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Abstract

Continual fine-tuning of Large Language Mod-001
els (LLMs) is hampered by the trade-off be-002
tween efficiency and expressiveness. Low-003
Rank Adaptation (LoRA) offers efficiency but004
constrains the model’s ability to learn new005
tasks and transfer knowledge due to its low-006
rank nature and reliance on explicit parame-007
ter constraints. We propose GORP (Gradient008
LOw Rank Projection for Continual Learn-009
ing), a novel training strategy that overcomes010
these limitations by synergistically combining011
full and low-rank parameters and jointly up-012
dating within a unified low-rank gradient sub-013
space. GORP expands the optimization space014
while preserving efficiency and mitigating015
catastrophic forgetting. Extensive experiments016
on continual learning benchmarks demonstrate017
GORP’s superior performance compared to ex-018
isting state-of-the-art approaches.019

1 Introduction020

Large Language Models (LLMs) have demon-021

strated remarkable capabilities in areas like in-022

context learning (Hendel et al., 2023; Liu et al.,023

2024b) and instruction following (Wei et al.,024

2022b,a). To adapt these large models to specific025

downstream tasks, traditional full fine-tuning im-026

poses prohibitive computational costs and mem-027

ory requirements, which has driven extensive re-028

search into parameter-efficient fine-tuning (PEFT)029

approaches (Houlsby et al., 2019; Hu et al., 2022;030

Ben Zaken et al., 2022). Low-Rank Adaptation031

(LoRA) (Hu et al., 2022), in particular, has become032

a popular PEFT technique, especially in continual033

learning scenarios (Chitale et al., 2023; Wistuba034

et al., 2024), due to its efficiency and ability to035

mitigate catastrophic forgetting (Biderman et al.,036

2024).037

While LoRA significantly reduces training com-038

plexity and storage, the low-rank matrices inher-039

ently constrain the parameter space and, conse-040

quently, the model’s expressiveness during opti- 041

mization (Zhao et al., 2024). This restriction to a 042

low-rank subspace can lead to suboptimal perfor- 043

mance compared to full fine-tuning, a gap that of- 044

ten widens in continual learning settings (Xia et al., 045

2024; Mahla et al., 2025). Furthermore, LoRA 046

updates are intertwined with shared parameter up- 047

dates, potentially causing collisions in the parame- 048

ter spaces of different tasks (Wang et al., 2023; Lu 049

et al., 2024). Gradient projection has emerged as 050

a promising mitigation strategy (Saha et al., 2021; 051

Wang et al., 2021; Kong et al., 2022; Saha and Roy, 052

2023). Common approaches involve calculating 053

the hidden feature space and projecting it onto the 054

orthogonal gradient space of the old task. However, 055

gradient spaces for different tasks are heteroge- 056

neous and dynamically evolving. Existing methods 057

that impose explicit constraints (e.g., parameter reg- 058

ularization) on LoRA’s low-rank parameters (Wang 059

et al., 2023; Du et al., 2024; Yang et al., 2025) can 060

only approximate the ideal parameter space and 061

fail to adapt dynamically to the changing gradient 062

space of new tasks (Liu et al., 2024a). Moreover, 063

these explicit constraints often struggle to capture 064

shared features across tasks, hindering knowledge 065

transfer. 066

To address these limitations, we introduce 067

GORP(Gradient LOw Rank Projection for Con- 068

tinual Learning), a novel training strategy for con- 069

tinual fine-tuning of LLMs that synergistically inte- 070

grates full and low-rank parameter updates within 071

a low-rank gradient subspace. GORP effectively 072

balances the stability-plasticity dilemma inherent 073

in continual learning (see Table 1 for a compar- 074

ison with other methods). From a plasticity per- 075

spective, GORP enhances LoRA by incorporating 076

learnable full-rank parameters for the current task. 077

Crucially, we exploit the observation that gradients 078

tend to adopt a low-rank structure during training 079

(Zhao et al., 2024). Therefore, we project the gra- 080

dients of these full-rank parameters into a low-rank 081
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Parameters Parameter Constraints Gradient Space
Method Full-rank Low-rank Explicit Implicit Low-rank Adaptability

O-LoRA (Wang et al., 2023) % ! ! % % Static
MIGU (Du et al., 2024) % ! % ! % Static
N-LoRA (Yang et al., 2025) % ! ! % % Static

GORP(Ours) ! ! % ! ! Dynamic

Table 1: Comparison of continual fine-tuning methods on training parameters, parameter constraints and Gradient
Space Adaptability.

space, maintaining fine-tuning efficiency while sig-082

nificantly expanding the search space for optimal083

solutions. From a stability perspective, GORP de-084

parts from prior methods that rely on explicit con-085

straints. Recognizing the limitations of directly086

sampling subspaces from large-scale models, we087

leverage the first-order moment of gradients to im-088

plicitly capture the dynamic properties of the gra-089

dient space. This approach provides a more robust090

and comprehensive representation of the gradient,091

reducing computational complexity compared to092

methods that directly manipulate the hidden fea-093

ture space (Saha et al., 2021; Zheng et al., 2024a;094

Qiao et al., 2024). We evaluate GORP on several095

continual fine-tuning evaluations, demonstrating its096

superior performance compared to existing state-097

of-the-art methods. Our results confirm that GORP098

provides a more effective approach for continual099

fine-tuning of LLMs.100

Our main contributions are summarized as fol-101

lows:102

• We leverage the complementary strengths of full103

and low-rank parameters by jointly updating104

them within a unified low-rank gradient subspace.105

This expands the search space for optimal solu-106

tions while retaining the efficiency of low-rank107

adaptation.108

• We utilize the first-order moment of gradients to109

approximate the hidden feature space, providing110

a more robust and efficient way to construct a gra-111

dient subspace. This mitigates catastrophic for-112

getting and minimizes computational overhead.113

• We introduce GORP, a novel training strategy114

that effectively balances stability and plasticity in115

continual learning, outperforming existing meth-116

ods while maintaining fine-tuning efficiency.117

2 Related Works 118

2.1 Parameter-efficient Fine Tuning of LLMs 119

Various efficient parameter fine-tuning methods in- 120

clude adapters (Houlsby et al., 2019), Low-Rank 121

Adaptation (LoRA) (Hu et al., 2022), and param- 122

eter subset techniques (Ben Zaken et al., 2022). 123

These methods have tackled the challenges in- 124

cluding large number of parameters and substan- 125

tial memory requirements by fine-tuning selective 126

model parameters rather than the entire model. 127

Among these, LoRA has become one of the most 128

widely used methods, which is achieved by freez- 129

ing pre-trained weights and introducing low-rank 130

trainable matrices, effectively reducing the compu- 131

tational burden. Building on LoRA, Lialin et al. 132

(2023) proposed a series of low-rank aggregation 133

updates for learning network parameters. Xia et al. 134

(2024) employed a residual LoRA module at each 135

fixed step, and eventually merging it with the pre- 136

trained model parameters for chained updates. Hao 137

et al. (2024) used random projection sampling to 138

approximate LoRA, enabling high-rank weight up- 139

dates, and optimizing memory usage. 140

2.2 Continual Fine Tuning for LLMs 141

Three widely used continual learning paradigms 142

(Shi et al., 2024; Lu et al., 2024; Zheng et al., 143

2024b) for parameter fine-tuning are Replay-based 144

methods (Zhao et al., 2022; Huang et al., 2024), 145

Architecture-based methods (Badola et al., 2023; 146

Song et al., 2023), and Learning-based methods 147

(Farajtabar et al., 2020; Smith et al., 2024), which 148

employ specific optimization strategies or intro- 149

duce regularization penalties based on the original 150

loss function to balance the trade-off between old 151

and new knowledge. Many studies have demon- 152

strated improved performance through learning- 153

based methods. Qiao et al. (2024) proposed an over- 154

arching framework for continual fine-tuning, estab- 155

lishing diverse paradigms for efficient fine-tuning. 156

However, due to the challenges in obtaining gradi- 157
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ent spaces and the impracticality of using implicit158

