

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNDERSTANDING CATASTROPHIC INTERFERENCE ON THE IDENTIFIABILITY OF LATENT REPRESENTATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Catastrophic interference, also known as catastrophic forgetting, is a fundamental challenge in machine learning, where a trained learning model progressively loses performance on previously learned tasks when adapting to new ones. In this paper, we aim to better understand and model the catastrophic interference problem from a latent representation learning point of view, and propose a novel theoretical framework that formulates catastrophic interference as an identification problem. Our analysis demonstrates that the forgetting phenomenon can be quantified by the distance between partial-task aware (PTA) and all-task aware (ATA) setups. Building upon recent advances in identifiability theory, we prove that this distance can be minimized through identification of shared latent variables between these setups. When learning, we propose our method **ICON** with two-stage training strategy: First, we employ maximum likelihood estimation to learn the latent representations from both PTA and ATA configurations. Subsequently, we optimize the KL divergence to identify and learn the shared latent variables. Through theoretical guarantee and empirical validations, we establish that identifying and learning these shared representations can effectively mitigate catastrophic interference in machine learning systems. Our approach provides both theoretical guarantees and practical performance improvements across both synthetic and benchmark datasets.

1 INTRODUCTION

catastrophic interference represents a fundamental challenge in machine learning (Cha et al., 2021; Liang & Li, 2023; Xiao et al., 2024), where a model trained sequentially on multiple tasks experiences significant performance degradation on previously learned tasks when adapting to new ones. This phenomenon manifests as a direct consequence of the distributional shift between tasks, coupled with the model’s capability to preserve previously learned knowledge when optimizing for new data. Therefore, the model must adapt to new tasks while preserving critical knowledge from earlier experiences, mirroring human cognitive abilities to accumulate knowledge progressively.

Handling catastrophic interference presents unique theoretical challenges, as the model involves a dynamic evolution of itself as it learns new tasks. This creates an inherent instability in the data representation process —learning from new tasks fundamentally alters the model’s parameters, potentially disrupting the representations learned for previous tasks. In other words, the learned data generating process changes from task to task as the models evolve. To better understand and model this challenge, we take inspiration from recent advances in Causal Representation Learning (Schölkopf et al., 2021; Kong et al., 2022; Li et al., 2023; Kong et al., 2024), and approach this problem via modeling the data generating process through the mixing functions that map low-dimensional latent variables to high-dimensional observations. More specifically, we distinguish between two configurations in catastrophic interference handling: the partial-task aware (PTA) setting, which represents a model trained on a subset of tasks, uses a mixing function that has only seen data up to the current task, and the all-task aware (ATA) setting, which represents an ideal model trained on all tasks, leverages a single task-invariant mixing function g .

In this work, we propose a new theoretical framework that formulates catastrophic interference as a latent-variable identification problem. Our key insight is that catastrophic interference can be quantified by measuring the distance between latent representations in PTA and ATA settings. By

054 identifying the shared latent variables between these setups, we can establish a principled approach
 055 to preserving knowledge across distributional shifts. Builds upon our theoretical findings, we in-
 056 troduce an a two-stage learning methodology, Identifiable CatastrOphic iNterference (**ICON**). First,
 057 we employ maximum likelihood estimation to learn the latent representations from both PTA and
 058 ATA configurations independently. Subsequently, we optimize the KL divergence between these
 059 representations to identify and learn their shared components. Through evaluating on both synthetic
 060 data and real-world benchmarks, **ICON** effectively mitigate the catastrophic interference.

061 Our contributions are threefold: (1) We formulate catastrophic interference as a latent-variable iden-
 062 tification problem, providing a novel theoretical perspective that quantifies forgetting through distri-
 063 butional distances; (2) We establish identifiability conditions for the shared latent variables between
 064 PTA and ATA setups, proving when and how knowledge can be preserved across distributional shifts
 065 under certain assumptions; (3) Based on our theoretical findings, we develop a practical approach
 066 that demonstrates superior performance on both synthetic data and standard benchmarks on han-
 067 dling catastrophic interference, outperforming current state-of-the-art methods. By bridging theory
 068 and practice, our work provides the first work delving into the nature of catastrophic interference
 069 through identifications, and offers a principled framework.

