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ABSTRACT

Despite recent advances, state-of-the-art machine learning algorithms struggle
considerably with control problems where data is scarce relative to model com-
plexity. This problem is further exacerbated if the system changes over time,
making past measurements less useful. While tools from reinforcement learning,
supervised learning, and Bayesian optimization alleviate some of these issues,
they do not address all of them at once. Considering these drawbacks, we present
a multi-scale Bayesian optimization for fast and data-efficient decision-making.
Our pipeline combines a high-frequency data-driven dynamics model with a low-
frequency Gaussian process, resulting in a high-level model with a prior that is
specifically tailored to the dynamics model setting. By updating the Gaussian pro-
cess during Bayesian optimization, our method adapts rapidly to new data points,
allowing us to process current high-quality data quickly, which is more representa-
tive of the system than past data. We apply our method to avoid tearing instabilities
in a tokamak plasma, a control problem where modeling is difficult, and hardware
changes potentially between experiments. Our approach is validated through of-
fline testing on historical data and live experiments on the DIII-D tokamak. On
the historical data, we show that our method outperforms a naive decision-making
algorithm based exclusively on a recurrent neural network and past data. The live
experiment corresponds to a high-performance plasma scenario with a high likeli-
hood of instabilities. Despite this base configuration, we achieved a 50% success
rate in the live experiment, representing an improvement of over 220% compared
to historical data.

1 INTRODUCTION

Controlling real-world systems is generally a difficult task, even when powerful machine-learning
tools are employed: nonlinearities are often pronounced, data is scarce, and safety issues impose
severe limitations. A prime example of these issues is tokamak control, where good models are
unavailable, safety is paramount, and instabilities are notoriously hard to control. These issues
are further complicated by the fact that hardware configurations in tokamak change on a regular
basis, making a model trained on past data even less reliable. However, despite these challenges,
designing good control policies for tokamaks is highly desirable due to their promise to generate
abundant clean energy via nuclear fusion.

In many real-world settings, model-free reinforcement learning is a promising solution and has seen
successful applications (He et al., 2024; Kumar et al., 2021; Lee et al., 2020). However, most of
these methods rely on a prohibitive amount of policy rollouts for training, which is typically only
achievable with reliable simulation environments. In complex environments like tokamaks, this is
particularly problematic, as operation costs typically only permit a handful of rollouts, and exist-
ing simulators do not reflect the true dynamics for many aspects of the plasma (Char et al., 2023a).
Offline RL, seeks to overcome these issues by directly learning a policy from offline data which con-
servatively stays within bounds of observed data (Levine et al., 2020). However, the performance of
offline RL methods depends crucially on high-quality expert data that contains advantageous states.
If these are not present, then offline RL can suffer from extrapolation errors (Fujimoto et al., 2019).
This is a major drawback for tokamak control, where significant exploration and improvement are
still required to achieve energy production. Moreover, even offline RL is affected by the sim2real
problem which is described in detail below.
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Alternatively, model-based reinforcement learning offers a solution where dynamics models are
trained from historic data and rollouts from the model are then used for policy learning or planning
(Deisenroth & Rasmussen, 2011; Chua et al., 2018; Kaiser et al., 2019). In the past, machine learning
algorithms have been used to directly model plasma dynamics (Char et al., 2023b; Abbate et al.,
2021; Boyer et al., 2021). Reinforcement learning policies have also been trained in models trained
solely on fusion data (Char et al., 2023a; Wakatsuki et al., 2023; Degrave et al., 2022). However, the
performance of these approaches crucially hinges on the assumption that the data faithfully captures
the model at test time. This is problematic in the case of tokamak dynamics, where time-dependent
model changes cannot be neglected. Though this issue can be potentially addressed by updating the
model with new data, the scarcity of experiments implies that too little data is typically produced to
reliably update the model.

In low-dimensional settings, the obstacles posed by conventional RL methods can potentially be
addressed by Bayesian optimization (BO). BO is a data-efficient tool for optimizing black box func-
tions (Garnett, 2023). By quantifying model uncertainty, BO achieves a tradeoff between exploration
and exploitation, leading to fast convergence in many practical settings (Shalloo et al., 2020; Shields
et al., 2021). In the case of tokamak control, BO has been used, e.g., to control the rampdown of
a real tokamak (Mehta et al., 2024), and to control neutral beams in a tokamak simulator (Char
et al., 2019). However, the work of Mehta et al. (2024) does not address critical plasma instabilities,
whereas Char et al. (2019) relies on a simulator. Moreover, these methods use a poorly specified
prior and require an extensive amount of experiments to perform well.

