
Code to Think, Think to Code: A Survey on Code-Enhanced Reasoning
and Reasoning-Driven Code Intelligence in LLMs

Anonymous ACL submission

Abstract

In large language models (LLMs), code and rea-001
soning reinforce each other: code offers an ab-002
stract, modular, and logic-driven structure that003
supports reasoning, while reasoning translates004
high-level goals into smaller, executable steps005
that drive more advanced code intelligence. In006
this study, we examine how code serves as a007
structured medium for enhancing reasoning:008
it provides verifiable execution paths, enforces009
logical decomposition, and enables runtime val-010
idation. We also explore how improvements in011
reasoning have transformed code intelligence012
from basic completion to advanced capabilities,013
enabling models to address complex software014
engineering tasks through planning and debug-015
ging. Finally, we identify key challenges and016
propose future research directions to strengthen017
this synergy, ultimately improving LLM’s per-018
formance in both areas.019

1 Introduction020

Researchers have observed an intriguing “Möbius021

strip” effect: learning programming strengthens022

students’ ability to solve complex problems, while023

strong analytical skills in turn speed up program-024

ming learning (Brito et al., 2019). This virtuous025

cycle now appears in artificial intelligence: When026

LLMs acquire code capabilities, they not only be-027

come more proficient programmers but also demon-028

strate significantly enhanced reasoning abilities029

across diverse domains such as mathematical de-030

duction and logical inference. As their reasoning031

capacity evolves, these systems increasingly tackle032

complex programming challenges, even showing033

potential to outpace human developers (Chowd-034

hury et al., 2024). Recent breakthrough models like035

OpenAI-o1 (OpenAI et al., 2024) and DeepSeek-036

R1 (Guo et al., 2025) show powerful task-solving037

capabilities, particularly advances in reasoning. A038

key factor driving this transformation has been039

the strategic integration of code - both during pre-040

Structured Syntax

Deterministic Output

Executable Nature

Error Feedback

Modular Design

Task Decomposition

Self-Reflection

Planning

Properties of Code Reasoning Capabilities

Supports systematic 
planning

Builds reliability

Guarantees executability

Allow hypothesis testing

Strengthens error handling

Highlights logical gaps

Improves structure

Enables logical breakdown

Drives modularity

Simplifies task division

Be interdependent

Figure 1: Bidirectional enhancement between code
properties and reasoning capabilities.

training phases (Touvron et al., 2023) and reason- 041

ing processes (Chen et al., 2022). The rigorous 042

logical structure of code provides a unique “train- 043

ing ground” for strengthening LLMs’ reasoning 044

capabilities, while AI’s evolving reasoning abili- 045

ties continuously enhance code intelligence. This 046

bidirectional relationship reveals profound intrin- 047

sic connections between coding and reasoning (see 048

Figure 1). 049

In this bidirectional enhancement process, core 050

properties of code - including structured syntax, 051

execution feedback, and modular design - sig- 052

nificantly promote task decomposition, reasoning 053

chain construction, and self-reflection (§2.2). Con- 054

versely, improved reasoning capabilities drive ad- 055

vances in code intelligence, such as task decom- 056

position, code comprehension and modification, 057

program debugging and optimization, ultimately 058

giving rise to intelligent agents capable of end-to- 059

end software development (§3.2, §3.3). For in- 060

stance, advanced reasoning techniques like Chain- 061

of-Thought prompting (Wei et al., 2022b; Zhang 062

et al., 2024b) and Self-Reflection (Shinn et al., 063

2024) are expanding code generation from simple 064

autocompletion to intelligent software development 065

assistants (Labs, 2024; Yang et al., 2024d), even ca- 066

1



pable of managing complete software engineering067

lifecycles (Jimenez et al., 2024).068

Despite these promising strides, there has been069

limited systematic review of how code and reason-070

ing interact and reinforce each other. To address071

this gap and provide a structured view of the code-072

reasoning synergy in LLMs, we pose the following073

core questions: (1) How do code representations074

influence LLM reasoning? (2) How do advances075

in LLM reasoning reshape code intelligence sys-076

tems? (3) What challenges arise from the code077

reasoning interplay in LLMs?078

To systematically investigate these questions,079

our research unfolds along the following dimen-080

sions: (i) analyzing how code serves as an effec-081

tive reasoning medium, helping LLMs structure082

their reasoning and validate results (§2); (ii) explor-083

ing how enhanced reasoning capabilities expand084

the boundaries of code intelligence (§3); and (iii)085

summarizing current challenges, focusing on open086

problems in model interpretability, scalable train-087

ing, and multimodal fusion, while proposing future088

research directions (§A).089

2 Code-enhanced Reasoning090

2.1 Training with Code091

Code data strengthens LLMs’ reasoning and plan-092

ning abilities by providing structured patterns093

that guide logical thinking (Touvron et al., 2023;094

Achiam et al., 2023; Hu et al., 2024). This section095

examines how code data enhances these capabili-096

ties and discusses effective strategies for integrating097

code into LLM training.098

2.1.1 Empowering Reasoning and Planning099

Through Code Training100

Code-trained LLMs excel across various domains.101

In commonsense reasoning, Madaan et al. (2022)102

treats structured commonsense tasks as code gener-103

ation problems, showing notable gains even when104

downstream tasks do not explicitly involve code. In105

mathematics, MathCoder (Wang et al., 2023) inter-106

leaves natural language, code, and execution results107

to improve mathematical reasoning. Its successor,108

MathCoder2 (Lu et al., 2024), further refines these109

abilities with a higher-quality pre-training dataset110

that embeds mathematical reasoning steps in code.111

Training on code also bolsters planning and112

decision-making. Chen et al. (2024a) used larger113

models to break down complex instructions into114

discrete functions, creating a function base for train-115

ing smaller LLMs in structured planning. The116

dataset enables smaller models to acquire the plan- 117

ning and decision-making capabilities of their 118

larger counterparts. Likewise, Wen et al. (2024a) 119

curated a dataset of 2M standard prompt-response- 120

code form plan triplets (prompt, response, code) to 121

enhance models’ planning and decision-making. 122

In the multimodal domain, VISTRUCT (Chen 123

et al., 2023c) utilizes the structure of programming 124

it learned from code training to represent visual 125

structural knowledge. This approach allows the 126

model to capture structural information at differ- 127

ent levels of granularity within images, enabling 128

visual language models (VLMs) to better under- 129

stand complex visual structures. This exemplifies 130

how structured data, such as code, can serve as an 131

excellent medium for visual data representation. 132

Code-trained LLMs and VLMs also shine in real- 133

world scenarios. In multilingual environment set- 134

tings, code acts as a bridge between languages.(Li 135

et al., 2024a) augments code datasets with machine- 136

translated multilingual comments during training 137

while preserving original code. Their approach 138

uses step-by-step code primitives in prompts to de- 139

rive facts and solutions, demonstrating code’s effec- 140

tiveness in multilingual reasoning. In autonomous 141

driving, LAMPILOT (Ma et al., 2024) achieves re- 142

markable results by generating code based on user 143

instructions and leveraging established functional 144

primitives to replace ambiguous natural language 145

commands. The approach showed exceptional 146

results on the custom-built LAMPILOT BENCH. 147

These applications highlight code data training’s 148

vast potential for reasoning and planning across 149

real-world scenarios and environments. 150

2.1.2 Training Strategies Based on Code 151

Code-based LLMs have shown remarkable perfor- 152

mance across domains. Here, we examine effective 153

strategies for leveraging code data during model 154

training to enhance their capabilities. 155

Code-only Training Strategies Incorporating 156

code execution into traditional reasoning datasets 157

boosts LLM performance. MARIO (Liao et al., 158

2024) leverages both LLMs and human annotations 159

to augments GSM8K (Cobbe et al., 2021a) and 160

MATH (Hendrycks et al., 2021b) with Python inter- 161

preter traces, yielding significant downstream gains. 162

Similarly, POET (Pi et al., 2022) uses programs and 163

execution results to train LLMs, showing improved 164

natural language reasoning capabilities. Further- 165

more, incorporating human preferences enhances 166

2



C
od

e
&

R
ea

so
ni

ng
Code-enhanced
Reasoning §2

Generating as Code
Aids Reasoning §2.2

E.g.,PaL (Gao et al., 2023), PoT (Chen et al., 2022),
MathCoder (Wang et al., 2023), CoC (Li et al., 2023a),

Training with Code §2.1
E.g.,MARIO (Liao et al., 2024), POET (Pi et al., 2022),
CodePMP (Yu et al., 2024b), SIAM (Yu et al., 2024a),

Reasoning-enhanced
Code Intelligence §3

Essential Code
Intelligence §3.1

E.g., Codex&HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021),
RepoBench (Liu et al., 2023b), CrossCodeEval (Ding et al., 2023)

Integration of Reasoning
Capabilities §3.2

Reasoning for Code Generation §3.2.1
E.g., SCoTs (Li et al., 2023b), Self-Planning (Jiang et al., 2024),
CodeCoT (Huang et al., 2024a), CodePlan (Bairi et al., 2023)

Reasoning Over Code §3.2.2
E.g., CRUXEval (Gu et al., 2024), RepoQA (Liu et al., 2024c),
CodeMind (Liu et al., 2024b), NExT (Ni et al., 2024a)

Interactive Programming §3.2.3
E.g., Self-Edit (Zhang et al., 2023), CodeChain (Le et al., 2024),
LeTI (Wang et al., 2024e), OpenCodeInterpreter (Zheng et al., 2025)

Code Agents with
Complex Reasoning §3.3

E.g., SWE-agent (Yang et al., 2024b), CodeAct (Wang et al., 2024c),
OpenHands (Wang et al., 2024d), HyperAgent (Phan et al., 2024)

Figure 2: Taxonomy of interplay between Code and Reasoning.

Method Type Method Model GSM8K SVAMP MATH

Baseline Direct† Codex 19.7 69.9 –
CoT† (Wei et al., 2022b) GPT-4 92.0 97.0 –

Single Execution PAL (Gao et al., 2023) Codex 72.0 79.4 –
PoT (Chen et al., 2022) GPT-4 97.2 97.4 –

Dynamic Code-Language

MathCoder-L (Wang et al., 2023) Llama-2-70B 83.9 84.9 45.1
MathCoder-CL (Lu et al., 2024) CodeLlama-34B 81.7 82.5 45.2
CodePlan (Wen et al., 2024a) Mistral-7B 59.5 61.4 34.3
INC-Math (Xiong et al., 2024) GPT-4o-mini – – 51.4

Non-Executable CoC (Li et al., 2023a) text-davinci-003 71.0 – –
CodePrompt (Hu et al., 2023) GPT-3.5 (few-shot) 80.6 79.6 –

Table 1: Performance comparison of BEST-performing variants of code-aided reasoning methods across three key
benchmarks (GSM8K (Cobbe et al., 2021a), SVAMP (Patel et al., 2021), and MATH (Hendrycks et al., 2021b)).
Results show the percentage of problems solved correctly. “–” indicates no reported result. For each method, only
the variant with highest GSM8K performance is shown (or highest MATH score when GSM8K is unavailable). †

"Direct" and "CoT" uses Codex model using few-shot direct prompting with/without CoT. The results are from Chen
et al. (2022).

training effectiveness (Ding et al., 2024; Zhang167

et al., 2024a), CodePMP (Yu et al., 2024b) intro-168

duces a preference model pretraining pipeline using169

large-scale synthesized code-preference datasets,170

improving fine-tuning efficiency and reasoning per-171

formance. SIAM (Yu et al., 2024a) employs a code-172

based critic model to guide dataset construction173

through code generation and quality control, opti-174

mizing downstream performance.175

Hybrid-data Training Strategies Determining176

the optimal stage and proportion of code data in177

training LLMs is critical (Tao et al., 2024). Ma178

et al. (2023) and Zhang et al. (2024d) indicate that179

adding code during pretraining boosts general rea-180

soning abilities, while adding code instructions dur-181

ing instruction tuning improves code-specific skills182

and adherence to human instructions. Mixing text183

and code data dynamically fosters progressive rea-184

soning enhancements throughout training. Addi- 185

tionally, Zhang et al. (2024d) further finds that the 186

effects of code data differ across reasoning domains 187

but exhibit consistent trends within each domain. 188

They conclude that optimal code mixing strategies 189

are typically domain-specific rather than universal. 190

2.2 Generating as Code Aids Reasoning 191

We examine how generating code and code-based 192

training enhance LLMs’ reasoning. By transform- 193

ing reasoning problems into programmatic solu- 194

tions, these approaches improve precision and relia- 195

bility in complex reasoning tasks. The performance 196

of major methods are listed in Table 1. 197

2.2.1 Single Execution 198

The approaches in this subsection focus on trans- 199

forming numerical problem-solving into single- 200

execution code generation tasks. Chen et al. 201

3



Method Type Method Model HumanEval MBPP SWE-Bench (Lite)

Baseline Direct† Codex 48.1 49.8 –
CoT† (Wei et al., 2023a) Codex 53.9 54.5 –

Reasoning-enhanced
SCoTs (Li et al., 2023b) GPT-3.5 60.6 47.0 –
Self-Planning (Jiang et al., 2024) Codex 60.3 55.7 –
CodeCoT (Huang et al., 2024a) GPT-3.5 79.3 89.5 –

Interactive
Self-Edit† (Zhang et al., 2023) GPT-3.5 62.2 52.4 –
Self-Debugging (Chen et al., 2023b) GPT-4 – 80.6 –
Self-Collaboration (Dong et al., 2024) GPT-3.5 74.4 68.2 –
AgentCoder (Huang et al., 2024b) GPT-4 96.3 91.8 –

Fine-tuned CodeAct (Wang et al., 2024c) Mistral-7B 34.7 59.1 –
OpenCodeInterpreter (Zheng et al., 2025) DeepseekCoder-33B 92.7 90.5 –

Agentic

SWE-agent (Yang et al., 2024b) GPT-4 Turbo – – 18.0
AutoCodeRover (Zhang et al., 2024e) GPT-4 – – 19.0
OpenHands (Wang et al., 2024d) Claude-3.5-Sonnet – – 26.0
HyperAgent (Phan et al., 2024) Claude-3.5-Sonnet – – 26.0
Agentless‡ (Xia et al., 2024a) GPT-4o – – 27.3

Table 2: Performance comparison of reasoning-enhanced code intelligence methods across benchmarks. Results
reflect best performance from original papers except where noted (†results from Self-Planning (Jiang et al., 2024)
for Direct and CoT, and from CodeCoT (Huang et al., 2024a) for Self-Edit). ‡Agentless represents an agent-free
approach, while listed under Agentic methods for organization, HumanEval and MBPP use pass@1 scoring, and “–”
denotes unavailable or inapplicable results.

(2022); Gao et al. (2023) introduced Program of202

Thoughts (PoT) and Program-aided language mod-203

els (PaL), transforming numerical problem-solving204

into single-execution code generation tasks. Un-205

like chain-of-thought’s natural language steps (Wei206

et al., 2023a), these approaches express the entire207

reasoning process as a self-contained executable208

program, providing a deterministic path to solu-209

tions while minimizing calculation errors. Bi et al.210

(2023) investigated when this code-based transfor-211

mation enhances reasoning, finding that PoT and212

PaL’s effectiveness depends on code complexity.213

Their analysis revealed that code transformation214

benefits vary across problem types.215

Beyond accuracy, a crucial feature of LLM sys-216

tems is their ability to provide dependable confi-217

dence estimates for their predictions. Kabra et al.218

(2023) investigates this aspect and demonstrates219

that program-aided reasoning approaches, where220

LLMs utilize code representation, generally ex-221

hibit superior calibration compared to standard text-222

based reasoning methods that rely on CoT.223

2.2.2 Dynamic Code-Language Integration224

Beyond single, monolithic code outputs, many re-225

cent studies explored dynamic and interactive ways226

to integrate natural language with code representa-227

tion, leveraging the strengths of both modalities in228

a more fluid and often iterative manner.229

Wang et al. (2023), for example, fine-tunes mod-230

els to produce solutions that integrate natural lan-231

guage explanations, Python code for computations, 232

and the corresponding execution results from a 233

code interpreter. Special tokens are employed to 234

delineate these different components, enabling the 235

model to generate a segment, observe its (execu- 236

tion) outcome, and then continue reasoning or cod- 237

ing based on that outcome. Building on this, Lu 238

et al. (2024) emphasizes Tool-Integrated Reason- 239

ing (TIR), where models use integrated natural lan- 240

guage reasoning steps and Python code, generating 241

mathematical code explicitly paired with natural 242

language reasoning steps during pretraining. 243

Other approaches focuses on enabling LLMs 244

to choose or switch between different reasoning 245

modalities or to decompose problems into sub- 246

tasks that requires different integration strategies. 247

Xiong et al. (2024) explores methods where the 248

LLM can dynamically select the most appropri- 249

ate reasoning strategy among options like using 250

only natural language (Chain-of-Thought), only 251

code (Program-aided Language Models), generat- 252

ing code first then analyzing with natural language 253

(CodeNL), or vice-versa. Similarly, Chen et al. 254

(2024b) investigates methods to guide LLMs in 255

choosing between code generation/execution and 256

textual reasoning, noting that OpenAI’s Code In- 257

terpreter allows models to iteratively generate code 258

and text. This work also proposes methods like 259

"Code + Text + Sum.", where both code and text 260

solutions are generated and then synthesized, and 261

"Self-estimate Score", where the LLM assesses its 262

4



confidence to choose the modality.263

Interactive and iterative frameworks are a signif-264

icant direction in dynamic integration. Liu et al.265

(2024a) allows LLMs to solve tasks by interact-266

ing with a Read-Eval-Print Loop, where the model267

writes code and dynamically corrects errors or268

handles fuzzy sub-problems in natural language.269

This mirrors how human developers iteratively270

write code, test, and reason about the next step.271

Yang et al. (2024e) introduces a task where an272

LLM solves problems by iteratively identifying273

sub-problems and their corresponding formalisms,274

then writing suitable programs guided by a natural275

language trajectory of thought, action, and obser-276

vation.277

Planning also plays a crucial role in structuring278

this dynamic integration.Lei et al. (2024) structures279

this with two distinct phases: a solution generation280

phase that formulates and verifies a solution plan281

against visible tests, and a code implementation282

phase that drafts an initial code based on the veri-283

fied plan and refines it if it fails tests, using the plan284

verification to inform the debugging process.285

2.2.3 Non-Executable Program286

Representations287

The benefit of code/code-like representations is not288

limited to executable programs. Non-executable or289

partially executable code forms can still enhance290

reasoning.291

One prominent direction is the use of pseu-292

docode or code with semantic gaps that the LLM293

learns to "execute" or reason over. Li et al. (2023a)294

introduced Chain of Code (CoC), where LMs gen-295

erate programs that can include semantic sub-tasks296

formatted as flexible pseudocode. An "LMulator"297

– the LM acting as an emulator – simulates the ex-298

pected output of that code segment. This allows299

CoC to handle tasks that mix precise algorithmic300

computations with more semantic or commonsense301

reasoning steps that are difficult to fully implement302

in executable code. The COGEX framework (Weir303

et al., 2024) trains LMs to generate and then em-304

ulate the execution of "pseudo-programs". These305

are often Python programs where some leaf func-306

tion calls might be undefined or only specified by307

their name and documentation, without full im-308

plementations. The LM’s own knowledge is used309

to fill in these execution gaps during the emula-310

tion phase, allowing the model to handle undefined311

functions. Similarly, Puerto et al. (2024) proposed312

"code prompting," where a natural language prob-313

lem is converted into a code format that includes the 314

logical structure and the original natural language 315

text as comments. The LLM is then prompted with 316

this generated code and produces a natural lan- 317

guage answer directly, without the code being run 318

by an interpreter. These methods investigate how 319

the code representation itself can elicit or enhance 320

specific reasoning abilities like entity tracking or 321

logical reasoning within the LLM. 322

Another approach involves generating high-level, 323

structured, but not necessarily directly executable, 324

plans in a code-like format. The CODEPLAN 325

framework (Wen et al., 2024a) empowers LLMs 326

to generate and follow "code-form plans," which 327

are essentially pseudocode outlining a high-level, 328

structured reasoning process. These plans are not 329

mandated to be executable; their primary purpose 330

is to provide a structured blueprint that captures 331

the semantics and control flow for sophisticated 332

reasoning tasks. 333

3 Reasoning-Enhanced Code Intelligence 334

Software development fundamentally requires in- 335

tensive reasoning capabilities as developers decom- 336

pose complex problems and rigorously analyze sys- 337

tem behaviors and edge cases (Hermans, 2021). 338

Recent advances in LLMs have dramatically im- 339

proved code generation capabilities (Chen et al., 340

2021; Rozière et al., 2024; Li et al., 2023c; Team 341

et al., 2024; DeepSeek-AI et al., 2024; Hui et al., 342

2024; Li et al., 2022), and their growing integration 343

with reasoning capabilities has transformed code in- 344

telligence systems (Austin et al., 2021; Yang et al., 345

2024b). This section examines the evolution of 346

code intelligence through three stages: direct code 347

generation’s limitations, explicit reasoning integra- 348

tion for code generation and comprehension, and 349

the emergence of code agents for complex end- 350

to-end development. The performance of major 351

methods are listed in Table 2. 352

3.1 Essential Code Intelligence 353

The foundation of modern code intelligence 354

emerged with LLMs trained on code reposito- 355

ries, initially focusing on direct sequence pre- 356

diction tasks like auto code completion, e.g., 357

CodeXGLUE (Lu et al., 2021), and docstring- 358

based generation, e.g., HumanEval (Chen et al., 359

2021) and MBPP (Austin et al., 2021). These 360

base models demonstrated capabilities in next- 361

line prediction, fill-in-the-middle (FIM), and pro- 362

5



Type Model Settings Size Metric Datasets

Math
GSM8K MATH OCW

Lemma Baseline 34B EM 51.5 25.0 11.8
MARIO (Liao et al., 2024) Proposed 34B EM 78.2(+26.7) 53.5(+28.5) 30.2(+18.4)