071 2 RELATED WORK

073 2.1 HANDLING CATASTROPHIC FORGETTING

075 Existing learning methods can be categorized into five primary approaches when handling catas-
 076 trophic interference: (1) *Regularization-based methods* introduce constraints on model parameters
 077 or outputs within the loss function to mitigate catastrophic forgetting when learning new tasks. Rep-
 078 resentative works include Chaudhry et al. (2018); Aljundi et al. (2018); Hou et al. (2019); Cha et al.
 079 (2021). (2) *Memory replay-based methods* explicitly store and revisit past experiences by main-
 080 taining a subset of previous task samples, thereby reducing forgetting. Notable examples include Arani
 081 et al. (2022); Caccia et al. (2022); Bonicelli et al. (2022); Sarfraz et al. (2023); Wang et al. (2023b);
 082 Liang & Li (2023). (3) *Gradient-projection-based methods* mitigate forgetting by constraining gra-
 083 dient updates to subspaces that minimize interference with prior knowledge. Relevant studies in-
 084 clude Chaudhry et al. (2020); Farajtabar et al. (2020); Saha et al. (2021); Wang et al. (2021); Lin
 085 et al. (2022); Qiao et al. (2024); Xiao et al. (2024). (4) *Architecture-based methods* dynamically
 086 adjust the neural network structure to integrate new tasks while preserving performance on previous
 087 ones. Key contributions in this category include Mallya & Lazebnik (2018); Serra et al. (2018); Li
 088 et al. (2019); Hung et al. (2019). (5) *Bayesian-based methods* leverage Bayesian inference prin-
 089 ciples to model uncertainty and facilitate new task while maintaining prior knowledge. Representative
 090 works include Kao et al. (2021); Henning et al. (2021); Pan et al. (2020); Titsias et al. (2020); Rudner
 et al. (2022).

091 2.2 IDENTIFIABILITY OF LATENT VARIABLES WITH DISTRIBUTION SHIFTS

093 Identifying latent variables in causal representation learning has emerged as a foundational paradigm
 094 for understanding representation learning in deep neural networks (Schölkopf et al., 2021; Khe-
 095 makhem et al., 2020). This approach typically assumes latent variables \mathbf{z} generate observed data \mathbf{x}
 096 through a generative function. However, when this function exhibits nonlinearity—as is common
 097 in deep learning models—recovering the original latent variables becomes technically challenging
 098 (Khemakhem et al., 2020).

099 To address this challenge, several recent works (Li et al., 2023; Song et al., 2023; Chen et al., 2024;
 100 Zheng & Zhang, 2024; Morioka & Hyvarinen, 2024) have introduced auxiliary labels \mathbf{u} that induce
 101 distributional shifts in the latent components across different conditions. While effective in certain
 102 scenarios, these approaches depend critically on assuming the access to multiple disparate distri-
 103 butions with overlapping supports, including the target distribution. Furthermore, recent advances
 104 by (Yao et al., 2024; Kong et al., 2024) either require labeled grouping data generating process
 105 or assume identical mixing functions across different data generating processes. Our theoretical
 106 framework overcomes these limitations by eliminating the need for either labeled diverse generating
 107 processes or identical mixing functions. This broadened scope encompasses earlier work such as
 (Yao et al., 2024; Kong et al., 2024) as a special case or ours.

108

3 PROBLEM SETUP

109
110 Given T tasks in total, we aim to learn a task-invariant model to
111 adapt to all tasks. However, the possible data distributions shift
112 across tasks raises the challenge of catastrophic forgetting, where
113 a model's performance on previously learned task t could degrade
114 after training on all T tasks.

