mrpc mnli (m) mnli (mm) rte wnli

BERT 92.78 - 56.05 - 88.97 - 92.25 - 83.54 - 82.68 - 70.04 - 45.07 -

Sent-D 91.63 -1.15 59.08 +3.03 89.58 +0.61 90.12 -2.13 84.97 +1.43 83.51 +0.83 68.95 -1.09 28.17 -16.9
Kaneko 91.97 -0.81 56.50 +0.55 88.44 -0.53 90.69 -1.56 84.48 +0.94 83.66 +0.98 59.93 -10.11 52.11 +7.04
Att-D 92.66 -0.12 55.22 -0.83 89.62 +0.65 91.22 -1.03 84.63 +1.09 84.19 +1.51 70.40 +0.36 53.52 +8.45

Table 5: Inference-based bias measurements. Best
scores are highlighted with bold character, underlined,
or marked with † for gender, race and religion† respec-
tively

Model Bias type NN FN τ :0.5 τ :0.7

BERT
gender 00.59 00.16 00.15 00.12

race 75.96 76.57 76.51 74.91
religion 43.47 43.55 43.45 41.77

Sent-D
gender 00.94 00.38 00.33 00.24

race 59.61 59.28 59.20 56.22
religion 29.64 29.08 29.02 27.24

Kaneko
gender 00.57 00.14 00.12 00.08

race 84.24 84.84 84.80 83.26
religion 69.27† 69.80† 69.72† 67.66†

Att-D
gender 01.31 00.43 00.35 00.21

race 93.31 93.94 93.90 93.04
religion 68.51 69.08 68.95 66.97

In this experiment, we finetune text encoders593

on MNLI dataset for natural language inference594

(Wang et al., 2018). A bias-free model should score595

1 (100%) in all three measures. We report our find-596

ings in Table 5. Our method outperforms the orig-597

inal model and the baselines. This result shows598

that Att-D succeeds in mitigating stereotypes in599

real world inference settings, unlike Sent-D which600

produces positive results in intrinsic evaluation but601

comes short of meeting the same success in this602

experiment. In the next section, we show that these603

findings are meaningful since the entailment accu-604

racy is not hurt after debiasing.605

4.3 Evaluations of Representativeness606

We use GLUE benchmark (Wang et al., 2018) to607

verify whether the debiased text encoder still holds608

enough semantic information to be applicable in609

downstream NLP tasks. In essence, GLUE assesses610

the natural language understanding capabilities of611

NLP models. So, it constitutes a suitable stack to612

evaluate the semantic preservation of Att-D. In this613

experiment, we finetune BERT on seven different614

tasks from GLUE and show the results in Table 4. 615

We also report the difference in accuracy between 616

original BERT and each of the debiasing baselines. 617

Surprisingly, Att-D not only preserves semantic 618

information, but enhances it in most GLUE tasks 619

as reflected in an increase in accuracy from BERT. 620

5 Conclusion and Future Work 621

In this paper, we proposed a finetuning approach to 622

debiasing that trains the text encoder to distribute 623

its attention equally on different social groups. Ex- 624

periments demonstrate that bias is successfully re- 625

duced without harm to semantic representativeness. 626

However, we are aware of the following limitations: 627

(1) our definitions of biases are simplified. There 628

are more social divisions in the real world than the 629

five dimensions we studied. Besides, bias types 630

can be correlated in intricate ways such as the links 631

between race, nationality and ethnicity. Moreover, 632

it is not clear which or how many groups to include. 633

For these reasons, we follow previous work and 634

constrain our experiments to common use-cases. 635

We plan to study the effect that the choice of defini- 636

tion tuples and their order impose overall. (2) We 637

calibrate attention scores of every word in the input. 638

However, some words are inherently charged with 639

a strong inclination toward one group, e.g., beard to 640

male or pregnant to female. Such words need not 641

be debiased, which requires compiling expensive 642

lists of related words for every social group and 643

protecting them from attention equalization. In this 644

work, we rely on knowledge distillation to retain as 645

much useful semantic information as possible. (3) 646

Current bias detection experiments have positive 647

predictive ability, which means that they can only 648

detect the presence of bias, not the absence of it. 649

Although contemporary evaluation tools demon- 650

strate the effectiveness of our debiasing method, it 651

is possible that bias is still hiding under shapes and 652

forms that we failed to detect. We plan to address 653

these limitations in future work. 654
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A Appendix 971