Common Sense
Logic

HotpotQA LogiQA DROP

RoBERTa-L Baseline 355M EM 67.6 36.7 78.1
POET (Pi et al., 2022) Proposed 355M EM 68.7(+1.1) 38.9(+2.2) 79.8(+1.7)

Math
Logic

MathShepherd-pair Reclor-pair LogiQA2.0-pair

Qwen2-7B Baseline 7B Reward 0.88 0.86 0.83
CodePMP (Yu et al., 2024b) Proposed 7B Reward 0.93(+0.5) 0.87(+0.1) 0.84(+0.1)

Math
Multi-lingual

APE CMATH GSM8K

Qwen2-Math Baseline 7B Reward 83.4 87.3 79.5
SIAM (Yu et al., 2024a) Proposed 7B Reward 88.1(+4.7) 93.2(+5.9) 81.5(+2.0)

Instruction-Following
Decision-Making

AlpacaEval-2 MT-Bench ALFWorld

Llama-2 Baseline 13B Self-defined 6.5 6.1 23.2
CODEPLAN (Wen et al., 2024a) Proposed 13B Self-defined 12.2(+5.7) 7.1(+1.0) 33.3(+10.1)

Table 3: Performance enhancement brought by training the model with code related data. "Baseline" denotes the
vanilla model, while "Proposed" refers to the proposed methods.

gram synthesis (Chen et al., 2021; Xu et al., 2022;363

Bavarian et al., 2022; Fried et al., 2023; Li et al.,364

2023c), later extending to repository-level tasks365

like RepoBench (Liu et al., 2023b) and Cross-366

CodeEval (Ding et al., 2023). While these mod-367

els excelled at simple tasks like code comple-368

tion (GitHub, 2024), their reliance on direct gen-369

eration without explicit reasoning limited their ef-370

fectiveness in complex scenarios requiring careful371

consideration of algorithmic design and edge case372

handling, or real-world programming scenarios that373

demand systematic planning.374

3.2 Integration of Reasoning Capabilities375

Modern models typically exhibit two key reasoning376

types when working with code: reasoning to code,377

which involves planning and problem decomposi-378

tion prior to implementation, and reasoning over379

code, which focuses on understanding code behav-380

ior and properties. These reasoning forms naturally381

converge in interactive programming, where sys-382

tems must both reason about what code to generate383

and analyze execution results to guide fixes, opti-384

mizations, and capability expansions. This section385

explores how these reasoning capabilities have de-386

veloped and synergized to build more sophisticated387

code intelligence systems.388

3.2.1 Reasoning for Code Generation389

The integration of explicit reasoning has trans-390

formed code intelligence systems through advances391

in CoT (Wei et al., 2023a), instruction tuning (Wei392

et al., 2022a; Muennighoff et al., 2024; Luo et al.,393

2023) and reinforcement learning (OpenAI et al.,394

2024; DeepSeek-AI et al., 2025). Models have395

evolved from basic code completion tools (GitHub, 396

2024), to applications with basic dialogue capabil- 397

ities (OpenAI, 2023), and finally to sophisticated 398

reasoning engines that combine planning, reason- 399

ing and critical thinking to arrive at solutions (Ope- 400

nAI et al., 2024), excelling at complex program- 401

ming tasks. 402

Models adopt CoT reasoning as the core strat- 403

egy, generating step-by-step thoughts before im- 404

plementing code. Basic CoT improves code gen- 405

eration by articulating intermediate logic, while 406

recent advancements adapt it to programming con- 407

texts, structuring reasoning around programmatic 408

constructs (e.g., loops, conditionals) for correct- 409

ness (Li et al., 2023b), decomposing solutions into 410

reusable modules for iterative refinement (Huang 411

et al., 2024a), and integrating problem decompo- 412

sition for debugging (Wen et al., 2024b). Models 413

also generate natural language plans to guide imple- 414

mentation, ensuring alignment between intent and 415

code logic (Jiang et al., 2024; Wang et al., 2024a). 416

These strategies extend to resource-efficient scenar- 417

ios, where lightweight models generate CoT steps 418

through automated alignment frameworks (Yang 419

et al., 2024a), and to repository-level tasks, com- 420

bining multi-step planning with static dependency 421

analysis and code editing (Bairi et al., 2023). By in- 422

tegrating CoT with modular reasoning and context- 423

aware planning, modern models achieve higher cor- 424

rectness and robustness in complex scenarios. 425

3.2.2 Reasoning Over Code 426

While reasoning capabilities improve code genera- 427

tion, the ability to reason over code - understanding 428

6



its behavior, predicting its execution, and analyz-429

ing its properties - remains a fundamental chal-430

lenge in code intelligence. Unlike natural language,431

code’s combination of rigid syntax with complex432

runtime behaviors demands comprehension of both433

static forms and dynamic execution, further com-434

plicated by external dependencies. Empirical stud-435

ies show models can generate syntactically correct436

code while failing to grasp semantic meaning (Zhu437

et al., 2024), highlighting the gap between surface438

manipulation and true understanding.439

3.2.3 Interactive Programming440

Recent researches enabled LLMs to autonomously441

evaluate and improve their outputs, with Self-442

Refine (Madaan et al., 2023) demonstrated how443

models can generate, critique, and optimize outputs.444

In code development, this mechanism gains unique445

advantages via the executable nature of code which446

provides immediate, objective feedback that trig-447

gers new reasoning cycles. Specifically, interactive448

programming forms a reasoning-driven optimiza-449

tion loop: models first reason to generate code for450

execution, then analyze execution results to under-451

stand errors or improvement directions, ultimately452

reasoning about better solutions. This embraces453

software development’s iterative nature, advancing454

beyond traditional one-pass generation.455

Early explorations in interactive program syn-456

thesis demonstrated feedback’s potential(Le et al.,457

2017), the emergence of LLMs catalyzed evolu-458

tion to autonomous refinement: Self-Edit devel-459

oped a fault-aware code editor leveraging execu-460

tion results for iterative error correction (Zhang461

et al., 2023), while InterCode established a compre-462

hensive benchmark environment and standardized463

interactive coding as a reinforcement learning prob-464

lem (Yang et al., 2023). Recent advances have465

further refined this paradigm: CodeChain intro-466

duced self-revision mechanism that modularizes467

code generation and systematically improves solu-468

tions through targeted refinement chains (Le et al.,469

2024), LeTI demonstrated improvement through470

natural language feedback (Wang et al., 2024e),471

and OpenCodeInterpreter unified generation, exe-472

cution, and refinement in one framework (Zheng473

et al., 2025). Systematic analysis reveals these474

methods’ effectiveness heavily depends on mod-475

els’ ability to reason about program behavior and476

execution feedback (Zheng et al., 2024b). This evo-477

lution has laid crucial groundwork for code agents478

capable of handling complex programming tasks.479

3.3 Code Agents with Complex Reasoning 480

The convergence of code reasoning paradigms – 481

planning and decomposition, context-aware under- 482

standing, and interactive programming – has en- 483

abled the evolution of code intelligence systems 484

into autonomous code agents (Labs, 2024; Any- 485

sphere, 2023; Wang et al., 2024d). These agents 486

handle complex development tasks by decompos- 487

ing tasks and formulating execution plans, trans- 488

lating abstract solutions into concrete environmen- 489

tal actions through predefined tools (e.g., IDE op- 490

erations, terminal commands), and continuously 491

monitoring execution states while gathering envi- 492

ronmental feedback to reach goals. Unlike static 493

code generators, these agents treat development 494

as a dynamic decision cycle by interacting with 495

the environment, with reasoning applied through- 496

out—from understanding requirements and taking 497

appropriate actions to evaluating outcomes. 498

SWE-bench established a comprehensive eval- 499

uation framework based on real GitHub is- 500

sues (Jimenez et al., 2024), later expanded with 501

SWE-bench Multimodal (Yang et al., 2024c) in- 502

corporating visual software tasks and SWE-bench 503

Verified (Chowdhury et al., 2024) enhancing evalu- 504

ation reliability through rigorous test case valida- 505

tion. These evaluations revealed persistent chal- 506

lenges in code intelligence: effective reasoning 507

about program structure and behavior, safe and ef- 508

fective codebase navigation and modification, and 509

maintaining coherent long-term planning across 510

development iterations. 511

Modern code agents share a common foundation 512

in environment interaction, while each contributing 513

unique implementation focuses. CodeAct (Wang 514

et al., 2024c) pioneered executable agent behav- 515

iors through Python interpreter, enabling dynamic 516

debugging workflows, and OpenHands (Wang 517

et al., 2024d) extended it by providing a flexible 518

agent infrastructure supporting customizable tool 519

chains. SWE-agent (Yang et al., 2024b) focused on 520

optimizing repository navigation through Agent- 521

Computer Interface, CodeAgent (Zhang et al., 522

2024c) combined tool specialization with strate- 523

gic frameworks, coordinating multiple repository- 524

level operations and AutoCodeRover (Zhang et al., 525

2024e) introduced spectrum-based fault localiza- 526

tion to guide context retrieval. 527

Recent advances have explored two contrasting 528

directions: multi-agent systems and agent-free ap- 529

proaches. HyperAgent (Phan et al., 2024) coordi- 530

7



nates specialized agents for planning, navigation,531

editing, and execution, demonstrating how different532

reasoning capabilities can be hierarchically orches-533

trated. In contrast, Agentless (Xia et al., 2024a)534

achieves effectiveness through simplification - em-535

ploying a focused two-phase process for fault local-536

ization and repair without complex agent architec-537

tures. Empirical evaluations show that, compared538

to humans, these approaches reduce code redun-539

dancy, with effective task decomposition being key540

to success, (Chen and Jiang, 2024), though match-541

ing human-level performance remains challenging.542

4 Challenges and Future Directions543

The synergy between code and reasoning in LLMs,544

while powerful, faces several challenges that also545

outline future research avenues. The full discussion546

is available in Appendix A.547

4.1 Code-enhanced Reasoning548

Key challenges include the lack of interpretabil-549

ity and debuggability of LLM-generated code,550

which may not reflect true reasoning and lacks reli-551

able confidence assessment (Li et al., 2023a; Kabra552

et al., 2023). Future work should focus on self-553

reflection mechanisms (Chen et al., 2024b) and554

formal verification (Kang et al., 2025). Blended555

code-and-language reasoning is crucial for tasks556

requiring both precision and contextual understand-557

ing, necessitating hybrid architectures that inter-558

leave modalities (Li et al., 2023a; Liu et al., 2024a).559

Optimizing code data and representations in-560

volves finding the right complexity balance to aid561

LLM learning without oversimplifying reasoning562

steps (Bi et al., 2023).563

Further, the lack of scalability and general-564

ization due to task-specific fine-tuning (Wang565

et al., 2023) and narrow data domains calls for566

improved zero/few-shot learning (Chen et al.,567

2022) and cross-domain training. LLMs also568

show difficulty with complex or abstract tasks569

requiring commonsense or semantic interpreta-570

tion, where code can be detrimental (Li et al.,571

2023a); context-aware, adaptive architectures are572

needed (Chen et al., 2024b). The lack of high-573

quality datasets, with many models relying on574

noisy GitHub data (DeepSeek-AI et al., 2024), un-575

derscores the need for cleaner, diverse data curation.576

Finally, tool usage based on code format requires577

standardized approaches for LLMs to invoke tools578

via automated code generation, moving beyond579

simple APIs (Qin et al., 2023).580

4.2 Reasoning-enhanced Code Intelligence 581

Challenges in this area include large-scale code 582

understanding, where increased context length 583

doesn’t always improve comprehension, especially 584

with dispersed information (Li et al., 2024b), re- 585

quiring a balance of context expansion and RAG. 586

Long-form code generation beyond single func- 587

tions is difficult to evaluate and prone to error ac- 588

cumulation, with current training optimizing for 589

long-context understanding rather than coherent 590

long-form output (Wu et al., 2025). The applica- 591

bility of new reasoning models in code agents is 592

another concern, as models like O1/R1 show lim- 593

ited agent task improvement (OpenAI et al., 2024; 594

DeepSeek-AI et al., 2025), possibly due to mis- 595

aligned agent frameworks or inherent limitations 596

of these models in agentic tasks. 597

Balancing autonomy and control in code 598

agents is critical, especially regarding safety with 599

direct code execution (Guo et al., 2024a). Mul- 600

timodal code intelligence is increasingly impor- 601

tant for UI/UX tasks (Yun et al., 2024), requiring 602

models that can process visual specifications (Abe 603

et al., 2024; Zheng et al., 2024a). Reinforce- 604

ment learning for code models offers promise 605

due to objective feedback from code execution, po- 606

tentially enhancing reasoning depth through CoT- 607

guided learning (DeepSeek-AI et al., 2025). Lastly, 608

the innovation and refinement of evaluations 609

are perpetual necessities as models master exist- 610

ing benchmarks (McIntosh et al., 2024), requiring 611

new benchmarks that resist contamination (Riddell 612

et al., 2024) and assess broader aspects like code 613

quality (da Silva Simões and Venson, 2024). 614

5 Conclusion 615

The synergy between code and reasoning has 616

driven significant advancements in AI, with code 617

enhancing logical reasoning and reasoning improv- 618

ing code intelligence. This survey explored how 619

executable programs and structured code paths re- 620

fine AI reasoning while highlighting how reasoning 621

abilities enables advanced code generation, com- 622

prehension, and debugging. Despite progress, chal- 623

lenges such as ambiguity, scalability, and consis- 624

tency remain. Future research must deepen the 625

integration of reasoning and programming to build 626

more robust, interpretable, and adaptive AI systems. 627

As these fields converge, AI’s ability to think and 628

code will continue to evolve, reshaping intelligent 629

automation. 630

8



6 Limitations631

Our survey spans a wide range of approaches, from632

single-execution code-based reasoning (§2.2) to633

advanced autonomous code agents (§3.3), which634

compels us to keep certain implementation de-635

tails and domain-specific nuances only briefly de-636

scribed. The decision to focus on recent arXiv637

categories and a confined publication window ex-638

cludes older or less mainstream work that could639

offer alternative perspectives or historical context.640

Coverage of benchmarks mentioned in §3.2.2 and641

§3.3—CRUXEval, CodeMMLU, RepoQA, and642

SWE-bench—remains incomplete with respect to643

real-world repository-scale tasks or specialized ar-644

eas such as concurrency analysis and security ver-645

ification. The challenges identified in §4 reflect646

ongoing research gaps rather than definitive conclu-647

sions, and future developments in datasets, model648

architectures, and evaluation protocols may prompt649

revisions or expansions of this survey.650

References651

Yoshia Abe, Tatsuya Daikoku, and Yasuo Kuniyoshi.652
2024. Assessing the aesthetic evaluation capabili-653
ties of gpt-4 with vision: Insights from group and654
individual assessments. Preprint, arXiv:2403.03594.655

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama656
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,657
Diogo Almeida, Janko Altenschmidt, Sam Altman,658
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.659
arXiv preprint arXiv:2303.08774.660

Anthropic. 2024. Introducing computer use, a new661
claude 3.5 sonnet, and claude 3.5 haiku. Blog post.662
Accessed: 2025-02-12.663

Anysphere. 2023. Cursor: An ai-powered integrated664
development environment. https://www.cursor.665
com. Accessed: 2025-01-30.666

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten667
Bosma, Henryk Michalewski, David Dohan, Ellen668
Jiang, Carrie Cai, Michael Terry, Quoc Le, and669
Charles Sutton. 2021. Program synthesis with large670
language models. Preprint, arXiv:2108.07732.671

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade,672
Vageesh D C, Arun Iyer, Suresh Parthasarathy, Sri-673
ram Rajamani, B. Ashok, and Shashank Shet. 2023.674
Codeplan: Repository-level coding using llms and675
planning. Preprint, arXiv:2309.12499.676

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,677
John Schulman, Christine McLeavey, Jerry Tworek,678
and Mark Chen. 2022. Efficient training of lan-679
guage models to fill in the middle. Preprint,680
arXiv:2207.14255.681

Zhen Bi, Ningyu Zhang, Yinuo Jiang, Shumin Deng, 682
Guozhou Zheng, and Huajun Chen. 2023. When 683
do program-of-thoughts work for reasoning? arXiv 684
preprint arXiv:2308.15452. 685

Markus Borg, Dave Hewett, Donald Graham, Noric 686
Couderc, Emma Söderberg, Luke Church, and Dave 687
Farley. 2024. Does co-development with ai assistants 688
lead to more maintainable code? a registered report. 689
Preprint, arXiv:2408.10758. 690

Luciana Pereira Brito, Leandro Silva Almeida, and An- 691
tónio José Meneses Osório. 2019. Reasoning abil- 692
ities and learning math: A möbius strip? Interna- 693
tional Electronic Journal of Mathematics Education, 694
15(2):em0565. 695

Dong Chen, Shilin Zhang, Fei Gao, Yueting Zhuang, 696
Siliang Tang, Qidong Liu, and Mingliang Xu. 2024a. 697
Logic distillation: Learning from code function by 698
function for planning and decision-making. arXiv 699
preprint arXiv:2407.19405. 700

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 701
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 702
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 703
Greg Brockman, Alex Ray, Raul Puri, Gretchen 704
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 705
try, Pamela Mishkin, Brooke Chan, Scott Gray, 706
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 707
Kaiser, Mohammad Bavarian, Clemens Winter, 708
Philippe Tillet, Felipe Petroski Such, Dave Cum- 709
mings, Matthias Plappert, Fotios Chantzis, Eliza- 710
beth Barnes, Ariel Herbert-Voss, William Hebgen 711
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 712
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 713
William Saunders, Christopher Hesse, Andrew N. 714
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 715
Morikawa, Alec Radford, Matthew Knight, Miles 716
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 717
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 718
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 719
ing large language models trained on code. Preprint, 720
arXiv:2107.03374. 721

Shouyuan Chen, Sherman Wong, Liangjian Chen, and 722
Yuandong Tian. 2023a. Extending context window 723
of large language models via positional interpolation. 724
Preprint, arXiv:2306.15595. 725