feature spaces, Wang et al. (2023) suggested lever-159

aging LoRA itself to represent the gradient space,160

ensuring orthogonality between gradient spaces of161

different tasks to mitigate forgetting. Subsequently,162

Du et al. (2024) focused on screening the normal-163

ized gradients of the hidden linear layer outputs164

and updating the selected parameters to minimize165

gradient conflicts. Yang et al. (2025) introduced166

parameter sparsification constraints, addressing pa-167

rameter conflicts between tasks and ensuring that168

each task’s vector space remains independent. Ad-169

ditionally, Lu et al. (2024) and Chen and Garner170

(2024) employed regularization matrices and intro-171

duced further constraints to enhance the ability of172

LLMs to learn new tasks.173

2.3 Continual learning with Gradient174

Projection175

Gradient projection methods in continual learning176

project the gradient into a subspace of the input’s177

implicit feature space to mitigate catastrophic for-178

getting when learning new tasks. The Gradient179

Projection Memory proposed by Saha et al. (2021)180

leverages the relationship between the input and181

gradient spaces to form a gradient subspace for182

each layer, thereby retaining prior knowledge while183

accommodating new information. However, the184

gradient space can impose restrictive constraints185

on the optimization space for new tasks, potentially186

limiting their learning performance. To facilitate187

both forward and backward knowledge transfer,188

Lin et al. (2022c)(2022b) proposed a scaling matrix189

based on the similarity between new and previous190

tasks, using the frozen weights from the old task to191

scale and update the current task’s weights. In re-192

sponse to the continuous expansion of the gradient193

subspace, Liang and Li (2023) introduced the dual194

gradient projection memory method, which reduces195

memory consumption and adaptively expands the196

dimensionality of the layer, enhancing the model’s197

plasticity for new tasks. Other studies (Kong et al.,198

2022; Wang et al., 2021; Lin et al., 2022a) also im-199

proved continual learning performance by refining200

the gradient space.201

3 Gradient Low Rank Projection202

We introduce GORP, a novel training strategy that203

combines full and low-rank parameters with low-204

rank gradient updates to strike a balance between205

plasticity and stability. The framework, illustrated206

Algorithm 1: Algorithm for GORP
Input :Old task weight W , gradient Gt,

step t, rank r, scale factor α, decay
rates β1, β2, learning rate η,
subspace change frequency T ,
num steps N .

Output :New task weight W
1 Initialize gradient subspace S ← [ ]
2 Initialize first-order moment Mt ← 0
3 Initialize second-order moment Vt ← 0
4 Initialize step t← 1
5 while t ≤ N do
6 if Full-rank Parameters then
7 if t mod T = 0 then // via

Equation 6
8 USV ← SVD(Gt)

9 G
′
t ← U⊤

r Gt

10 else
11 G

′
t → G

′
t−1

12 end
13 end
14 if LoRA Parameters then
15 G

′
t ← Gt

16 end
17 Pt ← Project(G

′
t)// via

Equation 7
18 Mt ← β1Mt−1 + (1− β1)Pt

19 Vt ← β2Vt−1 + (1− β2)P
2
t

20 P
′
t ←Mt/

√
Vt + ϵ

21 Wt ←Wt−1 + η · αUrP
′
t

22 end
23 Update S with Mt// via

Equation 2,3,4
24 return New task weight W

in Figure 1, consists of two main components: (1) 207

the Gradient Shared Space Construction, which em- 208

ploys low-rank moment with distinct parameters 209

to construct a shared gradient space, and (2) the 210

Low-Rank Projection Optimization, which projects 211

the gradient space of both full and low-rank param- 212

eters. The pseudo-code of our method is provided 213

in Algorithm 1. 214

3.1 Gradient Shared Space Construction 215

In this section, we construct a gradient shared space. 216

A common approach for building gradient spaces 217

in continual learning is to randomly sample from 218

hidden layer input features. However, for LLMs 219

trained on vast amounts of data, the limited number 220
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Figure 1: The framework of our Gradient Low Rank Projection (GORP) method. During k-th task training, we
reduce the dimensions of full-rank parameters and project both full and low-rank parameters into the space Sk−1.
Then, we use the first-order moment Mk and a k-rank approximation to construct the Gradient Shared Space Sk.

