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Abstract

Recent studies in fair Representation Learning
have observed a strong inclination for Natural
Language Processing (NLP) models to exhibit
discriminatory stereotypes across gender, re-
ligion, race and many such social constructs.
In comparison to the progress made in reduc-
ing bias from static word embeddings, fairness
in sentence-level text encoders received little
consideration despite their wider applicability
in contemporary NLP tasks. In this paper, we
propose a debiasing method for pre-trained text
encoders that both reduces social stereotypes,
and inflicts next to no semantic damage. Un-
like previous studies that directly manipulate
the embeddings, we suggest to dive deeper into
the operation of these encoders, and pay more
attention to the way they pay attention to differ-
ent social groups. We find that most stereotypes
are also encoded in the attention layer. Then,
we work on model debiasing by redistributing
the attention scores of a text encoder such that
it forgets any preference to historically advan-
taged groups, and attends to all social classes
with the same intensity. Our experiments con-
firm that we successfully reduce bias with little
damage to semantic representation.

1 Introduction

Natural Language Processing (NLP) is increasingly
penetrating real-world processes such as recruit-
ment (Hansen et al., 2015), legal systems (Dale,
2019), healthcare (Velupillai et al., 2018) and Web
Search (Nalisnick et al., 2016). Part of this suc-
cess is attributed to the underlying embedding layer
which encodes sophisticated semantic representa-
tions of language (Camacho-Collados and Pilehvar,
2018). The wide adoption of modern NLP models
in critical domains has also inflicted a more thor-
ough scrutiny. Recent research has uncovered some
propensities of NLP models to replicate discrimina-
tory social biases (Bolukbasi et al., 2016; Caliskan
et al., 2017; May et al., 2019) which may cause

unintended and undesired model behaviors with re-
spect to social groups. Social bias in NLP is mainly
caused by unbalanced mentions of attributes near
advantaged groups in training data (Zhao et al.,
2018a). For example, in most existing text corpora,
very few cooks are referred to by male pronouns
(e.g. he, him, himself) (Zhao et al., 2017). Accord-
ingly, text encoders or language models trained on
such data may use this shortcut to inadvertently dis-
associate cooks from men, and learn that cooking
is a female attribute.

Methods to debias static word embeddings such
as Word2vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014) have been applied for various
bias types like gender, race and religion (Boluk-
basi et al., 2016; Zhao et al., 2018b; Kaneko and
Bollegala, 2019; Ravfogel et al., 2020). However,
by the time NLP practitioners started casting more
attention to the fairness problem of their models,
they had already switched to the more powerful
sentence-level transformers in the likes of BERT
(Devlin et al., 2018), GPT3 (Brown et al., 2020) or
TS5 (Raffel et al., 2020) which owe their success to
the novel self-attention mechanism (Vaswani et al.,
2017). This leap in performance in several NLP
tasks does not extend to fairness since research dis-
covered social stereotypes in modern text encoders
(May et al., 2019; Nadeem et al., 2020; Nangia
et al.). To date, debiasing them remains compara-
tively under-explored.

Mitigating biases in text encoders is difficult
for four reasons: (1) They are expensive to re-
train, so conventional methods based on Counter-
factual Data Augmentation (CDA) to rebalance
group-attribute mentions (Zhao et al., 2018a; Web-
ster et al., 2020) become prohibitive as they gener-
ate more training data, and all debiasing attempts
might be limited to either finetuning or adapting
(Houlsby et al., 2019; Lauscher et al., 2021). (2)
Static embeddings encode words whereas text en-
coders need context . Thus, it is not straightfor-



ward to use existing debiasing techniques for static
embeddings off-the-shelf as it is not clear how to
generate context for single words. Previous work
tackled this problem by either designing bleached
sentence templates (May et al., 2019; Kurita et al.,
2019) where they fill in the blanks with words of
interest, or sampling sentences from large corpora
where the words are mentioned (Liang et al., 2020a;
Cheng et al., 2020), thus creating context. The
former betrays the expressiveness of natural lan-
guage while the latter suffers from sampling and
pre-processing bias (Liang et al., 2020a). (3) The
input space of text encoders is the set of all possible
sentences, so we cannot debias every single input
as it is done with static embeddings. (4) Text en-
coders are larger in capacity and complexity. This
suggests that they can accommodate subtler and
more sophisticated forms of stereotype, especially
in their attention component, which renders bias
imperceptible to existing detection methods as they
are not designed to operate on attention.

Despite these difficulties, previous works ad-
dressed the problem of reducing bias from mod-
ern text encoders with different techniques (Liang
et al., 2020a; Webster et al., 2020; Liang et al.,
2020b; Cheng et al., 2020; Kaneko and Bollegala,
2021; Lauscher et al., 2021). However, most of
them make strong assumptions about the linearity
of bias. Moreover, they operate on the embeddings
produced by text encoders, and leave their most
important block - attention - largely unrectified.

In this paper we explore attention-based debi-
asing. This approach stems from our observation
that attention exhibits a great deal of social biases.
We illustrate this finding with examples, propose a
novel method to reduce stereotypes from attention
blocks, and demonstrate that it is effective in mit-
igating biases from sentence representations as a
whole. Given an input sentence, our method com-
pels the text encoder of interest to redistribute its
internal attention scores such that each word in the
input allocates the same attention for different so-
cial groups. Thus, it learns to forget previously
encoded preferences, and generate fair representa-
tions, free of stereotypical influence. We also keep
semantic information loss at a minimum while de-
biasing by distilling knowledge from an unaltered
teacher text encoder (Hinton et al., 2015; Gou et al.,
2021). In this setting, we encourage the debiased
model to copy the original attention from its teacher
to minimize semantic offset. Unlike most previous

work which focus only on gender, we address five
bias types in our experiments (gender, race, re-
ligion, age and sexual orientation). We conduct
likelihood- and inference-based evaluations to mea-
sure the intensity of bias in our final debiased mod-
els. Experiments demonstrate that the technique we
propose effectively reduces bias, and outperforms
existing debiasing methods.

2 Related Work

In this section, we discuss related work about de-
biasing static word embeddings and sentence-level
text encoders. It should be noted that bias at data
level (Pryzant et al., 2020; Cryan et al., 2020) and in
language generation tasks (Sheng et al., 2020; Sap
et al., 2020; Dhamala et al., 2021) are also active
and complementary areas of research. However,
due to space limitations, they will not be discussed
further in this paper.

2.1 Bias in Static word embeddings

The work of Bolukbasi et al. (2016) pioneered bias
research in NLP by discovering that static word em-
beddings such as Word2Vec (Mikolov et al., 2013)
or GloVe (Pennington et al., 2014) encode signif-
icant amounts of binary gender bias. They pro-
posed Hard-Debias: a method to remove biases by
projecting gender-neutral word embeddings onto
a gender-free direction. Manzini et al. (2019) ex-
tended Hard-Debias to the multiclass setting where
they also treat racial and religious stereotypes. In
both works, the bias direction is defined by a manu-
ally pre-compiled list of stereotyped words. In con-
trast, Ravfogel et al. (2020) suggest a data-driven
approach to learn bias directions with a linear clas-
sifier. Debiasing is then conducted by iteratively
projecting word embeddings on the null space of
the classifier’s matrix. On the other hand, fine-
tuning is the debiasing approach that attracted the
widest adoption, either by using an autoencoder
(Kaneko and Bollegala, 2019), attraction-repulsion
mechanism (Kumar et al., 2020), or adversarial
attacks (Xie et al., 2017; Li et al., 2018; Elazar
and Goldberg, 2018). Unlike these post-processing
methods, Zhao et al. (2018b) added a new fairness
constraint to GloVe loss function, and retrained
their fair word embeddings from scratch.