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 726
William W. Cohen. 2022. Program of thoughts 727
prompting: Disentangling computation from reason- 728
ing for numerical reasoning tasks. arXiv preprint 729
arXiv:2211.12588. 730

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and 731
Denny Zhou. 2023b. Teaching large language mod- 732
els to self-debug. Preprint, arXiv:2304.05128. 733

Yangyi Chen, Xingyao Wang, Manling Li, Derek 734
Hoiem, and Heng Ji. 2023c. Vistruct: Vi- 735
sual structural knowledge extraction via curriculum 736
guided code-vision representation. arXiv preprint 737
arXiv:2311.13258. 738

9

https://arxiv.org/abs/2403.03594
https://arxiv.org/abs/2403.03594
https://arxiv.org/abs/2403.03594
https://arxiv.org/abs/2403.03594
https://arxiv.org/abs/2403.03594
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.cursor.com
https://www.cursor.com
https://www.cursor.com
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2309.12499
https://arxiv.org/abs/2309.12499
https://arxiv.org/abs/2309.12499
https://arxiv.org/abs/2207.14255
https://arxiv.org/abs/2207.14255
https://arxiv.org/abs/2207.14255
http://arxiv.org/abs/2308.15452v6
http://arxiv.org/abs/2308.15452v6
http://arxiv.org/abs/2308.15452v6
https://arxiv.org/abs/2408.10758
https://arxiv.org/abs/2408.10758
https://arxiv.org/abs/2408.10758
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2211.12588v4
http://arxiv.org/abs/2211.12588v4
http://arxiv.org/abs/2211.12588v4
http://arxiv.org/abs/2211.12588v4
http://arxiv.org/abs/2211.12588v4
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128


Yongchao Chen, Harsh Jhamtani, Srinagesh Sharma,739
Chuchu Fan, and Chi Wang. 2024b. Steering large740
language models between code execution and textual741
reasoning. arXiv preprint arXiv:2410.03524.742

Zhi Chen and Lingxiao Jiang. 2024. Evaluating soft-743
ware development agents: Patch patterns, code qual-744
ity, and issue complexity in real-world github scenar-745
ios. Preprint, arXiv:2410.12468.746

Neil Chowdhury, James Aung, Chan Jun Shern,747
Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan748
Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese,749
Carlos E. Jimenez, John Yang, Kevin Liu, and750
Aleksander Madry. 2024. Introducing SWE-751
bench verified. https://openai.com/index/752
introducing-swe-bench-verified/. Accessed:753
2025-01-30 | Institutional affiliation: OpenAI.754

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,755
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias756
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro757
Nakano, et al. 2021a. Training verifiers to solve math758
word problems. arXiv preprint arXiv:2110.14168.759

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,760
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias761
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro762
Nakano, et al. 2021b. Training verifiers to solve math763
word problems. arXiv preprint arXiv:2110.14168.764

Igor Regis da Silva Simões and Elaine Venson. 2024.765
Evaluating source code quality with large lan-766
guage models: a comparative study. Preprint,767
arXiv:2408.07082.768

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,769
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,770
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,771
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong772
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,773
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,774
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,775
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,776
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,777
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,778
Han Bao, Hanwei Xu, Haocheng Wang, Honghui779
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,780
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang781
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.782
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai783
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai784
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong785
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan786
Zhang, Minghua Zhang, Minghui Tang, Meng Li,787
Miaojun Wang, Mingming Li, Ning Tian, Panpan788
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,789
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,790
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,791
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,792
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng793
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing794
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,795
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,796
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao797

Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan 798
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin 799
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, 800
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, 801
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi- 802
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, 803
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang 804
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng 805
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, 806
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, 807
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, 808
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu- 809
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, 810
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, 811
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, 812
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, 813
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean 814
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, 815
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi- 816
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, 817
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu 818
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen- 819
tivizing reasoning capability in llms via reinforce- 820
ment learning. Preprint, arXiv:2501.12948. 821

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao, 822
Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu, Yukun 823
Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao 824
Bi, Zihui Gu, Hanwei Xu, Damai Dai, Kai Dong, 825
Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, 826
Zhewen Hao, Bingxuan Wang, Junxiao Song, Deli 827
Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin 828
Liu, Qiushi Du, Wenjun Gao, Xuan Lu, Qinyu Chen, 829
Yaohui Wang, Chengqi Deng, Jiashi Li, Chenggang 830
Zhao, Chong Ruan, Fuli Luo, and Wenfeng Liang. 831
2024. Deepseek-coder-v2: Breaking the barrier of 832
closed-source models in code intelligence. Preprint, 833
arXiv:2406.11931. 834

Yangruibo Ding, Jinjun Peng, Marcus J Min, Gail 835
Kaiser, Junfeng Yang, and Baishakhi Ray. 2024. 836
Semcoder: Training code language models with 837
comprehensive semantics reasoning. arXiv preprint 838
arXiv:2406.01006. 839

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Han- 840
tian Ding, Ming Tan, Nihal Jain, Murali Krishna Ra- 841
manathan, Ramesh Nallapati, Parminder Bhatia, Dan 842
Roth, and Bing Xiang. 2023. Crosscodeeval: A di- 843
verse and multilingual benchmark for cross-file code 844
completion. Preprint, arXiv:2310.11248. 845

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024. Self- 846
collaboration code generation via chatgpt. Preprint, 847
arXiv:2304.07590. 848

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel 849
Stanovsky, Sameer Singh, and Matt Gardner. 2019. 850
Drop: A reading comprehension benchmark re- 851
quiring discrete reasoning over paragraphs. arXiv 852
preprint arXiv:1903.00161. 853

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, 854
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen tau Yih, 855
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder: 856

10

http://arxiv.org/abs/2410.03524v1
http://arxiv.org/abs/2410.03524v1
http://arxiv.org/abs/2410.03524v1
http://arxiv.org/abs/2410.03524v1
http://arxiv.org/abs/2410.03524v1
https://arxiv.org/abs/2410.12468
https://arxiv.org/abs/2410.12468
https://arxiv.org/abs/2410.12468
https://arxiv.org/abs/2410.12468
https://arxiv.org/abs/2410.12468
https://arxiv.org/abs/2410.12468
https://arxiv.org/abs/2410.12468
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
https://arxiv.org/abs/2408.07082
https://arxiv.org/abs/2408.07082
https://arxiv.org/abs/2408.07082
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2310.11248
https://arxiv.org/abs/2310.11248
https://arxiv.org/abs/2310.11248
https://arxiv.org/abs/2310.11248
https://arxiv.org/abs/2310.11248
https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999


A generative model for code infilling and synthesis.857
Preprint, arXiv:2204.05999.858

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,859
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-860
ham Neubig. 2023. Pal: Program-aided language861
models. In International Conference on Machine862
Learning, pages 10764–10799. PMLR.863

GitHub. 2024. Github Copilot. Available at: https:864
//github.com/features/copilot.865

Alex Gu, Baptiste Rozière, Hugh Leather, Armando866
Solar-Lezama, Gabriel Synnaeve, and Sida I. Wang.867
2024. Cruxeval: A benchmark for code rea-868
soning, understanding and execution. Preprint,869
arXiv:2401.03065.870

Chengquan Guo, Xun Liu, Chulin Xie, Andy Zhou,871
Yi Zeng, Zinan Lin, Dawn Song, and Bo Li.872
2024a. Redcode: Risky code execution and gen-873
eration benchmark for code agents. Preprint,874
arXiv:2411.07781.875

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Ju-876
lian McAuley. 2023. Longcoder: A long-range877
pre-trained language model for code completion.878
Preprint, arXiv:2306.14893.879

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,880
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,881
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-882
centivizing reasoning capability in llms via reinforce-883
ment learning. arXiv preprint arXiv:2501.12948.884

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,885
Kai Dong, Wentao Zhang, Guanting Chen, Xiao886
Bi, Yu Wu, YK Li, et al. 2024b. Deepseek-887
coder: When the large language model meets888
programming–the rise of code intelligence. arXiv889
preprint arXiv:2401.14196.890

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-891
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,892
Samir Puranik, Horace He, Dawn Song, and Jacob893
Steinhardt. 2021a. Measuring coding challenge com-894
petence with apps. Preprint, arXiv:2105.09938.895

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul896
Arora, Steven Basart, Eric Tang, Dawn Song, and897
Jacob Steinhardt. 2021b. Measuring mathemati-898
cal problem solving with the math dataset. arXiv899
preprint arXiv:2103.03874.900

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul901
Arora, Steven Basart, Eric Tang, Dawn Song, and902
Jacob Steinhardt. 2021c. Measuring mathemati-903
cal problem solving with the math dataset. arXiv904
preprint arXiv:2103.03874.905

Felienne Hermans. 2021. The Programmer’s Brain:906
What every programmer needs to know about cogni-907
tion. Simon and Schuster.908

Yebowen Hu, Xiaoyang Wang, Wenlin Yao, Yiming Lu, 909
Daoan Zhang, Hassan Foroosh, Dong Yu, and Fei 910
Liu. 2024. Define: Enhancing llm decision-making 911
with factor profiles and analogical reasoning. arXiv 912
preprint arXiv:2410.01772. 913

Yi Hu, Haotong Yang, Zhouchen Lin, and Muhan Zhang. 914
2023. Code prompting: a neural symbolic method for 915
complex reasoning in large language models. arXiv 916
preprint arXiv:2305.18507. 917

Dong Huang, Qingwen Bu, Yuhao Qing, and Hem- 918
ing Cui. 2024a. Codecot: Tackling code syntax er- 919
rors in cot reasoning for code generation. Preprint, 920
arXiv:2308.08784. 921

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, 922
and Heming Cui. 2023. Agentcoder: Multi-agent- 923
based code generation with iterative testing and opti- 924
misation. arXiv preprint arXiv:2312.13010. 925

Dong Huang, Jie M. Zhang, Michael Luck, Qingwen Bu, 926
Yuhao Qing, and Heming Cui. 2024b. Agentcoder: 927
Multi-agent-based code generation with iterative test- 928
ing and optimisation. Preprint, arXiv:2312.13010. 929

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 930
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 931
Bowen Yu, Keming Lu, Kai Dang, Yang Fan, 932
Yichang Zhang, An Yang, Rui Men, Fei Huang, 933
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yun- 934
long Feng, Xingzhang Ren, Xuancheng Ren, Jingren 935
Zhou, and Junyang Lin. 2024. Qwen2.5-coder tech- 936
nical report. Preprint, arXiv:2409.12186. 937

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia 938
Yan, Tianjun Zhang, Sida Wang, Armando Solar- 939
Lezama, Koushik Sen, and Ion Stoica. 2024. Live- 940
codebench: Holistic and contamination free evalu- 941
ation of large language models for code. Preprint, 942
arXiv:2403.07974. 943

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang, 944
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. 2024. 945
Self-planning code generation with large language 946
models. Preprint, arXiv:2303.06689. 947

Carlos E. Jimenez, John Yang, Alexander Wettig, 948
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik 949
Narasimhan. 2024. Swe-bench: Can language mod- 950
els resolve real-world github issues? Preprint, 951
arXiv:2310.06770. 952

Bowen Jin, Jinsung Yoon, Jiawei Han, and Sercan O. 953
Arik. 2024. Long-context llms meet rag: Over- 954
coming challenges for long inputs in rag. Preprint, 955
arXiv:2410.05983. 956

Anubha Kabra, Sanketh Rangreji, Yash Mathur, Aman 957
Madaan, Emmy Liu, and Graham Neubig. 2023. 958
Program-aided reasoners (better) know what they 959
know. arXiv preprint arXiv:2311.09553. 960

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom 961
Henighan, Dawn Drain, Ethan Perez, Nicholas 962
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli 963

11

https://arxiv.org/abs/2204.05999
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2411.07781
https://arxiv.org/abs/2411.07781
https://arxiv.org/abs/2411.07781
https://arxiv.org/abs/2306.14893
https://arxiv.org/abs/2306.14893
https://arxiv.org/abs/2306.14893
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
http://arxiv.org/abs/2305.18507v2
http://arxiv.org/abs/2305.18507v2
http://arxiv.org/abs/2305.18507v2
https://arxiv.org/abs/2308.08784
https://arxiv.org/abs/2308.08784
https://arxiv.org/abs/2308.08784
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2303.06689
https://arxiv.org/abs/2303.06689
https://arxiv.org/abs/2303.06689
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2410.05983
https://arxiv.org/abs/2410.05983
https://arxiv.org/abs/2410.05983
http://arxiv.org/abs/2311.09553v1
http://arxiv.org/abs/2311.09553v1
http://arxiv.org/abs/2311.09553v1


Tran-Johnson, et al. 2022. Language models964
(mostly) know what they know. arXiv preprint965
arXiv:2207.05221.966

Sungmin Kang, Bei Chen, Shin Yoo, and Jian-Guang967
Lou. 2025. Explainable automated debugging via968
large language model-driven scientific debugging.969
Empirical Software Engineering, 30(2):1–28.970

Cognition Labs. 2024. Devin ai: Autonomous ai971
software engineer. https://devin.ai. Accessed:972
2025-01-30.973

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,974
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,975
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:976
A natural and reliable benchmark for data science977
code generation. Preprint, arXiv:2211.11501.978

Hugo Laurençon, Lucile Saulnier, Thomas Wang,979
Christopher Akiki, Albert Villanova del Moral, Teven980
Le Scao, Leandro Von Werra, Chenghao Mou, Ed-981
uardo González Ponferrada, Huu Nguyen, et al. 2022.982
The bigscience roots corpus: A 1.6 tb composite mul-983
tilingual dataset. Advances in Neural Information984
Processing Systems, 35:31809–31826.985

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul,986
Doyen Sahoo, and Shafiq Joty. 2024. Codechain: To-987
wards modular code generation through chain of self-988
revisions with representative sub-modules. Preprint,989
arXiv:2310.08992.990

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio991
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:992
Mastering code generation through pretrained models993
and deep reinforcement learning. Advances in Neural994
Information Processing Systems, 35:21314–21328.995

Vu Le, Daniel Perelman, Oleksandr Polozov, Moham-996
mad Raza, Abhishek Udupa, and Sumit Gulwani.997
2017. Interactive program synthesis. Preprint,998
arXiv:1703.03539.999

Chao Lei, Yanchuan Chang, Nir Lipovetzky, and1000
Krista A. Ehinger. 2024. Planning-driven program-1001
ming: A large language model programming work-1002
flow. arXiv preprint arXiv:2411.14503.1003

Aitor Lewkowycz, Anders Andreassen, David Dohan,1004
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,1005
Ambrose Slone, Cem Anil, Imanol Schlag, Theo1006
Gutman-Solo, et al. 2022. Solving quantitative rea-1007
soning problems with language models. Advances1008
in Neural Information Processing Systems, 35:3843–1009
3857.1010

Bryan Li, Tamer Alkhouli, Daniele Bonadiman, Niko-1011
laos Pappas, and Saab Mansour. 2024a. Eliciting1012
better multilingual structured reasoning from llms1013
through code. arXiv preprint arXiv:2403.02567.1014

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen,1015
Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-1016
Fei, Fei Xia, and Brian Ichter. 2023a. Chain of code:1017
Reasoning with a language model-augmented code1018
emulator. arXiv preprint arXiv:2312.04474.1019

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023b. Struc- 1020
tured chain-of-thought prompting for code genera- 1021
tion. Preprint, arXiv:2305.06599. 1022

Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan 1023
Zhang. 2024b. Loogle: Can long-context lan- 1024
guage models understand long contexts? Preprint, 1025
arXiv:2311.04939. 1026

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 1027
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 1028
Marone, Christopher Akiki, Jia Li, Jenny Chim, 1029
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, 1030
Thomas Wang, Olivier Dehaene, Mishig Davaadorj, 1031
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, 1032
Nicolas Gontier, Nicholas Meade, Armel Zebaze, 1033
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, 1034
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo 1035
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp 1036
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, 1037
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, 1038
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo 1039
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel 1040
Romero, Tony Lee, Nadav Timor, Jennifer Ding, 1041
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri 1042
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, 1043
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan- 1044
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry 1045
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, 1046
Sean Hughes, Thomas Wolf, Arjun Guha, Lean- 1047
dro von Werra, and Harm de Vries. 2023c. Star- 1048
coder: may the source be with you! Preprint, 1049
arXiv:2305.06161. 1050

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer 1051
Levy, Luke Zettlemoyer, Jason Weston, and Mike 1052
Lewis. 2023d. Self-alignment with instruction back- 1053
translation. arXiv preprint arXiv:2308.06259. 1054

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, 1055
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and 1056
Tatsunori B Hashimoto. 2023e. Alpacaeval: An auto- 1057
matic evaluator of instruction-following models. 1058

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, 1059
Julian Schrittwieser, Rémi Leblond, Tom Eccles, 1060
James Keeling, Felix Gimeno, Agustin Dal Lago, 1061
Thomas Hubert, Peter Choy, Cyprien de Mas- 1062
son d’Autume, Igor Babuschkin, Xinyun Chen, Po- 1063
Sen Huang, Johannes Welbl, Sven Gowal, Alexey 1064
Cherepanov, James Molloy, Daniel J. Mankowitz, 1065
Esme Sutherland Robson, Pushmeet Kohli, Nando 1066
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 1067
2022. Competition-level code generation with alpha- 1068
code. Science, 378(6624):1092–1097. 1069

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and 1070
Kai Fan. 2024. Mario: Math reasoning with code 1071
interpreter output–a reproducible pipeline. arXiv 1072
preprint arXiv:2401.08190. 1073

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri- 1074
son Edwards, Bowen Baker, Teddy Lee, Jan Leike, 1075
John Schulman, Ilya Sutskever, and Karl Cobbe. 1076
2023. Let’s verify step by step. In The Twelfth Inter- 1077
national Conference on Learning Representations. 1078

12

https://devin.ai
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/1703.03539
http://arxiv.org/abs/2411.14503v2
http://arxiv.org/abs/2411.14503v2
http://arxiv.org/abs/2411.14503v2
http://arxiv.org/abs/2411.14503v2
http://arxiv.org/abs/2411.14503v2
http://arxiv.org/abs/2312.04474v4
http://arxiv.org/abs/2312.04474v4
http://arxiv.org/abs/2312.04474v4
http://arxiv.org/abs/2312.04474v4
http://arxiv.org/abs/2312.04474v4
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2311.04939
https://arxiv.org/abs/2311.04939
https://arxiv.org/abs/2311.04939
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158


Anthony Z. Liu, Xinhe Wang, Jacob Sansom, Yao Fu,1079
Jongwook Choi, Sungryull Sohn, Jaekyeom Kim,1080
and Honglak Lee. 2024a. Interactive and expressive1081
code-augmented planning with large language mod-1082
els. arXiv preprint arXiv:2411.13826.1083

Changshu Liu, Shizhuo Dylan Zhang, Ali Reza1084
Ibrahimzada, and Reyhaneh Jabbarvand. 2024b.1085
Codemind: A framework to challenge large lan-1086
guage models for code reasoning. Preprint,1087
arXiv:2402.09664.1088

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan1089
Duan, Ming Zhou, and Yue Zhang. 2023a. Logiqa1090
2.0—an improved dataset for logical reasoning in1091
natural language understanding. IEEE/ACM Trans-1092
actions on Audio, Speech, and Language Processing.1093

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,1094
Yile Wang, and Yue Zhang. 2020. Logiqa: A1095
challenge dataset for machine reading compre-1096
hension with logical reasoning. arXiv preprint1097
arXiv:2007.08124.1098

Jiawei Liu, Jia Le Tian, Vijay Daita, Yuxiang Wei,1099
Yifeng Ding, Yuhan Katherine Wang, Jun Yang,1100
and Lingming Zhang. 2024c. Repoqa: Evaluat-1101
ing long context code understanding. Preprint,1102
arXiv:2406.06025.1103

Tianyang Liu, Canwen Xu, and Julian McAuley.1104
2023b. Repobench: Benchmarking repository-1105
level code auto-completion systems. Preprint,1106
arXiv:2306.03091.1107