A.1 Training Hyperparameters 972

We used Adam optimizer (Kingma and Ba, 2014) 973

with a learning rate of 5e−6 for 3 epochs. We keep 974

the betas to their default values (0.9, 0.999) as in 975

PyTorch implementation (Paszke et al., 2017). We 976

set the loss coefficient λ to 2.0 and the negative 977

ratio η to 0.8 meaning that in 80% of the iterations, 978

we use negative examples whose number we set to 979

5 in each negative iteration. We only finetuned the 980

values of λ, η, the learning rate, and the number of 981

epochs. We conducted the hyperparameter search 982

manually on the development set. 983

As for GLUE experiments, we follow the experi- 984

mental setup of (Devlin et al., 2018) and train each 985

11



task for 3 epochs with a learning rate of 2e−5 on986

their respective training data.987

A.2 Definition of bias types and social groups988

used in this paper989

While the approach is independent of the definition990

of social groups and categories (it could work for991

any kind of grouping, e.g., cuisine styles or sports),992

in the experiment we focus on groups commonly993

used in the debiasing literature: binary gender, re-994

ligion, race, age and sexual orientation. This is to995

facilitate comparison, but nothing in the approach996

prevent it from being used with broader and more997

inclusive groups. This being said, we have not ex-998

perimented yet with debiasing where a dimension999

is divided in dozens of categories.1000

We list the definition tuples that we used in Ta-1001

ble 6. We show that Att-D does not incur strict1002

rules for defining social groups, unlike previous1003

work (Bolukbasi et al., 2016; Kaneko and Bolle-1004

gala, 2019, 2021) that require the definition words1005

to be organized in a predefined format (pairs of1006

words or bag of words for every group), and pro-1007

vided in relatively large quantities. We can see1008

from Table 6 that it is sufficient to define one tuple1009

per bias type (e.g., race) if the tuples are hard to1010

come by. Also, the tuples need not be of the same1011

size (e.g., in religion there is a missing word for1012

buddhist group since it is not clear which word1013

to use in that tuple). This desired property owes1014

to the fact that Att-D does not learn subspaces or1015

directions for every bias type as previous works1016

do (Bolukbasi et al., 2016; Kaneko and Bollegala,1017

2019; Kumar et al., 2020; Kaneko and Bollegala,1018

2021). In contrast, Att-D uses the tuples in order1019

to equalize the attentions of the input sentence, and1020

make the words therein attend to the groups with1021

the same intensity. These example categories used1022

in experiments are neither complete nor exhaustive,1023

and in some experiments also include terms possi-1024

bly considered inappropriate but that appear in the1025

corpus and we may still want to debias from (such1026

as using "straight" to define heterosexual).1027

A.3 Extrinsic bias evaluation on the task of1028

hate-speech detection1029

Recent studies show that intrinsic metrics of bias1030

do not necessarily correlate with bias measures on1031

concrete real-world applications (Goldfarb-Tarrant1032

et al., 2020). In the body of this paper, we already1033

conducted intrinsic and extrinsic bias evaluations.1034

In this experiment, we validate the efficacy of our1035

debiasing method on a concrete real-world hate 1036

speech detection application where an input snippet 1037

of text is classified as either offensive (toxic, harm- 1038

ful, disrespectful...) or not. We use hate speech 1039

detection because it is well studied in the literature 1040

(Burnap and Williams, 2016; Ribeiro et al., 2018; 1041

Zhang et al., 2018), and high-quality datasets which 1042

are tagged with social groups already exist (Borkan 1043

et al., 2019; Mathew et al., 2021). 1044

Admittedly, common social biases have also 1045

been shown to exist in hate speech detection mod- 1046

els, for example in associating toxicity to frequently 1047

attacked groups (such as "muslim" or "gay") even 1048

if the text itself is not toxic (Dixon et al., 2018; 1049

Park et al., 2018). In this experiment, we adopt 1050

the bias definition of Borkan et al. (2019) which 1051

casts bias as a skewing in the hate speech detector 1052

scores based solely on the social groups mentioned 1053

in the text. In other words, we consider a model to 1054

exhibit unintended social stereotypes if the model’s 1055

performance varies across groups. We use the bias 1056

measures proposed by Borkan et al. (2019) which 1057

are based on the Area Under the Receiver Operat- 1058

ing Characteristic Curve (ROC-AUC, or AUC) met- 1059

ric. AUC measures the probability that a randomly 1060

chosen negative example (not offensive) receives a 1061

lower toxicity score than a randomly chosen pos- 1062

itive example (offensive), meaning that a perfect 1063

model should always have an AUC score of 1.0. 1064

Stated differently, all negative examples have lower 1065

toxicity scores than positive examples. While AUC 1066