115 In this section, to formally characterize the nature of catastrophic
116 forgetting, we present two data generating processes.
117

118 We term the first one by partial-task aware (PTA) approach, lever-
119 aging the mixing functions $g^{:t}$ from task 1 to task $t-1$ ($t > 1$),
120 resulting $T-1$ mixing functions of PTA setup in total:

$$x^t = g^{:t}(\bar{z}^t) \quad (1)$$

121 where $x^t \in \mathbb{R}^K$ denotes the observations of task t , the nonlinear
122 mixing function $g^{:t} : \mathbb{R}^N \rightarrow \mathbb{R}^K$ is a diffeomorphism onto \mathbb{R}^K , and $\bar{z}^t \in$
123 \mathbb{R}^N denotes the task-specific continuous latent variable.
124

125 Unlike the PTA approach, the second data generating process rep-
126 presents the all-task aware (ATA) paradigm, which aims to learn a
127 mixing function g that can handle all T tasks. ATA meets the goal
128 of continual learning in the sense that it works on all domains:

$$x^t = g(\tilde{z}^t) \quad (2)$$

129 Simialrly, $\tilde{z}^t \in \mathbb{R}^N$ denotes the continuous latent variable for the task t , g is an nonlinear mixing
130 function and diffeomorphism onto \mathbb{R}^K . For both Eqs. 1 and 2, we focus on the undercomplete case,
131 i.e., $N \leq K$.
132

133 We are now ready to connect catastrophic forgetting with Eq. 1 and 2. Let us define a $\mathcal{G} \subset g^{:t} : \mathbb{R}^{\bar{z}} \rightarrow \mathbb{R}^x$, where \mathcal{G} denotes a hypothesis class. $l : \mathcal{G} \times \mathbb{R}^x \rightarrow [0, B_l]$ denotes the loss function, where
134 $B_l > 0$ is a constant. In this work, we leverage the negative log-likelihood for l , i.e., $l(\hat{g}^{:t}, x^t) = -\log p_{\hat{g}^{:t}}(x^t)$. Similar, we define a lost function $l(\hat{g}, x^t) = -\log p_{\hat{g}}(x^t)$ Following the defintion
135 1.1 in Wang et al. (2024), we reinterpret the catastrophic forgetting \mathcal{F} by:
136

$$\mathcal{F} = \mathbb{E}_t \frac{1}{|\mathbf{x}^t|} \sum_{\mathbf{x}^t} (-l(\hat{g}^{:t}, \mathbf{x}^t) + l(g, \mathbf{x}^t)) \quad (3)$$

137 where $|\mathbf{x}^t|$ denotes the sample numbers of \mathbf{x}^t . This formulation aligns with Definition 1.1 in Wang
138 et al. (2024) by utilizing negative log-likelihood as the performance measurement metric, i.e., Eq. 3
139 quantifies the difference between two data generating process from Eq. 1 and Eq. 2, respectively.
140

141 Given the invertibility of both mapping functions $g^{:t}$ and g , and both \bar{z}^t and \tilde{z}^t live in \mathbb{R}^N , we
142 establish the observed differences under Eq. 2 and Eq. 1 uniquely determined by the underlying
143 differences between their respective latent representations \bar{z}^t and \tilde{z}^t . This allows us to decompose
144 \bar{z}^t and \tilde{z}^t into two parts: their difference and their overlap. In this work, to minimize \mathcal{F} in Eq. 3, we
145 focus on identifying the overlap between \bar{z}^t and \tilde{z}^t across the PTA and ATA settings. Formally, for
146 the latent variable manifolds $\bar{\mathcal{Z}}^t \ni \bar{z}^t$ and $\tilde{\mathcal{Z}}^t \ni \tilde{z}^t$, we denote their intersection by $\mathcal{Z}^t = \bar{\mathcal{Z}}^t \cap \tilde{\mathcal{Z}}^t$.
147 $\forall z^t \in \mathcal{Z}^t, z^t = \tilde{z}^t = \bar{z}^t$. We introduce the definition of the identifiability in the following (subspace
148 identifiability suffices):
149

150 **(Identifiability of latent variables shared by Eqs. 1 and 2):** For any pair of mixing functions
151 $(g^{:t}, g)$ defined in Equations 1 and 2 respectively, there exists a shared latent space region \mathcal{Z}^t where
152 the latent variables from both the PTA and ATA settings coincide. $\forall z^t \in \mathcal{Z}^t$, there exists an invert-
153 ible transformation t such that: $\hat{z}^t = t(z^t)$.
154