Tianyang Liu, Canwen Xu, and Julian McAuley.1108
2023c. Repobench: Benchmarking repository-1109
level code auto-completion systems. arXiv preprint1110
arXiv:2306.03091.1111

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-1112
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,1113
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,1114
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur1115
Zucker, Younes Belkada, Zijian Wang, Qian Liu,1116
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-1117
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue1118
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,1119
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,1120
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,1121
Niklas Muennighoff, Xiangru Tang, Muhtasham1122
Oblokulov, Christopher Akiki, Marc Marone, Cheng-1123
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,1124
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas1125
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten1126
Scholak, Sebastien Paquet, Jennifer Robinson, Car-1127
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-1128
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz1129
Ferrandis, Lingming Zhang, Sean Hughes, Thomas1130
Wolf, Arjun Guha, Leandro von Werra, and Harm1131
de Vries. 2024. Starcoder 2 and the stack v2: The1132
next generation. Preprint, arXiv:2402.19173.1133

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey1134
Svyatkovskiy, Ambrosio Blanco, Colin Clement,1135

Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li- 1136
dong Zhou, Linjun Shou, Long Zhou, Michele Tu- 1137
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun- 1138
daresan, Shao Kun Deng, Shengyu Fu, and Shujie 1139
Liu. 2021. Codexglue: A machine learning bench- 1140
mark dataset for code understanding and generation. 1141
Preprint, arXiv:2102.04664. 1142

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, 1143
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong- 1144
sheng Li. 2024. Mathcoder2: Better math reasoning 1145
from continued pretraining on model-translated math- 1146
ematical code. arXiv preprint arXiv:2410.08196. 1147

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi- 1148
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, 1149
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder: 1150
Empowering code large language models with evol- 1151
instruct. Preprint, arXiv:2306.08568. 1152

Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang, 1153
Yu Jiang, Changjian Wang, and Shanshan Li. 2023. 1154
At which training stage does code data help llms 1155
reasoning? arXiv preprint arXiv:2309.16298. 1156

Yunsheng Ma, Can Cui, Xu Cao, Wenqian Ye, Peiran 1157
Liu, Juanwu Lu, Amr Abdelraouf, Rohit Gupta, 1158
Kyungtae Han, Aniket Bera, et al. 2024. Lampilot: 1159
An open benchmark dataset for autonomous driving 1160
with language model programs. In Proceedings of 1161
the IEEE/CVF Conference on Computer Vision and 1162
Pattern Recognition, pages 15141–15151. 1163

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 1164
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 1165
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 1166
Shashank Gupta, Bodhisattwa Prasad Majumder, 1167
Katherine Hermann, Sean Welleck, Amir Yazdan- 1168
bakhsh, and Peter Clark. 2023. Self-refine: It- 1169
erative refinement with self-feedback. Preprint, 1170
arXiv:2303.17651. 1171

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, 1172
and Graham Neubig. 2022. Language models of code 1173
are few-shot commonsense learners. arXiv preprint 1174
arXiv:2210.07128. 1175

Dung Nguyen Manh, Thang Phan Chau, Nam Le Hai, 1176
Thong T. Doan, Nam V. Nguyen, Quang Pham, and 1177
Nghi D. Q. Bui. 2024. Codemmlu: A multi-task 1178
benchmark for assessing code understanding capabil- 1179
ities of codellms. Preprint, arXiv:2410.01999. 1180

Timothy R. McIntosh, Teo Susnjak, Nalin Arachchilage, 1181
Tong Liu, Paul Watters, and Malka N. Halgamuge. 1182
2024. Inadequacies of large language model bench- 1183
marks in the era of generative artificial intelligence. 1184
Preprint, arXiv:2402.09880. 1185

Arindam Mitra, Hamed Khanpour, Corby Rosset, and 1186
Ahmed Awadallah. 2024. Orca-math: Unlocking 1187
the potential of slms in grade school math. arXiv 1188
preprint arXiv:2402.14830. 1189

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai 1190
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam 1191

13

http://arxiv.org/abs/2411.13826v1
http://arxiv.org/abs/2411.13826v1
http://arxiv.org/abs/2411.13826v1
http://arxiv.org/abs/2411.13826v1
http://arxiv.org/abs/2411.13826v1
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2406.06025
https://arxiv.org/abs/2406.06025
https://arxiv.org/abs/2406.06025
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2410.08196v1
http://arxiv.org/abs/2410.08196v1
http://arxiv.org/abs/2410.08196v1
http://arxiv.org/abs/2410.08196v1
http://arxiv.org/abs/2410.08196v1
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2410.01999
https://arxiv.org/abs/2410.01999
https://arxiv.org/abs/2410.01999
https://arxiv.org/abs/2410.01999
https://arxiv.org/abs/2410.01999
https://arxiv.org/abs/2402.09880
https://arxiv.org/abs/2402.09880
https://arxiv.org/abs/2402.09880


Singh, Xiangru Tang, Leandro von Werra, and1192
Shayne Longpre. 2024. Octopack: Instruction1193
tuning code large language models. Preprint,1194
arXiv:2308.07124.1195

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin1196
Deng, Kensen Shi, Charles Sutton, and Pengcheng1197
Yin. 2024a. Next: Teaching large language mod-1198
els to reason about code execution. Preprint,1199
arXiv:2404.14662.1200

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin1201
Deng, Kensen Shi, Charles Sutton, and Pengcheng1202
Yin. 2024b. Next: Teaching large language mod-1203
els to reason about code execution. arXiv preprint1204
arXiv:2404.14662.1205

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer,1206
Adam Richardson, Ahmed El-Kishky, Aiden Low,1207
Alec Helyar, Aleksander Madry, Alex Beutel, Alex1208
Carney, Alex Iftimie, Alex Karpenko, Alex Tachard1209
Passos, Alexander Neitz, Alexander Prokofiev,1210
Alexander Wei, Allison Tam, Ally Bennett, Ananya1211
Kumar, Andre Saraiva, Andrea Vallone, Andrew Du-1212
berstein, Andrew Kondrich, Andrey Mishchenko,1213
Andy Applebaum, Angela Jiang, Ashvin Nair, Bar-1214
ret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin1215
Sokolowsky, Boaz Barak, Bob McGrew, Borys Mi-1216
naiev, Botao Hao, Bowen Baker, Brandon Houghton,1217
Brandon McKinzie, Brydon Eastman, Camillo Lu-1218
garesi, Cary Bassin, Cary Hudson, Chak Ming Li,1219
Charles de Bourcy, Chelsea Voss, Chen Shen, Chong1220
Zhang, Chris Koch, Chris Orsinger, Christopher1221
Hesse, Claudia Fischer, Clive Chan, Dan Roberts,1222
Daniel Kappler, Daniel Levy, Daniel Selsam, David1223
Dohan, David Farhi, David Mely, David Robinson,1224
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Free-1225
man, Eddie Zhang, Edmund Wong, Elizabeth Proehl,1226
Enoch Cheung, Eric Mitchell, Eric Wallace, Erik1227
Ritter, Evan Mays, Fan Wang, Felipe Petroski Such,1228
Filippo Raso, Florencia Leoni, Foivos Tsimpourlas,1229
Francis Song, Fred von Lohmann, Freddie Sulit,1230
Geoff Salmon, Giambattista Parascandolo, Gildas1231
Chabot, Grace Zhao, Greg Brockman, Guillaume1232
Leclerc, Hadi Salman, Haiming Bao, Hao Sheng,1233
Hart Andrin, Hessam Bagherinezhad, Hongyu Ren,1234
Hunter Lightman, Hyung Won Chung, Ian Kivlichan,1235
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte,1236
Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina1237
Kofman, Jakub Pachocki, James Lennon, Jason Wei,1238
Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu,1239
Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero1240
Candela, Joe Palermo, Joel Parish, Johannes Hei-1241
decke, John Hallman, John Rizzo, Jonathan Gordon,1242
Jonathan Uesato, Jonathan Ward, Joost Huizinga,1243
Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Ka-1244
rina Nguyen, Karl Cobbe, Katy Shi, Kayla Wood,1245
Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu,1246
Kevin Lu, Kevin Stone, Kevin Yu, Lama Ahmad,1247
Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho,1248
Liam Fedus, Lilian Weng, Linden Li, Lindsay Mc-1249
Callum, Lindsey Held, Lorenz Kuhn, Lukas Kon-1250
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd,1251
Maja Trebacz, Manas Joglekar, Mark Chen, Marko1252

Tintor, Mason Meyer, Matt Jones, Matt Kaufer, 1253
Max Schwarzer, Meghan Shah, Mehmet Yatbaz, 1254
Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, 1255
Mia Glaese, Mianna Chen, Michael Lampe, Michael 1256
Malek, Michele Wang, Michelle Fradin, Mike Mc- 1257
Clay, Mikhail Pavlov, Miles Wang, Mingxuan Wang, 1258
Mira Murati, Mo Bavarian, Mostafa Rohaninejad, 1259
Nat McAleese, Neil Chowdhury, Neil Chowdhury, 1260
Nick Ryder, Nikolas Tezak, Noam Brown, Ofir 1261
Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins, 1262
Patrick Chao, Paul Ashbourne, Pavel Izmailov, Pe- 1263
ter Zhokhov, Rachel Dias, Rahul Arora, Randall 1264
Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Mi- 1265
yara, Reimar Leike, Renny Hwang, Rhythm Garg, 1266
Robin Brown, Roshan James, Rui Shu, Ryan Cheu, 1267
Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer, 1268
Sam Toyer, Samuel Miserendino, Sandhini Agarwal, 1269
Santiago Hernandez, Sasha Baker, Scott McKinney, 1270
Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani 1271
Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, 1272
Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji, 1273
Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan 1274
Clark, Tao Wang, Taylor Gordon, Ted Sanders, Te- 1275
jal Patwardhan, Thibault Sottiaux, Thomas Degry, 1276
Thomas Dimson, Tianhao Zheng, Timur Garipov, 1277
Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peter- 1278
son, Tyna Eloundou, Valerie Qi, Vineet Kosaraju, 1279
Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, 1280
Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech 1281
Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, 1282
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yun- 1283
yun Wang, Zheng Shao, and Zhuohan Li. 2024. Ope- 1284
nai o1 system card. Preprint, arXiv:2412.16720. 1285

OpenAI. 2023. Introducing chatgpt. 1286

OpenAI. 2025. Openai o3 mini. Accessed: 2025-02-12. 1287

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 1288
2021. Are nlp models really able to solve 1289
simple math word problems? arXiv preprint 1290
arXiv:2103.07191. 1291

Du Phan, Matthew Douglas Hoffman, David Dohan, 1292
Sholto Douglas, Tuan Anh Le, Aaron Parisi, Pavel 1293
Sountsov, Charles Sutton, Sharad Vikram, and Rif 1294
A Saurous. 2023. Training chain-of-thought via 1295
latent-variable inference. Advances in Neural In- 1296
formation Processing Systems, 36:72819–72841. 1297

Huy Nhat Phan, Tien N. Nguyen, Phong X. Nguyen, 1298
and Nghi D. Q. Bui. 2024. Hyperagent: Generalist 1299
software engineering agents to solve coding tasks at 1300
scale. Preprint, arXiv:2409.16299. 1301

Xinyu Pi, Qian Liu, Bei Chen, Morteza Ziyadi, Zeqi Lin, 1302
Qiang Fu, Yan Gao, Jian-Guang Lou, and Weizhu 1303
Chen. 2022. Reasoning like program executors. 1304
arXiv preprint arXiv:2201.11473. 1305

Haritz Puerto, Martin Tutek, Somak Aditya, Xiaodan 1306
Zhu, and Iryna Gurevych. 2024. Code prompting 1307
elicits conditional reasoning abilities in text+code 1308
llms. arXiv preprint arXiv:2401.10065. 1309

14

https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2404.14662
https://arxiv.org/abs/2404.14662
https://arxiv.org/abs/2404.14662
http://arxiv.org/abs/2404.14662v1
http://arxiv.org/abs/2404.14662v1
http://arxiv.org/abs/2404.14662v1
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720
https://openai.com/index/chatgpt/
https://openai.com/index/openai-o3-mini/
https://arxiv.org/abs/2409.16299
https://arxiv.org/abs/2409.16299
https://arxiv.org/abs/2409.16299
https://arxiv.org/abs/2409.16299
https://arxiv.org/abs/2409.16299
http://arxiv.org/abs/2401.10065v3
http://arxiv.org/abs/2401.10065v3
http://arxiv.org/abs/2401.10065v3
http://arxiv.org/abs/2401.10065v3
http://arxiv.org/abs/2401.10065v3


Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan1310
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,1311
Bill Qian, et al. 2023. Toolllm: Facilitating large1312
language models to master 16000+ real-world apis.1313
arXiv preprint arXiv:2307.16789.1314

Martin Riddell, Ansong Ni, and Arman Cohan. 2024.1315
Quantifying contamination in evaluating code gen-1316
eration capabilities of language models. Preprint,1317
arXiv:2403.04811.1318

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten1319
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,1320
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy1321
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna1322
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron1323
Grattafiori, Wenhan Xiong, Alexandre Défossez,1324
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-1325
tin, Nicolas Usunier, Thomas Scialom, and Gabriel1326
Synnaeve. 2024. Code llama: Open foundation mod-1327
els for code. Preprint, arXiv:2308.12950.1328

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,1329
Weiming Lu, and Yueting Zhuang. 2023. Hugging-1330
gpt: Solving ai tasks with chatgpt and its friends1331
in hugging face. Advances in Neural Information1332
Processing Systems, 36:38154–38180.1333

Noah Shinn, Federico Cassano, Ashwin Gopinath,1334
Karthik Narasimhan, and Shunyu Yao. 2023. Re-1335
flexion: Language agents with verbal reinforcement1336
learning. Advances in Neural Information Process-1337
ing Systems, 36:8634–8652.1338

Noah Shinn, Federico Cassano, Ashwin Gopinath,1339
Karthik Narasimhan, and Shunyu Yao. 2024. Re-1340
flexion: Language agents with verbal reinforcement1341
learning. Advances in Neural Information Process-1342
ing Systems, 36.1343

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,1344
Yonatan Bisk, Adam Trischler, and Matthew1345
Hausknecht. 2020. Alfworld: Aligning text and em-1346
bodied environments for interactive learning. arXiv1347
preprint arXiv:2010.03768.1348

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-1349
bastian Gehrmann, Yi Tay, Hyung Won Chung,1350
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny1351
Zhou, et al. 2022. Challenging big-bench tasks and1352
whether chain-of-thought can solve them. arXiv1353
preprint arXiv:2210.09261.1354

Tianhua Tao, Junbo Li, Bowen Tan, Hongyi Wang,1355
William Marshall, Bhargav M Kanakiya, Joel Hest-1356
ness, Natalia Vassilieva, Zhiqiang Shen, Eric P Xing,1357
et al. 2024. Crystal: Illuminating llm abilities on lan-1358
guage and code. arXiv preprint arXiv:2411.04156.1359

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua1360
Howland, Nam Nguyen, Siqi Zuo, Andrea Hu,1361
Christopher A. Choquette-Choo, Jingyue Shen, Joe1362
Kelley, Kshitij Bansal, Luke Vilnis, Mateo Wirth,1363
Paul Michel, Peter Choy, Pratik Joshi, Ravin Kumar,1364
Sarmad Hashmi, Shubham Agrawal, Zhitao Gong,1365
Jane Fine, Tris Warkentin, Ale Jakse Hartman, Bin1366

Ni, Kathy Korevec, Kelly Schaefer, and Scott Huff- 1367
man. 2024. Codegemma: Open code models based 1368
on gemma. Preprint, arXiv:2406.11409. 1369

Zhao Tian, Junjie Chen, and Xiangyu Zhang. 2023. 1370
Test-case-driven programming understanding in large 1371
language models for better code generation. arXiv 1372
preprint arXiv:2309.16120. 1373

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 1374
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 1375
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 1376
Azhar, et al. 2023. Llama: open and efficient 1377
foundation language models. arxiv. arXiv preprint 1378
arXiv:2302.13971. 1379

Evan Wang, Federico Cassano, Catherine Wu, Yun- 1380
feng Bai, Will Song, Vaskar Nath, Ziwen Han, Sean 1381
Hendryx, Summer Yue, and Hugh Zhang. 2024a. 1382
Planning in natural language improves llm search 1383
for code generation. Preprint, arXiv:2409.03733. 1384

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun 1385
Luo, Weikang Shi, Renrui Zhang, Linqi Song, 1386
Mingjie Zhan, and Hongsheng Li. 2023. Math- 1387
coder: Seamless code integration in llms for en- 1388
hanced mathematical reasoning. arXiv preprint 1389
arXiv:2310.03731. 1390

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai 1391
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui. 1392
2024b. Math-shepherd: Verify and reinforce llms 1393
step-by-step without human annotations. In Proceed- 1394
ings of the 62nd Annual Meeting of the Association 1395
for Computational Linguistics (Volume 1: Long Pa- 1396
pers), pages 9426–9439. 1397

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, 1398
Yunzhu Li, Hao Peng, and Heng Ji. 2024c. Exe- 1399
cutable code actions elicit better llm agents. Preprint, 1400
arXiv:2402.01030. 1401

Xingyao Wang, Jiayi Pan, Graham Neubig, et al. 1402
2024d. Openhands: An open platform for ai soft- 1403
ware developers as generalist agents. arXiv preprint 1404
arXiv:2407.16741. 1405

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and 1406
Heng Ji. 2024e. Leti: Learning to generate from 1407
textual interactions. Preprint, arXiv:2305.10314. 1408

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin 1409
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 1410
drew M. Dai, and Quoc V. Le. 2022a. Finetuned 1411
language models are zero-shot learners. Preprint, 1412
arXiv:2109.01652. 1413

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 1414
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and 1415
Denny Zhou. 2023a. Chain-of-thought prompting 1416
elicits reasoning in large language models. Preprint, 1417
arXiv:2201.11903. 1418

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 1419
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 1420

15

https://arxiv.org/abs/2403.04811
https://arxiv.org/abs/2403.04811
https://arxiv.org/abs/2403.04811
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2406.11409
https://arxiv.org/abs/2406.11409
https://arxiv.org/abs/2406.11409
https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2409.03733
http://arxiv.org/abs/2310.03731v1
http://arxiv.org/abs/2310.03731v1
http://arxiv.org/abs/2310.03731v1
http://arxiv.org/abs/2310.03731v1
http://arxiv.org/abs/2310.03731v1
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2305.10314
https://arxiv.org/abs/2305.10314
https://arxiv.org/abs/2305.10314
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903


et al. 2022b. Chain-of-thought prompting elicits rea-1421
soning in large language models. Advances in neural1422
information processing systems, 35:24824–24837.1423

Tianwen Wei, Jian Luan, Wei Liu, Shuang Dong, and1424
Bin Wang. 2023b. Cmath: Can your language model1425
pass chinese elementary school math test? arXiv1426
preprint arXiv:2306.16636.1427

Nathaniel Weir, Muhammad Khalifa, Linlu Qiu, Orion1428
Weller, and Peter Clark. 2024. Learning to reason via1429
program generation, emulation, and search. arXiv1430
preprint arXiv:2405.16337.1431

Jiaxin Wen, Jian Guan, Hongning Wang, Wei Wu, and1432
Minlie Huang. 2024a. Unlocking reasoning poten-1433
tial in large langauge models by scaling code-form1434
planning. arXiv preprint arXiv:2409.12452.1435

Jiaxin Wen, Ruiqi Zhong, Pei Ke, Zhihong Shao, Hongn-1436
ing Wang, and Minlie Huang. 2024b. Learning task1437
decomposition to assist humans in competitive pro-1438
gramming. Preprint, arXiv:2406.04604.1439

Jinyang Wu, Feihu Che, Chuyuan Zhang, Jianhua Tao,1440
Shuai Zhang, and Pengpeng Shao. 2024. Pandora’s1441
box or aladdin’s lamp: A comprehensive analysis re-1442
vealing the role of rag noise in large language models.1443
Preprint, arXiv:2408.13533.1444

