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Abstract

Real-world instructions with multiple con-001
straints pose a significant challenge to existing002
large language models (LLMs). An observa-003
tion is that the LLMs exhibit dramatic perfor-004
mance fluctuation when disturbing the order of005
the incorporated constraints. Yet, none of the006
existing works has systematically investigated007
this position bias problem in the field of multi-008
constraint instruction following. To bridge this009
gap, we design a probing task where we quan-010
titatively measure the difficulty distribution of011
the constraints by a novel Difficulty Distribu-012
tion Index (CDDI). Through the experimental013
results, we find that LLMs are more perfor-014
mant when presented with the constraints in015
a “hard-to-easy” order. This preference can016
be generalized to LLMs with different archi-017
tecture or different sizes of parameters. Ad-018
ditionally, we conduct an explanation study,019
providing an intuitive insight into the corre-020
lation between the LLM’s attention and con-021
straint orders. Our code and dataset are pub-022
licly available at https://anonymous.4open.023
science/r/woo-2009/.024

1 Introduction025

Large language models (LLMs) have made im-026

pressive progress in massive natural language027

tasks (Wan et al., 2024; Zhang et al., 2024b) and028

have been applied to various real-world scenar-029

ios (Bai et al., 2023; Bi et al., 2024). To achieve030

satisfactory performance, it is crucial for LLMs031

to understand the user’s instructions and convey032

desired outputs, which is known as the Instruction033

Following capacity of LLM (Yin et al., 2023; Xu034

et al., 2024).035

In practice, instructions are usually incorporated036

with multiple constraints of different types, e.g.,037

format constraint which limits the model’s output038

to a specific format. Nevertheless, existing LLMs039

often struggle to follow multi-constraint instruc-040

tions, making multi-constraint instruction follow-041

Make a short introduction and list a few popular songs from the album: Back To 
Black. There should be exactly two paragraphs in your response. Do not say the 
word "popular" in the response and answer in lowercase letters only. The 
response should end with the phrase "really love their song!".
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amy winehouse's album back to black was 
released in 2006, marking a defining 
moment in modern r&b and jazz music. …\n
some of the standout tracks from the album 
include "rehab,“…fans of the album really 
love their song!

 Multi-Constraint Instruction

  amy winehouse’s Back to Black is a timeless 
album that showcases her unique blend of 
jazz, and R&B. released in 2006. Some of the 
popular tracks from the album include 
"rehab," "you know i'm no good,"  … many 
fans really love their song!
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really love their song!

Figure 1: (a) In single-round inference, the LLM per-
forms differently when handling the same instruction
with different constraint orders. (b) In multi-round in-
ference, the latter response is evitably affected by the
former context.

ing an obstacle to hinder LLMs’ real-world appli- 042

cation (Wen et al., 2024; Yin et al., 2023). 043

Recently, a lot of works have demonstrated that 044

LLMs are sensitive to the position of the referred 045

context in many tasks, such as multi-document 046

question answering, text evaluation, and list-wise 047

ranking (Liu et al., 2024; Zheng et al., 2023; Tang 048

et al., 2024). Since there are usually multiple con- 049

straints coexisting in the complex instruction, the 050

position bias problem is also significant in multi- 051

constraint instructions. As shown in Fig. 1, in 052

the single-round scenario, the LLM’s performance 053

varies significantly when presented with instruc- 054

tions that have different constraint orders, even 055

though the two instructions are semantically iden- 056

tical. When it comes to the multi-round scenario, 057

different constraint orders impose different impacts 058
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Figure 2: The procedure of the probing task. First, we synthesize the initial instructions by sampling seed instructions
and corresponding constraints. Then, we obtain instructions with different constraint orders by reordering the
incorporated constraints. Finally, we conduct model inference on single and multi-round settings.