of sampled features may fail to accurately repre-221

sent the overall data distribution. Consequently, the222

resulting gradients may not align with the overall223

gradient direction during gradient space computa-224

tion.225

To address this issue, we employ low rank mo-226

ment to more accurately represent the overall gradi-227

ent space. Specifically, using Adam as an example,228

for the parameter gradient Gt ∈ Rm×n, there exists229

a first-order moment Mt ∈ Rm×n. Since Adam230

incorporates historical gradient information at each231

iteration, its moment term can theoretically help232

the optimization algorithm better approximate the233

optimal gradient direction for the overall task, par-234

ticularly when the task’s loss function exhibits a235

flat or irregular landscape. Thus, after training, we236

can leverage first-order moment information to cap-237

ture the gradient direction of the current task and238

calculate the gradient sharing space. Let L denote239

the number of parameter layers to be trained.240

For the first task, we utilize first-order moments241

of each layer’s parameters, denoted as M1 =242

{M1
1 ,M

2
1 , . . . ,M

l
1, . . . ,M

L
1 }. We then perform243

singular value decomposition (SVD) on each layer,244

yielding M l
1 = U l

1

∑l
1 V

l
1
⊤. Finally we execute245

a k-rank approximation under the specified con-246

straints:247

∥(M l
1)k∥2F > ϵlt∥M l

1∥2F (1)248

where ϵlt is an approximation threshold. We select249

the first k vectors from U l
1 to form layer gradient250

space, denoted as S l1 = [ul1,1, u
l
1,2, . . . , u

l
1,k], and251

aggregate the layer-wise gradient spaces to obtain252

overall gradient space S = {{S l1}Ll=1} for the cur-253

rent task.254

For task 2 to T, we use the second task as an255

example to illustrate our method. After complet- 256

ing training, we use the first-order moment M2 = 257

{M1
2 ,M

2
2 , . . . ,M

l
2, . . . ,M

L
2 } obtained from the 258

second task to calculate the component that is or- 259

thogonal to the previously gradient space: 260

M̂ l
2 = M l

2 − S l(S l)⊤M l
2 = M l

2 −M l
2,P roj (2) 261

We perform SVD decomposition on the first-order 262

moment of each layer, obtaining M̂ l
2 = U l

2Σ
l
2V

l
2
⊤. 263

Then we apply the updated constraints and the ap- 264

proximation threshold ϵlt to perform a k-rank ap- 265

proximation: 266

∥(M̂ l
2)k∥2F + ∥M̂ l

2,P roj∥2F ≥ ϵlt∥M̂ l
2∥2F (3) 267

Finally, we update the gradient space as follows: 268

S = [S, ul2,1, ul2,2, . . . , ul2,k] (4) 269

As the number of tasks increases, the gradient 270

space will gradually expand. Therefore, it is nec- 271

essary to constrain the gradient space and control 272

its size by filtering the singular values to maintain 273

a fixed dimension. 274

3.2 Low Rank Projection Optimization 275

In this section, we leverage the gradient shared 276

space to project the training parameters effectively. 277

Our training parameters consist of both LoRA and 278

the full-rank parameters. The core idea behind 279

low-rank projection is to reduce redundant infor- 280

mation by constraining updates within the low-rank 281

gradient space, ensuring learning focuses on crit- 282

ical direction updates. This approach mitigates 283

overfitting and improves the model’s generaliza- 284

tion ability in high-dimensional data, resulting in 285

4



a more stable training process, while maintaining286

fine-tuning efficiency.287

Specifically, for LoRA parameters, the projec-288

tion is applied to parameter A, which is projected289

into the gradient shared space. Given the gradient290

GA,l ∈ Rm×n of parameter A and the gradient291

space SA,l
t−1:292

G
′
A,l = GA,l − SA,l

t−1(S
A,l
t−1)

⊤GA,l (5)293

For full-rank parameters, following Zhao et al.294

(2024), we apply low-rank updates during Adam295

optimization rather than full-rank updates. Since296

full-parameter training introduces additional mem-297

ory overhead and given that parameter gradients298

tend to exhibit a low-rank structure over the course299

of training, it is essential to preserve their low-300

rank nature as much as possible throughout the301

optimization. Given a full-rank parameter gradient302

Gt,l ∈ Rm×n, we decompose it into a low-rank303

structure using Gt,l = Ul
∑

l V
⊤
l , then we select304

first k vectors Ul,k and Vl,k, and project them into305

Gt,l as follows:306

G
′
t,l = U⊤

l,kGt,lVl,k (6)307

The original gradient information is compressed by308

projecting Gt,l into a low-rank representation G
′
t,l.309

This reduces the dimensionality of the data while310

preserving its most significant features. Then G
′
t,l311

is projected into gradient space S lt−1 as follows:312

Pt,l = G
′
t,l − S lt−1(S lt−1)

⊤G
′
t,l (7)313

The projected gradient G
′
t,l of LoRA and the low-314

rank projected gradient Pt,l are then optimized by315

Adam:316

Mt,l = β1Mt−1,l + (1− β1)Pt,l (8)317

Vt,l = β2Vt−1,l + (1− β2)P
2
t,l (9)318

P
′
t,l = Mt,l/

√
Vt,l + ϵ (10)319

Finally, the low-rank projected gradient is scaled320

back to the original gradient dimension:321

Ĝt,l = αUl,kP
′
t,lV

⊤
l,k (11)322

Wt,l ←Wt−1,l + ηĜt,l (12)323

where α is the scaling factor and η is the learn-324

ing rate. LoRA gradients do not require dimen-325

sional expansion and directly update the weights326

with Equation 12. However, frequent low-rank327

operations can introduce additional computational 328

overhead. Therefore, we minimize the low-rank 329

operations for full-rank parameters by updating 330

them at fixed intervals. Simultaneously, the pro- 331

jection process in Equation 6 is simplified by pro- 332

jecting the gradients into a subspace, denoted as 333

G
′
t,l = U⊤

l,kGt,l. 334

4 Experiments 335

In this section, we present the experimental setup 336

and evaluate the performance of the proposed 337

GORP method across multiple tasks. The focus 338

is on assessing the advantages of GORP in terms 339

of model performance and adaptability, while also 340

comparing it with existing mainstream methods. 341

4.1 Experimental Setups 342

Models and Datasets. To evaluate the proposed 343

method, we employ two widely adopted language 344

models: the encoder-decoder T5-large model (Raf- 345

fel et al., 2020) with 770M parameters and the 346

decoder-only Llama2 model (Touvron et al., 2023) 347

with 7B parameters. For datasets, we utilize the 348

standard CL benchmarks (Zhang et al., 2015) and 349

the large number of tasks (Razdaibiedina et al., 350

2023) as our experimental datasets. The standard 351

CL benchmarks consist of classification datasets 352

with 4 tasks and 5 categories, while the large num- 353

ber of tasks dataset includes a long-sequence CL 354

dataset with 15 tasks, comprising the GLUE bench- 355

mark (Wang et al., 2018), SuperGLUE benchmark 356

(Wang et al., 2019), and the IMDB movie reviews 357

dataset (Maas et al., 2011). Following the exper- 358

imental setup of Qin and Joty (2022) and Wang 359

et al. (2023), we shuffle the tasks in the datasets 360

and establish three different task orders. Detailed 361

information is provided in Appendix B. 362

Evaluation Metrics. We evaluate the effective- 363

ness of our GORP method from multiple perspec- 364

tives using various evaluation metrics, including 365

Average Accuracy, Backward Transfer (BWT), Pa- 366

rameter Orthogonality, and Gradient Orthogonality. 367

The detailed calculation methods are provided in 368

Appendix C. 369

Baselines. To demonstrate the effectiveness of 370

our method, we compare it with various CL base- 371

line approaches, including both non-continual 372

learning methods and non-continual learning meth- 373

ods. 374
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Standard CL Benchmark Large Number of Tasks
Order-1 Order-2 Order-3 Avg Order-4 Order-5 Order-6 Avg

ProgPrompt 75.2 75.1 75.1 75.1 78.3 77.9 77.9 78.0
PerTaskFT 70.0 70.0 70.0 70.0 78.1 78.1 78.1 78.1
MTL 80.0 80.0 80.0 80.0 76.5 76.5 76.5 76.5
SeqFT 18.9 24.9 41.7 28.5 7.5 7.4 7.5 7.4
SeqLoRA 44.6 32.7 53.7 43.7 2.0 1.9 1.6 1.8
IncLoRA 66.0 64.9 68.3 66.4 54.7 53.2 62.2 56.7
Replay 55.2 56.9 61.3 57.8 44.5 46.5 45.1 45.4
EWC 48.7 47.7 54.5 50.3 46.9 45.6 45.6 46.0
LwF 50.2 52.0 64.3 55.5 49.9 50.5 49.5 49.9
L2P 60.3 61.7 61.1 61.0 56.9 56.9 56.1 56.6
LFPT5 65.3 68.0 71.5 68.3 70.0 73.0 73.8 72.3
O-LoRA 75.4 75.7 76.3 75.8 72.3 64.8 71.6 69.6
MIGU 77.1 77.0 75.6 76.6 67.3 68.5 74.2 70.0
N-LoRA 79.2 78.4 78.8 78.8 73.6 70.3 73.2 72.4
GORP 79.7 79.9 79.7 79.8 76.1 76.2 75.6 76.0

Table 2: Performance comparison across different methods on Standard CL Benchmark and Large Number of Tasks.
The average accuracy after training on the final task is reported.