Yuhao Wu, Ming Shan Hee, Zhiqing Hu, and Roy1445
Ka-Wei Lee. 2025. Longgenbench: Benchmarking1446
long-form generation in long context llms. Preprint,1447
arXiv:2409.02076.1448

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and1449
Lingming Zhang. 2024a. Agentless: Demystifying1450
llm-based software engineering agents. Preprint,1451
arXiv:2407.01489.1452

Chunqiu Steven Xia, Yinlin Deng, and Lingming Zhang.1453
2024b. Top leaderboard ranking = top coding pro-1454
ficiency, always? evoeval: Evolving coding bench-1455
marks via llm. Preprint, arXiv:2403.19114.1456

Xuyuan Xiong, Simeng Han, Ziyue Zhou, and Ar-1457
man Cohan. 2024. Inc-math: Integrating natural1458
language and code for enhanced mathematical rea-1459
soning in large language models. arXiv preprint1460
arXiv:2409.19381.1461

Frank F. Xu, Uri Alon, Graham Neubig, and Vin-1462
cent J. Hellendoorn. 2022. A systematic evalua-1463
tion of large language models of code. Preprint,1464
arXiv:2202.13169.1465

Zhipeng Xue, Zhipeng Gao, Shaohua Wang, Xing Hu,1466
Xin Xia, and Shanping Li. 2024. Selfpico: Self-1467
guided partial code execution with llms. Preprint,1468
arXiv:2407.16974.1469

Guang Yang, Yu Zhou, Xiang Chen, Xiangyu1470
Zhang, Terry Yue Zhuo, and Taolue Chen. 2024a.1471
Chain-of-thought in neural code generation: From1472
and for lightweight language models. Preprint,1473
arXiv:2312.05562.1474

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian 1475
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir 1476
Press. 2024b. Swe-agent: Agent-computer interfaces 1477
enable automated software engineering. Preprint, 1478
arXiv:2405.15793. 1479

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kil- 1480
ian Lieret, Joyce Yang, Xindi Wu, Ori Press, 1481
Niklas Muennighoff, Gabriel Synnaeve, Karthik R. 1482
Narasimhan, Diyi Yang, Sida I. Wang, and Ofir 1483
Press. 2024c. Swe-bench multimodal: Do ai systems 1484
generalize to visual software domains? Preprint, 1485
arXiv:2410.03859. 1486

John Yang, Akshara Prabhakar, Karthik Narasimhan, 1487
and Shunyu Yao. 2023. Intercode: Standardizing 1488
and benchmarking interactive coding with execution 1489
feedback. Preprint, arXiv:2306.14898. 1490

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R 1491
Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao 1492
Wang, Yiquan Wang, et al. 2024d. If llm is the wiz- 1493
ard, then code is the wand: A survey on how code 1494
empowers large language models to serve as intelli- 1495
gent agents. arXiv preprint arXiv:2401.00812. 1496

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi, 1497
and Faramarz Fekri. 2024e. Can llms reason 1498
in the wild with programs? arXiv preprint 1499
arXiv:2406.13764. 1500

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben- 1501
gio, William W Cohen, Ruslan Salakhutdinov, and 1502
Christopher D Manning. 2018. Hotpotqa: A dataset 1503
for diverse, explainable multi-hop question answer- 1504
ing. arXiv preprint arXiv:1809.09600. 1505

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 1506
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 1507
2023. Tree of thoughts: Deliberate problem solving 1508
with large language models. Advances in neural 1509
information processing systems, 36:11809–11822. 1510

Dian Yu, Baolin Peng, Ye Tian, Linfeng Song, Haitao 1511
Mi, and Dong Yu. 2024a. Siam: Self-improving 1512
code-assisted mathematical reasoning of large lan- 1513
guage models. arXiv preprint arXiv:2408.15565. 1514

Huimu Yu, Xing Wu, Weidong Yin, Debing Zhang, and 1515
Songlin Hu. 2024b. Codepmp: Scalable preference 1516
model pretraining for large language model reason- 1517
ing. arXiv preprint arXiv:2410.02229. 1518

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, 1519
Zhengying Liu, Yu Zhang, James T Kwok, Zhen- 1520
guo Li, Adrian Weller, and Weiyang Liu. 2023. 1521
Metamath: Bootstrap your own mathematical ques- 1522
tions for large language models. arXiv preprint 1523
arXiv:2309.12284. 1524

Tan Yu, Anbang Xu, and Rama Akkiraju. 2024c. In 1525
defense of rag in the era of long-context language 1526
models. Preprint, arXiv:2409.01666. 1527

16

http://arxiv.org/abs/2405.16337v3
http://arxiv.org/abs/2405.16337v3
http://arxiv.org/abs/2405.16337v3
http://arxiv.org/abs/2409.12452v2
http://arxiv.org/abs/2409.12452v2
http://arxiv.org/abs/2409.12452v2
http://arxiv.org/abs/2409.12452v2
http://arxiv.org/abs/2409.12452v2
https://arxiv.org/abs/2406.04604
https://arxiv.org/abs/2406.04604
https://arxiv.org/abs/2406.04604
https://arxiv.org/abs/2406.04604
https://arxiv.org/abs/2406.04604
https://arxiv.org/abs/2408.13533
https://arxiv.org/abs/2408.13533
https://arxiv.org/abs/2408.13533
https://arxiv.org/abs/2408.13533
https://arxiv.org/abs/2408.13533
https://arxiv.org/abs/2409.02076
https://arxiv.org/abs/2409.02076
https://arxiv.org/abs/2409.02076
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2403.19114
https://arxiv.org/abs/2403.19114
https://arxiv.org/abs/2403.19114
https://arxiv.org/abs/2403.19114
https://arxiv.org/abs/2403.19114
http://arxiv.org/abs/2409.19381v3
http://arxiv.org/abs/2409.19381v3
http://arxiv.org/abs/2409.19381v3
http://arxiv.org/abs/2409.19381v3
http://arxiv.org/abs/2409.19381v3
https://arxiv.org/abs/2202.13169
https://arxiv.org/abs/2202.13169
https://arxiv.org/abs/2202.13169
https://arxiv.org/abs/2407.16974
https://arxiv.org/abs/2407.16974
https://arxiv.org/abs/2407.16974
https://arxiv.org/abs/2312.05562
https://arxiv.org/abs/2312.05562
https://arxiv.org/abs/2312.05562
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2410.03859
https://arxiv.org/abs/2410.03859
https://arxiv.org/abs/2410.03859
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
http://arxiv.org/abs/2406.13764v1
http://arxiv.org/abs/2406.13764v1
http://arxiv.org/abs/2406.13764v1
https://arxiv.org/abs/2409.01666
https://arxiv.org/abs/2409.01666
https://arxiv.org/abs/2409.01666
https://arxiv.org/abs/2409.01666
https://arxiv.org/abs/2409.01666


Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi1528
Feng. 2020. Reclor: A reading comprehension1529
dataset requiring logical reasoning. arXiv preprint1530
arXiv:2002.04326.1531

Sukmin Yun, Haokun Lin, Rusiru Thushara, Moham-1532
mad Qazim Bhat, Yongxin Wang, Zutao Jiang,1533
Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo1534
Li, Haonan Li, Preslav Nakov, Timothy Baldwin,1535
Zhengzhong Liu, Eric P. Xing, Xiaodan Liang, and1536
Zhiqiang Shen. 2024. Web2code: A large-scale1537
webpage-to-code dataset and evaluation framework1538
for multimodal llms. Preprint, arXiv:2406.20098.1539

Daoan Zhang, Guangchen Lan, Dong-Jun Han, Wen-1540
lin Yao, Xiaoman Pan, Hongming Zhang, Mingxiao1541
Li, Pengcheng Chen, Yu Dong, Christopher Brin-1542
ton, et al. 2024a. Seppo: Semi-policy preference1543
optimization for diffusion alignment. arXiv preprint1544
arXiv:2410.05255.1545

Daoan Zhang, Junming Yang, Hanjia Lyu, Zijian Jin,1546
Yuan Yao, Mingkai Chen, and Jiebo Luo. 2024b.1547
Cocot: Contrastive chain-of-thought prompting for1548
large multimodal models with multiple image inputs.1549
arXiv preprint arXiv:2401.02582.1550

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin.1551
2024c. Codeagent: Enhancing code generation with1552
tool-integrated agent systems for real-world repo-1553
level coding challenges. Preprint, arXiv:2401.07339.1554

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023.1555
Self-edit: Fault-aware code editor for code genera-1556
tion. Preprint, arXiv:2305.04087.1557

Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang,1558
Lichang Chen, William Yang Wang, and Linda Ruth1559
Petzold. 2024d. Unveiling the impact of coding data1560
instruction fine-tuning on large language models rea-1561
soning. arXiv preprint arXiv:2405.20535.1562

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik1563
Roychoudhury. 2024e. Autocoderover: Autonomous1564
program improvement. Preprint, arXiv:2404.05427.1565

Wei Zhao, Mingyue Shang, Yang Liu, Liang Wang, and1566
Jingming Liu. 2020. Ape210k: A large-scale and1567
template-rich dataset of math word problems. arXiv1568
preprint arXiv:2009.11506.1569

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and1570
Yu Su. 2024a. Gpt-4v(ision) is a generalist web agent,1571
if grounded. arXiv preprint arXiv:2401.01614.1572

Kunhao Zheng, Juliette Decugis, Jonas Gehring, Taco1573
Cohen, Benjamin Negrevergne, and Gabriel Syn-1574
naeve. 2024b. What makes large language models1575
reason in (multi-turn) code generation? Preprint,1576
arXiv:2410.08105.1577

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan1578
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,1579
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.1580
Judging llm-as-a-judge with mt-bench and chatbot1581
arena. Advances in Neural Information Processing1582
Systems, 36:46595–46623.1583

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, 1584
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang 1585
Yue. 2025. Opencodeinterpreter: Integrating code 1586
generation with execution and refinement. Preprint, 1587
arXiv:2402.14658. 1588

Bangshuo Zhu, Jiawen Wen, and Huaming Chen. 2024. 1589
What you see is not always what you get: An empiri- 1590
cal study of code comprehension by large language 1591
models. Preprint, arXiv:2412.08098. 1592

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, 1593
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani 1594
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. 1595
2024. Bigcodebench: Benchmarking code genera- 1596
tion with diverse function calls and complex instruc- 1597
tions. arXiv preprint arXiv:2406.15877. 1598

A Challenges and Future Directions: 1599

More Detailed Discussion 1600

A.1 Code-enhanced Reasoning 1601

Lack of Interpretability and Debuggability. A 1602

key challenge in code-enhanced reasoning is the 1603

reliance on the code generation capabilities of 1604

LLMs (Kadavath et al., 2022; Kabra et al., 2023). 1605

However, LLM-generated code often does not faith- 1606

fully reflect the model’s true chain of thought (Li 1607

et al., 2023a), nor can these models reliably assess 1608

their own confidence (Kabra et al., 2023). Man- 1609

ual inspections of the generated code are time- 1610

consuming and prone to oversight (Li et al., 2023a; 1611

Tian et al., 2023), underscoring the need for system- 1612

atic error detection and robust error-handling strate- 1613

gies within the code itself (Li et al., 2023a; Ni et al., 1614

2024b). Mechanisms that empower LLMs to self- 1615

reflect and debug their generated code would be 1616

highly beneficial (Chen et al., 2024b). Potential ap- 1617

proaches include tree-based generation (Yao et al., 1618

2023), reasoning-oriented self-reflection (Shinn 1619

et al., 2023), and reinforcement learning method- 1620

ologies (Le et al., 2022). Another promising av- 1621

enue is the application of formal verification tech- 1622

niques (Kang et al., 2025), which can validate the 1623

correctness of the generated code and ensure align- 1624

ment between the code logic and intended reason- 1625

ing steps. 1626

Blended Code-and-Language Reasoning. Al- 1627

though code excels at numeric and algorithmic 1628

tasks, it frequently struggles with less structured 1629

or more subjective tasks (e.g., commonsense rea- 1630

soning, semantic analysis) where purely executable 1631

representations are inadequate (Li et al., 2023a; 1632

Weir et al., 2024; Liu et al., 2024a). A crucial chal- 1633

lenge is deciding how to split reasoning processes 1634

between structured code (for precise computation) 1635

17

https://arxiv.org/abs/2406.20098
https://arxiv.org/abs/2406.20098
https://arxiv.org/abs/2406.20098
https://arxiv.org/abs/2406.20098
https://arxiv.org/abs/2406.20098
https://arxiv.org/abs/2401.07339
https://arxiv.org/abs/2401.07339
https://arxiv.org/abs/2401.07339
https://arxiv.org/abs/2401.07339
https://arxiv.org/abs/2401.07339
https://arxiv.org/abs/2305.04087
https://arxiv.org/abs/2305.04087
https://arxiv.org/abs/2305.04087
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2410.08105
https://arxiv.org/abs/2410.08105
https://arxiv.org/abs/2410.08105
https://arxiv.org/abs/2402.14658
https://arxiv.org/abs/2402.14658
https://arxiv.org/abs/2402.14658
https://arxiv.org/abs/2412.08098
https://arxiv.org/abs/2412.08098
https://arxiv.org/abs/2412.08098
https://arxiv.org/abs/2412.08098
https://arxiv.org/abs/2412.08098