2.2 Bias in Text encoders

Research on biases in sentence representations
is dominated by detection rather than correction



and mitigation. To date, there are three main ap-
proaches to detect stereotypes in text encoders: (1)
representation-based: where vector relationships
between different types of inputs are measured. For
example, May et al. (2019) extended the WEAT
test (Caliskan et al., 2017) into sentence vector
space (SEAT), and compared the cosine similarity
between representations of two sets of targets and
two sets of attributes. All sentences in SEAT fol-
low a predefined template. (2) likelihood-based:
These approaches examine how often text encoders
prefer stereotypes over anti-stereotypes. Prefer-
ences in this case are defined in terms of higher
likelihoods as produced by language models us-
ing embeddings of the text encoders under study.
Two benchmarks are widely used for measuring
bias: StereoSet (Nadeem et al., 2020) and Crows-
Pairs (Nangia et al.). Both datasets are organized
in pairs or triples of minimally-distant sentences
which differ only in the word(s) carrying a stereo-
typical connotation. (3) inference-based: These
methods employ text encoders in downstream NLP
tasks (Blodgett et al., 2020) such as natural lan-
guage inference (Dev et al., 2020), sentiment anal-
ysis (Diaz et al., 2018) or language generation (Sap
et al., 2020; Sheng et al., 2020). Bias in such set-
tings is declared as the difference in outcome when
the models are tested with the same input sentence,
differing only in social groups.

Bias mitigation approaches are mostly inspired
by debiasing static embeddings. In projection-
based methods, Liang et al. (2020a) contextualize
words into sentences by sampling them from exist-
ing corpora before applying Hard-Debias. Kaneko
and Bollegala (2021) minimize the projection of
sentence representations on a learned bias sub-
space, while Qian et al. (2019); Bordia and Bow-
man (2019); Liang et al. (2020b) add bias-reduction
objectives to their loss functions. Another line of
research uses CDA (Webster et al., 2020) to balance
gender correlations in training data, while Lauscher
et al. (2021) use adapters to reduce the large train-
ing time that CDA incurs. Finally, Cheng et al.
(2020) use contrastive learning, and add a fair filter
that minimizes mutual information between stereo-
types and anti-stereotypes. In our work, rather than
extending approaches from static embeddings, we
focus on the self-attention mechanism which is
characteristic of many text encoders, and show that
fair attention leads to fair representations.

3 Debiasing Method

3.1 Motivating example & Intuition

Despite the applicability of our work on any model
that is built upon self-attention, we focus in this
paper on models based on the encoder side of the
transformer architecture, such as BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019), or AL-
BERT (Lan et al., 2019). This owes to the de-
coder side being usually used in auto-regression
tasks, and less often to encode text. Transformers
consist of multiple layers, each composed of a self-
attention block followed by a feed-forward block to
make embeddings. A self-attention block contains
multiple heads. Each head transforms the input into
attention weights between all pairs of tokens in the
input sequence (Vaswani et al., 2017), such that
each token learns to attend to its most related to-
kens, hence the prevalence of attention in defining
the understanding of natural language. In this work,
we hypothesise that undesired social stereotypes
are primarily encoded in the self-attention block.
In order to verify this hypothesis, we show and
analyze some attention maps of BERT in Figure 1!.
Consider the following sentence "The doctor asked
the nurse a question.” Aiming to analyze how ev-
ery word representation relates to different social
groups, we add a dummy second input consisting
of words representing two distinct genders (he and
she after the [SEP] token). Figure 1(a) illustrates
that doctor pays much more attention to he than to
she?, while Figure 1(b) reveals that nurse attends to
she. This finding suggests that gender stereotypes
are deeply encoded in attention weights. Likewise,
in Figure 1(c), math is more related to asian than
to white or black, conforming to the famous racial
stereotype casting asians as really good mathemati-
cians. These examples align with our intuition that
social stereotypes are first and foremost encoded in
the self-attention block of text encoders before they
propagate to their embeddings or predictions in
downstream NLP tasks. Consequently, we propose
Att-D, a finetuning method for reducing undesired
biases of text encoders from their attention compo-
nent, that we describe in the next section.

The intuition of our debiasing strategy is as fol-
lows: Given that attention weights conform with

undesired biases (e.g., doctor attending to he, and
'"The figures are produced using bertviz tool:
https://github.com/jessevig/bertviz
Dark colors correspond to high attention scores, and light
colors indicate low attention scores
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[SEP] [SEP] [SEP]
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[SEP] [SEP] [SEP]
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[SEP] . .
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[SEP] [SEP] [SEP]
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Figure 1: Attention patterns in BERT suggest the existence of potential gender and racial biases

nurse to she in Figure 1), we aim to equalize the
attention scores of every word in the input sen-
tence with respect to social groups. Following the
examples of Figure 1, Att-D redistributes the at-
tention scores of doctor such that it attends to he
and she with the same intensity, thus eliminating
any preference toward one of the groups. However,
alterations to the attention of doctor on the remain-
ing words of the input sentence must be kept to
a minimum in order not to corrupt the semantic
understanding of the original text encoder.

3.2 Debiasing Workflow

Att-D consists of three steps: First, for each input
sentence s in the training corpus S, we make an
artificial second input s, consisting of words re-
lated to social groups (similar to the examples on
Figure 1). Pretrained text encoders expect either
one or two inputs before they produce attentions
and embeddings (Devlin et al., 2018). In this work,
we use both s (as first input) and s, (as second
input) separated by [SEP] token. Consequently,
the resulting self-attention includes both s and s,,.
The second step of Att-D equalizes the attention
weights of all heads in all the layers of the text en-
coder of interest such that each token in s pays the
same amount of attention to tokens of s, thus elim-
inating preferences and stereotypes. Finally, we
minimize semantic loss by compelling our model
to learn the original semantics from an unaltered
teacher model by copying its internal attention in a
knowledge distillation setting (Hinton et al., 2015).

We schematize the operation of Att-D in Fig-
ure 2. Gry, Gry and Gry, in the figure correspond
to the tokens of s,. Both matrices represent one
attention head of the text encoder before (left) and
after (right) debiasing. The matrices should be read
in rows. Each row depicts the attention weights of
the corresponding token on all the other tokens of

Tokens of the Input sentence
Tokens of the Input sentence

°

°

* . .
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(a) (b)

Figure 2: Overview of an attention head before (a) and
after (b) debiasing

the input (s + 39)3.

The matrices are conceptually split in four
blocks: (1) attentions of s on s, (2) attentions of s
on s, (3) attentions of s, on s, and (4) attentions of
54 on s4. Debiasing consists in making the columns
of block 2 equal. In other words, each token in s
pays the same amount of attention to all the groups
as indicated in the right side of Figure 2. Ideally,
debiasing should also preserve the semantics of the
original text encoder. That is why block 1 of Fig-
ure 2 should be kept unchanged. Both blocks 3 and
4 are irrelevant to the results, since they denote at-
tentions of our artificially inserted second input s,.
Besides, they do not participate in defining neither
fairness nor representativeness of text encoders. So,
we do not impose any restrictions on them. In the
following, we describe each step of Att-D in detail.

3.2.1 Generating augmented inputs

The first step involves identifying bias types that
we want to mitigate from pretrained text encoders,
such as gender, race, religion. This is achieved
by defining a set of tuples G such that G =
{T1,T2,..., T} where each 7; describes social

3 [CLS] token (vector representation of s) is also included
for attention calibration. Details in Appendix



Table 1: Examples of group tuples per bias

religion age

muslim, christian, jewish
quran, bible, torah

old, young
elderly, youth

groups of a given bias type, or their attributes. In
the case of binary gender, 7; = {"male", "female"}
or 7; = {"he", "she"} are both possible definitions
(and many others are possible for non-binary cases).
Table 1 shows some tuples that we use in Att-D.