Motivated by the strengths and shortcomings of existing machine learning-based approaches for
tokamak control, we design a novel approach that combines a dynamic model predictor and Bayesian
Optimization. Our approach employs a multi-scale approach: a recurrent probabilistic neural net-
work models the high-frequency model dynamics, while a Gaussian process models the effect of
low-frequency marginal statistics on the dynamics. After adequate pre-processing, we use historical
data to train both models, where the dynamic model serves as a prior for the Gaussian process. Addi-
tionally, by leveraging physics-informed assumptions, we design a low-dimensional state space for
the Gaussian process. This naturally leads to a contextual Bayesian optimization algorithm tailored
to the task at hand, allowing it to find stabilizing actions in a highly data-efficient manner. Moreover,
due to its ability to perform fast updates, it allows us to efficiently leverage small batches of data
collected during experiments to best inform new decisions on the fly.

We test our approach on a large dataset from past tokamak experiments, where we can quickly iden-
tify stable configurations, outperforming a naive approach based exclusively on the recurrent neural
network model. Furthermore, we apply our approach to find stabilizing actions for a high performing
plasma scenario in the DIII-D tokamak. High performing plasma scenarios need to maintain high
temperature and pressures for increased energy, hence, they are more unstable. Our method was
able to find stabilizing ECH actuator values in four of eight experiments despite changes to other
actuators, a 133% improvement compared to historical experiments with the same configuration.

Our paper is structured as follows: first, we provide some necessary background to nuclear fusion,
and define our problem mathematically. Then we discuss our complete pipeline and methodology,
followed by the results and analysis on offline historical data and live experiments on a Tokamak
reactor. Finally, we provide conclusions and discuss opportunities for future work. Additional
details are provided in the Appendix.

2 BACKGROUND AND PROBLEM STATEMENT

In this section, we first provide some background on nuclear fusion and then present the formal
problem statement. We also include more details in the Appendix section.

2.1 NUCLEAR FUSION

Nuclear fusion is seen as a promising solution for clean, limitless energy, producing no high-level
radioactive waste. Among the fusion technologies, tokamaks are the most advanced, using magnetic
fields to confine hot plasma to enable fusion conditions. Many countries have invested in tokamak
research facilities and currently more 35 nations are collaborating to build ITER, a global project
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aiming to demonstrate the viability of large-scale commercial fusion reactors (Mohamed et al., 2024;
Shimada et al., 2007).

One of the key challenges in tokamak development is plasma disruptions, which can cause se-
vere damage to reactor walls and components, particularly in larger reactors like ITER (Schuller,
1995; Lehnen et al., 2015). These disruptions often stem from tearing mode instabilities (or tearing
modes), where magnetic islands form, leading to energy loss and instability. Prior work proposes
avoiding tearing instability with predictive models using real-time control (Fu et al., 2020) and rein-
forcement learning (Seo et al., 2024). However, these methods reduce neutral beam power and add
torque to stabilize the plasma. This is undesirable, as reducing beam power leads to lower confine-
ment energy, decreasing the total energy output of the tokamak. On the other hand, adding torque
to large tokamaks is itself a challenging issue. Bardoczi et al. (2024) propose controlling tearing
modes utilizing differential rotation of the plasma. However, achieving differential rotation control
is itself a challenging problem.

Though still poorly understood, Electron Cyclotron Heating (ECH) has shown promise in counter-
acting tearing instabilities by driving localized currents at the site of instability (Gantenbein et al.,
2000; Kolemen et al., 2014). These and other findings have motivated the inclusion of gyrotrons
capable of delivering ECH in future reactors to potentially control tearing instabilities, e.g., ITER
will have over 40 gyrotrons. So far, the best results for stabilizing instabilities with ECH have been
achieved by keeping the ECH constant over time, as this minimizes the chance of plasma disrup-
tions. However, how to best deploy ECH is still an open question. We provide further details on
ECH effect on plasma in the appendix.

In this work, we aim to control ECH profiles to avoid tearing instability (or modes) in high qmin

tokamak scenarios. An ECH profile represents the heating achieved by the gyrotrons across the
cross section of the plasma. This can be seen in fig 4. High qmin is a scenario that supports long
duration steady-state plasma operations, making it crucial for future commercial fusion reactors.
More details on High qmin scenario are provided in the Appendix. We also focus our attention on
2-1 tearing instability, a type which is the most common and significantly disruptive.

2.2 PROBLEM STATEMENT

We treat the tokamak dynamics as an unknown discrete-time stochastic system

st+1 ∼ Πst,at
, (1)

with states st ∈ S and actions at ∈ A, and the probability of a tearing mode occurring follows a
Bernoulli distribution, parameterized by the tokamak states and actions

Tt ∼ Bernoulli(p(st, at)). (2)