and free-form text (for broader contextual and in-1636

terpretive functions) (Suzgun et al., 2022; Liu et al.,1637

2024a; Xiong et al., 2024). Frameworks such as1638

“LMulator” and “pseudocode execution” demon-1639

strate the potential of interleaving code generation1640

with textual reasoning (Li et al., 2023a; Weir et al.,1641

2024), allowing symbolic computation to be com-1642

plemented by natural language interpretation. Mov-1643

ing forward, designing hybrid architectures that1644

seamlessly integrate code and language modalities1645

will be essential for improving performance on a1646

wide range of tasks, particularly those requiring1647

nuanced judgment alongside algorithmic precision.1648

Optimizing Code Data and Representations De-1649

termining the optimal level of code complexity1650

for enhancing reasoning remains an open problem.1651

Overly intricate code can be difficult for LLMs to1652

learn effectively, while overly simplistic code may1653

fail to capture essential reasoning steps (Bi et al.,1654

2023). A systematic analysis of the relationship be-1655

tween code complexity and reasoning performance1656

is needed. Metrics such as cyclomatic complexity1657

and code length can help quantify code difficulty1658

and guide the selection of complexity levels that1659

maximize learning efficiency. Additionally, adap-1660

tive curricula that gradually increase code complex-1661

ity may enable LLMs to progressively acquire more1662

sophisticated reasoning capabilities while minimiz-1663

ing the risk of overwhelming the model.1664

Lack of Scalability and Generalization. Many1665

current code-enhanced reasoning methods rely on1666

task-specific fine-tuning, which can hinder general-1667

ization to novel tasks or domains (Yu et al., 2023;1668

Mitra et al., 2024; Wang et al., 2023). Moreover,1669

data scalability often remains limited to narrow1670

domains (e.g., mathematical calculation, code ma-1671

nipulation) (Guo et al., 2024b; Hui et al., 2024;1672

Lozhkov et al., 2024; Laurençon et al., 2022; Wen1673

et al., 2024a), restricting the applicability of these1674

models in real-world scenarios. Improving zero-1675

and few-shot learning capabilities will be crucial1676

for broadening the scope of code-enhanced reason-1677

ing (Chen et al., 2022). Innovative data augmenta-1678

tion techniques, such as generating synthetic data1679

or leveraging unsupervised learning on unlabeled1680

corpora, can further enrich model training (Phan1681

et al., 2023; Lightman et al., 2023). Finally, cross-1682

domain training strategies (Li et al., 2023d) that1683

integrate knowledge from multiple sources hold1684

promise for more robust, generalized reasoning1685

across diverse tasks and domains.1686

Difficulty with Complex or Abstract Tasks While1687

code-based approaches excel in structured problem- 1688

solving, they often falter on tasks requiring com- 1689

monsense, semantic interpretation, or complex al- 1690

gebraic reasoning. In some instances—such as 1691

evaluating the humor in a name edit—code-based 1692

reasoning may even introduce unnecessary com- 1693

plexity or degrade performance (Li et al., 2023a). 1694

Next-generation models should be designed to be 1695

more context-aware, capable of determining when 1696

code is beneficial and when alternative strategies 1697

would be more appropriate (Chen et al., 2024b). 1698

Achieving this requires adaptive, multimodal archi- 1699

tectures that selectively combine code execution 1700

with natural language processing and other reason- 1701

ing paradigms, ensuring that different task types 1702

receive the most effective mode of reasoning sup- 1703

port. 1704

Lack of High-Quality Datasets. Many open- 1705

source code LLMs still rely on training data 1706

scraped from GitHub, which can suffer from re- 1707

dundancy, poor quality, and overly short snip- 1708

pets (DeepSeek-AI et al., 2024; Hui et al., 2024; 1709

Lozhkov et al., 2024). Consequently, building 1710

cleaner and more diverse datasets is essential for ad- 1711

vancing tasks such as code generation and editing. 1712

High-quality dataset curation not only improves 1713

model performance but also benefits the broader 1714

community seeking robust benchmarks and repro- 1715

ducible experimental settings 1716

Tool Usage Based on Code Format Currently, 1717

LLMs or agents typically use APIs or simple code 1718

to invoke tools (Shen et al., 2023; Qin et al., 2023). 1719

However, in complex working conditions, the con- 1720

struction of a sophisticated and complete tool usage 1721

chain remains an unsolved challenge. Code, as a 1722

universal format, has a unique advantage in this as- 1723

pect. The key question is how to design a standard- 1724

ized format that enables LLMs or agents to invoke 1725

available tools on a computer through automated 1726

code generation and execution. This approach en- 1727

hances the capabilities of LLMs or agents, allowing 1728

them to tackle more complex tasks effectively. 1729

A.2 Reasoning-enhanced Code Intelligence 1730

Large-Scale Code Understanding Large-scale 1731

code understanding has seen significant progress 1732

with the expansion of context windows, enabling 1733

models to process even over 1 million tokens (Chen 1734

et al., 2023a; Guo et al., 2023). However, increas- 1735

ing context length does not always lead to better 1736

comprehension, as models struggle to focus on 1737

critical information when relevant code snippets 1738

18



are dispersed across a repository (Li et al., 2024b).1739

Retrieval-Augmented Generation (RAG) has been1740

introduced to mitigate this issue by retrieving rele-1741

vant segments, but it is not without limitations: key1742

information may be missed, and retrieval strategies1743

may not always align with complex code struc-1744

tures (Wu et al., 2024; Jin et al., 2024; Yu et al.,1745

2024c). Striking a balance between context ex-1746

pansion, retrieval augmentation, and precise code1747

parsing is essential to building product-grade code1748

intelligence systems capable of both global com-1749

prehension and accurate localization, making them1750

effective for complex repository-level tasks.1751

Long-Form Code Generation Recent advances1752

in LLMs for code generation have primarily fo-1753

cused on handling longer input contexts rather than1754

generating longer, structured code outputs (Wu1755

et al., 2025). In other words, current training op-1756

timizes long-context understanding, but does not1757

necessarily improve the coherence and quality of1758

long-form code generation. Several challenges1759

arise in long-form generation: first, it is difficult to1760

evaluate, as most existing benchmarks assess the1761

correctness of individual functions, while assess-1762

ing multi-file, multi-module code remains an open1763

problem. Second, long-form code generation is1764

prone to errors—when the output scale increases,1765

the accumulation of small mistakes can render the1766

entire project non-functional or logically inconsis-1767

tent. Moreover, correctness and executability are1768

difficult to ensure, as large-scale software develop-1769

ment involves rigorous compilation, testing, and1770

debugging processes, which generated code may1771

not adhere to. Future research should focus on1772

improving training strategies for long-form gen-1773

eration, developing better evaluation metrics for1774

multi-file coherence, and ensuring correctness and1775

executability in large-scale code generation.1776

Exploring the Applicability of Reasoning Mod-1777

els in Code Agents Despite significant break-1778

throughs in mathematical reasoning and code gen-1779

eration, reasoning models such as O1 and R1 (Ope-1780

nAI et al., 2024; DeepSeek-AI et al., 2025; Ope-1781

nAI, 2025) have shown limited improvements in1782

agent-based tasks. One possible explanation is that1783

existing agent frameworks were optimized for ear-1784

lier non-reasoning models, which prevents newer1785

models from fully leveraging their reasoning ca-1786

pabilities. Alternatively, reasoning-enhanced mod-1787

els may not inherently excel in agent-based tasks,1788

meaning their strengths in mathematical and code1789

reasoning do not necessarily translate into superior1790

agent execution. If the latter is true, adapting agent 1791

architectures alone may not be sufficient, and a 1792

more fundamental investigation into the role of rea- 1793

soning models in agents is needed. Future research 1794

should explore new agent frameworks, better uti- 1795

lization of reasoning capabilities, and empirical 1796

validation of reasoning-enhanced models in real- 1797

world programming agent scenarios to determine 1798

whether new paradigms are required or if models 1799

themselves need refinement to be more effective in 1800

agent environments. 1801

Balancing Autonomy and Control in Code 1802

Agents As agents become more capable, the bal- 1803

ance between autonomy and control emerges as a 1804

crucial challenge. Allowing agents more freedom 1805

to explore solutions independently may yield novel 1806

and highly efficient results, while enforcing strict 1807

control mechanisms ensures predictability and re- 1808

liability. Finding the right balance between these 1809

approaches is essential for practical deployment. 1810

Additionally, safety concerns grow with increased 1811

agent autonomy, particularly in scenarios involving 1812

direct code execution (Guo et al., 2024a). Intel- 1813

ligent safeguards are needed to prevent security 1814

vulnerabilities, unintended execution of high-risk 1815

operations, and harmful self-modifications. Fu- 1816

ture research should investigate frameworks that 1817

enable agents to operate within safe execution en- 1818

vironments while maximizing their ability to au- 1819

tonomously optimize and improve code generation. 1820

Multimodal Code Intelligence The evolution of 1821

programming from purely text-based workflows to 1822

multimodal interactions is reshaping the develop- 1823

ment landscape, particularly in UI/UX and fron- 1824

tend engineering (Yun et al., 2024). Traditional 1825

code models primarily rely on textual inputs, but 1826

future systems will require capabilities to process 1827

visual elements, bridging the gap between design 1828

and implementation. Advancements in aesthetic- 1829

aware LLMs (Abe et al., 2024), vision-based cod- 1830

ing agents (Zheng et al., 2024a), and interface ma- 1831

nipulation technologies (Anthropic, 2024) offer ex- 1832

citing possibilities. Future research should focus on 1833

training models that can generate code from visual 1834

specifications, interact with IDEs through graph- 1835

ical interfaces, and develop datasets that capture 1836

the intricate relationships between design compo- 1837

nents and their code representations, paving the 1838

way for more intuitive and efficient development 1839

workflows. 1840

Reinforcement Learning for Code Models Re- 1841

inforcement learning (RL) presents a promising 1842

19



avenue for enhancing reasoning in code models.1843

Unlike other domains, code execution provides im-1844

mediate and objective feedback, making it well-1845

suited for RL-based optimization. One potential1846

approach involves training models to predict input-1847

output behavior for given code and test cases, us-1848

ing CoT reasoning expressed in natural language1849

to guide the learning process (DeepSeek-AI et al.,1850

2025). Another key direction is exploring RL in1851

agent-based environments, where agents can iter-1852

atively refine their strategies for code search, de-1853

bugging, and refactoring through trial and error.1854

Incorporating RL into code intelligence systems1855

may significantly enhance their reasoning depth,1856

problem-solving efficiency, and overall robustness.1857

Innovation and Refinement of Evaluations As1858

code intelligence models continuously master ex-1859

isting benchmarks (Xia et al., 2024b), the develop-1860

ment of new evaluation frameworks remains a per-1861

petual necessity (McIntosh et al., 2024). Future re-1862

search must create more sophisticated benchmarks1863

that better reflect real-world challenges while re-1864

sisting data contamination (Riddell et al., 2024).1865

These frameworks should also extend beyond mere1866

functional correctness to assess broader software1867

development aspects, e.g., code quality, maintain-1868

ability, and design aesthetics (da Silva Simões and1869

Venson, 2024; Borg et al., 2024).1870

B Understanding Performance Variations1871

The performance metrics presented in Ta-1872

ble 1 (Code-enhanced Reasoning) and Table 21873

(Reasoning-enhanced Code Intelligence) exhibit1874

a notable range of accuracies. These variations are1875

not random but arise from a confluence of intercon-1876

nected factors inherent in the design, training, and1877

evaluation of these sophisticated AI systems.1878

A primary driver of performance differences1879

is the core methodology and algorithmic ap-1880

proach employed by each system. For instance,1881

in Table 1, methods that translate reasoning prob-1882

lems into single, executable programs, such as1883

PAL (Gao et al., 2023) and PoT (Chen et al.,1884

2022), often excel on numerical benchmarks like1885

GSM8K. PoT with GPT-4, for example, achieves1886

97.2% on GSM8K by leveraging code’s determin-1887

istic execution, thereby minimizing errors common1888

in pure natural language reasoning. In contrast,1889

dynamic code-language integration methods like1890

MathCoder (Wang et al., 2023) (83.9% on GSM8K1891

with Llama-2-70B) and those using non-executable1892

representations like CoC (Li et al., 2023a) (71.0% 1893

on GSM8K with text-davinci-003) adopt different 1894

strategies that yield varied results depending on 1895

their efficacy in blending modalities or guiding 1896

internal reasoning. Similarly, Table 2 illustrates 1897

how methodological evolution impacts code intelli- 1898

gence. Simple Chain-of-Thought (CoT) prompting 1899

with Codex (53.9% on HumanEval) surpasses di- 1900

rect prompting (48.1%). More advanced reasoning- 1901

enhanced techniques, such as CodeCoT (Huang 1902

et al., 2024a) (79.3% on HumanEval with GPT-3.5), 1903

and interactive methods like Self-Debugging (Chen 1904

et al., 2023b) (80.6% on MBPP with GPT-4) and 1905

AgentCoder (Huang et al., 2024b) (96.3% on Hu- 1906

manEval with GPT-4), demonstrate further gains by 1907

incorporating structured planning, iterative refine- 1908

ment, or feedback loops. Agentic systems tackling 1909

the complex SWE-Bench, like SWE-agent (Yang 1910

et al., 2024b) (18.0%) and Agentless (Xia et al., 1911

2024a) (27.3%), show how architectural choices in 1912

planning and tool use affect performance on real- 1913

world tasks. 1914

The underlying Large Language Model 1915

(LLM) serving as the backbone is another criti- 1916

cal factor. The inherent capabilities of models such 1917

as GPT-4, GPT-4o, Claude-3.5-Sonnet, or special- 1918

ized code models like Codex and DeepseekCoder, 1919

vary significantly. For example, PoT’s 97.2% on 1920

GSM8K with GPT-4 contrasts with PAL’s 72.0% 1921

using the earlier Codex model. In Table 2, Agent- 1922

Coder with GPT-4 achieves 96.3% on HumanEval, 1923

considerably higher than SCoTs with GPT-3.5 1924

(60.6%), underscoring that more powerful base 1925

models generally yield superior results. 1926

Furthermore, experimental settings, including 1927

training data and prompting strategies, play 1928

a crucial role. Whether a method uses zero- 1929

shot or few-shot prompting, and the specific de- 1930

sign of these prompts, can significantly alter out- 1931

comes. Crucially, methods involving fine-tuning 1932

on task-specific data, such as MathCoder or Open- 1933

CodeInterpreter (Zheng et al., 2025) (92.7% on 1934

HumanEval), often outperform prompting-only ap- 1935

proaches on benchmarks aligned with their train- 1936

ing. The quality and scale of the pre-training 1937

and fine-tuning datasets, as highlighted by the im- 1938

provements in Table 3 where MARIO enhanced 1939

Lemma’s GSM8K score by +26.7, directly reflect 1940

the benefits of curated data incorporating relevant 1941

code execution or reasoning patterns. 1942

The characteristics of the evaluation bench- 1943

marks and the metrics used also dictate relative 1944

20



performance. Benchmarks like GSM8K (Cobbe1945

et al., 2021a) favor methods strong in arithmetic1946

code execution, while MATH (Hendrycks et al.,1947

2021b) tests more complex mathematical reasoning.1948

HumanEval (Chen et al., 2021) and MBPP (Austin1949

et al., 2021) assess single-function code genera-1950

tion, whereas SWE-Bench (Lite) (Jimenez et al.,1951

2024) challenges models with repository-level soft-1952

ware engineering tasks, where success rates are1953

generally lower and more indicative of real-world1954

applicability.1955

Finally, implementation details and hyperpa-1956

rameter choices, such as temperature settings for1957

generation or the number of samples evaluated, can1958

introduce variability in reported scores even for1959

conceptually similar methods.1960

In essence, the observed spectrum of accuracies1961

is a product of the intricate interplay between these1962

factors: the innovation in methodology, the founda-1963

tional LLM’s power, the specifics of training and1964

prompting, and the unique demands of each evalu-1965

ation benchmark. The discussions in Section 2 and1966

Section 3 offer additional context on how individ-1967

ual approaches navigate these elements to achieve1968

their documented performance levels.1969

C Commonly Used Evaluation Indicators1970

Throughout this survey, particularly in Tables 1,1971

2, and 3, various metrics are used to evaluate the1972

performance of Large Language Models in code-1973

enhanced reasoning and reasoning-driven code in-1974

telligence tasks. Understanding these indicators is1975

beneficial for interpreting the reported results. Be-1976

low are definitions of some of the most commonly1977

encountered metrics:1978

• Pass@k: This metric is predominantly used1979

in code generation tasks, such as those eval-1980

uated on benchmarks like HumanEval (Chen1981

et al., 2021) and MBPP (Austin et al., 2021).1982

Pass@k measures the percentage of problems1983

for which at least one functionally correct so-1984

lution is generated within the first k attempts1985

(i.e., k independent samples drawn from the1986

model). For example, pass@1 (often reported1987

in Table 2) indicates the percentage of prob-1988

lems solved correctly on the very first attempt1989

by the model. A higher pass@k value signifies1990

better code generation capability and reliabil-1991

ity. The correctness is typically determined1992

by running the generated code against a set of1993

predefined unit tests.1994

• Exact Match (EM): EM is a stringent metric 1995

commonly used in question answering, mathe- 1996

matical reasoning (e.g., GSM8K (Cobbe et al., 1997

2021a) as seen in Table 1 and Table 3), and 1998

other tasks where the output is expected to 1999

be precise. It measures the percentage of pre- 2000

dictions that exactly match the ground truth 2001

answer. For numerical answers, this means 2002

the final computed value must be identical to 2003

the reference solution. For text-based answers, 2004

it often means the generated text string is iden- 2005

tical, though sometimes normalization (e.g., 2006

ignoring case or punctuation) is applied. 2007

• Accuracy (Acc.): Accuracy is a general met- 2008

ric representing the proportion of correct pre- 2009

dictions out of the total number of instances. 2010

Its specific meaning can vary depending on 2011

the task. In classification tasks, it’s the 2012

fraction of correctly classified instances. In 2013

the context of reasoning or problem-solving 2014

benchmarks, it often refers to the percentage 2015

of problems solved correctly, which can be 2016

synonymous with EM if the answer format is 2017

a single, precise value. 2018

• Reward Score / Preference Score: These 2019

metrics, often seen in evaluations involving 2020

Reinforcement Learning from Human Feed- 2021

back (RLHF) or preference modeling (e.g., 2022

CodePMP (Yu et al., 2024b) and SIAM (Yu 2023

et al., 2024a) in Table 3), quantify the qual- 2024

ity of a model’s output based on a learned 2025

reward model or human preferences. The re- 2026

ward model itself is trained to predict which of 2027

two (or more) generations a human would pre- 2028

fer, or to assign a scalar quality score to a gen- 2029

eration. A higher reward score generally indi- 2030

cates that the model’s output is more aligned 2031

with desired characteristics (e.g., correctness, 2032

helpfulness, adherence to instructions) as im- 2033

plicitly defined by the preference data. 2034

• Solve Rate / Success Rate: This is a common 2035

metric for evaluating performance on complex 2036

tasks, especially in agent-based systems or 2037

multi-step problem-solving environments like 2038

SWE-Bench (Jimenez et al., 2024) (Table 2). 2039

It refers to the percentage of tasks or prob- 2040

lems that the system successfully completes 2041

according to the task’s definition of success 2042

(e.g., resolving a GitHub issue, passing all 2043

specified tests for a software patch). 2044

21



• Self-defined Metrics: Some research intro-2045

duces custom metrics tailored to the specific2046

nuances of their task or evaluation frame-2047

work. For example, CODEPLAN (Wen et al.,2048

2024a) in Table 3 uses self-defined metrics for2049

evaluating instruction-following and decision-2050

making on benchmarks like AlpacaEval-2 and2051

MT-Bench. When encountering such metrics,2052

it is important to refer to the original publica-2053

tion for their precise definitions.2054

D Technical Introduction for Important2055

Methods2056

D.1 Code-enhanced Reasoning2057

In this section, we provide additional technical in-2058

sights into how code-generation strategies serve2059

as a scaffolding mechanism for complex reason-2060

ing. By interleaving textual explanations with exe-2061

cutable or pseudo-executable code, these methods2062

leverage the language model’s ability to decom-2063

pose tasks while offloading precise computations2064

to interpreters or simulators. Below, we outline2065

four representative approaches.2066

Program-Aided Language Models (PaL)2067

PaL (Gao et al., 2023) interleaves natural language2068

reasoning and programmatic statements by2069

prompting large language models to emit both text2070

(e.g., comments) and code (e.g., Python snippets).2071

Any arithmetic or logical operations are delegated2072

to a code interpreter, allowing the model to focus2073

on higher-level step-by-step reasoning rather than2074

raw calculation. This reduces errors in multi-step2075

tasks, as correctness is grounded in the verified2076

outputs from executing the code.2077

Program of Thoughts (PoT) PoT (Chen et al.,2078

2022) frames the solution process as the generation2079