During debiasing, we pick a tuple 7; from G
randomly and construct s, a bleached sentence
formed by words of 7;. For example, given Ta-
ble 1, s, can be "muslim, christian, jewish" or "old,
young". The input to the text encoder is both the
original input sentence s and the artificial one s,.
Pretrained text encoders separate the two halves of
the input with a special token [SEP] as illustrated
in Figure 1, and compute attention maps for the
entire sequence (s + sg).

3.2.2 Equalizing attentions on social groups

After obtaining attention maps of the augmented
input from Section 3.2.1, which is produced by the
pretrained text encoder of interest £/, we make each
token of s pay equal amounts of attention to the
tokens of s, which define social groups. The ratio-
nale is to eliminate any inclination for E' to prefer
a social group to the detriment of others. Suppose
AbMsss = Attn(s,sq;1,h) is the attention ma-
trix at layer [, head h of the encoder F, computed
from the input s + s,. Here, we make the reason-
able assumption that s, contains at least two social
groups.* In this spirit, equalizing attention vectors
of block 2 (as defined in Figure 2) is equivalent to
making them equal to a pivot vector. In our method,
we consider the attention vector of s on the first
social group as the pivot (first column in block 2
of Figure 2), and minimize the mean square error
between the pivot and the attention vectors of s on
the other groups, one at a time. The equalization
loss is given by Equation 1.

H |lsgl] - -
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(1)

“Biases are usually about making one or more groups
(dis)advantaged with respect to the others, hence the existence
of at least two groups per bias type

L
Lequ =)
=1
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where L is the number of layers of the text en-
the number
of social groups in s, and o is the position of the
special token [SEP] that marks the end of s and the
beginning of s,. As can be seen, Algh; ff is the
pivot vector containing attention scores of s on the
first social group token (whose position is directly
after [SEP], i.e., o +1). Equation 1 forces attention
scores on subsequent social groups to be the same
as on the first one, thus making them all equal.

3.2.3 Preserving semantic information

Text encoders must preserve their ability to rep-
resent natural language and keep the same perfor-
mance on downstream NLP tasks. For this reason,
debiasing must ensure that useful information is
preserved as much as possible. We minimize se-
mantic information loss in a knowledge distillation
setting (Hinton et al., 2015; Gou et al., 2021). We
cast the text encoder that we want to debias as the
student model, and recruit another model to play
the role of the teacher. We do not apply our de-
biasing strategy on the teacher since it provides a
reference to the original unaltered language repre-
sentations. We distill semantic information in the
form of attention maps from the teacher and instill
it in the student. Stated differently, we compel the
student to learn from the teacher and reproduce
its attention scores for every input sentence in the
training corpus S.

As in Section 3.2.2, let AbM5:59 be the atten-
tion of the student model at layer [, head h with s
and s, as input. Likewise, let Obh5:59 define the
same attention matrix, but for the original teacher
model. We formalize the preservation of semantic
information as a regularizer where we minimize
the squared [, distance between the student’s and
the teacher’s attention scores.

L H
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where L is the number of layers, H is the num-
ber of heads, and o is the position of the [SEP]
token. As can be seen from Equation 2, the student
learns only to replicate block 1 (as in Figure 2) of
the attention matrices. This is because block 1 con-
tains attention scores of the original input sentence
s on itself, thus encoding an important aspect of
semantics. We force the student not to reproduce
the attention distribution on social groups (block 2)



from the teacher since these are supposedly biased,
and are left to the care of our debiasing objective.
We describe the overall training objective as a lin-
ear combination of the previously defined losses,
with A as a hyperparameter to control the weight
of debiasing over semantic preservation.

Loss = Lgjstit + ALequ 3)

3.3 Negative Sampling & Layer Selection

The strict application of Att-D as discussed so far
may accidentally lead to some undesired spurious
phenomena. While learning to equalize attention
on social groups that constitute the second half of
the input, the text encoder might potentially bear
the risk of distributing its attention uniformly on
any second half of the input, no matter what it is.
This is particularly alarming when the text encoder
is subsequently employed in double-sentence tasks
(Wang et al., 2018) such as semantic textual simi-
larity, paraphrase detection or sentence entailment.

To overcome the above obstacle, we introduce
negative sampling. Instead of using words related
to social groups in order to generate the artificial
second input s,, we randomly sample words (neg-
ative examples) from the vocabulary. In this case,
we do not equalize the attentions but compel the
student to copy its teacher even for blocks 2, 3 and
4. We do this in order to prevent the text encoder
from learning to assign the same attention weight
to all tokens of the second input when these do
not define social groups. We control the ratio of
negative examples with a hyperparameter 7.

Another concern when debiasing text encoders
is that their layers do not necessarily encode the
same information. Bhardwaj et al. (2021) found
that BERT layers display widely different reac-
tions when probed with a gender-detection clas-
sifier. This means that they do not encode gender
stereotype identically. Therefore, it is not clear
which layers and/or attention heads are best for
debiasing. To investigate this issue, we consider
seven settings: debiasing all layers, first 6, first
3, last 6, last 3, and alternating layers with strides
of one> or two®. We find that debiasing all layers
works best. So, unless otherwise specified in this
paper, debiasing concerns all the layers.

Layers 2, 4, 6, 8, 10 and 12 of BERT
6Layers 4, 8 and 12 of BERT

4 Evaluation

In this section, we first describe our experimental
setup, then evaluate Att-D from two viewpoints:
fairness and representativeness. Fairness is tradi-
tionally evaluated with two types of metrics: intrin-
sic metrics that measure bias in text representations
regardless of their application, and extrinsic metrics
that quantify bias in downstream tasks that text rep-
resentations enable. We acknowledge that intrinsic
metrics have recently been criticized (Goldfarb-
Tarrant et al., 2020; Aribandi et al., 2021; Blodgett
et al., 2021). However, we believe that a strong
evaluation of bias should include both intrinsic, ex-
trinsic and qualitative methods to draw a complete
evaluative picture. Since Aribandi et al. (2021)
surmise that StereoSet and Crows-Pairs are more
stable than other intrinsic measures of bias (e.g.
WEAT (Caliskan et al., 2017) or SEAT (May et al.,
2019)), we use them in this work. For extrinsic
metrics, we evaluate our method on the tasks of
textual inference and hate speech detection. Due to
space limitations, we ship the second one to the ap-
pendix, in addition to qualitative evaluations (visu-
alizations) and several other experiments/ablation
studies’.

4.1 Debiasing setup

To facilitate comparison, we follow existing litera-
ture (Nadeem et al., 2020; Nangia et al.) in defining
social groups for each type of bias, although the ap-
proach presented here is not restricted to that, and
can be leveraged for both other kinds of biases and
for a more inclusive definition of the groups. In the
experiments, we show results of debiasing based on
(binary) gender (male, female), race (white, black,
asian, hispanic), religion (muslim, christian, jew-
ish, buddhist), age (young, old) and sexual orienta-
tion (heterosexual, non-heterosexual). We leverage
the definition words from previous work (Liang
et al., 2020a) and augment them with our own tu-
ples. The full list can be found in the appendix.
We apply our debiasing method on BERT® (Devlin
et al., 2018), and use the News-commentary-v15
corpus’ as training data. It contains 223,153 sen-
tences of which we use 80% for training and 20%
for development.