Of the state variables describing the plasma, the most important for our approach is the normalized
plasma pressure βN,t ∈ st. A full description of the state space is given in the appendix. The action
vector can be decomposed into three different sub-vectors

at :=
[
aft , a

c
t , a

g
t

]
(3)

as follows. The actions aft correspond to feedforward inputs specified before the experiment. These
correspond, e.g., to gas flows, plasma density, and shape controls. They are typically picked manu-
ally based on the success of previous experiments. The actions act are part of a feedback control loop
that aims to stabilize the normalized plasma pressure βN,t ∈ st, arguably one of the most impor-
tant quantities since it measures the efficiency of plasma confinement relative to the magnetic field
strength. The third set of actions agt corresponds to gyrotron angles, operated at constant power,
which we use to keep the tearing instability from occurring. The gyrotrons operate on the plasma
by generating an ECH profile aech

t = ϕ(agt ). Unlike aft and act , the number of gyrotrons, i.e., the
dimension of agt , potentially changes between each individual experiment. This is due to various
reasons, e.g., due to hardware issues or because some gyrotrons might be required for other tasks,
such as elm suppression or density control (Hu et al., 2024; Ono et al., 2024).

This paper considers the case where the gyrotron angles agt are kept fixed throughout each experi-
ment roullout, i.e., ag0 = ag1 = ... = agτ =: ag , where τ is the length of the rollout horizon. This is

3
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Figure 1: Overall Pipeline to generate trajectory actions. Initial conditions and feedforward actuators
are used by RPNN to generate rollouts through which we compute the prior mean of the objective
function (time to tearing instability). Our Bayesian optimization algorithm uses this to optimize for
actions (ECH). Noisy outputs from the Tokamak are then to update the Gaussian process model used
for Bayesian optimization.

a common operating mode and also a design choice, which we make because we need to search as
efficiently as possible within the action space, an impossible task if its dimension is too large. The
feedforward actions aft and the target normalized plasma pressure β̄N , which defines the set-point
for act , are specified beforehand and can change between rollouts. Our goal is then to select ag
separately for each experiment such that the probability of encountering a tearing mode Tt = 1 is
minimized over the full rollout horizon.

3 METHODOLOGY

We now introduce our method, which aims to find stationary ECH profiles that mitigate tearing
instabilities. Our complete pipeline is illustrated in Fig. 1. On a high level, the process is as follows -
We model the system at two different time scales to inform the choice of actuator commands for each
experiment. At a smaller, more granular time scale, we use a recurrent probabilistic neural network
model (RPNN) to estimate the high-frequency behavior during each experiment. The coarser model
corresponds to a Gaussian process model and is trained to predict the behavior of the system based on
marginal statistics from experimental observations and RPNN predictions of the objective function,
which act as a prior mean. In this case, the objective function is the time-to-tearing instability.
Given the target normalized plasma pressure β̄N , we leverage the Gaussian process to select actions
(ECH profiles) in a low-dimensional space via Bayesian optimization. The desired profile is then
converted to gyrotron angles and applied to the tokamak. Finally, we update our model with the
resulting time-to-tearing instability and actual ECH profile and repeat the procedure. We update the
model with the measured ECH profile because it can diverge significantly from the desired one. In
the following sections, we describe the high-frequency RPNN, then the GP, and end with the full
Bayesian optimization pipeline.

3.1 RECURRENT PROBABILISTIC NEURAL NETWORKS AND BINARY CLASSIFCATION

We employ a Recurrent Probabilistic Neural Network (RPNN) to model the high-frequency behavior
of the tokamak. An RPNN has a Gated Rectifier Unit (GRU) cell, which stores information about
past states and actions. The advantage of including a memory unit is that it allows us to model
any unobserved variables that influence the state. To bypass the issue that the number of gyrotrons
differs for each rollout in the training dataset, we assume that the resulting heating profiles aech

t can
be controlled directly, allowing us to disregard agt both in training and testing. When carrying out
experiments, we then project aech

t onto agt , which can be done for an arbitrary number of gyrotrons,
i.e., for an arbitrary dimension of agt .

Given st and at as inputs, our RPNN outputs a distribution over st+1 as mean η, variance Σ2. The
mean and variance specify a multivariate normal distribution, which we employ to approximate the
system dynamics

N (η(st, at),Σ
2(st, at)) ≈ Πst,at

. (4)
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In addition to the RPNN, we train a classifier, which we call the tearing mode predictor h to predict
the probability of a tearing mode occurring

h(st, at) ≈ Bernoulli(p(st, at)). (5)

3.2 GAUSSIAN PROCESS MODEL

Exclusively using RPNN for experimental design is challenging for various reasons. Although the
RPNN accurately captures some of the tokamak behavior, the resulting predictions often exhibit
significant errors, largely due to the sim2real gap caused by time-dependent fluctuations in the envi-
ronment variables, e.g., due to maintenance or hardware changes provoked by previous experiments.
Furthermore, retraining the RPNN between experiments and using it to select gyrotron angles ag is
virtually impossible because the newly collected data is too small and we only have a few minutes
between experiments.