of a "program of thoughts," where each sub-step is2080

encoded in semantically meaningful variables and2081

partial code. Once generated, the code is executed2082

externally to reliably produce numerical results. By2083

breaking down complex computations into a series2084

of small, interpretable code snippets, PoT enables2085

more transparent and robust multi-step reasoning.2086

MathCoder MathCoder (Lu et al., 2024) pro-2087

vides a dynamic interplay between reasoning and2088

real-time code execution. The model switches be-2089

tween producing language-based rationales and2090

code blocks, executing each snippet as it is gener-2091

ated. The output of each block is then folded back2092

into the ongoing chain of thought, resulting in an2093

iterative loop of code-based calculation and textual 2094

reasoning that can tackle intricate math problems 2095

more reliably. 2096

Chain of Code (CoC) CoC (Li et al., 2023a) 2097

mixes semantic reasoning and code-like structures, 2098

but allows certain segments of generated code to be 2099

“emulated” by the language model itself if they are 2100

not executable in a standard interpreter. Whenever 2101

actual code execution is possible, it is performed 2102

directly (e.g., for arithmetic). Otherwise, the lan- 2103

guage model simulates the code’s effect, maintain- 2104

ing a consistent state. This hybrid approach com- 2105

bines symbolic execution with language-driven in- 2106

ference for tasks that blend logical, numerical, and 2107

semantic reasoning. 2108

D.2 Training with Code 2109

In this section, we illustrate five noteworthy meth- 2110

ods that harness code-generation to bolster reason- 2111

ing capacity.These approaches use code data for 2112

training to structure the thinking process, verify 2113

intermediate steps, and produce more precise final 2114

answers. 2115

MARIO MARIO (Liao et al., 2024) addresses 2116

the challenge of enhancing mathematical reason- 2117

ing in LLMs by introducing an enriched math 2118

dataset derived from GSM8K and MATH, refined 2119

through GPT-4 annotations, human review, and 2120

self-training. Central to its approach is the utiliza- 2121

tion of a Python code interpreter, enabling models 2122

to perform exact calculations and systematic error 2123

checks. MARIO also proposes a replicable fine- 2124

tuning protocol that substantially improves perfor- 2125

mance on GSM8K and MATH. By making both the 2126

source code and trained models publicly available, 2127

MARIO contributes an open, community-driven 2128

platform for advancing code-based mathematical 2129

reasoning. 2130

POET POET (Pi et al., 2022) boosts a model’s 2131

reasoning capacity by pretraining it on programs 2132

and their execution results, effectively importing a 2133

“program executor’s” knowledge into the language 2134

modeling process. Instantiated as POET-Math, 2135

POET-Logic, and POET-SQL, it covers numerical, 2136

logical, and multi-hop reasoning tasks. Through 2137

data-driven alignment of natural language and code, 2138

POET significantly strengthens a model’s ability to 2139

conduct step-by-step inferences and validate con- 2140

clusions. 2141

22



CodePMP CodePMP (Yu et al., 2024b) proposes2142

a scalable preference model pretraining pipeline2143

that leverages large corpora of synthesized code-2144

preference pairs. By training reward models on2145

these code-centric preferences, CodePMP eases the2146

scarcity of human-labeled data and refines LLMs’2147

reasoning via reinforcement learning from human2148

feedback. Experiments on mathematical reasoning2149

(GSM8K, MATH) and logical reasoning (ReClor,2150

LogiQA2.0) show notable improvements, high-2151

lighting the value of code-based preference model-2152

ing for multi-step inference tasks.2153

SIAM SIAM (Yu et al., 2024a) targets code-2154

centric mathematical problem-solving by tapping2155

into large-scale, expert-written math question-2156

answer pairs and enforcing rigorous quality checks2157

through a code-based critic model. Beyond merely2158

augmenting GSM8K-like data, SIAM refines align-2159

ment via self-generated instruction and preference2160

data, preventing narrow overfitting to specific ques-2161

tion types. The approach consistently boosts perfor-2162

mance across both in-domain and out-of-domain2163

math benchmarks, in multiple languages, showcas-2164

ing robust generalization in code-enhanced reason-2165

ing.2166

CODEPLAN CODEPLAN (Bairi et al., 2023)2167

tackles multi-step reasoning bottlenecks by in-2168

troducing “code-form plans,” or structured pseu-2169

docode, as intermediate representations. This2170

framework enables LLMs to outline and execute2171

high-level reasoning flows, capturing control struc-2172

tures and semantic details often missing in plain2173

text. Trained on a large-scale dataset of paired plan-2174

response examples, CODEPLAN delivers substan-2175

tial gains across diverse tasks including mathemati-2176

cal, symbolic, multi-hop QA, and decision-making2177

scenarios. Its data-efficient and lightweight design2178

underscores the advantage of code-form reasoning2179

for complex problem-solving.2180

D.3 Reasoning-enhanced Code Intelligence2181

This section examines prominent approaches that2182

integrate reasoning capabilities into code gener-2183

ation. These methods span a spectrum of tech-2184

niques including planning and task decomposition,2185

self-improvement loops, interactive refinement pro-2186

cesses, and agent-based frameworks. By incorpo-2187

rating sophisticated reasoning mechanisms, these2188

approaches aim to enhance the quality, reliability,2189

and maintainability of generated code while ad-2190

dressing complex programming challenges across2191

different contexts and scales. 2192

Self-Planning Self-Planning (Jiang et al., 2024) 2193

decomposes the generation process into two dis- 2194

tinct phases. In the planning phase, the model 2195

generates a high-level plan from the task’s natu- 2196

ral language intent using a few exemplars, and in 2197

the subsequent implementation phase, this plan 2198

guides the step-by-step synthesis of code. This 2199

division facilitates improved handling of complex 2200

code generation tasks by breaking down intricate 2201

requirements into manageable sub-tasks. 2202

SCoTs SCoTs (Li et al., 2023b) refines tradi- 2203

tional chain-of-thought methods by explicitly in- 2204

corporating programming constructs—such as se- 2205

quences, branches, loops, and input-output struc- 2206

tures—into the intermediate reasoning. This struc- 2207

tured approach directly aligns the model’s gener- 2208

ated thought processes with the formal structure of 2209

code, leading to more robust, readable, and accu- 2210

rate code synthesis. 2211

CodeCoT CodeCoT (Huang et al., 2024a) in- 2212

tegrates chain-of-thought reasoning with a self- 2213

examination loop to target code syntax errors. After 2214

initially generating code via intermediate reason- 2215

ing, the model produces test cases to validate syn- 2216

tax through local execution. Feedback from this 2217

self-testing phase is then used to iteratively refine 2218

the code, ensuring that the final output adheres to 2219

both logical consistency and strict syntactic require- 2220

ments. 2221

CodePlan CodePlan (Bairi et al., 2023)formu- 2222

lates repository-level coding tasks as a planning 2223

problem by synthesizing a multi-step chain of edits 2224

that span multiple inter-dependent files. By lever- 2225

aging incremental dependency analysis, change im- 2226

pact evaluation, and adaptive planning strategies, 2227

the framework orchestrates coordinated modifica- 2228

tions across large codebases, thus automating com- 2229

plex repository-level transformations with higher 2230

accuracy and consistency. 2231

COTTON COTTON (Yang et al., 2024a) enables 2232

lightweight language models (with fewer than 10 2233

billion parameters) to benefit from high-quality 2234

chain-of-thought reasoning. By decoupling the gen- 2235

eration of intermediate reasoning traces from the 2236

final code synthesis and leveraging externally gen- 2237

erated CoTs, COTTON allows resource-efficient 2238

models to achieve performance gains comparable 2239

to those of much larger models. 2240

23



PlanSearch PlanSearch (Wang et al., 2024a) in-2241

corporates explicit natural language planning into2242

the code generation process. By prompting models2243

to articulate detailed, coherent plans before com-2244

mencing code synthesis, this method improves the2245

search and selection of relevant code snippets, thus2246

reducing errors and enhancing the overall quality2247

of generated code in complex programming scenar-2248

ios.2249

NExT NExT (Ni et al., 2024a) introduces a2250

framework that trains large language models to2251

inspect execution traces—capturing variable states2252

and control flows during runtime—and integrates2253

these observations into chain-of-thought rationales.2254

By self-training on synthetic execution-aware data,2255

the method equips models with a semantic under-2256

standing of dynamic code behavior, which is then2257

leveraged for improved program repair and debug-2258

ging performance.2259

SelfPiCo SelfPiCo (Xue et al., 2024) leverages2260

an interactive loop to convert non-executable code2261

fragments into runnable snippets. It integrates few-2262

shot in-context learning with chain-of-thought rea-2263

soning to predict appropriate dummy values for2264

undefined elements and refines these predictions2265

based on execution feedback. The framework is2266

built around key components—including an inter-2267

active value predictor and a complementary type2268

predictor—that work together to iteratively adjust2269

and complete partial code segments, thereby trans-2270

forming incomplete code into an executable form2271

without altering existing code structure.2272

Self-Refine Self-Refine (Madaan et al., 2023) in-2273

troduces an iterative self-feedback mechanism in2274

which the same large language model first gener-2275

ates an initial output and then critiques and refines2276

it through repeated feedback cycles. By interleav-2277

ing a feedback phase that evaluates various aspects2278

of the output with a subsequent refinement phase2279

that corrects any identified shortcomings, the ap-2280

proach systematically enhances output quality. The2281

method avoids the need for extra training data by2282

leveraging few-shot prompting and untangling rea-2283

soning from correction, thereby improving perfor-2284

mance across diverse tasks.2285

Self-Debugging Self-Debugging (Chen et al.,2286

2023b) equips models with the ability to au-2287

tonomously detect and repair errors in generated2288

code. The method begins with an initial code gener-2289

ation step, followed by code execution that reveals2290

runtime issues. The model then generates natural 2291

language explanations of the detected errors and 2292

revises its code accordingly. This self-debugging 2293

process, guided by few-shot demonstrations, effec- 2294

tively simulates a human debugging session and 2295

leads to more robust and accurate code synthesis. 2296

Self-Collaboration Self-Collaboration (Dong 2297

et al., 2024) employs a simulated internal dialogue 2298

where the model engages in self-interaction to re- 2299

vise and consolidate its code output. By using 2300

chain-of-thought prompting, ChatGPT generates 2301

multiple reasoning iterations that simulate collabo- 2302

rative discussion, enabling it to reconcile different 2303

coding strategies. This self-collaborative approach 2304

improves the precision and resilience of generated 2305

code through iterative internal debate and refine- 2306

ment. 2307

Self-Edit Self-Edit (Zhang et al., 2023) incor- 2308

porates a dedicated fault detection phase into the 2309

code generation process. After producing an ini- 2310

tial draft, the system analyzes the code for syntac- 2311

tic and semantic errors, annotating potential faults. 2312

The model then utilizes this fault-aware feedback 2313

to perform targeted edits that correct mistakes and 2314

optimize functionality. This iterative loop of anal- 2315

ysis and refinement results in higher-quality code 2316

that is both more efficient and bug-resistant. 2317

LeTI LeTI (Wang et al., 2024e) redefines code 2318

generation as an interactive, dialogue-driven pro- 2319

cess. By capturing multi-turn textual interactions, 2320

the framework aggregates diverse reasoning cues 2321

and iteratively refines code outputs. The model 2322

uses conversational context and chain-of-thought 2323

reasoning to integrate these insights, which en- 2324

hances both the interpretability and accuracy of 2325

the final code. This process promotes a more holis- 2326

tic synthesis of programming solutions based on 2327

natural language reasoning. 2328

InterCode InterCode (Yang et al., 2023) pro- 2329

poses a standardized framework that embeds real- 2330

time execution feedback into the coding process. 2331

By systematically incorporating dynamic execu- 2332

tion results into iterative refinement cycles, the 2333

approach establishes benchmarks for interactive 2334

coding performance. The integration of execution 2335

trace analysis ensures that the feedback loop di- 2336

rectly informs code corrections, thereby raising 2337

the reliability and robustness of generated code in 2338

practical software development contexts. 2339

24



CodeChain CodeChain (Le et al., 2024) adopts2340

an iterative self-revision strategy to decompose2341

complex programming tasks into modular sub-2342

tasks. Initially, the model generates modularized2343

code using chain-of-thought prompting. It then ex-2344

tracts and clusters sub-modules from the generated2345

code, selecting representative components that are2346

reintroduced into subsequent prompts. This cycle2347

enables the model to refine its solutions through2348

reuse of verified sub-modules, enhancing both the2349

modularity and correctness of the final output.2350

AgentCoder AgentCoder (Huang et al., 2024b)2351

formulates code generation as a collaborative multi-2352

agent process wherein different agents specialize in2353

distinct roles. One agent generates an initial code2354

draft, another evaluates its correctness through test-2355

ing, and a third optimizes performance based on it-2356

erative feedback. The interplay among these agents,2357

facilitated by competition and collaboration, contin-2358

uously refines the generated code until an optimal2359

solution is reached.2360

OpenCodeInterpreter OpenCodeInter-2361

preter (Zheng et al., 2025) bridges the gap2362

between static code synthesis and dynamic valida-2363

tion by integrating code generation with immediate2364

execution feedback. The method prompts the2365

language model to produce code, which is then2366

directly executed to obtain runtime results. These2367

outcomes inform iterative refinement cycles,2368

allowing the model to adjust its generated solutions2369

based on real-time execution data, ultimately2370

leading to more reliable and performant code.2371

CodeAgent CodeAgent (Zhang et al., 2024c)2372

decomposes repo-level code synthesis into a se-2373

ries of coordinated tool invocations. Its techni-2374

cal framework integrates external programming2375

tools—such as information retrieval, code symbol2376

navigation, format checking, and code interpreta-2377

tion—with multiple agent strategies (e.g., ReAct,2378

Tool-Planning, OpenAIFunc, and rule-based us-2379

age). This modular design allows the LLM to dy-2380

namically leverage these tools, iteratively refine its2381

outputs, and generate cohesive code for complex2382

codebases.2383

CodeAct CodeAct (Wang et al., 2024c) reformu-2384

lates LLM agent behavior by consolidating actions2385

as executable Python code. By harnessing Python’s2386

native control and data flow constructs, the method2387

enables multi-turn interactions where code execu-2388

tion feedback—ranging from success signals to er-2389

ror tracebacks—is used to iteratively revise and im- 2390

prove subsequent actions. This technical shift from 2391

rigid JSON/text formats to dynamic code actions 2392

streamlines tool composition and self-debugging. 2393

AutoCodeRover AutoCodeRover (Zhang et al., 2394

2024e) presents an autonomous loop for program 2395

improvement, where the LLM continually refines 2396

its generated code. The system employs runtime 2397

feedback and error analysis to detect deficiencies, 2398

triggering self-debugging routines and automated 2399

optimizations. By iteratively re-running the code 2400

and integrating improvements, AutoCodeRover 2401

progressively enhances program correctness and 2402

efficiency within a closed-loop refinement process. 2403

SWE-agent SWE-agent (Yang et al., 2024b) con- 2404

structs an interactive interface that mimics devel- 2405

oper workflows for software engineering tasks. Its 2406

technical approach centers on integrating LLM- 2407

driven tool invocation with environments that sup- 2408

ply real-time code dependency analysis, automated 2409

testing, and validation. This design empowers the 2410

agent to traverse complex code ecosystems, where 2411

iterative tool-guided feedback enables continuous 2412

adjustments and reliable code synthesis. 2413

Agentless Agentless (Xia et al., 2024a) chal- 2414

lenges the necessity of explicit agent orchestra- 2415

tion by embedding tool interaction directly into 2416

the LLM’s reasoning process. Using an agent- 2417

free paradigm, it leverages chain-of-thought rea- 2418

soning alongside direct tool calls, reducing struc- 2419

tural overhead while still ensuring context-aware 2420

code generation and debugging. This minimalist 2421

design streamlines the coding process by allow- 2422

ing the LLM to self-manage multi-turn interactions 2423

without dedicated intermediary agent modules. 2424

OpenHands OpenHands (Wang et al., 2024d) of- 2425

fers a modular, open platform that empowers AI 2426

software developers by integrating a diverse suite 2427

of development tools. Its technical architecture pro- 2428

vides a unified interface for tool selection, code 2429

generation, and interactive debugging, enabling 2430

LLMs to perform repo-level tasks and collabora- 2431

tive scenarios. By fusing native code execution 2432

with flexible action orchestration, OpenHands facil- 2433

itates seamless transitions between varied software 2434

engineering challenges. 2435

HyperAgent HyperAgent (Phan et al., 2024) 2436

scales LLM-based software engineering by adopt- 2437

ing hierarchical task decomposition and parallel 2438

25



tool integration. Its framework orchestrates multi-2439

ple specialized sub-agents coordinated via dynamic2440

feedback loops, enabling the simultaneous han-2441

dling of extensive coding tasks. By leveraging2442

multi-agent collaboration and real-time code re-2443

finement, HyperAgent achieves robust, scalable2444

performance across complex programming envi-2445

ronments.2446

E Introduction of Important Benchmarks2447

E.1 Code-enhanced Reasoning2448

The emergence of code-enhanced mathematical rea-2449

soning has motivated the development of special-2450

ized datasets to evaluate models’ reasoning capabil-2451

ities. While the main paper discusses the method-2452

ological advances, this section provides detailed2453

characterizations of three representative datasets2454

that have significantly shaped this research direc-2455

tion. These datasets are particularly noteworthy for2456

their distinct approaches to assessing reasoning.2457

GSM8K GSM8K (Cobbe et al., 2021b) contains2458

8.5K grade school math word problems requiring2459

2-8 steps of reasoning to solve. The problems are2460

designed to have high linguistic diversity while re-2461

lying on elementary mathematical concepts. The2462

dataset emphasizes multi-step deductive reasoning2463

rather than complex mathematical knowledge, with2464

natural language solutions that explicitly demon-2465

strate the step-by-step reasoning process.2466

MATH MATH (Hendrycks et al., 2021c) com-2467

prises 12,500 competition mathematics problems2468

drawn from various sources including AMC 10,2469

AMC 12, and AIME. Unlike GSM8K which fo-2470

cuses on elementary reasoning, MATH problems2471

require more sophisticated mathematical problem-2472

solving heuristics and domain knowledge. Each2473

problem in MATH comes with a detailed step-by-2474

step solution that demonstrates both mathemati-2475

cal reasoning and domain-specific problem-solving2476

strategies.2477

SVAMP SVAMP (Patel et al., 2021) is a chal-2478

lenge set of 1,000 problems designed to test the2479

robustness of reasoning capabilities in math word2480

problem solvers. While maintaining similar math-2481

ematical complexity to existing datasets, SVAMP2482

introduces systematic variations along three key2483

dimensions: question sensitivity (testing if models2484

truly understand the question), reasoning ability2485

(testing if models can adapt to subtle changes re-2486

quiring different reasoning paths), and structural2487

invariance (testing if models maintain consistent 2488

reasoning across superficial changes). 2489

E.2 Training with Code 2490

This section provides concise technical overviews 2491

of key benchmarks that have significantly 2492

guided code-based reasoning research. These 2493

datasets distinguish themselves through various 2494

approaches—ranging from multi-hop textual anal- 2495

ysis to environment-based decision-making—all 2496

designed to rigorously evaluate a model’s reason- 2497

ing capabilities. 2498

OCW OCW (Lewkowycz et al., 2022) is de- 2499

signed to test a model’s ability to reason through 2500

open-ended questions that often require code-based 2501

logic or structured problem-solving. It presents 2502

a mix of prompts that may include mathematics, 2503

algorithmic puzzles, or short coding snippets, push- 2504

ing models to generate reasoned solutions rather 2505

than superficial answers. As such, it emphasizes 2506

step-by-step thinking and logical correctness. 2507

HotpotQA HotpotQA (Yang et al., 2018) is a 2508

multi-hop question-answering dataset that requires 2509

a model to connect information across multiple 2510

documents or sentences to arrive at a correct re- 2511

sponse. Its emphasis on evidence-based reasoning 2512

makes it a strong benchmark for evaluating how 2513

well models can chain together relevant facts log- 2514

ically. While not code-focused, it indirectly sup- 2515

ports code-enhanced approaches by encouraging 2516

structured, stepwise reasoning. 2517

LogiQA LogiQA (Liu et al., 2020) is a dataset 2518

crafted specifically to test logical reasoning in read- 2519

ing comprehension, containing questions that de- 2520

mand deductive and inductive inference. Models 2521

must analyze logical structures in text, making it 2522

a valuable resource for code-enhanced techniques 2523

that incorporate symbolic reasoning or rule-based 2524

algorithms. Success on LogiQA requires coher- 2525