• Non-Continual Learning Methods: MTL375

(Multi Task Learning), which involves jointly376

training on multiple task datasets, typically repre-377

sents the upper bound of continual learning. Per-378

TaskFT trains an independent model for each379

task, SeqFT (d’Autume et al., 2019) entails con-380

tinual training of all parameters, SeqLoRA fo-381

cuses on training only one LoRA, and IncLoRA382

involves training a new LoRA for each task.383

• Continual Learning Methods: Replay involves384

merging old task data to train new tasks, while385

EWC (Kirkpatrick et al., 2017) and LwF (Li386

and Hoiem, 2018) adjust model parameters using387

regularization losses. L2P (Wang et al., 2022)388

and LFPT5 (Qin and Joty, 2022) dynamically de-389

sign prompts to adapt to new tasks, and O-LoRA390

(Wang et al., 2023) constrains LoRA parameters391

to be orthogonal in a subspace to learn new tasks.392

MIGU (Du et al., 2024) considers output gradi-393

ent normalization distributions to filter parameter394

updates, and N-LoRA (Yang et al., 2025) reduces395

collisions by sparsifying parameter updates.396

4.2 Main Results397

We compare the performance of GORP with base-398

line methods on two types of CL benchmarks. The399

experimental results across different task orders are400

summarized in Table 2.401

Order-1 Order-2 Order-3 Avg
O-LoRA 76.8 75.7 75.7 76.1
N-LoRA 77.2 77.3 78.4 77.6
GORP 78.7 78.8 78.2 78.6

Table 3: Performance comparison of various methods
implemented on the Llama2-7B model, reporting aver-
age accuracy across all task orders and evaluated across
multiple task orders within the Standard CL Benchmark.

Performance on standard CL benchmarks. On 402

T5 model, GORP demonstrates consistent superi- 403

ority over all prior methods across various task 404

sequences, achieving significant improvements on 405

standard continual learning benchmarks. Specif- 406

ically, GORP improves performance by 4% over 407

baseline methods while closely approaching MTL 408

performance. As shown in Table 3, GORP also 409

significantly outperforms baseline methods on 410

LLaMA2-7B, achieving a 2.5% performance gain. 411

These results highlight the effectiveness of our ap- 412

proach, even with larger model parameters. 413

Performance on a Large Number of Tasks. 414

Continual learning tasks with long sequences are 415

generally more challenging. As shown in Table 2, 416

GORP consistently outperforms the baseline meth- 417

ods, achieving a 6.1% performance improvement. 418

It also surpasses other state-of-the-art methods, 419

with GORP’s performance approaching that of 420

MTL. Additionally, GORP performs more simi- 421
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Figure 2: The visualization comparison of gradient orthogonality between Baseline and our method. Although the
first two tasks maintain orthogonality, gradient interference between parameters gradually increases as more tasks
are added, while our method consistently preserves orthogonality.
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Figure 3: Performance comparison of generalization
on unseen tasks. GORP consistently outperforms other
methods across all task orders.

larly to PerTaskFT than other methods, suggesting422

that combining low-rank parameters with full pa-423

rameters helps narrow the performance gap.424

Generalization of LLMs. This part explores the425

generalization ability of our proposed GORP. We426

train on the first T-1 tasks, and test on the unseen427

t-th task, evaluating directly on the unseen task428

for comparison. As shown in Figure 3, the gen-429

erative capability of pre-trained LLMs on unseen430

tasks is nearly zero. Although O-LoRA and its431

improved version, N-LoRA, outperform the pre-432

BWT (%)
Avg Order 1-3 Avg Order 4-6

O-LoRA -7.8 -16.4
GORP -0.8 -4.3

Table 4: The forgetting rate comparison between the
baseline and our proposed method, quantified using
Backward Transfer (BWT) as the evaluation metric. As
evidenced by the comparative results presented in the
table, our method demonstrates a 7% and 12.1% reduc-
tion in forgetting rate compared to the baseline.

trained model on unseen tasks, the GORP method 433

surpasses these comparative methods in generative 434

ability. Across all task order configurations, GORP 435

surpasses N-LoRA and O-LoRA, achieving aver- 436

age performance improvements of 7.0% and 26.2%, 437

respectively. The results demonstrate the superior 438

generative capability of GORP on unseen tasks. 439

4.3 Ablation Study 440

In this section, we conduct ablation experiments to 441

assess the contribution of each component to GORP. 442

As shown in Figure 4, adding low-rank projections 443

to LoRA improves performance by an average of 444

0.7% compared to the baseline. Combining LoRA 445

with full-rank parameters and low-rank projection 446

results in an average improvement of 2.0%, while 447

the overall improvement reaches 3.9%. The results 448
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Method
O-LoRA N-LoRA GORP

FLOPs 68.4 84.3 0.125
(×1012) 1× 1.23× 1.8e-3×
Time/task 128.5 97.7 128.1

1× 0.76× 0.99×

Table 5: Time complexity comparison of different meth-
ods on Standard CL Benchmark.
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Figure 4: Ablation study of our method. B refers to
the baseline method, L refers to low-rank projection for
full-rank parameters, S refers to projection for LoRA,
and G refers to our GORP method, which outperforms
other components.

suggest that the incorporating both full-rank and449

low-rank parameters produces a complementary ef-450

fect. The full-rank parameters enhance model flexi-451

bility and enable finer-grained adjustments, leading452

to improved performance. The ablation results con-453

firm the effectiveness of each component.454

4.4 Model Forgetting455

Forgetting is a critical challenge in continual learn-456

ing. To address this, we compare the forgetting rate457

of GORP with baseline methods. As shown in Ta-458

ble 4, GORP achieves a forgetting rate of just 0.8%,459

while baseline methods exhibit a rate of 7.8%, rep-460

resenting a 7.0% reduction. This result highlights461

the strong anti-forgetting capability of GORP.462

Gradient space plays a crucial role in mitigating463

forgetting. While O-LoRA explicitly enforces or-464

thogonality constraints on LoRA weights, GORP465

applies implicit constraints to regulate gradients.466

We compare the updates of parameter A in GORP467

and O-LoRA from both parameter and gradient468

perspectives, visualizing the weight distribution469

of A and the orthogonality of gradient distribu-470

tions. As shown in Figure 5, the baseline method471

maintains parameter orthogonality throughout. Al-472

though GORP exhibits slightly weaker parameter473

0 20 40 60 80

Task1 and Task2

1.1

1.2

1.3

1.4

Or
th

og
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al
ity

0 20 40 60 80
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1.4

1.5
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Ours

Figure 5: The visualization comparison of parameter
orthogonality between baseline and our method. Al-
though the parameter orthogonality of our method is
higher compared to the baseline, the difference is not
significant.