on the intermediate responses, thus inevitably lead-059

ing to a discrepancy in the quality of the final re-060

sponses.061

Nevertheless, the position bias of constraint or-062

ders in the multi-constraint instruction following063

remains an under-explored problem. Existing work064

manually assigns difficulty to different constraints065

based on a predefined rule and orders the con-066

straints according to their difficulty. They empiri-067

cally demonstrate the existence of LLMs’ perfor-068

mance fluctuation brought by different constraint069

order (Chen et al., 2024). However, on the one070

hand, handcraft difficulty categorization fails to071

reflect the real difficulty disparity of different con-072

straints (Dentella et al., 2024; Srivastava et al.,073

2023). On the other hand, they merely analyze074

the constraint order in a qualitative way, lacking075

a quantitative metric to measure the disparity of076

constraint order. Additionally, none of the existing077

works has provided an intuitive explanation for the078

position bias in multi-constraint instructions. It re-079

mains unclear how the LLMs handle instructions080

with different constraint orders.081

To address all the problems above, we systemat-082

ically investigate the position bias problem in the083

multi-constraint instructions. First, we propose a 084

novel metric called the Constraint Difficulty Distri- 085

bution Index (CDDI) to quantitatively describe the 086

disparity of constraint order from the perspective 087

of constraint difficulty. We leverage the accuracy 088

of the LLM to quantify the difficulty of different 089

constraints, thus precisely reflecting their disparity. 090

Then, for a thorough study of the position bias prob- 091

lem, we design a probing task. As shown in Fig. 2, 092

we construct a large number of multi-constraint in- 093

stances with different constraint orders and explore 094

two practical scenarios: single-round inference and 095

multi-round inference. Our experiments find ex- 096

isting LLMs commonly perform better with the 097

“hard-to-easy” constraint orders, i.e., possibly plac- 098

ing harder constraints in former positions. Finally, 099

to make an intuitive explanation of our findings, we 100

resort to a gradient-based method (Wu et al., 2023). 101

We visualize the importance of different constraints 102

located in different positions. We observe that the 103

constraint order will affect how the LLM handle the 104

constraints and is highly correlated to the LLM’s 105

performance on a specific constraint. 106

In summary, our main contributions are as fol- 107

lows: (1) We are the first to systematically investi- 108
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gate the position bias problem in multi-constraint109