"We provide code and data as supplementary material

8In the appendix, we also apply Att-D on ALBERT,
RoBERTa, DistilBERT and SqueezeBERT

*http://www.statmt.org/wmt20/translation-task.html



Table 2: Language modeling (Im) and Stereotype scores
(ss) of different text encoders on StereoSet

Table 3: Bias measurements of different text encoders
on Crows-Pairs

Models | Original BERT | Sent-D | Kaneko | AtD" |  Att-D
Overall (Im/ss) | 83.70  56.04 | 81.39 54.71 | 8558 56.04 | 80.92 53.37 | 8334 53.04
8235 6275 | 7667 5333|8373 5882|7333 5137|7824 5373
8628 5468 | 8540 5509 | 8747 5624 | 8503 5437 | 8628 51.87

87.82 5641 | 88.46 51.28 | 8590 57.69 | 8590 55.13 | 88.46 53.85
80.66 5550 | 77.44 55.01 | 83.87 54.76 | 77.94 52.66 | 80.96 54.14

gender (Im/ss)
race (Im/ss)
religion (Im/ss)
profession (Im/ss)

4.2 Evaluations of Fairness

4.2.1 Intrinsic Evaluation

We use the publicly available subsets of two stereo-
type benchmarks: StereoSet (Nadeem et al., 2020)
and Crows-Pairs (Nangia et al.). Both provide
likelihood-based diagnostics to measure how often
stereotypes are considered more likely than anti-
stereotypes by the text encoder of interest. Crows-
Pairs is organized in pairs of minimally distant
sentences, i.e. sentences that differ only in one
word. We pick the following example from the
dataset: Jews are such greedy people (Stereotype)
versus Christians are such greedy people (Anti-
stereotype). Crows-Pairs uses word likelihoods
produced by the text encoder to measure how often
stereotypes are ranked higher than anti-stereotypes.
An ideal unbiased text encoder should score 50% in
the Crows-Pairs challenge, meaning that it prefers
neither stereotypes nor anti-stereotypes. In contrast,
StereoSet adds a third absurd sentence to capture
the language modeling capabilities of the text en-
coder in addition to measuring bias. So, an ideal
model should have a stereotype score (ss) of 50%
and a language modeling (/m) of 100%.

We compare our method against the original
BERT base model to see the effect of debiasing!”.
Also, for accurate comparisons against previous
work, we decided to include the baselines whose
final debiased models have been published in order
to avoid errors of training and/or tuning hyperpa-
rameters. Thus, we compare Att-D against Sent-D
(Liang et al., 2020a) and the debiasing procedure
proposed by Kaneko and Bollegala (2021). We also
conduct a simple ablation study by training with-
out negative examples (A#-D7). We finetune Att-D
and the baselines on language modeling to produce
likelihoods. Tables 2 and 3 report the evaluation
results on StereoSet and Crows-Pairs respectively.

We found that the original BERT contains signif-
icant levels of biases (56.04 in StereoSet and 60.48
in Crows-Pairs). It is important to note that Kaneko

OResults of BERT large, ALBERT, RoBERTa, DistilBERT
and SqueezeBERT are in the appendix

Models | BERT Sent-D Kaneko Att-D°  Att-D
Overall ‘ 60.48  56.90 57.82 5723 55.7
gender 58.02  51.53 57.63 53.05 57.36

race 58.14 5523 53.68 53.68 51.15
religion 71.43 60.0 64.76 69.52  64.76

age 55.17  51.72 54.02 54.02 43.68
sexual orientation | 67.86 70.24 69.05 66.67 58.33
nationality 62.89 56.6 59.12 61.01 57.86
disability 61.67 65.0 68.33 63.33  60.0

and Bollegala (2021) only focused on gender bias,
which is clear in Table 2 where only gender stereo-
type has been reduced. We observe that focusing on
one bias type can make text representations even
more biased for the other dimensions as can be
seen in Kaneko and Bollegala (2021) for race and
religion (Table 2), and for sexual orientation and
disability (Table 3). In contrast, Att-D always re-
duces the intensity of stereotyping in BERT (up to
9.53%), and yields the best results overall!'. We
notice that we manage to reduce biases linked to di-
mensions we did not include in our design such as
nationality and disability. We speculate that these
bias types are connected to those we worked on
mitigating. Therefore, we conjecture that reduc-
ing multiple biases at the same time meets better
success in mitigating unforeseen stereotypes than
working on every bias type separately.

4.2.2 Extrinsic Evaluation

This approach of measuring bias builds on the in-
tuition of Dev et al. (2020) stating that biased rep-
resentations lead to invalid inferences, whose ratio
quantifies bias. They construct a challenge bench-
mark for the natural language inference task where
every hypothesis should be neutral to its premise.
For example, suppose that the premise is The driver
owns a van and the hypothesis is The man owns a
van. The hypothesis neither entails nor contradicts
the premise. If the predictions of a classifier devi-
ate from neutrality, the underlying text encoder is
doomed as biased. Suppose that the set contains M
instances, and let the predictor’s probabilities of the
it" instance for entail, contradict and neutral be €,
¢; and n;. Following Dev et al. (2020), we report
three measures of inference-based bias: (1) Net
Neutral (NN): NN = ﬁ Zf\i 1 5 (2) Fraction
Neutral (FN): FN = L5 M 1, _oven oonn);
(3) Threshold 7 (T:7): T : 7 = 2 M 1,57

"The closer the stereotype score is to 50%, the better



Table 4: Performance of different models on GLUE tasks. The table shows accuracy scores for sst2, rte, wnli,
and mnli for both matched and mismatched instances; fI for mrpc; spearman correlation for stsb; and matthews

correlation for cola

Single sentence tasks

Double sentence tasks

Models ‘ sst2 cola H stsb mrpc mnli (m) mnli (mm) rte wnli

BERT | 9278 - |5605 - | 897 - [9225 - |8354 - |[8268 - |7004 - [4507 -

Sent-D | 91.63 -1.15 | 59.08 +3.03 || 89.58 +0.61 [ 90.12 -2.13 | 84.97 +1.43 | 8351 +0.83 | 68.95 -1.09 | 28.17 -16.9

Kaneko | 91.97 -0.81 | 56.50 +0.55 || 88.44 -0.53 | 90.69 -1.56 | 8448 +0.94 | 83.66 +0.98 | 59.93 -10.11 | 52.11 +7.04

Att-D | 9266 -0.12 | 5522 -0.83 || 89.62 +0.65 | 91.22 -1.03 | 84.63 +1.09 | 84.19 +1.51 | 70.40 +0.36 | 53.52 +8.45
Table 5: Inference-based bias measurements. Best  ta5ks from GLUE and show the results in Table 4.

scores are highlighted with bold character, underlined,
or marked with { for gender, race and religiont respec-
tively

Model | Biastype | NN FN  7:0.5  7:0.7
gender | 00.59 00.16 00.15 00.12
BERT race 7596 7657 7651 7491
religion | 43.47 4355 4345 4177
gender | 00.94 0038 0033  00.24
Sent-D race 59.61  59.28 5920 56.22
religion | 29.64 29.08 29.02 27.24
gender | 00.57 00.14 00.12  00.08
Kaneko race 8424 84.84 84.80 83.26
religion | 69.277  69.807 69.72" 67.66
gender 01.31 0043 0035 00.21
Att-D race 9331 93.94 9390 93.04
religion | 68.51 69.08 6895 66.97

In this experiment, we finetune text encoders
on MNLI dataset for natural language inference
(Wang et al., 2018). A bias-free model should score
1 (100%) in all three measures. We report our find-
ings in Table 5. Our method outperforms the orig-
inal model and the baselines. This result shows
that Att-D succeeds in mitigating stereotypes in
real world inference settings, unlike Sent-D which
produces positive results in intrinsic evaluation but
comes short of meeting the same success in this
experiment. In the next section, we show that these
findings are meaningful since the entailment accu-
racy is not hurt after debiasing.