is used to measured the general performance of 1067

classifiers, Borkan et al. (2019) propose three ex- 1068

tensions of AUC to measure bias. We summarize 1069

them in the following: 1070

Subgroup (Sub) AUC: where AUC is computed 1071

only on the group under consideration and not on 1072

all the examples of the test benchmark, i.e. only 1073

positive and negative examples of the target group 1074

are considered. This metric represents the model’s 1075

performance on a given group. A higher value 1076

means that the model is good at distinguishing 1077

between toxic and non-toxic texts specific to the 1078

group. 1079

Background Positive Subgroup Negative 1080

(BPSN) AUC: where AUC is calculated on the 1081

negative examples of the target group, and the pos- 1082

itive examples of the background (all other groups 1083

except the group under consideration). This metric 1084

computes whether the model discriminates against 1085

the target group with respect to the others. This 1086
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Table 6: Full list of definition tuples for bias types and social groups used in this work

gender religion

male female muslim christian jewish buddhist

man woman muslim christian jewish buddhist
boy girl muslims christians jews buddhists

father mother islam christianity judaism buddhism
brother sister mosque church synagogue temple

grandfather grandmother quran bible torah
son daughter imam priest rabbi monk

gentleman lady mohammad jesus moses buddha
he she
his her

himself herself

race age sexual orientation

white black asian hispanic old young heterosexual non-heterosexual

white black asian hispanic old young straight gay
elderly youth straight lesbian
adult child heterosexual homosexual
senior junior heterosexual bisexual
adult teenager

value is reduced when non-toxic examples of the1087

group have higher toxicity scores than actually1088

toxic examples of the background.1089

Background Negative Subgroup Positive1090

(BNSP) AUC: where AUC is calculated on the pos-1091

itive examples of the target group, and the negative1092

examples of the background. This metric computes1093

whether the model favors the target group with re-1094

spect to the others. This value is reduced when1095

toxic examples of the group have lower toxicity1096

scores than non-toxic examples of the background.1097

In this experiment, we finetune the text encoder1098

under study on hate speech detection task using the1099

training set of HateXplain dataset (Mathew et al.,1100

2021). We also use the test portion of HateXplain1101

for the evaluation, which contains posts from Twit-1102

ter12 and Gab13 annotated with their ground-truth1103

toxicity scores and the social groups and communi-1104

ties they target. Fundamentally, the three metrics1105

described above give bias scores per group. In or-1106

der to combine the per group scores in one overall1107

measure, we apply the Generalized Mean of Bias1108

(GMB) introduced by the Google Conversation AI1109

Team as part of their Kaggle competition14, and1110

later used by Mathew et al. (2021) in their own1111

evaluations. The formula of GMB is as the follow-1112

ing:1113

12https://twitter.com
13https://gab.com
14https://www.kaggle.com/c/jigsaw-unintended-bias-in-

toxicity-classification/overview/evaluation

GMB(b) = (
1

|b|

|b|∑
g=1

bpg)
1/p (4) 1114

where b is an array of AUC scores per group, and 1115

bg is the AUC score of group g. We follow Mathew 1116

et al. (2021) and set p to -5. We compute the GMB 1117

of all three metrics: Subgroup, BPSN and BNSP. 1118

As for Subgroup, we also add the standard devi- 1119

ation as it gives valuable information about how 1120

much the performance of the hate speech detection 1121

model varies across groups. We report our results 1122

in Table 7, in addition to classic performance mea- 1123

sures. 1124

We observe that Att-D provides competitive re- 1125

sults across the four bias metrics, and largely out- 1126

performs the baselines. Especially with GMB- 1127

BNSP, where bias scores of the original model are 1128

very low (i.e. it is throttled by social biases), we ob- 1129

serve the best improvements overall, and by a large 1130

margin compared to existing debiasing methods. 1131

Also, the variance in model performance is lowest 1132

with Att-D, which confirms that the corresponding 1133

hate speech detection model has less stereotypes 1134

about different social groups. Finally, the general 1135

performance (Accuracy, F1 score and AUC) of the 1136

hate speech detection model after debiasing is not 1137

hurt. 1138

A.4 Visualizing debiasing results 1139

In this experiment, we aim to visualize the effects 1140

of debiasing on attention weights. We only fo- 1141

13



Table 7: AUC-based bias measures on hate speech detection task

Models
Performance Bias

Acc↑ F1↑ AUC↑ STD-Sub↓ GMB-Sub↑ GMB-BPSN↑ GMB-BNSP↑

BERT 0.783 0.823 0.870 0.119 0.698 0.800 0.379

Sent-D 0.791 0.825 0.870 0.121 0.689 0.725 0.583
Kaneko 0.797 0.833 0.872 0.112 0.705 0.789 0.512
Att-D 0.789 0.829 0.866 0.085 0.808 0.793 0.726