orthogonality, the difference is minimal. However, 474

GORP demonstrates highly stable gradient orthogo- 475

nality in Figure 2, enabling better gradient direction 476

control while allowing parameters to update within 477

a larger space, thereby increasing their degrees of 478

freedom. 479

4.5 Time complexity Analysis 480

We present in Table 5 the floating point operations 481

per second (FLOPs) and total running times (in 482

seconds) of different methods on the standard CL 483

benchmarks. Compared to O-LORA, our proposed 484

GORP method requires nearly the same amount 485

of time but significantly reduces computational 486

cost. In contrast, N-LoRA reduces training time but 487

increases computational demand. This indicates 488

that our GORP method does not introduce signifi- 489

cant computational delays and optimizes efficiency, 490

making it a more resource-efficient alternative to O- 491

LORA. While N-LoRA offers desirable speedup, it 492

may result in higher computational burden. There- 493

fore, GORP may be more suitable for scenarios 494

where both time and computational resources are 495

critical. 496

5 Conclusion 497

In this work, we propose GORP, a novel training 498

strategy that overcomes these limitations by syn- 499

ergistically combining full and low-rank param- 500

eters and jointly updating within a unified low- 501

rank gradient subspace. GORP is enable to ex- 502

pand the search space for optimal solutions while 503

preserving the essential properties of continual 504

fine-tuning. Through extensive empirical evalu- 505

ations, we show that GORP effectively addresses 506

the stability-plasticity dilemma in continual learn- 507

ing, all while maintaining computational efficiency 508

during the fine-tuning. 509
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Limitations510

While GORP outperforms existing methods on511

continual learning benchmarks, several limitations512

should be considered. First, as task sequences ex-513

pand, continuously updating task vectors within514

the gradient subspace becomes necessary. There-515

fore, effectively capturing increasing task diversity516

within constrained dimensional boundaries is a key517

challenge. Additionally, while GORP has shown518

strong performance in known continual data envi-519

ronments, its effectiveness in more complex real-520

world scenarios remains to be further validated.521

References522

Kartikeya Badola, Shachi Dave, and Partha Talukdar.523
2023. Parameter-efficient finetuning for robust con-524
tinual multilingual learning. In Findings of the As-525
sociation for Computational Linguistics: ACL 2023,526
pages 9763–9780, Toronto, Canada. Association for527
Computational Linguistics.528

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.529
2022. BitFit: Simple parameter-efficient fine-tuning530
for transformer-based masked language-models. In531
Proceedings of the 60th Annual Meeting of the As-532
sociation for Computational Linguistics (Volume 2:533
Short Papers), pages 1–9, Dublin, Ireland. Associa-534
tion for Computational Linguistics.535

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz,536
Mansheej Paul, Philip Greengard, Connor Jennings,537
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan538
Frankle, Cody Blakeney, and John Patrick Cunning-539
ham. 2024. LoRA learns less and forgets less. Trans-540
actions on Machine Learning Research. Featured541
Certification.542

Haolin Chen and Philip N. Garner. 2024. Bayesian543
parameter-efficient fine-tuning for overcoming catas-544
trophic forgetting. Preprint, arXiv:2402.12220.545

Rajas Chitale, Ankit Vaidya, Aditya Kane, and546
Archana Santosh Ghotkar. 2023. Task arithmetic547
with loRA for continual learning. In Workshop on548
Advancing Neural Network Training: Computational549
Efficiency, Scalability, and Resource Optimization550
(WANT@NeurIPS 2023).551

Cyprien de Masson d’Autume, Sebastian Ruder, Ling-552
peng Kong, and Dani Yogatama. 2019. Episodic553
memory in lifelong language learning. Curran Asso-554
ciates Inc., Red Hook, NY, USA.555

Wenyu Du, Shuang Cheng, Tongxu Luo, Zihan Qiu,556
Zeyu Huang, Ka Chun Cheung, Reynold Cheng, and557
Jie Fu. 2024. Unlocking continual learning abilities558
in language models. In Findings of the Association559
for Computational Linguistics: EMNLP 2024, pages560
6503–6522, Miami, Florida, USA. Association for561
Computational Linguistics.562

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang 563
Li. 2020. Orthogonal gradient descent for continual 564
learning. In Proceedings of the Twenty Third Inter- 565
national Conference on Artificial Intelligence and 566
Statistics, volume 108 of Proceedings of Machine 567
Learning Research, pages 3762–3773. PMLR. 568

Yongchang Hao, Yanshuai Cao, and Lili Mou. 2024. 569
Flora: Low-rank adapters are secretly gradient com- 570
pressors. In Forty-first International Conference on 571
Machine Learning. 572

Roee Hendel, Mor Geva, and Amir Globerson. 2023. 573
In-context learning creates task vectors. In Find- 574
ings of the Association for Computational Linguis- 575
tics: EMNLP 2023, pages 9318–9333, Singapore. 576
Association for Computational Linguistics. 577

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 578
Bruna Morrone, Quentin De Laroussilhe, Andrea 579
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 580
Parameter-efficient transfer learning for NLP. In 581
Proceedings of the 36th International Conference 582
on Machine Learning, volume 97 of Proceedings 583
of Machine Learning Research, pages 2790–2799. 584
PMLR. 585

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 586
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 587
Weizhu Chen. 2022. LoRA: Low-rank adaptation of 588
large language models. In International Conference 589
on Learning Representations. 590

Jianheng Huang, Leyang Cui, Ante Wang, Chengyi 591
Yang, Xinting Liao, Linfeng Song, Junfeng Yao, and 592
Jinsong Su. 2024. Mitigating catastrophic forgetting 593
in large language models with self-synthesized re- 594
hearsal. In Proceedings of the 62nd Annual Meeting 595
of the Association for Computational Linguistics (Vol- 596
ume 1: Long Papers), pages 1416–1428, Bangkok, 597
Thailand. Association for Computational Linguistics. 598

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, 599
Joel Veness, Guillaume Desjardins, Andrei A. Rusu, 600
Kieran Milan, John Quan, Tiago Ramalho, Ag- 601
nieszka Grabska-Barwinska, Demis Hassabis, Clau- 602
dia Clopath, Dharshan Kumaran, and Raia Hadsell. 603
2017. Overcoming catastrophic forgetting in neural 604
networks. Proceedings of the National Academy of 605
Sciences, 114(13):3521–3526. 606

Yajing Kong, Liu Liu, Zhen Wang, and Dacheng Tao. 607
2022. Balancing stability and plasticity through ad- 608
vanced null space in continual learning. In Computer 609
Vision – ECCV 2022: 17th European Conference, Tel 610
Aviv, Israel, October 23–27, 2022, Proceedings, Part 611
XXVI, page 219–236, Berlin, Heidelberg. Springer- 612
Verlag. 613

Zhizhong Li and Derek Hoiem. 2018. Learning without 614
forgetting. IEEE Transactions on Pattern Analysis 615
and Machine Intelligence, 40(12):2935–2947. 616

Vladislav Lialin, Namrata Shivagunde, Sherin Muck- 617
atira, and Anna Rumshisky. 2023. Relora: High- 618
rank training through low-rank updates. Preprint, 619
arXiv:2307.05695. 620