4.3 Evaluations of Representativeness

We use GLUE benchmark (Wang et al., 2018) to
verify whether the debiased text encoder still holds
enough semantic information to be applicable in
downstream NLP tasks. In essence, GLUE assesses
the natural language understanding capabilities of
NLP models. So, it constitutes a suitable stack to
evaluate the semantic preservation of Att-D. In this
experiment, we finetune BERT on seven different

We also report the difference in accuracy between
original BERT and each of the debiasing baselines.
Surprisingly, Att-D not only preserves semantic
information, but enhances it in most GLUE tasks
as reflected in an increase in accuracy from BERT.

5 Conclusion and Future Work

In this paper, we proposed a finetuning approach to
debiasing that trains the text encoder to distribute
its attention equally on different social groups. Ex-
periments demonstrate that bias is successfully re-
duced without harm to semantic representativeness.
However, we are aware of the following limitations:
(1) our definitions of biases are simplified. There
are more social divisions in the real world than the
five dimensions we studied. Besides, bias types
can be correlated in intricate ways such as the links
between race, nationality and ethnicity. Moreover,
it is not clear which or how many groups to include.
For these reasons, we follow previous work and
constrain our experiments to common use-cases.
We plan to study the effect that the choice of defini-
tion tuples and their order impose overall. (2) We
calibrate attention scores of every word in the input.
However, some words are inherently charged with
a strong inclination toward one group, e.g., beard to
male or pregnant to female. Such words need not
be debiased, which requires compiling expensive
lists of related words for every social group and
protecting them from attention equalization. In this
work, we rely on knowledge distillation to retain as
much useful semantic information as possible. (3)
Current bias detection experiments have positive
predictive ability, which means that they can only
detect the presence of bias, not the absence of it.
Although contemporary evaluation tools demon-
strate the effectiveness of our debiasing method, it
is possible that bias is still hiding under shapes and
forms that we failed to detect. We plan to address
these limitations in future work.
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A Appendix

A.1 Training Hyperparameters

We used Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 5~ for 3 epochs. We keep
the betas to their default values (0.9, 0.999) as in
PyTorch implementation (Paszke et al., 2017). We
set the loss coefficient A to 2.0 and the negative
ratio 7 to 0.8 meaning that in 80% of the iterations,
we use negative examples whose number we set to
5 in each negative iteration. We only finetuned the
values of A, ), the learning rate, and the number of
epochs. We conducted the hyperparameter search
manually on the development set.

As for GLUE experiments, we follow the experi-
mental setup of (Devlin et al., 2018) and train each



task for 3 epochs with a learning rate of 2¢~° on
their respective training data.

A.2 Definition of bias types and social groups
used in this paper

While the approach is independent of the definition
of social groups and categories (it could work for
any kind of grouping, e.g., cuisine styles or sports),
in the experiment we focus on groups commonly
used in the debiasing literature: binary gender, re-
ligion, race, age and sexual orientation. This is to
facilitate comparison, but nothing in the approach
prevent it from being used with broader and more
inclusive groups. This being said, we have not ex-
perimented yet with debiasing where a dimension
is divided in dozens of categories.

We list the definition tuples that we used in Ta-
ble 6. We show that Att-D does not incur strict
rules for defining social groups, unlike previous
work (Bolukbasi et al., 2016; Kaneko and Bolle-
gala, 2019, 2021) that require the definition words
to be organized in a predefined format (pairs of
words or bag of words for every group), and pro-
vided in relatively large quantities. We can see
from Table 6 that it is sufficient to define one tuple
per bias type (e.g., race) if the tuples are hard to
come by. Also, the tuples need not be of the same
size (e.g., in religion there is a missing word for
buddhist group since it is not clear which word
to use in that tuple). This desired property owes
to the fact that Att-D does not learn subspaces or
directions for every bias type as previous works
do (Bolukbasi et al., 2016; Kaneko and Bollegala,
2019; Kumar et al., 2020; Kaneko and Bollegala,
2021). In contrast, Att-D uses the tuples in order
to equalize the attentions of the input sentence, and
make the words therein attend to the groups with
the same intensity. These example categories used
in experiments are neither complete nor exhaustive,
and in some experiments also include terms possi-
bly considered inappropriate but that appear in the
corpus and we may still want to debias from (such
as using "straight" to define heterosexual).

A.3 Extrinsic bias evaluation on the task of
hate-speech detection

Recent studies show that intrinsic metrics of bias
do not necessarily correlate with bias measures on
concrete real-world applications (Goldfarb-Tarrant
et al., 2020). In the body of this paper, we already
conducted intrinsic and extrinsic bias evaluations.
In this experiment, we validate the efficacy of our
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debiasing method on a concrete real-world hate
speech detection application where an input snippet
of text is classified as either offensive (toxic, harm-
ful, disrespectful...) or not. We use hate speech
detection because it is well studied in the literature
(Burnap and Williams, 2016; Ribeiro et al., 2018;
Zhang et al., 2018), and high-quality datasets which
are tagged with social groups already exist (Borkan
et al., 2019; Mathew et al., 2021).

Admittedly, common social biases have also
been shown to exist in hate speech detection mod-
els, for example in associating toxicity to frequently
attacked groups (such as "muslim" or "gay") even
if the text itself is not toxic (Dixon et al., 2018;
Park et al., 2018). In this experiment, we adopt
the bias definition of Borkan et al. (2019) which
casts bias as a skewing in the hate speech detector
scores based solely on the social groups mentioned
in the text. In other words, we consider a model to
exhibit unintended social stereotypes if the model’s
performance varies across groups. We use the bias
measures proposed by Borkan et al. (2019) which
are based on the Area Under the Receiver Operat-
ing Characteristic Curve (ROC-AUC, or AUC) met-
ric. AUC measures the probability that a randomly
chosen negative example (not offensive) receives a
lower toxicity score than a randomly chosen pos-
itive example (offensive), meaning that a perfect
model should always have an AUC score of 1.0.
Stated differently, all negative examples have lower
toxicity scores than positive examples. While AUC
is used to measured the general performance of
classifiers, Borkan et al. (2019) propose three ex-
tensions of AUC to measure bias. We summarize
them in the following:

Subgroup (Sub) AUC: where AUC is computed
only on the group under consideration and not on
all the examples of the test benchmark, i.e. only
positive and negative examples of the target group
are considered. This metric represents the model’s
performance on a given group. A higher value
means that the model is good at distinguishing
between toxic and non-toxic texts specific to the
group.

Background Positive Subgroup Negative
(BPSN) AUC: where AUC is calculated on the
negative examples of the target group, and the pos-
itive examples of the background (all other groups
except the group under consideration). This metric
computes whether the model discriminates against
the target group with respect to the others. This



Table 6: Full list of definition tuples for bias types and social groups used in this work

gender | religion
male female ‘ muslim christian Jjewish buddhist
man woman muslim christian jewish buddhist
boy girl muslims christians jews buddhists
father mother islam christianity judaism buddhism
brother sister mosque church synagogue temple
grandfather ~ grandmother quran bible torah
son daughter imam priest rabbi monk
gentleman lady mohammad jesus moses buddha
he she
his her
himself herself
race | age | sexual orientation
white  black  asian  hispanic ‘ old young ‘ heterosexual — non-heterosexual
white black asian  hispanic old young straight gay
elderly youth straight lesbian
adult child heterosexual homosexual
senior junior | heterosexual bisexual
adult  teenager
value is reduced when non-toxic examples of the
. . . b|
roup have higher toxicity scores than actuall |
group have hig y y GMBH) = (=Y ) @
toxic examples of the background. B 9
g=1

Background Negative Subgroup Positive
(BNSP) AUC: where AUC is calculated on the pos-
itive examples of the target group, and the negative
examples of the background. This metric computes
whether the model favors the target group with re-
spect to the others. This value is reduced when
toxic examples of the group have lower toxicity
scores than non-toxic examples of the background.