cus on binary gender bias for two reasons: First,1142

it is easier to visualize binary variables on a 2D1143

plane than multiclass variables (such as race, reli-1144

gion...). Second, gender is the most well studied1145

bias type (Bolukbasi et al., 2016; Caliskan et al.,1146

2017; May et al., 2019), so linguistic resources and1147

vocabularies for gender exist and are well docu-1148

mented. We use the vocabulary words compiled by1149

(Kaneko and Bollegala, 2019) and categorized into1150

three non-overlapping subsets: (1) Male-definition1151

ΩM whose corresponding words are exclusively1152

male-gendered such as father, king or uncle. (2)1153

Female-definition ΩF which is a set of inherently1154

female words (mother, queen, aunt...). (3) Gender-1155

stereotype ΩS which is constituted of words that1156

are not gendered by definition, but that carry a1157

strong gender stereotype such as doctor being at-1158

tributed to male or nurse to female.1159

For every word w ∈ ΩM ∪ΩF ∪ΩS , we extract1160

sentences from the News-commentary-v15 corpus1161

where w is mentioned. We denote this set as Sw.1162

Then, for every sentence s ∈ Sw, we append the1163

dummy input "man, woman" as explained in Sec-1164

tions 3.1 and 3.2.1. The augmented input s′ is then1165

fed to the text encoder of interest (BERT base in1166

this experiment), and we collect the attention scores1167

of w on the second-half tokens man and woman.1168

Finally, for every word w ∈ ΩM ∪ ΩF ∪ ΩS , we1169

take the mean of its attention scores in Sw. By the1170

end of this procedure, we have for every word w its1171

attention score on the words man (awm) and woman1172

(awf ) as computed on the News-commentary-v151173

corpus which includes overall 223,153 sentences.1174

We take the difference awm − awf which indicates1175

the preference of the text encoder to consider w1176

as male (positive difference) or female (negative1177

difference). The absence of gender bias is reflected1178

in difference scores near zero.1179

We plot the results in Figure 3 where the x-axis1180

represents the differences awm − awf , and the y-1181

axis random values to separate the words vertically.1182

Stereotype words (green dots) should have values 1183

near 0, which is not the case in Figure 3(b). This 1184

means that BERT has a strong preference for one 1185

of the genders, and is thus heavily biased. In con- 1186

trast, our method brings the attention of stereotype 1187

words near 0, meaning that they prefer neither male 1188

nor female connotations. Moreover, the spread of 1189

stereotype words in Figure 3(d) is narrower than 1190

male- or female-oriented words, which is desired 1191

since these are inherently gendered and must pick 1192

a side. This result strengthens the claim that Att-D 1193

preserves semantic information, and is less severe 1194

in reducing bias from gendered words as it is on 1195

gender-neutral words. The difference in spread is 1196

less apparent in the original BERT model. We also 1197

note that debiasing the embeddings of BERT rather 1198

than the attention mechanism as in (Kaneko and 1199

Bollegala, 2021) (Figure 3(c)) is not enough since 1200

bias information is still lurking (and perhaps made 1201

worse for some words) in the attention component. 1202

Thus, we conclude that working on attention di- 1203

rectly constitutes our best option for debiasing to 1204

date. 1205

A.5 Effect of the choice of layers 1206

Transformer-based text encoders consist of many 1207

layers. It is not clear which layers to choose for de- 1208

biasing since bias information is spread out across 1209

all of them. In this experiment, we try different de- 1210

biasing settings in which we select different layer 1211

combinations of BERT to work on: all layers, first 1212

6, first 3, last 6, last 3, and alternating layers with 1213

strides of 1 (layers 2, 4, 6, 8, 10 and 12) or 2 (lay- 1214

ers 4, 8 and 12). We apply the debiasing method 1215

proposed in this paper, and report both language 1216

modeling and stereotype scores of StereoSet bench- 1217

mark in Table 8. 1218

The results show that it is safest to equalize at- 1219

tention heads of all layers of the text encoder under 1220

study, since it produces the best scores both in 1221

terms of language modeling and stereotype. Our 1222
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(a) (b)