9

https://doi.org/10.18653/v1/2023.findings-acl.619
https://doi.org/10.18653/v1/2023.findings-acl.619
https://doi.org/10.18653/v1/2023.findings-acl.619
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://openreview.net/forum?id=aloEru2qCG
https://arxiv.org/abs/2402.12220
https://arxiv.org/abs/2402.12220
https://arxiv.org/abs/2402.12220
https://arxiv.org/abs/2402.12220
https://arxiv.org/abs/2402.12220
https://openreview.net/forum?id=4CLNFKi12w
https://openreview.net/forum?id=4CLNFKi12w
https://openreview.net/forum?id=4CLNFKi12w
https://doi.org/10.18653/v1/2024.findings-emnlp.379
https://doi.org/10.18653/v1/2024.findings-emnlp.379
https://doi.org/10.18653/v1/2024.findings-emnlp.379
https://proceedings.mlr.press/v108/farajtabar20a.html
https://proceedings.mlr.press/v108/farajtabar20a.html
https://proceedings.mlr.press/v108/farajtabar20a.html
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2402.03293
https://doi.org/10.18653/v1/2023.findings-emnlp.624
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2024.acl-long.77
https://doi.org/10.18653/v1/2024.acl-long.77
https://doi.org/10.18653/v1/2024.acl-long.77
https://doi.org/10.18653/v1/2024.acl-long.77
https://doi.org/10.18653/v1/2024.acl-long.77
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://doi.org/10.1007/978-3-031-19809-0_13
https://doi.org/10.1007/978-3-031-19809-0_13
https://doi.org/10.1007/978-3-031-19809-0_13
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1109/TPAMI.2017.2773081
https://arxiv.org/abs/2307.05695
https://arxiv.org/abs/2307.05695
https://arxiv.org/abs/2307.05695


Yan-Shuo Liang and Wu-Jun Li. 2023. Adaptive plas-621
ticity improvement for continual learning. In 2023622
IEEE/CVF Conference on Computer Vision and Pat-623
tern Recognition (CVPR), pages 7816–7825.624

Guoliang Lin, Hanlu Chu, and Hanjiang Lai. 2022a.625
Towards better plasticity-stability trade-off in incre-626
mental learning: A simple linear connector. In Pro-627
ceedings of the IEEE/CVF Conference on Computer628
Vision and Pattern Recognition (CVPR), pages 89–629
98.630

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang.631
2022b. Beyond not-forgetting: Continual learning632
with backward knowledge transfer. In Advances in633
Neural Information Processing Systems, volume 35,634
pages 16165–16177. Curran Associates, Inc.635

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang.636
2022c. TRGP: trust region gradient projection for637
continual learning. In The Tenth International Con-638
ference on Learning Representations, ICLR 2022,639
Virtual Event, April 25-29, 2022. OpenReview.net.640

Jialin Liu, Jianhua Wu, Jie Liu, and Yutai Duan.641
2024a. Learning attentional mixture of loras642
for language model continual learning. Preprint,643
arXiv:2409.19611.644

Sheng Liu, Haotian Ye, Lei Xing, and James Y. Zou.645
2024b. In-context vectors: Making in context learn-646
ing more effective and controllable through latent647
space steering. In Proceedings of the 41st Interna-648
tional Conference on Machine Learning, volume 235649
of Proceedings of Machine Learning Research, pages650
32287–32307. PMLR.651

Yuheng Lu, Bingshuo Qian, Caixia Yuan, Huixing652
Jiang, and Xiaojie Wang. 2024. Controlled low-rank653
adaptation with subspace regularization for contin-654
ued training on large language models. Preprint,655
arXiv:2410.16801.656

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,657
Dan Huang, Andrew Y. Ng, and Christopher Potts.658
2011. Learning word vectors for sentiment analysis.659
In Proceedings of the 49th Annual Meeting of the660
Association for Computational Linguistics: Human661
Language Technologies, pages 142–150, Portland,662
Oregon, USA. Association for Computational Lin-663
guistics.664

Navyansh Mahla, Kshitij Sharad Jadhav, and Ganesh665
Ramakrishnan. 2025. Exploring gradient subspaces:666
Addressing and overcoming lora’s limitations in fed-667
erated fine-tuning of large language models. Preprint,668
arXiv:2410.23111.669

Jingyang Qiao, Zhizhong Zhang, Xin Tan, Yanyun Qu,670
Wensheng Zhang, Zhi Han, and Yuan Xie. 2024. Gra-671
dient projection for continual parameter-efficient tun-672
ing. Preprint, arXiv:2405.13383.673

Chengwei Qin and Shafiq R. Joty. 2022. LFPT5: A674
unified framework for lifelong few-shot language675
learning based on prompt tuning of T5. In The Tenth676

International Conference on Learning Representa- 677
tions, ICLR 2022, Virtual Event, April 25-29, 2022. 678
OpenReview.net. 679

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 680
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 681
Wei Li, and Peter J. Liu. 2020. Exploring the limits 682
of transfer learning with a unified text-to-text trans- 683
former. J. Mach. Learn. Res., 21(1). 684

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Ma- 685
dian Khabsa, Mike Lewis, and Amjad Almahairi. 686
2023. Progressive prompts: Continual learning for 687
language models. In The Eleventh International Con- 688
ference on Learning Representations, ICLR 2023, 689
Kigali, Rwanda, May 1-5, 2023. OpenReview.net. 690

Gobinda Saha, Isha Garg, and Kaushik Roy. 2021. Gra- 691
dient projection memory for continual learning. In 692
International Conference on Learning Representa- 693
tions. 694

Gobinda Saha and Kaushik Roy. 2023. Continual learn- 695
ing with scaled gradient projection. Proceedings 696
of the AAAI Conference on Artificial Intelligence, 697
37(8):9677–9685. 698

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, 699
Wenyuan Wang, Yibin Wang, Zifeng Wang, Sayna 700
Ebrahimi, and Hao Wang. 2024. Continual learning 701
of large language models: A comprehensive survey. 702
Preprint, arXiv:2404.16789. 703

James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, 704
Ting Hua, Zsolt Kira, Yilin Shen, and Hongxia Jin. 705
2024. Continual diffusion: Continual customization 706
of text-to-image diffusion with c-lora. Trans. Mach. 707
Learn. Res., 2024. 708

Chenyang Song, Xu Han, Zheni Zeng, Kuai Li, 709
Chen Chen, Zhiyuan Liu, Maosong Sun, and 710
Tao Yang. 2023. Conpet: Continual parameter- 711
efficient tuning for large language models. Preprint, 712
arXiv:2309.14763. 713

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 714
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 715
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 716
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard 717
Grave, and Guillaume Lample. 2023. Llama: Open 718
and efficient foundation language models. Preprint, 719
arXiv:2302.13971. 720

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 721
preet Singh, Julian Michael, Felix Hill, Omer Levy, 722
and Samuel Bowman. 2019. Superglue: A stickier 723
benchmark for general-purpose language understand- 724
ing systems. In Advances in Neural Information 725
Processing Systems, volume 32. Curran Associates, 726
Inc. 727

Alex Wang, Amanpreet Singh, Julian Michael, Felix 728
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE: 729
A multi-task benchmark and analysis platform for nat- 730
ural language understanding. In Proceedings of the 731
2018 EMNLP Workshop BlackboxNLP: Analyzing 732