In this experiment, we finetune the text encoder
under study on hate speech detection task using the
training set of HateXplain dataset (Mathew et al.,
2021). We also use the test portion of HateXplain
for the evaluation, which contains posts from Twit-
ter'? and Gab'? annotated with their ground-truth
toxicity scores and the social groups and communi-
ties they target. Fundamentally, the three metrics
described above give bias scores per group. In or-
der to combine the per group scores in one overall
measure, we apply the Generalized Mean of Bias
(GMB) introduced by the Google Conversation Al
Team as part of their Kaggle competition'*, and
later used by Mathew et al. (2021) in their own
evaluations. The formula of GMB is as the follow-
ing:

Phttps://twitter.com

Bhttps://gab.com

Yhttps://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification/overview/evaluation
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where b is an array of AUC scores per group, and
by is the AUC score of group g. We follow Mathew
et al. (2021) and set p to -5. We compute the GMB
of all three metrics: Subgroup, BPSN and BNSP.
As for Subgroup, we also add the standard devi-
ation as it gives valuable information about how
much the performance of the hate speech detection
model varies across groups. We report our results
in Table 7, in addition to classic performance mea-
sures.

We observe that Att-D provides competitive re-
sults across the four bias metrics, and largely out-
performs the baselines. Especially with GMB-
BNSP, where bias scores of the original model are
very low (i.e. it is throttled by social biases), we ob-
serve the best improvements overall, and by a large
margin compared to existing debiasing methods.
Also, the variance in model performance is lowest
with Att-D, which confirms that the corresponding
hate speech detection model has less stereotypes
about different social groups. Finally, the general
performance (Accuracy, F1 score and AUC) of the
hate speech detection model after debiasing is not
hurt.

A.4 Visualizing debiasing results

In this experiment, we aim to visualize the effects
of debiasing on attention weights. We only fo-



Table 7: AUC-based bias measures on hate speech detection task

Performance Bias
Models | Acct  FIf  AUC? | STD-Sub, GMB-Sub? GMB-BPSNT GMB-BNSP?
BERT | 0.783 0.823 0.870 | 0.119 0.698 0.800 0.379
Sent-D | 0.791 0.825 0.870 | 0.121 0.689 0.725 0.583
Kaneko | 0.797 0.833 0.872 | 0.112 0.705 0.789 0.512
Att-D | 0789 0.829 0.866 | 0.085 0.808 0.793 0.726

cus on binary gender bias for two reasons: First,
it is easier to visualize binary variables on a 2D
plane than multiclass variables (such as race, reli-
gion...). Second, gender is the most well studied
bias type (Bolukbasi et al., 2016; Caliskan et al.,
2017; May et al., 2019), so linguistic resources and
vocabularies for gender exist and are well docu-
mented. We use the vocabulary words compiled by
(Kaneko and Bollegala, 2019) and categorized into
three non-overlapping subsets: (1) Male-definition
QM whose corresponding words are exclusively
male-gendered such as father, king or uncle. (2)
Female-definition ¥ which is a set of inherently
female words (mother, queen, aunt...). (3) Gender-
stereotype 2° which is constituted of words that
are not gendered by definition, but that carry a
strong gender stereotype such as doctor being at-
tributed to male or nurse to female.

For every word w € QM UQF U Q7 we extract
sentences from the News-commentary-v15 corpus
where w is mentioned. We denote this set as S%.
Then, for every sentence s € S, we append the
dummy input "man, woman" as explained in Sec-
tions 3.1 and 3.2.1. The augmented input s’ is then
fed to the text encoder of interest (BERT base in
this experiment), and we collect the attention scores
of w on the second-half tokens man and woman.
Finally, for every word w € QM U QF U Q°, we
take the mean of its attention scores in S*. By the
end of this procedure, we have for every word w its
attention score on the words man (a;>) and woman
(a?) as computed on the News-commentary-v15
corpus which includes overall 223,153 sentences.
We take the difference a,;, — a’ which indicates
the preference of the text encoder to consider w
as male (positive difference) or female (negative
difference). The absence of gender bias is reflected
in difference scores near zero.

We plot the results in Figure 3 where the x-axis
represents the differences a;, — a¥, and the y-
axis random values to separate the words vertically.

14

Stereotype words (green dots) should have values
near 0, which is not the case in Figure 3(b). This
means that BERT has a strong preference for one
of the genders, and is thus heavily biased. In con-
trast, our method brings the attention of stereotype
words near 0, meaning that they prefer neither male
nor female connotations. Moreover, the spread of
stereotype words in Figure 3(d) is narrower than
male- or female-oriented words, which is desired
since these are inherently gendered and must pick
a side. This result strengthens the claim that Att-D
preserves semantic information, and is less severe
in reducing bias from gendered words as it is on
gender-neutral words. The difference in spread is
less apparent in the original BERT model. We also
note that debiasing the embeddings of BERT rather
than the attention mechanism as in (Kaneko and
Bollegala, 2021) (Figure 3(c)) is not enough since
bias information is still lurking (and perhaps made
worse for some words) in the attention component.
Thus, we conclude that working on attention di-
rectly constitutes our best option for debiasing to
date.

A.5 Effect of the choice of layers

Transformer-based text encoders consist of many
layers. It is not clear which layers to choose for de-
biasing since bias information is spread out across
all of them. In this experiment, we try different de-
biasing settings in which we select different layer
combinations of BERT to work on: all layers, first
6, first 3, last 6, last 3, and alternating layers with
strides of I (layers 2, 4, 6, 8, 10 and 12) or 2 (lay-
ers 4, 8 and 12). We apply the debiasing method
proposed in this paper, and report both language
modeling and stereotype scores of StereoSet bench-
mark in Table 8.

The results show that it is safest to equalize at-
tention heads of all layers of the text encoder under
study, since it produces the best scores both in
terms of language modeling and stereotype. Our
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Figure 3: Scatter plots of attention scores on male - female direction. (a) Original BERT, (b) BERT debiased by
Sent-D (c) BERT debiased by (Kaneko and Bollegala, 2021), (d) BERT debiased by Att-D

Table 8: Language modeling (Im) and Stereotype scores (ss) of different layer combinations on StereoSet.
Underlined depicts the best language modeling score, while bold shows the best stereotype score

Models | first3 | firsst6 | last3 | last6 | lstride | 2-stride | all
Overall (Im/ss) | 83.17 5428 | 78.80 54.04 | 82.51 54.13 | 81.92 5433 | 82.70 54.42 | 82.68 54.04 | 83.34 53.04

gender (Im/ss) 78.04 5529 | 71.96 55.69 | 7843 56.08 | 77.65 55.69 | 76.47 5529 | 7843 5451 | 78.24 53.73
race (Im/ss) 87.11 54.05 | 83.16 54.16 | 85.71 54.05 | 85.40 54.57 | 85.76 54.26 | 86.38 5291 | 86.28 51.87
religion (Im/ss) | 87.82 51.28 | 87.82 57.69 | 85.90 52.56 | 88.46 57.69 | 88.46 53.85 | 86.54 60.26 | 88.46 53.85
profession (Im/ss) | 79.67 54.51 | 7491 53.03 | 79.67 53.77 | 7849 53.28 | 80.47 54.39 | 79.23 54.64 | 80.96 54.14
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Table 9: Effect of negative examples on GLUE tasks.
The table shows accuracy scores for sst2, rte, wnli, and
mnli for both matched and mismatched instances; f1
for mrpc; spearman correlation for stsb; and matthews
correlation for cola

Double sentence tasks
mrpc  mnli (m/mm)  rte

9225 83.54/82.68 70.04 45.07

91.22 84.63/84.19 7040 53.52
80.44 84.59/83.96 58.12 39.44

Single sentence tasks

sst2 cola stsb wnli

Models
BERT
Att-D
Att-D

92.78
92.66
9232

56.05
55.22
56.25

88.97
89.62
89.12

findings go in tandem with those of (Liang et al.,
2020b; Kaneko and Bollegala, 2021; Bhardwaj
et al., 2021) who found that reducing bias from
all layers usually is the best option.