(c) (d)

Figure 3: Scatter plots of attention scores on male - female direction. (a) Original BERT, (b) BERT debiased by
Sent-D (c) BERT debiased by (Kaneko and Bollegala, 2021), (d) BERT debiased by Att-D

Table 8: Language modeling (lm) and Stereotype scores (ss) of different layer combinations on StereoSet.
Underlined depicts the best language modeling score, while bold shows the best stereotype score

Models first 3 first 6 last 3 last 6 1-stride 2-stride all

Overall (lm/ss) 83.17 54.28 78.80 54.04 82.51 54.13 81.92 54.33 82.70 54.42 82.68 54.04 83.34 53.04

gender (lm/ss) 78.04 55.29 71.96 55.69 78.43 56.08 77.65 55.69 76.47 55.29 78.43 54.51 78.24 53.73
race (lm/ss) 87.11 54.05 83.16 54.16 85.71 54.05 85.40 54.57 85.76 54.26 86.38 52.91 86.28 51.87

religion (lm/ss) 87.82 51.28 87.82 57.69 85.90 52.56 88.46 57.69 88.46 53.85 86.54 60.26 88.46 53.85
profession (lm/ss) 79.67 54.51 74.91 53.03 79.67 53.77 78.49 53.28 80.47 54.39 79.23 54.64 80.96 54.14
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Table 9: Effect of negative examples on GLUE tasks.
The table shows accuracy scores for sst2, rte, wnli, and
mnli for both matched and mismatched instances; f1
for mrpc; spearman correlation for stsb; and matthews
correlation for cola

Models
Single sentence tasks Double sentence tasks
sst2 cola stsb mrpc mnli (m/mm) rte wnli

BERT 92.78 56.05 88.97 92.25 83.54 / 82.68 70.04 45.07
Att-D 92.66 55.22 89.62 91.22 84.63 / 84.19 70.40 53.52
Att-D- 92.32 56.25 89.12 80.44 84.59 / 83.96 58.12 39.44