10

https://doi.org/10.1109/CVPR52729.2023.00755
https://doi.org/10.1109/CVPR52729.2023.00755
https://doi.org/10.1109/CVPR52729.2023.00755
https://arxiv.org/abs/2110.07905
https://arxiv.org/abs/2110.07905
https://arxiv.org/abs/2110.07905
https://proceedings.neurips.cc/paper_files/paper/2022/file/6728fcf94660c59c938319a6833a6073-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6728fcf94660c59c938319a6833a6073-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6728fcf94660c59c938319a6833a6073-Paper-Conference.pdf
https://openreview.net/forum?id=iEvAf8i6JjO
https://openreview.net/forum?id=iEvAf8i6JjO
https://openreview.net/forum?id=iEvAf8i6JjO
https://arxiv.org/abs/2409.19611
https://arxiv.org/abs/2409.19611
https://arxiv.org/abs/2409.19611
https://proceedings.mlr.press/v235/liu24bx.html
https://proceedings.mlr.press/v235/liu24bx.html
https://proceedings.mlr.press/v235/liu24bx.html
https://proceedings.mlr.press/v235/liu24bx.html
https://proceedings.mlr.press/v235/liu24bx.html
https://arxiv.org/abs/2410.16801
https://arxiv.org/abs/2410.16801
https://arxiv.org/abs/2410.16801
https://arxiv.org/abs/2410.16801
https://arxiv.org/abs/2410.16801
https://aclanthology.org/P11-1015/
https://arxiv.org/abs/2410.23111
https://arxiv.org/abs/2410.23111
https://arxiv.org/abs/2410.23111
https://arxiv.org/abs/2410.23111
https://arxiv.org/abs/2410.23111
https://arxiv.org/abs/2405.13383
https://arxiv.org/abs/2405.13383
https://arxiv.org/abs/2405.13383
https://arxiv.org/abs/2405.13383
https://arxiv.org/abs/2405.13383
https://openreview.net/forum?id=HCRVf71PMF
https://openreview.net/forum?id=HCRVf71PMF
https://openreview.net/forum?id=HCRVf71PMF
https://openreview.net/forum?id=HCRVf71PMF
https://openreview.net/forum?id=HCRVf71PMF
https://openreview.net/forum?id=UJTgQBc91_
https://openreview.net/forum?id=UJTgQBc91_
https://openreview.net/forum?id=UJTgQBc91_
https://openreview.net/forum?id=3AOj0RCNC2
https://openreview.net/forum?id=3AOj0RCNC2
https://openreview.net/forum?id=3AOj0RCNC2
https://doi.org/10.1609/aaai.v37i8.26157
https://doi.org/10.1609/aaai.v37i8.26157
https://doi.org/10.1609/aaai.v37i8.26157
https://arxiv.org/abs/2404.16789
https://arxiv.org/abs/2404.16789
https://arxiv.org/abs/2404.16789
https://openreview.net/forum?id=TZdEgwZ6f3
https://openreview.net/forum?id=TZdEgwZ6f3
https://openreview.net/forum?id=TZdEgwZ6f3
https://arxiv.org/abs/2309.14763
https://arxiv.org/abs/2309.14763
https://arxiv.org/abs/2309.14763
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446


and Interpreting Neural Networks for NLP, pages733
353–355, Brussels, Belgium. Association for Com-734
putational Linguistics.735

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben736
Xu. 2021. Training networks in null space of feature737
covariance for continual learning. In Proceedings of738
the IEEE/CVF Conference on Computer Vision and739
Pattern Recognition (CVPR), pages 184–193.740

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong741
Bao, Rui Zheng, Qi Zhang, Tao Gui, and Xuanjing742
Huang. 2023. Orthogonal subspace learning for lan-743
guage model continual learning. In Findings of the744
Association for Computational Linguistics: EMNLP745
2023, pages 10658–10671, Singapore. Association746
for Computational Linguistics.747

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,748
Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot,749
Jennifer Dy, and Tomas Pfister. 2022. Learning to750
prompt for continual learning. In 2022 IEEE/CVF751
Conference on Computer Vision and Pattern Recog-752
nition (CVPR), pages 139–149.753

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,754
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,755
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.756
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy757
Liang, Jeff Dean, and William Fedus. 2022a. Emer-758
gent abilities of large language models. Transactions759
on Machine Learning Research. Survey Certifica-760
tion.761

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten762
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,763
and Denny Zhou. 2022b. Chain-of-thought prompt-764
ing elicits reasoning in large language models. In765
Advances in Neural Information Processing Systems766
35: Annual Conference on Neural Information Pro-767
cessing Systems 2022, NeurIPS 2022, New Orleans,768
LA, USA, November 28 - December 9, 2022.769

Martin Wistuba, Prabhu Teja S, Lukas Balles, and Gio-770
vanni Zappella. 2024. Continual learning with low771
rank adaptation. In NeurIPS 2023 Workshop on Dis-772
tribution Shifts: New Frontiers with Foundation Mod-773
els.774

Wenhan Xia, Chengwei Qin, and Elad Hazan.775
2024. Chain of lora: Efficient fine-tuning of776
language models via residual learning. Preprint,777
arXiv:2401.04151.778

Shuo Yang, Kun-Peng Ning, Yu-Yang Liu, Jia-Yu Yao,779
Yong-Hong Tian, Yi-Bing Song, and Li Yuan. 2025.780
Is parameter collision hindering continual learning in781
LLMs? In Proceedings of the 31st International Con-782
ference on Computational Linguistics, pages 4243–783
4259, Abu Dhabi, UAE. Association for Computa-784
tional Linguistics.785

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.786
Character-level convolutional networks for text clas-787
sification. In Advances in Neural Information Pro-788
cessing Systems, volume 28. Curran Associates, Inc.789

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang 790
Wang, Anima Anandkumar, and Yuandong Tian. 791
2024. Galore: Memory-efficient LLM training by 792
gradient low-rank projection. In Forty-first Interna- 793
tional Conference on Machine Learning, ICML 2024, 794
Vienna, Austria, July 21-27, 2024. 795

Yingxiu Zhao, Yinhe Zheng, Zhiliang Tian, Chang Gao, 796
Jian Sun, and Nevin L. Zhang. 2022. Prompt condi- 797
tioned VAE: Enhancing generative replay for lifelong 798
learning in task-oriented dialogue. In Proceedings 799
of the 2022 Conference on Empirical Methods in 800
Natural Language Processing, pages 11153–11169, 801
Abu Dhabi, United Arab Emirates. Association for 802
Computational Linguistics. 803

Junhao Zheng, Qianli Ma, Zhen Liu, Binquan Wu, and 804
Huawen Feng. 2024a. Beyond anti-forgetting: Mul- 805
timodal continual instruction tuning with positive 806
forward transfer. Preprint, arXiv:2401.09181. 807

Junhao Zheng, Shengjie Qiu, Chengming Shi, and 808
Qianli Ma. 2024b. Towards lifelong learning 809
of large language models: A survey. Preprint, 810
arXiv:2406.06391. 811