instruction following. (2) We propose a novel110

CDDI metric to quantify the disparity of different111

constraint orders in the multi-constraint instruc-112

tions. (3) Through extensive experiments, we find113

that existing LLMs can achieve a better perfor-114

mance when presented with constraints in “hard-115

to-easy” orders. This finding can be generalized116

in both single-round and multi-round scenarios, re-117

gardless of the architecture of LLM, the size of118

LLM’s parameters and the number of constraints.119

(4) Our explanation study explores how the LLMs120

assign attention when provided with instructions in121

different constraint orders and demonstrates the sig-122

nificant correlation between the attention patterns123

and the LLMs’ performance on specific constraints.124

2 Related Work125

2.1 Complex Instruction Following126

Riding on the wave of the large language model, the127

instruction following has attracted increasing atten-128

tion for it is easy to be perceived by the users (Zhou129

et al., 2023a; Lou et al., 2024). Practical instruc-130

tions are complex, usually incorporated with mul-131

tiple constraints of different types (Zhou et al.,132

2023b; He et al., 2024). A lot of evaluation bench-133

marks have found that multi-constraint instruction134

following is nontrivial for the LLMs (Jiang et al.,135

2023b; Wen et al., 2024; Qin et al., 2024). Con-136

sequently, several works propose to improve the137

LLM’s complex instruction following capacity by138

introducing additional instruction fine-tuning (Sun139

et al., 2024; Cheng et al., 2024; Zhang et al.,140

2024a).141

Different from these works, we focus on the142

inference stage of the LLMs instead of model train-143

ing. Especially, we aim to investigate the posi-144

tion bias problem brought by the constraint order,145

which poses an essential impact on the model per-146

formance.147

2.2 Position Bias in the LLM148

The position bias problem is common in the var-149

ious LLM tasks (Liu et al., 2024; Zheng et al.,150

2023; Zeng et al., 2023). Researchers fisrt find151

that the LLM’s performance degrades dramatically152

by merely changing the order of relevant informa-153

tion in the long-context question answering. A lot154

of works have studied the position bias problem155

in the field of logical reasoning (Chen et al.; Liu156

et al., 2023; Berglund et al., 2023). They find the157

LLM is sensitive to the order of premises, although 158

such ordering actually does not alter the reasoning 159

task (Chen et al.; Liu et al., 2023). 160

Despite so, none of these works has studied the 161

position bias problem in the field of instruction 162

following, especially multi-constraint instruction 163

following. SIFo (Chen et al., 2024) is the most re- 164

lated work to ours. They manually differentiate the 165

constraints based on the context length they will 166

influence and conduct an empirical study to verify 167

whether the model performance will be affected by 168

the constraint order. However, Their investigation 169

of position bias is fairly qualitative. Different from 170

them, we are the first to make a systematical and 171

thorough investigation on the position bias of con- 172

straints in multi-constraint instruction following. 173

3 Method 174

3.1 Background 175

In this paper, we mainly focus on the multi- 176

constraint instruction Ic. It can be formulated as a 177

seed instruction incorporated with n constraints: 178

Ic = Is ⊕ C1 ⊕ ...⊕ Cn, (1) 179

where the seed instructions Is describe a task, 180

e.g., write a story, while these constraints
∑n

i=1Ci 181

limit the output from different aspects, e.g., format, 182

length, content, etc. ⊕ stands for the concatenation 183

operation. 184

3.2 Probing Task 185

3.2.1 Task Formulation 186

To investigate the impact of constraint order, we 187

introduce a probing task. In this task, the LLM is 188

given multi-constraint instructions with constraints 189

arranged in various orders. The LLM’s task is to 190

generate a response that follows all constraints. We 191

evaluate the LLM in two practical scenarios: single- 192

round and multi-round inference. The LLM’s re- 193

sponses are then evaluated to determine its per- 194

formance across various constraints. The overall 195

procedure is illustrated in Fig. 2. In the following 196

sections, we will provide a detailed explanation. 197

3.2.2 Multi-constraint Instruction Synthesis 198

To ensure the generalizability of probing data, we 199

construct the initial multi-constraint instructions 200

which include a variety of tasks and diverse con- 201

straint combinations. The multi-constraint instruc- 202

tion synthesis can be further divided into two parts: 203

seed sampling and constraint sampling. 204
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For the seed sampling, we sample data from205

three source datasets: (1) Natural Instructions206

V2 (Wang et al., 2022). It is an instruction col-207

lection covering more than 1600 NLP tasks. We208

filter those tasks that are too easy and could po-209

tentially conflict with complex constraints, e.g.,210

object classification and sentiment tagging. Then,211

we randomly sample 52 instructions from the re-212

maining tasks. (2) Self-Instruct (Wang et al., 2023).213

We only sample 83 instances from their initial 175214

seed instructions which are formulated by humans.215

(3) Open Assistant (Köpf et al., 2024). Following216

the strategy of Suri (Li et al., 2023), we filter out217

the first turn of the conversation with the highest218

quality (marked as rank 0 in the dataset) and sam-219

ple 65 instances from them. Overall, we obtain 200220

seed instructions, where the number of instructions221

is denoted as nseed.222

As for the constraint sampling, we first cate-223

gorize the constraints into 8 groups with 25 fine-224

grained types (Zhou et al., 2023a). For each type of225

constraint, we employ 8 different expressions to de-226

scribe it1. Then, we sample n constraints from the227

constraint taxonomy and use the predefined rules228

to avoid possible conflicts. To ensure diversity,229

we repeat the sampling process to obtain ncc dis-230

tinct constraint combinations, deriving nseed × ncc231

multi-constraint instructions.232

3.2.3 Constraint Reordering233

To quantitatively construct instructions with differ-234

ent constraint orders, here are two questions that235

need to be answered: (1) How do we distinguish236

the disparity of different constraints? (2) After237

we order the constraints based on their disparity,238

how do we quantitatively describe the disparity of239

constraint orders?240

An appropriate solution for the first question is241

to categorize the constraints based on their diffi-242

culty (Chen et al., 2024). In this paper, we also243

sort the constraints based on their difficulty. How-244

ever, different from existing works which designate245

the difficulty of the constraints based on handcraft246

rules, we measure the difficulty of a constraint via247

the overall accuracy of following it in our probing248

datasets. The formulation is as follows:249

DffCx = Softmax(1− AccCx), (2)250
251

AccCx =
1

Nx

Nx∑
i=1

cix. (3)252

1More details are shown in Appx. A.2

The Cx refers to a specific type of constraint, the 253

Nx stands for the total number of instructions cor- 254

responding to the constraint Cx, and the cix is a 255

binary value to reflect whether the constraint Cx is 256

followed in the ith instruction. 257

To quantitatively describe the disparity of con- 258

straint order, we propose a novel metric called the 259

Constraint Difficulty Distribution Index (CDDI) 260

which quantifies a specific constraint order based 261

on its difficulty distribution. Given the difficulty 262

of different types of constraints, we can readily 263

attain the difficulty distribution of the constraints 264

incorporated in the multi-constraint instructions. 265

Specifically, for a multi-constraint instruction, we 266

rank the incorporated constraints based on their 267

difficulty, from the hardest to the easiest. We set 268

this “hard-to-easy” constraint order as an anchor 269

since it depicts an extreme situation, i.e., we des- 270

ignate the CDDI = 1 when the constraints fall in 271

this order. Consequently, akin to the Kendall tau 272

distance (Cicirello, 2020), we measure the diffi- 273

culty distribution of a specific constraint order o 274

by comparing it with the “hard-to-easy” constraint 275

order omax. The formula is shown as: 276

CDDIo =
Ncon −Ndis

Npair
=

2(Ncon −Ndis)