findings go in tandem with those of (Liang et al.,1223

2020b; Kaneko and Bollegala, 2021; Bhardwaj1224

et al., 2021) who found that reducing bias from1225

all layers usually is the best option.1226

A.6 Effect of negative examples on1227

representativeness1228

We remind that the introduction of negative exam-1229

ples to training serves in forcing the text encoder1230

not to rely on a dangerous shortcut which is dis-1231

tributing its attention uniformly on all the tokens1232

constituting the second half of the input, no matter1233

what the input is. This is particularly important1234

in double-sentence tasks where the text encoder is1235

given two input sentences. In addition to Tables 21236

and 3 which highlighted the effect of negative sam-1237

pling on the final stereotype scores, the primary1238

goal of using negative examples remains the preser-1239

vation of the text encoder’s representativeness. In1240

Table 9, we report the performance of Att-D and1241

Att-D- with and without negative examples respec-1242

tively on GLUE tasks. Unsurprisingly, the lack1243

of negative examples does not damage the perfor-1244

mance of single-sentence tasks since these ignore1245

the second half of the input altogether. However, in1246

double-sentence tasks where both halves are used1247

for prediction, Table 9 shows that negative sam-1248

pling plays a pivotal role in preserving the seman-1249

tics of text encoders, and bypassing the side effects1250

inflicted by attention equalization.1251

A.7 Word-Level vs Sentence-Level Debiasing1252

As previously explained in the paper, Att-D cal-1253

ibrates the attention weighs of all tokens of the1254

input sentence on group-related words. Since we1255

used BERT-based models in our experiments, the1256

first token in the input is the special [CLS] token,1257

which is considered by the NLP community as a1258

vector representation for the entire input sentence.1259

In the current version of Att-D, we also calibrate1260

the attention weighs of the special [CLS] token on1261

groups, in addition to calibrating the other tokens1262

of the sentence. One can see this notion as a com- 1263

bined word-level and sentence-level debiasing. In 1264

this experiment, we motivate this design choice by 1265

comparing it to word-level and sentence-level de- 1266

biasing separately. For word-level, we exclude the 1267

[CLS] token from the attention equalization pro- 1268

cess, whereas in sentence-level we only calibrate 1269

the attention of [CLS]. We use all the bias eval- 1270

uations run so far to understand the difference in 1271

performance. Tables 10, 11, 12, 13 and 14 report 1272

the results of StereoSet, Crows-Pairs, inference, 1273

hate speech and GLUE experiments respectively. 1274

We denote word-level debiasing by No [CLS], and 1275

sentence-level debiasing by Only [CLS] in the ta- 1276

bles. The combination of both is referred to as 1277

Att-D, and is the variant that we promote in this 1278

paper. We observe that while the three settings are 1279

good at reducing bias from text encoders, Att-D is 1280

superior than word-level and sentence-level debi- 1281

asing since it capitalizes on the benefits of both. It 1282

enjoys the fine granularity of reducing bias from 1283

every word, while it also mitigates biases that man- 1284

ifest at sentence-level. 1285

A.8 Static vs Random ordering of 1286

group-related words 1287

In the preprocessing step of our method (as ex- 1288

plained in Section 3.2.1), we use a preset order- 1289

ing of group-related words of a given bias type to 1290

form the second input. For example, if we have 1291

the groups Muslim, Christian, Jew and Buddhist 1292

defining the religion bias type, Att-D constructs 1293

the second input using the same preset ordering of 1294

groups across all samples of the training data. Con- 1295

tinuing the example above, Att-D appends the fol- 1296

lowing artificial sentence "muslim, christian, jew, 1297

buddhist". In this experiment, we change the or- 1298

dering of groups in a random way. Tables 10, 11, 1299

12, 13 and 14 also report the bias scores of Att-D 1300

(static ordering) and Att-D with random ordering. 1301

Although the semantic performance of Att-D 1302

with random ordering is better, we notice that it 1303

suffers from a stronger presence of bias than in 1304

its static counterpart. In Table 13, Att-D with ran- 1305

dom ordering has an AUC score of 0 in one of the 1306

groups, which made the GMB extremely small. We 1307

suspect that the relatively poor fairness of random 1308

ordering owes to the fact that the model might be 1309

confused by different orderings throughout the it- 1310

erations. A more serious analysis of the impact of 1311

group order on the overall performance (fairness 1312
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Table 10: Language modeling (lm) and Stereotype
scores (ss) on StereoSet of different variants of Att-
D

Models Att-D No [CLS] Only [CLS] Random Order

Overall (lm/ss) 83.34 53.04 80.37 53.71 81.70 55.51 82.91 54.75

gender (lm/ss) 78.24 53.73 76.86 52.94 75.88 54.51 79.02 55.69
race (lm/ss) 86.28 51.87 84.10 53.01 85.24 55.09 86.75 54.57

religion (lm/ss) 88.46 53.85 84.62 60.26 85.26 56.41 87.18 56.41
profession (lm/ss) 80.96 54.14 76.63 54.14 78.99 56.24 79.17 54.51

Table 11: Bias measurements of different variants of
Att-D on Crows-Pairs

Models Att-D No [CLS] Only [CLS] Random Order

Overall 55.7 56.1 55.5 58.36

gender 57.36 50.76 50.0 53.82
race 51.15 54.84 53.1 57.75

religion 64.76 69.52 65.71 67.62
age 43.68 56.32 44.83 54.02

sexual orientation 58.33 71.43 63.1 64.29
nationality 57.86 53.46 65.41 62.28
disability 60.0 61.67 58.33 65.0

and semantics) of Att-D motivates the direction of1313

future work.1314

A.9 Effect of Att-D on other1315

transformer-based text encoders1316

We evaluate five widely used sentence-level text en-1317

coders: BERT (Devlin et al., 2018), ALBERT (Lan1318

et al., 2019), RoBERTa (Liu et al., 2019), Distil-1319

BERT (SANH et al.) and SqueezeBERT (Iandola1320

et al., 2020). For each model, we evaluate both1321

its base and large variants (except for DistlBERT1322

and SqueezeBERT since these are not available1323

in HuggingFace’s transformers library15), original1324

and debiased; which gives a total of sixteen eval-1325

uated models. We use Crows-Pairs dataset (Nan-1326

gia et al.) to quantify the intensity of undesired1327

stereotypes encoded therein. As a reminder, ideal1328

stereotype scores according to Crows-Pairs bench-1329

mark should be close to 50, i.e. models preferring1330

neither stereotypes nor anti-stereotypes. Tables 15,1331

16, 17 and 18 show the bias results for BERT, AL-1332

BERT, RoBERTa and DistillBERT/SqueezeBERT1333

respectively.1334

All five models exhibit substantial levels of bias,1335

and in each of the bias types with differing intensi-1336

ties (religion, sexual orientation and disability be-1337

ing the bias categories with the most severe stereo-1338

typing). Also, we find that the large variants are1339

more biased than their base counterparts mainly be-1340

cause large models, with their larger capacity and1341

greater number of parameters, can capture more1342

15https://huggingface.co/transformers/index.html

Table 12: Inference-based bias measurements on differ-
ent variants of Att-D. Best scores are highlighted with
bold character, underlined, or marked with † for gen-
der, race and religion† respectively