A.6 Effect of negative examples on
representativeness

We remind that the introduction of negative exam-
ples to training serves in forcing the text encoder
not to rely on a dangerous shortcut which is dis-
tributing its attention uniformly on all the tokens
constituting the second half of the input, no matter
what the input is. This is particularly important
in double-sentence tasks where the text encoder is
given two input sentences. In addition to Tables 2
and 3 which highlighted the effect of negative sam-
pling on the final stereotype scores, the primary
goal of using negative examples remains the preser-
vation of the text encoder’s representativeness. In
Table 9, we report the performance of Att-D and
Att-D™ with and without negative examples respec-
tively on GLUE tasks. Unsurprisingly, the lack
of negative examples does not damage the perfor-
mance of single-sentence tasks since these ignore
the second half of the input altogether. However, in
double-sentence tasks where both halves are used
for prediction, Table 9 shows that negative sam-
pling plays a pivotal role in preserving the seman-
tics of text encoders, and bypassing the side effects
inflicted by attention equalization.

A.7 Word-Level vs Sentence-Level Debiasing

As previously explained in the paper, Att-D cal-
ibrates the attention weighs of all tokens of the
input sentence on group-related words. Since we
used BERT-based models in our experiments, the
first token in the input is the special [CLS] token,
which is considered by the NLP community as a
vector representation for the entire input sentence.
In the current version of Att-D, we also calibrate
the attention weighs of the special [CLS] token on
groups, in addition to calibrating the other tokens
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of the sentence. One can see this notion as a com-
bined word-level and sentence-level debiasing. In
this experiment, we motivate this design choice by
comparing it to word-level and sentence-level de-
biasing separately. For word-level, we exclude the
[CLS] token from the attention equalization pro-
cess, whereas in sentence-level we only calibrate
the attention of [CLS]. We use all the bias eval-
uations run so far to understand the difference in
performance. Tables 10, 11, 12, 13 and 14 report
the results of StereoSet, Crows-Pairs, inference,
hate speech and GLUE experiments respectively.
We denote word-level debiasing by No [CLS], and
sentence-level debiasing by Only [CLS] in the ta-
bles. The combination of both is referred to as
Att-D, and is the variant that we promote in this
paper. We observe that while the three settings are
good at reducing bias from text encoders, Att-D is
superior than word-level and sentence-level debi-
asing since it capitalizes on the benefits of both. It
enjoys the fine granularity of reducing bias from
every word, while it also mitigates biases that man-
ifest at sentence-level.

A.8 Static vs Random ordering of
group-related words

In the preprocessing step of our method (as ex-
plained in Section 3.2.1), we use a preset order-
ing of group-related words of a given bias type to
form the second input. For example, if we have
the groups Muslim, Christian, Jew and Buddhist
defining the religion bias type, Att-D constructs
the second input using the same preset ordering of
groups across all samples of the training data. Con-
tinuing the example above, Att-D appends the fol-
lowing artificial sentence "muslim, christian, jew,
buddhist". In this experiment, we change the or-
dering of groups in a random way. Tables 10, 11,
12, 13 and 14 also report the bias scores of Att-D
(static ordering) and Att-D with random ordering.

Although the semantic performance of Att-D
with random ordering is better, we notice that it
suffers from a stronger presence of bias than in
its static counterpart. In Table 13, Att-D with ran-
dom ordering has an AUC score of 0 in one of the
groups, which made the GMB extremely small. We
suspect that the relatively poor fairness of random
ordering owes to the fact that the model might be
confused by different orderings throughout the it-
erations. A more serious analysis of the impact of
group order on the overall performance (fairness



Table 10: Language modeling (Im) and Stereotype
scores (ss) on StereoSet of different variants of Att-
D

Models | At-D || No[CLS] | Only[CLS] || Random Order
Overall (Im/ss) || 83.34 53.04 || 80.37 53.71 | 81.70 5551 || 8291 5475
gender (Im/ss) || 78.24 5373 || 76.86 5294 | 75.88 54.51 || 79.02 5569
race (Im/ss) 86.28 51.87 || 84.10 5301 | 8524 5509 || 86.75 54.57
religion (Im/ss) || 8846 53.85 || 84.62 60.26 | 8526 56.41 || 87.18  56.41
profession (Im/ss) || 80.96 54.14 || 76.63 54.14 | 78.99 5624 || 79.17 5451

Table 11: Bias measurements of different variants of
Att-D on Crows-Pairs

Models || Att-D || No[CLS] Only [CLS] | Random Order
Overall | 557 | 6.1 555 | 58.36
gender 5736 || 50.76 50.0 53.82
race 5115 || 54.84 53.1 57.75
religion 64.76 || 69.52 65.71 67.62
age 4368 || 56.32 44.83 54.02
sexual orientation || 58.33 71.43 63.1 64.29
nationality 57.86 || 53.46 65.41 62.28
disability 60.0 61.67 58.33 65.0

and semantics) of Att-D motivates the direction of
future work.

A.9 Effect of Att-D on other
transformer-based text encoders

We evaluate five widely used sentence-level text en-
coders: BERT (Devlin et al., 2018), ALBERT (Lan
et al., 2019), RoBERTa (Liu et al., 2019), Distil-
BERT (SANH et al.) and SqueezeBERT (Iandola
et al., 2020). For each model, we evaluate both
its base and large variants (except for DistIBERT
and SqueezeBERT since these are not available
in HuggingFace’s transformers library'?), original
and debiased; which gives a total of sixteen eval-
uated models. We use Crows-Pairs dataset (Nan-
gia et al.) to quantify the intensity of undesired
stereotypes encoded therein. As a reminder, ideal
stereotype scores according to Crows-Pairs bench-
mark should be close to 50, i.e. models preferring
neither stereotypes nor anti-stereotypes. Tables 15,
16, 17 and 18 show the bias results for BERT, AL-
BERT, RoBERTa and DistillBERT/Squeeze BERT
respectively.

All five models exhibit substantial levels of bias,
and in each of the bias types with differing intensi-
ties (religion, sexual orientation and disability be-
ing the bias categories with the most severe stereo-
typing). Also, we find that the large variants are
more biased than their base counterparts mainly be-
cause large models, with their larger capacity and
greater number of parameters, can capture more

Shttps://huggingface.co/transformers/index.html
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Table 12: Inference-based bias measurements on differ-
ent variants of Att-D. Best scores are highlighted with
bold character, underlined, or marked with } for gen-
der, race and religionf respectively

Model | Biastype | NN FN  7:0.5  7:0.7
gender 01.31 0043 00.35 00.21

Att-D race 9331 93.94 9390 93.04
religion | 68.51F  69.08" 68.957 66.97°

gender | 00.85 00.36 0030  00.20

No [CLS] race 76.14 7624 7619 7426
religion | 40.80 40.04 39.98 37.78

gender | 0235 0160 01.38  00.90

Only [CLS] race 81.63 81.52 8150 80.37
religion | 44.40 44.01 4395 4276

gender | 01.54 0051 0039 00.23

Random Order race 5471 5492 5489 52.49
religion | 26.94 26.67 2659 24.58

intricate and more sophisticated aspects of training
data, exposing them to learn more bias. This find-
ing corresponds well to results of previous work
(Nangia et al.; Nadeem et al., 2020). The tables
also show that Att-D is effective in mitigating bias
from BERT, ALBERT, RoBERTa, DistilBERT and
SqueezeBERT, and produces a reduction of up to
25%. We note that Att-D succeeds in debiasing
all models, with varying effectiveness across bias
types. We also note that Att-D meets the best suc-
cess with ALBERT as reductions are greater on this
particular text encoder. We believe this is because
ALBERT is composed of a single transformer layer
(Lan et al., 2019) with substantially less parameters
than BERT or RoOBERTa; which makes debiasing
easier since there is no interference between differ-
ent attention layers. Finally, we see from the tables
that Att-D sometimes contributes to adding a bit of
bias. We observe that this phenomenon is rare, and
happens especially with bias types we did not in-
clude in our design'®. We assume that not explicitly
compelling the text encoder to equalize attention
heads corresponding to these overlooked bias types
gave it green light to adjust these attentions in a
way to facilitate solving the optimization problem;
even if it entails adding bias. We plan to include
all bias types present in Crows-Pairs dataset to our
debiasing design as a future work.