n(n− 1)
. (4) 277

where Ncon and Ndis represent the number of con- 278

cordant and discordant distribution pairs of con- 279

straints between o and omax, respectively. The 280

Npair is the total number of compared constraint 281

pairs. Overall, we select ndd different difficulty 282

distributions, finally comprising nseed × ncc × ndd 283

instances. 284

3.2.4 Sequential-Sensitive Inference 285

Given the multi-constraint instructions with dif- 286

ferent constraint orders, we evaluate the model’s 287

performance in two common scenarios: single- 288

round inference and multi-round inference. In 289

single-round inference, the LLM is directly given 290

the multi-constraint instructions with different con- 291

straint distributions. We argue that different con- 292

straint distributions could impose different levels of 293

difficulty on the LLM to handle. The multi-round 294

inference introduces a more typical setting: the 295

user will first provide the LLM with the core in- 296

tention (i.e., the seed instruction in this work), and 297

then iteratively put forward the constraints in order 298

to obtain a final response. 299

To evaluate the model performance, apart from 300

the constraint following accuracy mentioned in 301
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Figure 3: The statistic of different types of constraints
in the probing data. The 7cons and 9cons stand for the
setting when n=7 and n=9, respectively.

Eq.(3), we also verify its constraint-level accuracy302

Acccons and instruction-level accuracy Accinst.303

Corresponding formulas are shown below:304

Acccons =
1

mn

m∑
i=1

n∑
j=1

cji ,Accinst =
1

m

m∑
i=1

n∏
j=1

cji . (5)305

where m and n refer to the number of instructions306

and constraints in the instruction, respectively. Sim-307

ilar to Eq.(3), the cji is a binary value which equals308

1 when the constraint is followed in the ith instruc-309

tion. All the evaluation is conducted by leveraging310

the script introduced in (Zhou et al., 2023a). We311

only evaluate the final responses produced by the312

LLMs.313

4 Empirical Study314

4.1 Experiment Setup315

Models For our probing task, to ensure the gen-316

eralizability of our study, we conduct experiments317

on both closed and open-source LLMs with vary-318

ing architectures and parameter sizes. Specifically,319

we introduce the following models: (1) LLaMA3-320

8B-Instruct and LLaMA3-70B-Instruct (Dubey321

et al., 2024). (2) LLaMA2-13B-Chat (Touvron322

et al., 2023). (3) Mistral-7B-Instruct (Jiang et al.,323

2023a).2 (4) Qwen2.5-7B-Instruct (Yang et al.,324

2024). (5) GPT4o-mini (Achiam et al., 2023).325

Datasets We construct various multi-constraint326

instructions with different constraint orders327

(Sec.3.2). We empirically set the number of con-328

straints n to 7. To ensure the diversity and complex-329

ity, we set the number of constraint combinations330

ncc to 10 and the number of difficulty distributions331

ndd to 12, finally obtaining 200× 10× 12 = 24K332

samples. To verify the influence of constraint num-333

ber, we also conduct experiments on the setting334

2We use the latest v0.3 version.