We address the above-mentioned issues by employing a Gaussian process (GP) model, a nonpara-
metric model that is very data-efficient, especially in low-dimensional spaces (Deisenroth & Ras-
mussen, 2011). A GP corresponds to an infinite collection of random variables, of which any finite
number is jointly normally distributed. To fully leverage the strengths of GP models, we need to
carefully summarize the information collected between experiments before training the GP. This is
done as follows.

First, we assume the achieved normalized plasma pressure βN is independent of the ECH profile
aq . This is a reasonable assumption because βN is largely determined by neutral beams, which are
controlled through the feedback variables act . We then approximate the feedforward and feedback
control actions af1 , . . . , a

f
τ and ac1, . . . , a

c
τ by assuming that they are uniquely specified by the target

normalized plasma pressure, denoted by β̄N . This choice is partly justified because the feedforward
and feedback control actions are often primarily informed by a target normalized plasma pressure. A
further approximation we make is to project the ECH profile aech to a Gaussian curve, parametrized
by the three-dimensional vector aq containing the center, width, and height of the Gaussian curve.
Finally, we employ the GP to predict the time-to-tearing mode tTM, which we use as a proxy for the
probability of a tearing mode occurring. The rationale behind this choice is twofold. First, a scenario
where tearing instability occur late implies a higher degree of stability than a scenario where they
occur earlier. Moreover, it allows us to use the GP in a regression setting, where GPs are strongest
and best understood. The GP inputs are thus β̄N and aq , whereas the output is tTM.

The GP is fully specified by a prior mean function m and a kernel k that specifies the similarity be-
tween training inputs. In this work, we employ a squared-exponential kernel k, which is appropriate
for approximating most continuous functions. The mean function m corresponds to the average t̂TM
predicted by the RPNN and tearing mode predictor,

t̂TM(β̄N , aq) := E

(
argmin

t
t

∣∣∣∣∣ Tt ≥ 0.5, Tt ∼ h(st, at), st+1 ∼ N
(
η(st, at),Σ

2(st, at)
))

,

(6)

where we use the Gaussian curve specified by aq to choose the ECH component of the actions
a1, . . . , aτ . The feedforward and control actions act and aft components of the actions are chosen
based on the target β̄N for the experiment. Given training data,

Dn = {β̄(i)
N , a(i)q , t

(i)
TM}i=1,...,n,

obtained after appropriate pre-processing, we can compute the posterior distribution of tTM for ar-
bitrary test inputs β̄∗

N , a∗q , which corresponds to a normal distribution mean and covariance

µn(β̄
∗
N , a∗q) = t̂TM(β̄

∗
N , a∗q) + k⊤∗ (K + σ2I)−1∆n, (7)

σ2
n(β̄

∗
N , a∗q) = k∗∗ − k⊤∗ (K + σ2

noI)
−1k∗ + σ2

no, (8)

where σ2
no is the noise variance, [k∗]i = k(β̄∗

N , a∗q , β̄
(i)
N , a

(i)
q ), [K]ij = k(β̄

(i)
N , a

(i)
q , β̄

(j)
N , a

(j)
q ),

k∗∗ = k(β̄∗
N , a∗q , β̄

∗
N , a∗q). The vector [∆n]i = t

(i)
TM − t̂TM(β̄

(i)
N , a

(i)
q ) contains the difference be-

tween the observed and the predicted time-to-tearing mode. In practice, the posterior variance σ2
n is

5
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typically small when evaluated in distribution and larger when out of distribution. Hence, intuitively,
the posterior GP mean µn can be viewed as the predictive model, whereas σ2

n quantifies model un-
certainty. This distinction for understanding Bayesian optimization, which is introduced in the next
section.

3.3 CONTEXTUAL BAYESIAN OPTIMIZATION WITH NOISY INPUTS

Contextual Bayesian optimization is a data-efficient tool that leverages GPs to optimize black-box
functions. Given a context that specifies the environment, it optimizes an acquisition function that
carefully balances exploration versus exploitation. By recursively updating the acquisition function
after every observation, it gradually becomes more confident about its predictions, resulting in con-
vergence. In every experiment, we treat the target normalized plasma pressure β̄

(n+1))
N , specified

before the experiment, as the context and choose the ECH profile by optimizing the so-called upper
confidence bound (UCB) acquisition function

aBO
q = argmax

aq

µn(aq, β̄
(n+1))
N ) + ασn(aq, β̄

(n+1)
N ), (9)

where α balances exploration and exploitation. In conventional BO methods, the next step consists
of setting a

(n+1)
q = aBO

q , measuring the time-to-tearing mode t
(i+1)
TM , and updating the GP accord-

ingly. However, in our setting there is the added challenge that the target plasma β̄N and the desired
ECH profile corresponding to aBO

q is not reproduced exactly. This is due to the potentially changing
number of available gyrotrons, actuator noise, and unmodeled disturbances. Number of gyrotrons is
variable from experiment-to-experiment. To alleviate this, we instead measure the ECH profile ob-
tained during the experiment and use it to determine a(n+1)

q before updating the GP model. Formally,
this is equivalent to standard contextual BO where the GP inputs aq in Equation 9 are perturbed by
unknown noise.