Model Bias type NN FN τ :0.5 τ :0.7

Att-D
gender 01.31 00.43 00.35 00.21

race 93.31 93.94 93.90 93.04
religion 68.51† 69.08† 68.95† 66.97†

No [CLS]
gender 00.85 00.36 00.30 00.20

race 76.14 76.24 76.19 74.26
religion 40.80 40.04 39.98 37.78

Only [CLS]
gender 02.35 01.60 01.38 00.90

race 81.63 81.52 81.50 80.37
religion 44.40 44.01 43.95 42.76

Random Order
gender 01.54 00.51 00.39 00.23

race 54.71 54.92 54.89 52.49
religion 26.94 26.67 26.59 24.58

intricate and more sophisticated aspects of training 1343

data, exposing them to learn more bias. This find- 1344

ing corresponds well to results of previous work 1345

(Nangia et al.; Nadeem et al., 2020). The tables 1346

also show that Att-D is effective in mitigating bias 1347

from BERT, ALBERT, RoBERTa, DistilBERT and 1348

SqueezeBERT, and produces a reduction of up to 1349

25%. We note that Att-D succeeds in debiasing 1350

all models, with varying effectiveness across bias 1351

types. We also note that Att-D meets the best suc- 1352

cess with ALBERT as reductions are greater on this 1353

particular text encoder. We believe this is because 1354

ALBERT is composed of a single transformer layer 1355

(Lan et al., 2019) with substantially less parameters 1356

than BERT or RoBERTa; which makes debiasing 1357

easier since there is no interference between differ- 1358

ent attention layers. Finally, we see from the tables 1359

that Att-D sometimes contributes to adding a bit of 1360

bias. We observe that this phenomenon is rare, and 1361

happens especially with bias types we did not in- 1362

clude in our design16. We assume that not explicitly 1363

compelling the text encoder to equalize attention 1364

heads corresponding to these overlooked bias types 1365

gave it green light to adjust these attentions in a 1366

way to facilitate solving the optimization problem; 1367

even if it entails adding bias. We plan to include 1368

all bias types present in Crows-Pairs dataset to our 1369

debiasing design as a future work. 1370

16In the current version of this work, we remind that we
only consider five bias types: gender, race, religion, age and
sexual orientation
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Table 13: AUC-based bias measures on hate speech detection task on different variants of Att-D

Models
Performance Bias

Acc↑ F1↑ AUC↑ STD-Sub↓ GMB-Sub↑ GMB-BPSN↑ GMB-BNSP↑

Att-D 0.789 0.829 0.866 0.085 0.808 0.793 0.726

No [CLS] 0.791 0.830 0.871 0.114 0.710 0.797 0.530
Only [CLS] 0.765 0.805 0.838 0.142 0.660 0.766 0.636

Random Order 0.784 0.822 0.861 / / 0.764 /

Table 14: GLUE performance of different variants of Att-D. The table shows accuracy scores for sst2, rte, wnli,
and mnli for both matched and mismatched instances; f1 for mrpc; spearman correlation for stsb; and matthews
correlation for cola

Models
Single sentence tasks Double sentence tasks
sst2 cola stsb mrpc mnli (m/mm) rte wnli

Att-D 92.66 55.22 89.62 91.22 84.63 / 84.19 70.40 53.52

No [CLS] 91.51 40.85 88.94 91.62 84.49 / 84.02 68.95 40.85
Only [CLS] 92.43 55.23 89.43 90.04 84.42 / 84.67 71.84 23.94

Random Order 93.23 59.07 88.85 91.94 83.75 / 84.86 71.84 30.99

Table 15: Bias reduction in BERT base and large measured on Crows-Pairs dataset. Each cell is organized as
follows: o → d +/-diff where o is the stereotype score of the original model, d is that of the debiased model using
attention-based debiasing, and diff is the difference in stereotype score. Negative values correspond to reduction
in bias (desired) where positive values mean addition of bias (undesired).