when n = 9. The statistic of the data for the prob- 335

ing task is provided in Fig. 3. 336

4.2 Results 337

LLMs prefer to “hard-to-easy” constraint distri- 338

bution. As shown in Fig. 4, most of the LLMs ex- 339

hibit a dramatic performance fluctuation on instruc- 340

tions with varying constraint distributions. When 341

the constraint number is set to 7, the LLaMA3-8B- 342

Instruct and Qwen2.5-7B-Instruct show approxi- 343

mately 7% and 5% performance disparity in ex- 344

treme situations. This indicates the vulnerability 345

of existing LLMs to the position bias brought by 346

the constraint order. Also, the LLMs tend to be 347

more performant to instructions with higher CDDI 348

values. Even the LLaMA3-70B-Instruct exposes a 349

clear preference for higher CDDI value as the num- 350

ber of constraints increases to 9, demonstrating that 351

“hard-to-easy” is a superior constraint distribution 352

for existing LLMs. 353

Multi-round inference exhibits more severe po- 354

sition bias compared with the single-round in- 355

ference. The LLMs’ performance in multi-round 356

inference is presented in the Fig. 5. Compared with 357

the results in the single-round inference, the per- 358

formance gap becomes more prominent. All the 359

LLMs gain approximately 10% improvement on 360

C_level accuracy. Surprisingly, the LLaMA3-8B- 361

Instruct and LLaMA3-70B-Instruct achieve approx- 362

imately 25% performance improvement by chang- 363

ing the constraint distribution from “easy-to-hard” 364

(CDDI=-1) to “hard-to-easy” (CDDI=1). This in- 365

dicates that the LLMs are more sensitive to the 366

position bias problem in a multi-round scenario. 367

LLMs perform better in multi-round inference 368

when provided with the instructions in appro- 369

priate constraint order Comparing the results 370

in single-round (Fig. 4) and multi-round inference 371

(Fig. 5), we observe that the LLMs reach better 372

performance if the incorporated constraints are ar- 373

ranged in an appropriate order. Specifically, when 374

the CDDI value is negative, the performance of 375

LLMs in multi-round inference lags behind that 376

in single-round inference. Nevertheless, with the 377

increase of the CDDI value, the LLMs can achieve 378

superior performance in multi-round inference and 379

reach their best performance in CDDI=1. An excep- 380

tion is the Mistral-7B-Instruct-v0.3. We attribute 381

this to its inferiority in processing multi-round in- 382

formation (Chen et al., 2024). 383
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GPT4o-mini

LLaMA3-70B-Instruct

Qwen2.5-7B-Instruct

LLaMA3-8B-Instruct

Mistral-7B-Instruct

LLaMA2-13B-Chat

Figure 4: The performance of different LLMs in the single-round inference. The left and right figures show the
results with the number of constraints n set to 7 and 9, respectively. With the increase of the CDDI, the constraint
order changes from “easy-to-hard” to “hard-to-easy”.

GPT4o-mini

Qwen2.5-7B-Instruct

Mistral-7B-Instruct

LLaMA2-13B-Chat

LLaMA3-70B-Instruct

LLaMA3-8B-Instruct

Figure 5: The performance of different LLMs in the multi-round inference. The left and right figures show the
results with the number of constraints n set to 7 and 9, respectively. With the increase of the CDDI, the constraint
order changes from “easy-to-hard” to “hard-to-easy”.

Position bias varies in different types of con-384

straints. We present the performance of the385

LLaMA3-8B-Instruct across different types of con-386

straints in Tab. 1. As observed, with the increase of387

the CDDI value, the model’s performance across388

most constraint types shows an upward trend ex-389

cept for Startend and Content, indicating that not all390

the constraints can benefit from the “hard-to-easy”391

constraint distribution in single-round inference.392

We make a more comprehensive explanation study393

in Sec. 5.3 for further investigation. Regarding the394

multi-round inference, the model’s performance395

only exhibits a drop tendency in the Length type396

as the CDDI value increases, indicating that the397

LLMs struggle to generate a length-controlled final398

response when the length constraint is applied early399

in the multi-round inference (Yuan et al., 2024).400

4.3 Robustness of CDDI401

Since the CDDI is calculated by comparing the con-402

cordant and discordant pairs of two different con-403

straint orders, there are usually multiple constraint404

orders sharing the same CDDI value. Therefore, 405

we conduct a testing experiment to assess whether 406

the LLM exhibits significant fluctuations across 407

different constraint orders with the same CDDI 408

value. Specifically, we set the CDDI to -0.05, a 409

value that includes the most constraint orders in 410

our setting, and conduct single-round inference for 411

3 times. The experiment results are shown in Tab 2. 412

We calculate the P-value of the data, finding that 413

the P-value is much larger than 0.05. This indicates 414

that the fluctuation of LLM’s performance is negli- 415

gible among different constraint orders in the same 416

CDDI value. 417

5 Explanation Study 418

5.1 Explanation Metric 419

To make an explanation for the influence brought 420

by the constraints of different orders, we make an 421

explanation study on where the LLMs mainly focus 422

when handling multi-constraint instructions via a 423

feature attribution-based explanation method (Li 424
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CDDI Length Language Punctuation Format Keywords ChangeCase Startend Content C_level I_level

Single-round Inference
-1 27.50 28.20 23.30 71.14 68.58 49.57 62.92 81.22 53.30 1.95

-0.8 28.23 30.70 23.90 73.64 68.46 49.00 63.50 77.78 53.60 1.80
-0.6 28.53 31.10 26.60 71.23 69.25 49.79 60.92 78.22 53.56 1.95
-0.4 28.53 36.10 30.70 72.41 71.58 51.64 62.33 77.83 55.05 2.10
-0.2 29.33 39.30 35.30 73.82 72.08 50.07 60.75 77.44 55.74 2.40