4 RESULTS

This section presents results from offline tests using historical data and results from experiments at
the General Atomics DIII-D Tokamak Fusion Facility. We use a fixed RPNN in all experiments,
trained using 15, 000 one-step state transition observations collected between 2010 and 2019 at the
DIII-D tokamak.

Through our analysis of offline and online experiments, we aim to answer the following questions:

1. How does DynaBO compare to other baselines? How robust is it in terms of the choice of
kernel?

2. Can DynaBO find heating profiles that avoid tearing instabilities altogether using only a
handful of trials? If not, can it prolong the stable operation time of the plasma?

We address question 1 by doing running artificial experiments from offline data and comparing
performance all methods. We then address question 2 with results from live experiments on the
DIII-D Tokamak. As we show in the following, both questions have an affirmative answer.

4.1 OFFLINE DATA ANALYSIS

This section employs historical data from the DIII-D tokamak to compare DynaBO with several
baselines. Specifically, we employ data from 281 past experiments carried out at the DIII-D toka-
mak between 2012 and 2023. We selected the data points based on their similarity with our live
experiment, particularly the range of β̄N and the high qmin specification. Appendix A.2.2 provides
a detailed description of the selection procedure.

We employ the historical data to emulate our live experiment from Section 4.2. This is achieved as
follows. At every time step, we sample the target plasma pressure β̄N from a uniform distribution
corresponding to the range of the historical data and condition DynaBO on β̄N . We then select a

6
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Figure 2: Cumulative Regret (log scale) achieved by DynaBO (green), DynaBO with a time-
dependent kernel (gray), the RPNN only (blue), and a vanilla GP with a zero-mean prior (red)
using six different kernels.

subset from the historical data with plasma pressure values within the interval [β̄N − ϵ, β̄N + ϵ],
where ϵ = 0.04, and allow DynaBO to select an ECH value corresponding to an element of that
subset. After selecting an ECH value, we treat the historical data point corresponding to that profile
as a new observation, which we use to update our GP model.

We compare our approach to three different baselines: the setting where we fully trust the RPNN
to predict tearing modes without updating it, a vanilla GP with a zero-mean prior, and our approach
using a time-dependent kernel. The motivation for the latter approach is that older data is potentially
less trustworthy for present-day experiments due to the number of changes made to the tokamak over
time. In addition, we consider a linear kernel, Gaussian kernels, and Matérn kernels with different
hyperparameter configurations.

In Fig.2, we depict the cumulative regret

Cumulative Regret(N) =

N∑
i=1

(τmax − t
(i)
TM), (10)

where τmax = 10s is the maximal shot length. As can be seen, DynaBO and DynaBO with time
dependency achieve the highest performance in all settings except the linear kernel setting. By
contrast, the RPNN-based method and vanilla BO cannot consistently find good solutions despite
performing more steps than the total number of data. This indicates that DynaBO does not become
overconfident and is robust to the choice of kernel and hyperparameters except when the kernel is
clearly misspecified, e.g., when using a linear kernel. While including time as an input to the GP
performs competitively, overall, the improvement seems only marginal. One possible explanation
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Figure 3: ECH Profiles queried by different methods during simulated offline runs using a Gaussian
kernel. We see that DynaBO and DynaBO with a time-dependent GP explore the most, highlighting
the importance of our dynamic model prior mean.

is that the reliability of the data depends on multiple factors, many of which cannot be explained
exclusively as a continuous function of time, e.g., sensor and actuator upgrades, particle absorption
and release by the tokamak wall, and the presence of impurities due to previous experiments.

We note that the vanilla GP does converge after more than 500 steps, i.e., after the plots in Fig. 2 end.
However, such a long convergence time is unacceptable for our setting since fusion experiments are
very costly, and we only get a handful of experiments to explore.

To compare exploration, in Fig. 3, we display the ECH profiles queried by the different baselines
using a Gaussian kernel. DynaBO and DynaBO+time exhibit more variety in the queried ECH
profiles than in the vanilla GP and the RPNN baseline. This corresponds to better exploration,
resulting in lower regret for our approach. We observed similar trends using all other kernels except
the linear one.

4.2 DIII-D TOKAMAK EXPERIMENTS

We tested our algorithm at the General Atomics DIII-D Tokamak during a two-hour time window
allocated to us during the FY24 campaign. Each experiment run at DIII-D is known as a ‘shot’.
Each shot is then assigned a unique shot number.

To make the most of our time and make significant statements about results, we opted for a pre-
specified set of feedforward actuators aft that is highly unstable, having a historical rate of tearing
instability occurrences of 77%. We conditioned our GP on 125 historic high qmin experiments with
similar configurations to the one we opted for on the day of the experiment. Appendix A.2 provides
an overview of the data used to train the GP. Our experiment consisted of 8 BO iterations with
DynaBO. After each run of DynaBO, the selected heating profiles aBO

q were converted to gyrotron
angles and entered into the Plasma Control System, the interface that controls the tokamak. After a
few seconds of maintaining the plasma, we ramped down the actuators and terminated the shot.