Models BERT base BERT large

Overall 60.48 → 55.70 -04.78 59.68 → 56.96 -02.72

race 58.14 → 51.15 -06.99 60.08 → 53.49 -06.59
gender 58.02 → 57.36 -00.66 55.34 → 53.05 -02.29

socioeconomic 59.88 → 51.16 -08.72 56.40 → 57.56 +01.16
nationality 62.89 → 57.86 -05.03 52.20 → 57.23 +05.03

religion 71.43 → 64.76 -06.67 68.57 → 66.67 -01.90
age 55.17 → 43.68 +01.15 55.17 → 54.02 -01.15

sexual orientation 67.86 → 58.33 -09.53 65.48 → 67.86 +02.41
physical appearance 63.49 → 61.90 -01.89 69.84 → 65.08 -04.76

disability 61.67 → 60.00 -01.67 76.67 → 65.00 -11.67
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Table 16: Bias reduction in ALBERT base and large measured on Crows-Pairs dataset. Each cell is organized as
follows: o → d +/-diff where o is the stereotype score of the original model, d is that of the debiased model using
attention-based debiasing, and diff is the difference in stereotype score. Negative values correspond to reduction
in bias (desired) where positive values mean addition of bias (undesired).

Models ALBERT base ALBERT large

Overall 56.76 → 51.99 -04.77 60.48 → 53.58 -06.90

race 51.36 → 48.84 -00.20 59.11 → 50.97 -08.14
gender 54.20 → 53.44 -00.76 56.11 → 48.47 -04.58

socioeconomic 60.47 → 61.05 +00.58 54.07 → 50.00 -01.16
nationality 51.57 → 57.86 +06.29 62.26 → 60.38 -04.07

religion 59.05 → 60.00 +00.95 76.19 → 61.90 -14.29
age 65.52 → 42.53 -08.05 54.02 → 54.02 -00.00

sexual orientation 75.00 → 38.10 -13.10 71.43 → 63.10 -08.33
physical appearance 46.03 → 41.27 +04.76 58.73 → 57.14 -01.59

disability 86.67 → 61.67 -25.00 73.33 → 58.33 -15.00

Table 17: Bias reduction in RoBERTa base and large measured on Crows-Pairs dataset. Each cell is organized as
follows: o → d +/-diff where o is the stereotype score of the original model, d is that of the debiased model using
attention-based debiasing, and diff is the difference in stereotype score. Negative values correspond to reduction
in bias (desired) where positive values mean addition of bias (undesired).

Models RoBERTa base RoBERTa large

Overall 53.98 → 51.39 -02.59 61.27 → 56.83 -04.44

race 47.09 → 50.39 -02.52 61.43 → 53.49 -07.94
gender 54.96 → 45.80 -00.76 51.91 → 51.91 -00.00

socioeconomic 56.40 → 55.81 -00.59 66.28 → 59.88 -06.40
nationality 45.28 → 43.40 +01.88 56.60 → 55.35 -01.25

religion 56.19 → 60.00 +03.81 59.05 → 62.86 +03.81
age 64.37 → 56.32 -08.05 71.26 → 62.07 -09.19

sexual orientation 69.05 → 48.81 -17.86 71.43 → 59.52 -11.91
physical appearance 66.67 → 60.32 -06.35 68.25 → 66.67 -01.58

disability 71.67 → 65.00 -06.67 66.67 → 70.00 +03.33

Table 18: Bias reduction in DistilBERT and SqueezeBERT measured on Crows-Pairs dataset. Each cell is organized
as follows: o → d +/-diff where o is the stereotype score of the original model, d is that of the debiased model using
attention-based debiasing, and diff is the difference in stereotype score. Negative values correspond to reduction
in bias (desired) where positive values mean addition of bias (undesired).

Models DistilBERT SqueezeBERT

Overall 56.83 → 51.26 -05.57 57.43 → 54.71 -02.72

race 53.29 → 47.87 -01.16 55.04 → 56.01 +00.97
gender 54.58 → 46.56 -01.14 52.67 → 48.47 -01.14

socioeconomic 55.81 → 58.14 +02.33 57.56 → 51.16 -06.40
nationality 54.09 → 50.94 -03.15 53.46 → 61.01 +07.55

religion 70.48 → 57.14 -13.34 74.29 → 60.95 -13.34
age 59.77 → 48.28 -08.05 55.17 → 48.28 -03.45

sexual orientation 70.24 → 55.95 -14.29 70.24 → 57.14 -13.10
physical appearance 55.56 → 63.49 +07.93 52.38 → 52.38 -00.00

disability 61.67 → 56.67 -05.00 70.00 → 61.67 -08.33
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