-0.05 30.27 42.90 36.80 74.95 73.46 52.14 60.50 77.50 56.91 2.90

0.05 29.17 46.70 38.00 72.68 74.75 50.79 61.50 75.33 56.57 2.75
0.2 28.17 50.50 43.30 76.05 75.92 52.07 61.42 72.94 57.55 2.75
0.4 30.23 54.50 46.40 76.64 76.29 54.07 62.83 74.17 59.14 2.65
0.6 29.83 59.20 49.70 79.09 77.42 56.71 58.58 74.33 60.12 3.00
0.8 29.40 60.50 51.70 77.91 77.63 58.07 58.25 73.89 60.16 3.05
1 30.03 67.10 53.10 78.00 77.21 59.21 57.42 74.61 60.95 3.50

Multi-round Inference
-1 62.60 64.00 54.20 21.59 57.79 62.50 10.83 16.61 44.47 0.75

-0.8 59.63 64.90 61.50 22.27 62.46 61.93 13.17 17.39 45.57 0.75
-0.6 54.65 67.87 65.67 25.74 67.83 59.47 22.75 20.08 47.40 0.65
-0.4 52.77 68.74 64.46 32.30 69.57 61.44 30.78 26.21 49.98 1.05
-0.2 48.73 68.74 62.42 38.67 74.67 59.16 39.00 32.02 52.07 1.25

-0.05 46.48 69.97 67.17 46.38 76.04 60.97 48.79 46.58 56.35 1.40

0.05 45.32 70.08 68.84 51.19 76.62 62.18 52.68 50.47 58.04 1.80
0.2 44.81 69.91 66.73 58.35 80.20 60.34 62.41 63.22 61.79 3.41
0.4 44.30 72.50 69.10 64.50 81.75 63.50 68.00 73.56 65.39 5.60
0.6 43.71 68.87 68.20 71.71 83.87 59.83 71.98 81.77 67.47 5.05
0.8 44.35 68.37 68.00 75.94 84.49 61.54 70.31 84.88 68.76 6.00
1 44.07 70.90 69.60 81.41 85.08 64.43 72.58 87.22 70.74 4.00

Table 1: The overall performance of LLaMA3-8B-Instruct on multi-constraint instructions with different CDDI
values. From left to right, we sort the constraint types from the hardest to the easiest.

Round Length keywords language ChangeCase Format Content Startend Punctuation C_level I_level
1 29.93 73.46 44.40 50.68 76.59 77.11 59.92 34.40 56.01 2.70
2 29.83 73.29 43.80 50.79 73.36 78.17 61.50 32.60 55.49 2.65
3 30.27 73.46 42.90 52.14 74.95 77.50 60.50 36.80 56.91 2.90

30.01±0.23 73.40±0.10 43.70±0.75 51.20±0.82 74.97±1.61 77.59±0.53 60.64±0.80 34.60±2.11 56.14±0.72 2.75±0.13

Table 2: The performance of LLaMA3-8B-Instruct when given the multi-constraint instruction in different constraint
orders while sharing the same CDDI value. By calculation, we obtain the P-value=0.9979.

et al., 2016; Wu et al., 2020). Specifically, we lever-425

age the importance of the input tokens to measure426

the LLMs’ attention to them. To obtain the impor-427

tance of a specific instruction token tx to a response428

token ty, we calculate the confidence change after429

the removal of the tx, as formulated below:430

Itx,ty = p(ty|Zy)− p(ty|Zy,/tx), (6)431

where p(·|·) is the conditional probability produced432

by the LLM f , Zy is the tokens before the ty and433

Zy,/tx is the tokens of Zy after removing the token434

tx. To reduce the computation, we approximate the435

Itx,ty with the first-order gradient ∂f(ty |Zy)
∂E[tx]

(Wu436

et al., 2023), where E [tx] is the token embedding437

of tx. We normalize the importance Itx,ty and ob-438

tain the standard importance Stx,ty with the for-439

mula:440

Stx,ty =
L× Itx,ty

maxNX
i=1Iti,ty

, (7)441

where NX is the number of instruction tokens 442

and L is a hyper-parameter which helps to filter 443

the noise brought by the first-order approximation. 444

To visualize the LLMs’ attention to different con- 445

straints, we calculate the importance weight of a 446

specific constraint Cx to the final response Y with 447

the formula: 448

SCx,Y =
1

NY

∑
ty∈Y

∑
tx∈Cx

Stx,ty , (8) 449

where NY is the number of response tokens. 450

5.2 Experiment Set-up 451

We conduct our explanation study on the LLaMA3- 452

8B-Instruct model. We set the hyper-parameter 453

L to 10 in Eq.(7) and select three most typical 454

difficulty distributions: hard-to-easy (indicated by 455

CDDI=1), easy-to-hard (indicated by CDDI=-1) 456

and random (indicated by CDDI=-0.05) to con- 457

duct our experiments. We randomly sample 200 458

7



(a) (b)