A Preliminary Knowledge 812

A.1 Continual learning setups 813

For consecutive tasks {T1, T2, . . . , Tn}, each task 814

Tt contains Nt samples {xt, yt}Nt
t=1. In the t-th 815

task, each step will sample n training samples 816

Bn from the task for training, obtain parameter 817

weights W t
s , and then accumulate the weights to 818

obtain the weight of the current task Wt =
∑

sW
t
s , 819

and integrate with the previous task weight to get 820

W
′
t = W

′
t−1 + Wt. The model is able to retain 821

its performance on previous tasks while progres- 822

sively learning new ones, thereby minimizing the 823

forgetting of earlier tasks. 824

A.2 Low Rank Adaptation 825

For a pre-trained weight Wp ∈ Rm×n, LoRA 826

freezes the pretrained parameters and updates 827

Wnew = Wp +∆W = Wp +AB by training low 828

rank parameters, where A ∈ Rm×k and B ∈ Rk×n, 829

and rank k ≪ min(m,n). For a linear layer, the 830

output can be written by Equation 13: 831

y = (Wp +∆W )x = Wpx+ABx (13) 832

Through low rank updates, Wnew retains the capa- 833

bilities of pretrained models and also improves the 834

generalization ability on downstream tasks. 835

B Datasets and Task Details 836

This part presents the datasets used in the exper- 837

iments, along with the data categories and their 838
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corresponding tasks. The detailed information is839

provided in Table 6. CL benchmark includes Yelp,840

Amazon, Dbpedia, Yahoo and Agnews, GLUE841

dataset includes MNLI, QQP, RTE and SST-2, and842

SuperGLUE includes WiC, CB, COPA, BoolQA,843

MultiRC and IMDB. For the large number of tasks,844

we select 1000 random samples for training each845

task and 500 samples per class for validation and846

testing.847

We report the task sequences used for CL exper-848

iments on the T5 and LLAMA2 models in Table 7.849

These datasets span diverse categories, including850

natural language inference (NLI), sentiment classi-851

fication (SC), and topic classification (TC), ensur-852

ing diverse abilities of the model’s generalization853

across multiple tasks. And the task instructions for854

different categories are shown in Table 8.855

C Evaluation Metrics856

Let ai,j be the test accuracy of the i-th task after857

training on the j-th task. Ai denotes the A matrix of858

LoRA, and GA,i denotes the gradient of A matrix859

on the i-th task. We evaluate the model using the860

following metrics:861

• Average Accuracy (ACC): The average accu-862

racy of all tasks after training on the last task:863

ACC =
1

T

T∑
i=1

ai, T (14)864

• Backward Transfer (BWT): The average for-865

getting of all tasks after training on the last tasks:866

BWT =
1

T − 1

T−1∑
i=1

ai,T − ai,i (15)867

• Parameter Orthogonality (PO): We use this868

metric to quantify the orthogonal overlap be-869

tween Ai and Aj , for the reason that O-LoRA870

use A to capture gradient subspaces of previous871

tasks. The metric is calculated as:872

POi,j = ∥A⊤
i Aj∥2 (16)873

• Gradient Orthogonality (GO): We use this met-874

ric to quantify the orthogonal overlap between875

GA,i and GA,j , showing the difference between876

the gradient space and the parameter space, cal-877

culated as:878

GOi,j = ∥G⊤
A,iGA,j∥2 (17)879

D Implementation Details 880

We adapted the code-base from O-LoRA (Wang 881

et al., 2023). And our improved version of the code 882

is available in the supplementary meterial and will 883

be released upon acceptance. All experiments were 884

conducted on the machine with 8 NVIDIA L20 and 885

were implemented with Deepspeed. 886

For T5 model, we employed LoRA to replace 887

the SelfAttention layers and full-rank parameter 888

trainings for the EncDecAttention layers. For all 889

orders, we trained the models with one epoch, a 890

constant learning rate 1e-03 for LoRA and 1e-05 891

for full-rank parameters, a training batch size of 8 892

per device, a evaluation batch size of 64 per device, 893

and a weight decay rate of 0, a value 0.05 of λ. We 894

set different scale factors for order 1 to 6. For order 895

1 to 3, we set scale factor 1 and 0.25 for order 4 to 896

6. In our method, the low-rank updates are interval, 897

and we set the update gap 10. 898

For LLaMA2 model, we employed LoRA to re- 899

place the Self-atten layers and full-rank parameter 900

trainings for the MLP Gate layers. For order 1 to 901

3, we trained the models with one epoch, a con- 902

stant learning rate 2e-04 for LoRA and 1e-06 for 903

full-rank parameters, a training batch size of 1 per 904

device, a evaluation batch size of 4 per device, and 905

a weight decay rate of 0, a value 0 of λ. We set 906

scale factor 0.25 for order 1 to 3 and the value 20 907

of the interval gap for low-rank updates. 908
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Dataset Name Category Task Domain Metric
Yelp CL Benchmark Sentiment analysis Yelp reviews Accuracy
Amazon CL Benchmark Sentiment analysis Amazon reviews Accuracy
Dbpedia CL Benchmark Topic classification Wikipedia Accuracy
Yahoo CL Benchmark Topic classification Yahoo Q&A Accuracy
AG News CL Benchmark Topic classification News Accuracy
MNLI GLUE NLI Various Accuracy
QQP GLUE Paragraph detection Quora Accuracy
RTE GLUE NLI News, Wikipedia Accuracy
SST-2 GLUE Sentiment analysis Movie reviews Accuracy
WiC SuperGLUE Word sense disambiguation Lexical databases Accuracy
CB SuperGLUE NLI Various Accuracy
COPA SuperGLUE QA Blogs, encyclopedia Accuracy
BoolQA SuperGLUE Boolean QA Wikipedia Accuracy
MultiRC SuperGLUE QA Various Accuracy
IMDB SuperGLUE Sentiment analysis Movie reviews Accuracy

Table 6: Datasets, Categories, Domians and evaluation Metrics.

Model Order Task Sequence
T5-large, Llama2 1 dbpedia→ amazon→ yahoo→ ag
T5-large, Llama2 2 dbpedia→ amazon→ ag→ yahoo
T5-large, Llama2 3 yahoo→ amazon→ ag→ dbpedia

T5-large 4 mnli→ cb→ wic→ copa→ qqp→ boolqa→ rte→ imdb→
yelp→ amazon→ sst-2→ dbpedia→ ag→ multirc→ yahoo

T5-large 5 multirc→ boolqa→ wic→ mnli→ cb→ copa→ qqp→ rte→
imdb→ sst-2→ dbpedia→ ag→ yelp→ amazon→ yahoo

T5-large 6 yelp→ amazon→ mnli→ cb→ copa→ qqp→ rte→ imdb→
sst-2→ dbpedia→ ag→ yahoo→ multirc→ boolqa→ wic

Table 7: Task sequences used for CL experiments on the T5 and LLAMA2 models.

Task Instructions
NLI What is the logical relationship between the "sentence 1" and the

"sentence 2"? Choose one from the option.
QQP Whether the "first sentence" and the "second sentence" have the same

meaning? Choose one from the option.
SC What is the sentiment of the following paragraph? Choose one from

the option.
TC What is the topic of the following paragraph? Choose one from the

option.
BoolQA According to the following passage, is the question true or false?

Choose one from the option.
MultiRC According to the following passage and question, is the candidate

answer true or false? Choose one from the option.
WiC Given a word and two sentences, whether the word is used with the

same sense in both sentences? Choose one from the option.

Table 8: Instructions for different tasks.
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