Experiment ID Target β̄N Tearing Instability Stability Time
(Shotnumber) Avoided (ms)

199599 3.37 Yes 4566
199601 3.27 Yes 4632
199602 3.27 No 2107
199603 3.27 No 2149
199604 3.27 Yes 4592
199605 3.14 No 1512
199606 3.45 No 3512
199607 3.43 Yes 3654

Table 1: Results from two-hour experiments at DIII-D Tokamak : DynaBO avoids tearing modes in
4/8 runs in a high-performance configuration with a historical rate of occurrence of the tearing in-
stabilities of 77%. The mean time under stability with DynaBO is 3339 ms while the historical time
under stability is 2424 ms which represents an improvement of 914 ms in stability time. Generally,
for stable experiments at DIII-D, the plasma stability is maintained for 4-5s.
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We started our experiments by recreating a high-performing historical high qmin experiment with
a tearing instability. For this, we recreated the conditions in shot 180636, a high-performance high
qmin plasma trajectory executed previously at DIII-D. Once the shot was recreated, we ran additional
shots where we varied the ECH using DynaBO while keeping the remaining settings identical. The
details for each of the 8 shots carried out using DynaBO are shown in Table 1. As can be seen, our
algorithm was able to successfully avoid tearing instabilities in 4 out of 8 shots. Moreover, we main-
tained a stable plasma for 3339 milliseconds on average. Although this number of shots is too low to
be statistically significant, we stress that the chosen configuration is highly unstable. For reference,
there were 61 historical experiments at DIII-D with very similar settings. Of those experiments, 47
reported tearing instabilities, corresponding to a tearing instability rate of 77%. These experiments
include runs from session of 180636 and other sessions where similar high performance high qmin

conditions were attempted. Moreover, the average time to tearing instability in those experiments is
2424 milliseconds, well below our average of 3339 milliseconds. More details on identification of
tearing mode instabilities from raw signals is shown in Section A.3.

5 LIMITATIONS AND FUTURE WORK

While our method is shown to preemptively suppress tearing instabilities, it is mainly data-driven,
and potential improvements are possible by incorporating physics knowledge. One possible solu-
tion is to develop physics-informed neural network models, such as incorporating elements of the
Rutherford equation to improve interpretability. Another shortcoming is that our current method is
only applicable to feedforward control scenarios. This means the algorithm cannot adapt to unex-
pected real-time changes in the plasma, such as MHD activity or impurity changes. In future work,
we aim to extend our learning to feedback control systems.

6 CONCLUSION

In this work, motivated by the challenges of tokamak control, we develop a multi-scale model-
ing approach for making decisions on the fly using a handful of data. Our pipeline leverages a
high-frequency neural network model of the system dynamics and a Gaussian process that makes
predictions based on marginal statistics. Together, both models form a Bayesian optimization al-
gorithm tailored to the task at hand that can quickly identify stabilizing control actions. This is
achieved by making decisions on the fly based on newly collected data. On a historical data set,
our method outperforms vanilla BO and a naive baseline that relies exclusively on neural network
predictions. This is mainly due to our approach having better exploration capability. Moreover, our
method shows promise in live experiments on the DIII-D Fusion reactor. During the experiments,
our approach successfully avoided tearing instability in 4/8 runs despite highly unstable conditions,
representing an improvement of over 117% percent compared to past experiments.

Our work illustrates the potential of combining complex high-frequency and low-frequency models
to improve performance on the fly based on incoming data. In the field of nuclear fusion, the need
for similar methods will increase in the future, as new and larger reactors such as ITER become
operational, and a significant gap between existing and new models needs to be bridged with very
little data. This is the case not only for the stabilization setting considered in this paper but also
for settings such as ramp-up design, where a different set of actuators is considered. Moreover,
we believe this approach could be of interest to several other applications where the discrepancy
between past and present data is considerable, e.g., physical systems that exhibit wear and tear.
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A APPENDIX

A.1 ADDITIONAL FUSION BACKGROUND

Effect of ECH on Plasma : Electron cyclotron heating waves released by gyrotrons interact with
the plasma by being absorbed by electrons whose gyrofrequency matches the frequency of the ECH
wave. This absorption is highly localized, making electron cyclotron heating (ECH) a powerful
tool for precise plasma control. ECH increases the electron temperature at the absorption point and
often reduces electron density, a phenomenon known as density pump-out (Wang et al., 2017). As
density decreases, plasma rotation tends to speed up due to reduced inertia. By adjusting the toroidal
injection angle of the EC wave, different effects can be achieved. When injected perpendicular to the
toroidal direction, EC waves primarily heat the plasma. When injected parallel, they drive electron
acceleration in the direction of the plasma current, a process called electron cyclotron current drive
(ECCD). While the injection angle can be switched between shots, it cannot be actively adjusted
during a single shot. In this experiment, ECCD is used for all shots because it effectively suppresses
magnetic islands (Kolemen et al., 2014).