Figure 6: (a) The importance weights assigned by the LLM when handling constraints in different positions. (b)
The total importance weights which designated to the constraint part in the multi-constraint instructions among
three different constraint distributions.

Figure 7: The importance weights across different types
of constraint in three different constraint distributions.

instances from the corresponding data which fall459

in the required CDDI value in the probing task to460

serve as the dataset.461

5.3 Results462

Hard-to-easy constraint order induces the LLM463

to pay more attention to the constraint part in464

the multi-constraint instructions. We visualize465

the importance weights of the model on the con-466

straints in different positions. As shown in Fig. 6467

(a), in the multi-constraint instruction following,468

the model’s attention on different positions varies469

with changes in the constraint orders. Specifi-470

cally, when the constraints are randomly distributed471

across different positions (represented by CDDI=-472

0.05), the model assigns similar attention to all473

positions. As the constraint order becomes more474

structured (represented by CDDI=-1 and CDDI=1),475

the model’s attention neither exhibits the “lost in476

the middle” phenomenon observed in long-context477

processing (Liu et al., 2024), nor a simply sequen-478

tial distribution, but follows an iterative, laddered479

order. Then, in Fig. 6 (b), we present the total480

importance weight the model assigns to the con-481

straint part. We observe that the “hard-to-easy”482

constraint order attracts the most attention from the483

model towards the constraint part, which provides 484

an explanation for the superiority of this constraint 485

order. 486

The LLM’s performance on various constraints 487

is strongly correlated with its attention patterns. 488

The importance weights of the model on different 489

types of constraints are presented in Fig. 7. Among 490

the three distinct difficulty distributions, the “hard- 491

to-easy” (represented by CDDI = 1) assigns the 492

highest importance weights to various types of con- 493

straints except for the Content and Startend. It 494

is worth noting that this is exactly in accord with 495

quantitative results in Tab. 1, i.e., as the CDDI value 496

increases, the model’s performance on the Content 497

and Startend constraints shows a decreasing trend 498

instead. Overall, the results show that the model’s 499

accuracy in following a specific type of constraint 500

is strongly correlated with the attention assigned to 501

it by the model. 502

6 Conclusion 503

In this paper, we systematically investigate the posi- 504

tion bias problem in the multi-constraint instruction 505

following. To quantitatively measure the disparity 506

of constraint order, we propose a novel Difficulty 507

Distribution Index (CDDI). Based on the CDDI, 508

we design a probing task. First, we construct a 509

large number of instructions consisting of differ- 510

ent constraint orders. Then, we conduct experi- 511

ments in two distinct scenarios. Extensive results 512

reveal a clear preference of LLMs for “hard-to- 513

easy” constraint orders. To further explore this, 514

we conduct an explanation study. We visualize 515

the importance of different constraints located in 516

different positions and demonstrate the strong cor- 517

relation between the model’s attention distribution 518

and its performance. 519

8



7 Limitations520

Our work mainly focuses on the position bias prob-521

lem in the multi-constraint instruction following.522

We make a quantitative analysis of the influence523

brought by different constraint orders in the instruc-524

tions. However, there are still some limitations.525

The constraints in our work are usually parallel526

to each other, which means the order change will527

not affect the semantic meaning of the instructions.528

The position bias problem for for those sequential529

constraints need to be further explored. Moreover,530

we only investigate the phenomenon of position531

bias in existing LLM without offering a solution.532

In further work, we will conduct a further prob-533

ing task in sequential constraints to improve the534

generalization of our findings.535
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A Appendix765