ent, step-by-step thinking and the ability to identify 2526

logical entailments. 2527

DROP DROP (Dua et al., 2019) challenges mod- 2528

els to perform numerical and symbolic manipula- 2529

tions to answer questions. It often involves arith- 2530

metic operations, entity tracking, and multi-step 2531

logic derivations, making it an excellent testbed 2532

for code-driven reasoning strategies. By leverag- 2533

ing program-like steps to parse text and compute 2534

answers, models can demonstrate deeper reasoning 2535

skills. 2536

26



MathShepherd-pair MathShepherd-pair (Wang2537

et al., 2024b) focuses on pairwise comparisons of2538

mathematical reasoning steps, often requiring val-2539

idation of correctness or logical consistency. It2540

encourages the use of code-like procedures—such2541

as symbolic manipulation or step-by-step solution2542

checking—to ensure precise, verifiable reasoning.2543

This pairing format helps evaluate a model’s abil-2544

ity to systematically analyze and contrast different2545

solution paths.2546

ReClor-pair ReClor-pair (Yu et al., 2020) ex-2547

tends the ReClor dataset’s focus on complex logi-2548

cal reasoning by providing question-answer pairs2549

that examine a model’s capacity for distinguishing2550

subtle logical cues. The paired setup highlights2551

the necessity of structured, often code-driven ver-2552

ification mechanisms, where models benefit from2553

systematically comparing and validating reasoning2554

options. Performance here is indicative of robust2555

logical inference capabilities.2556

LogiQA2.0-pair LogiQA2.0-pair (Liu et al.,2557

2023a) offers an updated set of logical reason-2558

ing challenges in a paired format, demanding2559

thorough analysis of propositions and argument2560

structures. By encouraging code-enhanced meth-2561

ods—like building parse trees or applying logical2562

inference rules—this dataset underscores the im-2563

portance of systematic step-by-step reasoning. It2564

is particularly useful for benchmarking improve-2565

ments in logical rigor.2566

APE APE (Zhao et al., 2020) tasks revolve2567

around interpreting arithmetic or algorithmic steps2568

and providing a rationale. Models trained with2569

code are better positioned to explain or verify each2570

step programmatically. The dataset pushes for ex-2571

planatory reasoning, where each numeric or logical2572

action needs to be justified systematically.2573

CMATH CMATH (Wei et al., 2023b) contains2574

math problems, typically in a non-English (e.g.,2575

Chinese) context, testing a model’s ability to parse2576

language-specific nuances and generate reasoned2577

steps. Its design demands clear logical structuring,2578

often improved by programmatic solution paths2579

that systematically handle textual variations. Code-2580

enhanced methods help unify language understand-2581

ing with algorithmic resolution of math tasks.2582

AlpacaEval-2 AlpacaEval-2 (Li et al., 2023e) is2583

an instruction-following evaluation suite that in-2584

cludes tasks requiring reasoning and structured2585

thinking. While not exclusively code-based, the 2586

dataset benefits from code-infused methods that 2587

guide stepwise logic, especially for tasks involving 2588

multi-turn reasoning or systematic dissection of 2589

instructions. It thus measures how effectively mod- 2590

els integrate reasoning processes into instruction 2591

comprehension. 2592

MT-Bench MT-Bench (Zheng et al., 2023) is 2593

a multi-turn benchmark that assesses conversa- 2594

tional coherence, reasoning depth, and consistency 2595

over extended dialogues. It tests whether mod- 2596

els can maintain logical continuity and sound rea- 2597

soning across multiple exchanges. Code-centric 2598

approaches—such as planning-based or program- 2599

matic reasoning—can boost the clarity and correct- 2600

ness of the model’s dialogue responses. 2601

ALFWorld ALFWorld (Shridhar et al., 2020) 2602

places agents in interactive text-based environ- 2603

ments that require sequential decision-making and 2604

reasoning about cause-and-effect. Models must 2605

combine language understanding with environmen- 2606

tal cues to perform complex tasks, often using 2607

reasoning strategies resembling small programs or 2608

scripts. This environment underscores the impor- 2609

tance of code-level logic for planning and executing 2610

multi-step goals. 2611

E.3 Reasoning-enhanced Code Intelligence 2612

The development of robust code intelligence sys- 2613

tems necessitates comprehensive evaluation frame- 2614

works. This section presents key benchmarks that 2615

assess various aspects of code generation and under- 2616

standing, ranging from functional understanding 2617

and correctness and algorithmic problem-solving 2618

to repository-level understanding modifications. 2619

These benchmarks provide standardized metrics 2620

for measuring progress in code intelligence, with 2621

particular emphasis on real-world applicability and 2622

systematic evaluation of reasoning capabilities in 2623

programming contexts. 2624

HumanEval HumanEval (Chen et al., 2021) eval- 2625

uates the functional correctness of code generated 2626

by large language models by presenting 164 hand- 2627

crafted programming challenges. Each problem is 2628

defined by a function signature, a descriptive doc- 2629

string, and a set of unit tests (averaging around 7.7 2630

tests per problem), which together verify that the 2631

generated solution meets the intended functionality 2632

via the pass@k metric. This benchmark primarily 2633

focuses on assessing models’ ability to translate 2634

27



natural language prompts into functionally correct2635

code.2636

MBPP MBPP (Austin et al., 2021) comprises ap-2637

proximately 1,000 Python programming problems2638

that pair natural language descriptions with corre-2639

sponding code solutions and multiple automated2640

test cases. By measuring whether the generated2641

code passes these tests, MBPP benchmarks mod-2642

els on their capability to synthesize accurate and2643

executable Python code from plain language in-2644

structions, emphasizing fundamental programming2645

skills and effective problem decomposition.2646

APPS APPS (Hendrycks et al., 2021a) provides a2647

diverse evaluation framework consisting of around2648

10,000 problems, ranging from simple one-line so-2649

lutions to complex algorithmic challenges. The2650

benchmark employs unit tests to determine the2651

functional correctness of generated code, thereby2652

benchmarking the models on their versatility and2653

ability to handle a broad spectrum of programming2654

scenarios under realistic conditions.2655

DS-1000 DS-1000 (Lai et al., 2022) is a special-2656

ized benchmark tailored to the data science do-2657

main, focusing on code generation tasks that in-2658

volve data manipulation, statistical analysis, and2659

data visualization. By incorporating challenges that2660

demand domain-specific knowledge and practical2661

data-handling skills, DS-1000 uniquely evaluates2662

a model’s ability to produce contextually relevant2663

and functionally correct code for data-centric ap-2664

plications.2665

RepoBench RepoBench (Liu et al., 2023c) is a2666

benchmark specifically designed for evaluating2667

repository-level code auto-completion systems.2668

Its abstract outlines three interlinked evaluation2669

tasks—RepoBench-R (Retrieval), RepoBench-2670

C (Code Completion), and RepoBench-P2671

(Pipeline)—which collectively assess a system’s2672

ability to extract relevant cross-file code snippets,2673

integrate both in-file and cross-file contexts, and2674

predict the next line of code in complex, multi-file2675

programming scenarios. This approach fills the gap2676

left by prior single-file benchmarks and facilitates2677

a comprehensive comparison of auto-completion2678

performance.2679

CrossCodeEval CrossCodeEval (Ding et al.,2680

2023) presents a diverse and multilingual bench-2681

mark that targets the challenges of cross-file2682

code completion. According to its abstract, the2683

benchmark is built on real-world, open-sourced 2684

repositories in four popular programming lan- 2685

guages—Python, Java, TypeScript, and C#—and 2686

features examples that strictly require leveraging 2687

information from multiple files for accurate code 2688

completion. The work emphasizes a static-analysis- 2689

based method to pinpoint instances where cross-file 2690

context is essential, thereby evaluating both code 2691

generation and context retrieval capabilities under 2692

realistic conditions. 2693

LiveCodeBench LiveCodeBench (Jain et al., 2694

2024) is a holistic, contamination-free evaluation 2695

benchmark for code, continuously collecting new, 2696

high-quality coding problems over time from Leet- 2697

Code, AtCoder, and CodeForces. It extends tradi- 2698

tional evaluation by incorporating not only code 2699

generation but also broader code-related capabili- 2700

ties such as self-repair, execution, and test output 2701

prediction. By using a time-sensitive collection of 2702

challenges, LiveCodeBench aims to assess mod- 2703

els on truly unseen problems, ensuring that perfor- 2704

mance measurements remain robust and reflective 2705

of real-world development scenarios. 2706

BigCodeBench BigCodeBench (Zhuo et al., 2707

2024) is a comprehensive benchmark for assess- 2708

ing large-scale code generation and understanding, 2709

which encompasses a wide variety of programming 2710

languages and repository complexities, challeng- 2711

ing models with real-world coding scenarios that 2712

include intricate multi-file dependencies and ex- 2713

tensive project structures. Designed to stress-test 2714

model capabilities on both functional correctness 2715

and code synthesis quality, BigCodeBench pro- 2716

vides a scalable evaluation framework that mirrors 2717

the heterogeneity encountered in open-source code- 2718

bases. 2719

CRUXEval CRUXEval (Gu et al., 2024) is a 2720

benchmark containing 800 short Python functions, 2721

ranging from 3 to 13 lines, each paired with input- 2722

output examples. It defines two tasks: input predic- 2723

tion for evaluating code reasoning and understand- 2724

ing, and output prediction for assessing execution 2725

behavior. 2726

RepoQA RepoQA (Liu et al., 2024c) is a bench- 2727

mark designed to evaluate long-context code un- 2728

derstanding through realistic codebase search sce- 2729

narios. It consists of 500 code search tasks drawn 2730

from 50 popular repositories across five program- 2731

ming languages. Using a "needle-in-a-haystack" 2732

28



approach, models must locate specific code snip-2733

pets within extensive contextual code. The bench-2734

mark evaluates both retrieval accuracy and compre-2735

hension of multi-file, long-context code environ-2736

ments, reflecting real-world developer challenges.2737

SWE-bench SWE-bench (Jimenez et al., 2024)2738

s a software engineering benchmark based on real2739

GitHub issues and corresponding pull requests.2740

Each evaluation task requires generating a fix patch2741

in complex, multi-file repositories to resolve spe-2742

cific issues. The evaluation system uses the reposi-2743

tory’s original unit testing framework to verify the2744

correctness of solutions. By simulating challenges2745

encountered in actual software development, SWE-2746

bench provides a realistic evaluation environment.2747

SWE-bench Multimodal SWE-bench Multi-2748

modal (Yang et al., 2024c) extends SWE-bench2749

by incorporating visual inputs. The dataset is col-2750

lected from JavaScript repositories, where each2751

task instance includes images embedded in prob-2752

lem descriptions or unit tests, focusing on front-end2753

development areas like UI design, diagramming,2754

and data visualization. This benchmark evaluates2755

AI systems’ ability to generalize across different2756

modalities and programming paradigms by inte-2757

grating visual elements.2758

SWE-bench Verified SWE-bench Veri-2759

fied (Chowdhury et al., 2024) is an optimized2760

version of SWE-bench containing a human-2761

validated subset. Developers rigorously annotated2762

and screened task instances to remove underspeci-2763

fied or ambiguous cases. Each instance contains2764

reliable “fail-to-pass" unit tests and clear issue2765

descriptions, providing a more accurate measure of2766

a model’s capability to resolve real-world software2767

issues.2768

F Paper Collection2769

To ensure comprehensive coverage of relevant lit-2770

erature, we employed a systematic paper collec-2771

tion approach. We utilized arXiv as our primary2772

source and conducted searches using a combina-2773

tion of keywords: ("code" OR "program") AND2774

("reason" OR "plan"). We restricted our search2775

to papers within the Computer Science - Artificial2776

Intelligence (cs.AI) and Computer Science - Com-2777

putation and Language (cs.CL) categories, focus-2778

ing on works published after January 2021. This2779

timeframe was chosen deliberately as it marks a2780

significant turning point in code reasoning research,2781

coinciding with the emergence of large language 2782

models like Codex and the subsequent surge in re- 2783

search combining natural language processing with 2784

code understanding. Our initial search yielded 110 2785

papers. Subsequently, we performed a manual fil- 2786

tering process, carefully examining each paper’s 2787

relevance, technical depth, and contributions to the 2788

field of code reasoning. This thorough inspection 2789

resulted in a final collection of 63 papers that form 2790

the core of our survey. These selected papers repre- 2791

sent the most significant and relevant contributions 2792

to understanding the interplay between code and 2793

reasoning in recent years. 2794

G Additional Tables and Figures 2795

29



Method Model Settings GSM8K GSM-HARD SVAMP ASDiv SingleEq AddSub MultiArith MATH AQuA

Direct† Codex Few-shot Direct Prompting 19.7 5.0 69.9 74.0 86.8 90.9 44.0 – –

CoT† (Wei et al., 2022b)

UL2-20B Few-shot Chain-of-Thought 4.1 – 12.6 16.9 – 18.2 10.7 – –
LaMDA-137B Few-shot Chain-of-Thought 17.1 – 39.9 49.0 – 52.9 51.8 – –
Codex Few-shot Chain-of-Thought 65.6 23.1 74.8 76.9 89.1 86.0 95.9 – –
PaLM-540B Few-shot Chain-of-Thought 56.9 – 79.0 73.9 92.3 91.9 94.7 – –
Minerva-540B Few-shot Chain-of-Thought 58.8 – – – – – – – –
GPT-4 Few-shot Chain-of-Thought 92.0 – 97.0 – – – – – –
GPT-4o-mini 0-shot Chain-of-Thought – – – – – – – 50.6 –
Llama3.1-8B 0-shot Chain-of-Thought – – – – – – – 18.3 –
GPT-3.5 0-shot Chain-of-Thought 81.6 – 78.2 – 93.1 86.1 96.7 – –
GPT-3.5 Few-shot Chain-of-Thought 82.1 – 77.1 – 95.5 90.6 98.5 – –

PAL (Kabra et al., 2023)

Codex Few-shot Program-aided LM 72.0 61.2 79.4 79.6 96.1 92.5 99.2 – –
GPT-4o-mini 0-shot Program-aided LM – – – – – – – 36.6 –
Llama3.1-8B 0-shot Program-aided LM – – – – – – – 11.7 –
GPT-3.5 Few-shot Program-aided LM 80.6 – 79.5 – 97.6 89.1 97.0 – –

PoT (Chen et al., 2022)
Codex Few-shot Program of Thought 71.6 – 85.2 – – – – 54.1 54.1
Codex Few-shot Program of Thought + Self-Consistency 80.0 – 89.1 – – – – – –
GPT-4 Few-shot Program of Thought 97.2 – 97.4 – – – – – –

MathCoder (Wang et al., 2023)
Llama-2-7B 0-shot Code Interleaving / Fine-tuned 64.2 – 71.5 – – – – 23.3 –
Llama-2-13B 0-shot Code Interleaving 72.6 – 76.9 – – – – 29.9 –
Llama-2-70B 0-shot Code Interleaving 83.9 – 84.9 – – – – 45.1 –

MathCoder2 (Lu et al., 2024)
CodeLlama-7B 0-shot Code Interleaving 67.8 – 70.7 – – – – 30.2 –
CodeLlama-13B 0-shot Code Interleaving 74.1 – 78.0 – – – – 35.9 –
CodeLlama-34B 0-shot Code Interleaving 81.7 – 82.5 – – – – 45.2 –

CodePlan (Wen et al., 2024a)
Mistral-7B Few-shot Code-form planning 59.5 – 61.4 – – – – 34.3 –
Llama-2-7B Few-shot Code-form planning 33.8 – 41.5 – – – – 20.8 –
Llama-2-13B Few-shot Code-form planning 49.5 – 53.4 – – – – 27.4 –

INC-Math (Xiong et al., 2024)
GPT-4o-mini 0-shot Code Prompting – – – – – – – 51.4 –
Llama3.1-8B 0-shot Code Prompting – – – – – – – 16.7 –

CoC (Li et al., 2023a) text-davinci-003 Few-shot Code Interleaving with Python Exec. 71.0 – – – – – – – –

CodePrompt (Hu et al., 2023)
GPT-3.5 0-shot Code Prompting with self-debug 78.9 – 79.4 – 97.6 91.7 96.7 – –
GPT-3.5 Few-shot Code Prompting with self-debug 80.6 – 79.6 – 97.4 91.4 97.3 – –

Table 4: Performance of various code-aided reasoning methods on multiple benchmarks. “–” indicates no reported
result. Numerical results represent the percentage of problems that were solved correctly. † Direct and CoT results
are from Chen et al. (2022).

C
od

e
&

R
ea

so
ni

ng

Code-enhanced
Reasoning §2

Generating as Code
Aids Reasoning §2.2

PaL (Gao et al., 2023), PoT (Chen et al., 2022), MathCoder (Wang et al., 2023), CoC (Li et al., 2023a), MathCoder2 (Lu et al., 2024),
CodePlan (Wen et al., 2024a), INC-Math (Xiong et al., 2024), CodePrompt (Hu et al., 2023)

Training with Code §2.1
E.g.,MARIO (Liao et al., 2024), POET (Pi et al., 2022), CodePMP (Yu et al., 2024b), SIAM (Yu et al., 2024a),
Logic Distillation (Chen et al., 2024a), VISTRUCT (Chen et al., 2023c), Crystal LAMPILOT BENCH, (Tao et al., 2024)

Reasoning-enhanced
Code Intelligence §3

Essential Code
Intelligence §3.1

Codex&HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), CodeXGLUE (Lu et al., 2021), RepoBench (Liu et al., 2023b),
CrossCodeEval (Ding et al., 2023), HumanEval-FIM (Bavarian et al., 2022)

Integration of Reasoning
Capabilities §3.2

Reasoning for Code Generation §3.2.1
SCoTs (Li et al., 2023b), Self-Planning (Jiang et al., 2024), CodeCoT (Huang et al., 2024a),
CodePlan (Bairi et al., 2023), COTTON (Yang et al., 2024a), PlanSearch (Wang et al., 2024a)

Reasoning Over Code §3.2.2
CRUXEval (Gu et al., 2024), RepoQA (Liu et al., 2024c), CodeMMLU (Manh et al., 2024),
CodeMind (Liu et al., 2024b), NExT (Ni et al., 2024a), SelfPiCo (Xue et al., 2024),

Interactive Programming §3.2.3

Self-Refine (Madaan et al., 2023), Self-Debugging (Chen et al., 2023b),
Self-Collaboration (Dong et al., 2024), Self-Edit (Zhang et al., 2023),
LeTI (Wang et al., 2024e), InterCode (Yang et al., 2023),
CodeChain (Le et al., 2024), AgentCoder (Huang et al., 2024b),
OpenCodeInterpreter (Zheng et al., 2025)

Code Agents with
Complex Reasoning §3.3

CodeAgent (Zhang et al., 2024c), CodeAct (Wang et al., 2024c), AutoCodeRover (Zhang et al., 2024e), SWE-agent (Yang et al., 2024b),
Agentless (Xia et al., 2024a), OpenHands (Wang et al., 2024d), HyperAgent (Phan et al., 2024), SWE-bench (Jimenez et al., 2024),
SWE-bench Multimodal (Yang et al., 2024c), SWE-bench Verified (Chowdhury et al., 2024)

Figure 3: Full taxonomy illustrating the interplay between code and reasoning.

30



Method Model Settings HumanEval MBPP SWE-Bench (Lite)

Direct†

AlphaCode-1.1B 0-shot Prompting 17.1 – –
Incoder-6.7B 0-shot Prompting 15.2 17.6 –
CodeGeeX-13B 0-shot Prompting 18.9 26.9 –
StarCoder-15.5B 0-shot Prompting 34.1 43.6 –
CodeLlama-34B 0-shot Prompting 51.8 69.3 –
Llama3-8B 0-shot Prompting 62.2 – –
CodeGen-Mono-16.1B 0-shot Prompting 32.9 38.6 –
Codex 0-shot Prompting 47.0 58.1 –
Codex+CodeT 0-shot Prompting 65.8 67.7 –
GPT-3.5 Turbo 0-shot Prompting 57.3 52.2 –
PaLM Coder 0-shot Prompting 43.9 32.3 –
Claude-instant-1 0-shot Prompting 31.1 26.9 –
GPT-4 Turbo 0-shot Prompting 57.9 63.4 –
GPT-4 0-shot Prompting 67.6 68.3 –

CoT (Wei et al., 2023a)
GPT-3.5‡ 0-shot Chain-of-Thought 44.6 46.1 –
Codex⋆ Few-shot Chain-of-Thought 53.9 54.5 –

Self-Edit (Zhang et al., 2023)
InCoder-1B 0-shot Prompting 3.7 – –
CodeGen-2B 0-shot Prompting 17.1 – –
GPT-3 Few-shot Prompting 39.6 – –

Self-Planning (Jiang et al., 2024)
Codex Few-shot Prompting 60.3 55.7 –
text-davinci-003 Few-shot Prompting 65.4 – -
GPT-3 Few-shot Prompting 50.0 – –

Self-Debugging (Chen et al., 2023b)

StarCoder Few-shot Prompting – 53.2 –
Codex Few-shot Prompting – 70.8 –
GPT-3.5 Few-shot Prompting – 74.2
GPT-4 Few-shot Prompting – 80.6 –

Self-Collaboration (Dong et al., 2024) GPT-3.5 Few-shot Prompting 74.4 68.2

SCoTs (Li et al., 2023b)
Codex Few-shot Prompting 49.8 38.3 –
GPT-3.5 Few-shot Prompting 60.6 47.0 –

CodeCoT (Huang et al., 2024a) GPT-3.5 Few-shot Prompting 79.3 89.5 –

CodeAct (Wang et al., 2024c)
Llama2-7B Fine-tuning 18.1 – –
Mistral-7B Fine-tuning 34.7 – –

OpenCodeInterpreter¶ (Zheng et al., 2025)

CodeLlama-Python-7B Fine-tuning 75.6 69.9 –
StarCoder2-7B Fine-tuning 75.6 66.9 –
DeepseekCoder-6.7B Fine-tuning 81.1 82.7 –
StarCoder2-15B Fine-tuning 77.4 74.2 –
CodeLlama-Python-13B Fine-tuning 81.1 78.2 –
CodeLlama-Python-34B Fine-tuning 81.7 80.2 –
DeepseekCoder-33B Fine-tuning 82.9 83.5 –
CodeLlama-Python-70B Fine-tuning 79.9 81.5 –

AgentCoder (Zhang et al., 2024c)

GPT-3.5 Turbo Agentic Prompting 79.9 89.9 –
PaLM Coder Agentic Prompting 64.0 75.9 –
Claude-instant-1 Agentic Prompting 67.7 76.3 –
GPT-4 Agentic Prompting 96.3 91.8 –
GPT-4 Turbo Agentic Prompting 89.6 91.4 –

SWE-agent (Yang et al., 2024b)

Claude 3 Opus Agentic Prompting – – 13.0
GPT-4 Turbo Agentic Prompting – – 18.0
Claude 3.5 Sonnet⋄ Agentic Prompting – – 23.0
Claude 3.5 Sonnet + o1⋄ Agentic Prompting – – 45.3

Agentless (Xia et al., 2024a) GPT-4o Agentic Prompting – – 27.3

OpenHands (Wang et al., 2024d)
GPT-4o-mini Agentic Prompting – – 6.3
GPT-4o Agentic Prompting – – 22.0
Claude 3.5 Sonnet Agentic Prompting – – 26.0

AutoCodeRover (Zhang et al., 2024e)
GPT-4 Agentic Prompting – – 19.0
GPT-4o• Agentic Prompting – – 22.7

HyperAgent (Phan et al., 2024) Claude-3.5-Sonnet Agentic Prompting – – 26.0

Table 5: Performance of various reasoning-enhanced code intelligence methods on multiple benchmarks. Results
from original papers unless noted otherwise. HumanEval and MBPP use pass@1 scoring. †Results for all Direct
methods are from the AgentCoder paper (Huang et al., 2023). ‡Result from Self-Collaboration paper (Dong et al.,
2024). ⋆Result from Self-Planning paper (Jiang et al., 2024). ¶We report the results with execution feedback (but
without human involvement). ⋄Results from official SWE-bench leaderboard (accessed Feb 15, 2025). •Result from
HyperAgent paper (Phan et al., 2024).

31


	Introduction
	Code-enhanced Reasoning
	Training with Code
	Empowering Reasoning and Planning Through Code Training
	Training Strategies Based on Code

	Generating as Code Aids Reasoning
	Single Execution
	Dynamic Code-Language Integration
	Non-Executable Program Representations


	Reasoning-Enhanced Code Intelligence
	Essential Code Intelligence
	Integration of Reasoning Capabilities
	Reasoning for Code Generation
	Reasoning Over Code
	Interactive Programming

	Code Agents with Complex Reasoning

	Challenges and Future Directions
	Code-enhanced Reasoning
	Reasoning-enhanced Code Intelligence

	Conclusion
	Limitations
	Challenges and Future Directions: More Detailed Discussion
	Code-enhanced Reasoning
	Reasoning-enhanced Code Intelligence

	Understanding Performance Variations
	Commonly Used Evaluation Indicators
	Technical Introduction for Important Methods
	Code-enhanced Reasoning
	Training with Code
	Reasoning-enhanced Code Intelligence

	Introduction of Important Benchmarks
	Code-enhanced Reasoning
	Training with Code
	Reasoning-enhanced Code Intelligence

	Paper Collection
	Additional Tables and Figures