Details on high qmin plasma scenario : The high qmin scenario refers to a group of scenarios related
with elevated values of qmin, the minimum value of the safety factor profile. Under this umbrella of
scenarios, there are three main groups: qmin = 1.4, qmin = 1.5 − 2, and qmin > 2. The lowest of
the range with qmin = 1.4 has shown promise as being stable to TMs, but did not have the greatest
confinement, while the highest of qmin > 2 was stable to TMs but had lower energy confinement.
The middle range of qmin = 1.5− 2 has very desirable confinement but is very suspectible to TMs
(Holcomb et al., 2014). The purpose of this experiment is to work in that middle range of qmin,
referred to as the elevated qmin scenario, to stabilize TMs and achieve higher confinement than
either of the other similar scenario options. In the elevated qmin scenario, 2/1 TMs are the most
prevalent mode because they require the least energy to perform magnetic reconnection and form a
magnetic island. Other lower order modes like 3/1 or 5/2 can sometimes occur but are significantly
less frequent as they require more energy to form a magnetic island. Stabilizing TMs in the elevated
qmin scenario would show a path forward for this high-confinement scenario as a possible operating
scenario for a fusion power plant.

A.2 DATASET

Plasma trajectories on a Tokamak consists of three phases. The ramp-up phase, where the gases
are heated and pressure is increased to generate the plasma state where fusion occurs. During this
phase, the normalized plasma pressure βN rises. Then, we enter the flat-top phase, where the plasma
pressure βN is sustained, allowing fusion to occur. In this phase, βN is mostly constant and the aim
to maintain this state without instabilities. Finally, the actuators are gradually ramped down and the
plasma is safely terminated as the shot concludes. In this paper, we stay in the flat top phase and
aim to stabilize it. To create our dataset, we hence use only flat top data and only control actuators
during this phase of the experiment.

Our complete dataset contains of ∼ 15000 plasma trajectories from historical experiments at DIII-D
Tokamak. The data contains signals from different diagnostics have different dimensions and spatial
resolutions, and the availability and target positions of each channel vary depending on the dis-
charge condition. Therefore, the measured signals are preprocessed into structured data of the same
dimension and spatial resolution using the profile reconstruction and equilibrium fitting (EFIT).
These shots contain many different signals, some of which are described below. The dataset con-
sists of scalar signals defined at every timestep and profile signals which are defined along 33 or 200
points along the radius of the plasma cross-section. These consists of temperature, ion temperature,
pressure, rotation, safety (Q) factor and density. For these signals we first convert them into PCA
components and select the top components which are able to explain 99% of the variance in data.
The Electron Cyclotron Heating (ECH) profile we choose to control, is also defined at 200 points
along the plasma radius. PCA is unable to describe ECH profiles, however they can described well
by a Gaussian curve and are hence parameterized by the center, width and amplitude of the curve.
These 3 parameters form our parameterization aq of the ECH profiles. The model state space st is
shown in table 2 while the actuator space at is shown in table 3.
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State Variables Dimensions
Normalized Plasma Pressure βN Scalar

Line averaged density Scalar
Loop voltage Scalar

Confinement Energy Scalar
Temperature Profile Decomposed to 4 PCA components

Ion Temperature Profile Decomposed to 4 PCA components
Density Profile Decomponsed to 4 PCA components
Rotation Profile Decomposed to 4 PCA Components
Pressure Profile Decomposed to 2 PCA components

q Profile (safety factor) Decomposed to 2 PCA components

Table 2: Plasma Features used as state space for RPNN model.

Actuator Variables Dimensions
Power Injected Scalar
Torque Injected Scalar
Target Current Scalar
Target Density Scalar
Magnetic Field Scalar

Gas Puffing Scalar
Shape Controls 6 Scalars

ECH Profile Decomposed to Gaussian curve with mean, stddev, amplitude (µ, σ, w)

Table 3: Plasma Features used as actuator space of the RPNN model.

A.2.1 DATASET FOR DYNAMICS MODEL

For training the RPNN, we utilize this data set with data points every 20 ms in time inter-
vals with trajectories having an average length of 5 seconds. The RPNN is trained to predict
∆st+1 given (st, at). We add tearing mode labels to this dataset and train a random forest clas-
sifier to predict the probability of tearing modes at every time step. We tried incorporating tearing
mode predictions inside the RPNN network however, we did not get good results. This is likely due
to the formation of spurious correlations and causality issues formed by introducing tearing modes
into the dataset.