A.1 Implementation Details766

We utilize 8 NVIDIA A800 80GB GPUs to con-767

duct all the experiments. We employ the vLLM768

framework (Kwon et al., 2023) to accelerate the769

model inference. For reproducibility, we employ770

the greed search in the whole inference (i.e., setting771

the “do_sample” to false.).772

A.2 More details for Comstraint Sampling773

In this work, We categorize the constraints into774

8 different groups. The categorization is shown775

in the Tab. 3. For each group, there are multiple776

types of constraints. Specifically, the constraints777

are designated to: (1) Keyword constraints. These778

constraints focus on controlling the inclusion or779

exclusion of specific words or phrases within the780

response. (2) Language constraints. Language781

constraints govern the linguistic properties of the782

response, including the language in which the re-783

sponse is written (e.g., English). (3) Length con-784

straints. These constraints focus on controlling the785

overall length of the response, including the num-786

ber of paragraphs, words, and sentences. (4) Con-787

tent Constraints. Content-related constraints define788

additional rules to ensure the response contains spe-789

cific elements. (5) Format constraints. Formatting790

constraints focus on how the response is structured 791

and styled. For example. (6) ChangeCase Con- 792

straints. These constraints focus on adjusting the 793

case of words in the response. They may require 794

the entire response to be in uppercase letters (e.g., 795

ALL CAPS), or entirely in lowercase letters (e.g., 796

all lowercase). (7) StartEnd constraints. These con- 797

straints limit the very beginning or ending of the 798

model outputs. (8) Punctuation constraints. These 799

constraints limit the appearance of specific com- 800

mas. 801

Considering the LLM is vulnerable to different 802

descriptions of the constraints (Yan et al., 2024), 803

we employ the GPT4o-mini to generate differ- 804

ent descriptions of the same constraints. Specif- 805

ically, given a description example, we leverage 806

the prompt shown in the Tab. 4 to seven distinct 807

variants. Overall, we obtain 8 distinct descriptions 808

for a specific type of constraint. 809
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Constraint Group Constraint Description Example

Keyword

Include Keywords
Include keywords [keyword1], [keyword2] in your re-
sponse.

Exclude Keywords
Do not include keywords [forbidden words] in the re-
sponse.

Keyword Frequency In your response, the word should appear N times.

Letter Frequency
In your response, the letter [letter] should appear [N]
times.

Language Response Language
Your ENTIRE response should be in [language], no other
language is allowed.

Length

Number Paragraphs
Your response should contain [N] paragraphs. You separate
paragraphs using the markdown divider ***.

Number Words Answer with at least/around/at most [N] words.
Number Sentences Answer with at least/around/at most [N] sentences.
Number Paragraphs +
First Word in i-th Para-
graph

There should be [N] paragraphs. Paragraphs and only para-
graphs are separated with each other by two line breaks.
The [i]-th paragraph must start with [first_word].

Content
Postscript

At the end of your response, please add a postscript starting
with [postscript marker].

Number Placeholder
The response must contain at least [N] placeholders repre-
senting the word space brackets, such as [address].

Format

Number Bullets
Your response must contain exactly [N] bullet points. Use
the markdown bullet points such as: * This is a pont.

Title
Your answer must contain a title, wrapped in double angular
brackets, such as «option of joy».

Choose From
Your response should contain one of the following options:
[options].

Minimum Number High-
lighted Section

Highlight at least [N] sections in your answer with mark-
down, i.e. *highlighted section*.

Multiple Sections
Your response must have [N] sections. Mark the beginning
of each section with [section_splitter] X.

JSON Format Entire output should be wrapped in JSON format.

ChangeCase
All Uppercase

Your entire response should be in English, capital letters
only.

All Lowercase
Your response should be in English, and in all lowercase
letters. No capital letters are allowed.

Frequency of All-capital
Words

In your response, words with all capital letters should appear
at least [N] times.

StartEnd
End Checker Your response must finish with this phrase: <end_phrase>.
Quotation Wrap uour entire response with double marks.

Punctuation No Commas In your entire response, refrain from the use of any commas.

Table 3: The categorization for different constraints.
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/* Task prompt */
You are provided with a <constraint> in an instruction. As a prompt engineer, your task is to rephrase the provided <constraint>
to make it more diverse. You ought to provide five more variants of the <constraint>. Make sure your revision does not
change the meaning of the original <constraint>.

/* Example */
—INPUT—
<constraint>:
Your response should contain at least 3 sentences.
—OUTPUT—
variants:
1. Respond with at least three sentences
2. Use at least 3 sentences in your reply
3. Your entire response should include at least three sentences
4. Organize your entire response in at least 3 sentences
5. Please make sure the response is at least 3 sentences long

/* Input */
—INPUT—
<constraint>:
{Given_constraint}
—OUTPUT—
variants:

Table 4: The prompts for diversifying the descriptions of a given constraint. We utilize one-shot in-context learning
to enhance the performance. The information that requires manual input is highlighted.
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