1911 the current version of this work, we remind that we
only consider five bias types: gender, race, religion, age and
sexual orientation



Table 13: AUC-based bias measures on hate speech detection task on different variants of Att-D

Performance Bias
Models Acct  FIt  AUCT | STD-Sub, GMB-Subt GMB-BPSNT GMB-BNSPt
Aw-D | 0.789 0.829 0.866 | 0.085 0.808 0.793 0.726
No[CLS] |0.791 0.830 0.871 | 0.114 0.710 0.797 0.530
Only [CLS] | 0.765 0.805 0.838 | 0.142 0.660 0.766 0.636
Random Order | 0.784 0.822  0.861 | / / 0.764 /

Table 14: GLUE performance of different variants of Att-D. The table shows accuracy scores for sst2, rte, wnli,
and mnli for both matched and mismatched instances; f1 for mrpc; spearman correlation for stsb; and matthews
correlation for cola

Single sentence tasks Double sentence tasks
Models sst2 cola stsb  mrpc mnli (m/mm) rte wnli
Att-D ‘ 92.66 55.22 ‘ 89.62 91.22 84.63/84.19 7040 53.52
No [CLS] 91.51 40.85 88.94 91.62 84.49/84.02 6895 40.85
Only [CLS] | 92.43 55.23 89.43 90.04 84.42/84.67 71.84 2394
Random Order | 93.23 59.07 | 88.85 91.94 83.75/84.86 71.84 30.99

Table 15: Bias reduction in BERT base and large measured on Crows-Pairs dataset. Each cell is organized as
follows: o — d +/-diff where o is the stereotype score of the original model, d is that of the debiased model using
attention-based debiasing, and di f f is the difference in stereotype score. Negative values correspond to reduction
in bias (desired) where positive values mean addition of bias (undesired).

Models | BERT base | BERT large
Overall | 60.48 —55.70 -04.78 | 59.68 — 56.96  -02.72
race 58.14 — 51.15 -06.99 | 60.08 — 53.49 -06.59
gender 58.02 =+ 57.36 -00.66 | 55.34 — 53.05 -02.29
socioeconomic 59.88 — 51.16 -08.72 | 56.40 — 57.56 +01.16
nationality 62.89 — 57.86 -05.03 | 52.20 — 57.23 +05.03
religion 7143 — 64.76  -06.67 | 68.57 — 66.67 -01.90
age 55.17 — 43.68 +01.15 | 55.17 — 54.02 -01.15
sexual orientation 67.86 — 58.33 -09.53 | 6548 — 67.86 +02.41
physical appearance | 63.49 — 61.90 -01.89 | 69.84 — 65.08 -04.76
disability 61.67 — 60.00 -01.67 | 76.67 — 65.00 -11.67
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Table 16: Bias reduction in ALBERT base and large measured on Crows-Pairs dataset. Each cell is organized as
follows: o — d +/-diff where o is the stereotype score of the original model, d is that of the debiased model using
attention-based debiasing, and di f f is the difference in stereotype score. Negative values correspond to reduction

in bias (desired) where positive values mean addition of bias (undesired).

Models | ALBERTbase |  ALBERT large
Overall | 56.76 —51.99  -04.77 | 60.48 — 53.58 -06.90
race 51.36 — 48.84 -00.20 | 59.11 —50.97 -08.14
gender 5420 — 53.44  -00.76 | 56.11 — 48.47 -04.58
socioeconomic 6047 — 61.05 +00.58 | 54.07 — 50.00 -01.16
nationality 51.57 — 57.86  +06.29 | 62.26 — 60.38 -04.07
religion 59.05 — 60.00 +00.95 | 76.19 — 61.90 -14.29
age 65.52 — 42.53  -08.05 | 54.02 — 54.02 -00.00
sexual orientation 75.00 — 38.10 -13.10 | 71.43 — 63.10 -08.33
physical appearance | 46.03 — 41.27 +04.76 | 58.73 — 57.14 -01.59
disability 86.67 — 61.67 -25.00 | 73.33 — 58.33 -15.00

Table 17: Bias reduction in ROBERTa base and large measured on Crows-Pairs dataset. Each cell is organized as
follows: o — d +/-diff where o is the stereotype score of the original model, d is that of the debiased model using
attention-based debiasing, and di f f is the difference in stereotype score. Negative values correspond to reduction
in bias (desired) where positive values mean addition of bias (undesired).

Models | RoBERTabase |  RoBERTalarge
Overall | 53.98 —51.39  -02.59 | 61.27 — 56.83 -04.44
race 47.09 — 5039 -02.52 | 61.43 —53.49 -07.94
gender 5496 —45.80 -00.76 | 51.91 —+ 5191 -00.00
socioeconomic 56.40 — 55.81 -00.59 | 66.28 — 59.88 -06.40
nationality 45.28 — 43.40 +01.88 | 56.60 — 55.35 -01.25
religion 56.19 — 60.00 +03.81 | 59.05 — 62.86 +03.81
age 64.37 — 56.32  -08.05 | 71.26 — 62.07 -09.19
sexual orientation | 69.05 —48.81 -17.86 | 71.43 —+59.52 -11.91
physical appearance | 66.67 — 60.32 -06.35 | 68.25 — 66.67 -01.58
disability 71.67 — 65.00 -06.67 | 66.67 — 70.00 +03.33

Table 18: Bias reduction in DistiIBERT and SqueezeBERT measured on Crows-Pairs dataset. Each cell is organized
as follows: o — d +/-diff where o is the stereotype score of the original model, d is that of the debiased model using
attention-based debiasing, and di f f is the difference in stereotype score. Negative values correspond to reduction

in bias (desired) where positive values mean addition of bias (undesired).

Models | DistilBERT | SqueezeBERT
Overall | 56.83 5126 -05.57 | 57.43 — 5471 -02.72
race 53.29 —47.87 -01.16 | 55.04 — 56.01 +00.97
gender 54.58 — 46.56 -01.14 | 52.67 — 48.47 -01.14
socioeconomic 55.81 — 58.14 +02.33 | 57.56 — 51.16 -06.40
nationality 54.09 — 5094 -03.15 | 53.46 — 61.01 +07.55
religion 70.48 — 57.14 -13.34 | 7429 — 60.95 -13.34
age 59.77 — 48.28 -08.05 | 55.17 — 48.28 -03.45
sexual orientation | 70.24 — 55.95 -14.29 | 70.24 — 57.14 -13.10
physical appearance | 55.56 — 63.49 +07.93 | 52.38 — 52.38 -00.00
disability 61.67 — 56.67 -05.00 | 70.00 — 61.67 -08.33
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