A.2.2 DATASET FOR GAUSSIAN PROCESS

To create the dataset for offline testing DH , we first limit ourselves to High qmin trajectories having
high βN values > 3. A figure of how the heating profile looks is shown in Fig. 4. These constraints
follow our experiment conditions. This leaves us with 281 trajectories. We subsequently convert
this data from a time-step scale to a trajectory level scale. We take average βN of the flat-top
phase of the trajectory. For ECH profile aq , we take a mean of all profiles in the flat-top phase of
the experiment. This is the phase where the high-energy plasma state is maintained. We thus get
the dataset DH where DH

i consists of triplet (βN
i, aiq, t

i
TM) i.e. the normalized plasma pressure,

parameterized ECH profile and the observed time-to-tearing mode. This dataset is used for offline
testing. For online testing, we subset this dataset further by only keeping whose ECH profiles are lie
in the achievable parameter space as per experiment configuration, which leaves us with 125 training
points. This is used as a training set for the Gaussian Process.

A.3 DETAILS ABOUT ONLINE EXPERIMENT RESULTS

In this section, we analyze the signals from our experiment runs at DIII-D. The results are shown
in Fig. 5 and Fig. 6. We show the n1rms signal which measure the n=1 magnetic pertubations.
We also show the normalized plasma pressure βN , a quantity which directly corresponds to energy
confinement levels in the plasma. For experiments 199606-199607, it is tricky to detect a tearing
instability, hence we also add power injected. A sustained high value in n1rms along with drops in
βN usually denotes tearing modes. However, βN drops may vary depending on severity.
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Gyrotron

Tokamak Cross-section Tokamak Top View

Gyrotron

Figure 4: Gyrotron action on the Plasma inside the Tokamak. The bottom 2 curves indicate the
power absorbed (heating profile) and current driven in the plasma from the centre to outer region of
the plasma.

A.4 APPROXIMATING THE PRIOR

The historical data used to train the RPNN and the GP does not contain the target normalized plasma
pressure β̄N . Instead, it only contains the actions at achieved during the shot. Similarly, the RPNN
is trained exclusively on the actions, and not on β̄N , hence a direct mapping from β̄N does not take
place in the RPNN. In the experiments, we address these issues as follows. In the historical data, we
set β̄N to be equal to the average normalized plasma pressure, i.e.,

β̄
(i)
N ≈

τ∑
t=1

βN,t
(i). (11)

This is a reasonable assumption since the target β̄N is mostly achieved in practice. We then approxi-
mate the time-to-tearing mode t̂TM(β̄N , aq) predicted by the RPNN given β̄N and aq as follows. We
first use aq to compute the actions aech

t . We then compute the remaining actions act and aft by sam-
pling full rollouts from the historical data and setting act and aft equal to the corresponding actions.
We then look at the resulting average normalized plasma pressure and set it equal to β̄

(i)
N . We do this

for all ECH actions aq within a 10× 10× 10 grid within the space of ECH parameters, specified by
the historically largest and smallest parameter values in the historical data set. We then separate the
results into bins that have the same value of β̄(i)

N up to a margin of ϵ = 0.04, and average over all
tearing modes within that bin, yielding t̂TM(β̄N , aq). At test time, we project all points to the closest
point on the grid, both when performing queries and before updating the GP model.

A.5 CONVERSION OF ECH PROFILE TO GYROTRON ANGLES

Even though we selected ECH profiles as our action space, the Plasma Control System (PCS) at
DIID tokamak expects the output to be Gyrotron angles, which denote locations where they will be
aimed. To make this conversion, we used OMFIT software (Meneghini et al., 2015). We selected
ECH profiles as our action space instead of gyrotron angles because at experiment time one does not
know how many gyrotrons are available. With this choice of action space, we ensure our method is
agnostic of number of gyrotrons.
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(a) Shots 199599 & 199601 : No tearing modes were observed in these shots

Tearing Mode

Decrease in 
plasma pressure

Tearing Mode

Decrease in 
plasma pressure

(b) Clear Tearing mode happens in 199602 which leads to loss in normalized plasma pressure βN .
In 199603 we see a tearing mode form however its difficult to spot as the loss in βN is minor.

Tearing Mode

Decrease in 
plasma pressure

(c) No tearing mode happens in 199604. A tearing mode happens in 199605

Figure 5: Identifying Tearing modes from Raw signal data. We use n1rms signal (denotes magnetic
perturbations) and normalized plasma pressureβN to identify tearing modes. A sustained high n1rms
signal denotes tearing modes. We label the drop in βN due to tearing mode formation. Note that in all
experiments, βN drops towards then end as power injected is dropped to safely end the experiment
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Tearing Mode

Figure 6: In this figure we also include the power injected (pinj) along with n1rms and βN . in
199606, we see a very late tearing mode which occurs just before power injected is dropped. Very
low loss in βN is seen due to the tearing mode. Finally, in 199607 no tearing modes are seen.
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