155

4 IDENTIFIABILITY THEORY

156 To establish our identifiability results, we begin with formalizing the distance between two manifolds
157 \mathcal{Z}_1^t and \mathcal{Z}_2^t as:
158

$$\mathcal{D}(\mathcal{Z}_1^t, \mathcal{Z}_2^t) = \inf_{z'_1 \in \mathcal{Z}_1^t, z'_2 \in \mathcal{Z}_2^t} \|z'_1 - z'_2\|_2 \quad (4)$$

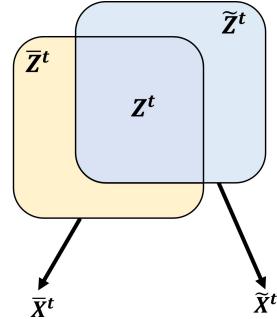


Figure 1: The illustration of our definition of subspace identification in Def. 3. Given two space of latent variables of PTA setup $\bar{\mathcal{Z}}^t \ni \bar{z}^t$ and ATA approach $\tilde{\mathcal{Z}}^t \ni \tilde{z}^t$, we aim to identify their intersection $\mathcal{Z}^t \in \mathcal{Z}^t = \bar{\mathcal{Z}}^t \cap \tilde{\mathcal{Z}}^t$.

162 where $\bar{\mathbf{z}}'$ denotes points on the boundary support of $\bar{\mathcal{Z}}^t$, and $\tilde{\mathbf{z}}'$ denotes points on the boundary
 163 support of $\tilde{\mathcal{Z}}^t$. Here, $\|\cdot\|_2$ represents the Euclidean distance.
 164

165 We define the minimum distance from a point \mathbf{z}^t to any point in the manifold $\tilde{\mathcal{Z}}^t$ for the ATA setting:
 166

$$\mathcal{D}(\bar{\mathbf{z}}^t, \mathbf{z}^t) = \arg \min_{\tilde{\mathbf{z}}^t \in \tilde{\mathcal{Z}}^t} \|\bar{\mathbf{z}}^t - \mathbf{z}^t\|_2 \quad (5)$$

168 Similarly, for the PTA setting, we define:
 169

$$\mathcal{D}(\bar{\mathbf{z}}^t, \mathbf{z}^t) = \arg \min_{\bar{\mathbf{z}}^t \in \bar{\mathcal{Z}}^t} \|\bar{\mathbf{z}}^t - \mathbf{z}^t\|_2 \quad (6)$$

172 Having established the necessary distance metrics, we are now ready to present our identifiability
 173 results.
 174

175 **Theorem 1.** *Given the data generating process in Eq. 1 and Eq. 2, if the following assumptions are
 satisfied:*

- 176 1. *(Smoothness and invertibility) The mixing function g^t in Eq. 1, and g in Eq. 2 are smooth
 177 functions and invertible everywhere;*
- 178 2. *(The existence of intersection) For the latent variable manifolds $\bar{\mathcal{Z}}^t \ni \bar{\mathbf{z}}^t$ and $\tilde{\mathcal{Z}}^t \ni \tilde{\mathbf{z}}^t$,
 179 their intersection $\mathcal{Z}^t = \bar{\mathcal{Z}}^t \cap \tilde{\mathcal{Z}}^t \neq \emptyset$.*
- 180 3. *(Path-connected) both $\bar{\mathcal{Z}}^t$ and $\tilde{\mathcal{Z}}^t$ are path-connected;*
- 181 4. *(Compactness) The spaces of observed variables $\bar{\mathbf{x}}^t$ and $\tilde{\mathbf{x}}^t$ are closed and bounded;*
- 182 5. *(Constrained out-of-intersection distance) $\forall \tilde{\mathbf{z}}^t \notin \mathcal{Z}^t$, if $\exists \tilde{\mathcal{Z}}_1^t, \tilde{\mathcal{Z}}_2^t$, the distance $\mathcal{D}(\tilde{\mathbf{z}}^t, \mathbf{z}^t)$
 183 between the out-of-intersection $\tilde{\mathbf{z}}^t$ and \mathbf{z}^t is constrained by $\mathcal{D}(\tilde{\mathbf{z}}^t, \mathbf{z}^t) \leq \frac{\mathcal{D}(\tilde{\mathcal{Z}}_1^t, \tilde{\mathcal{Z}}_2^t)}{2J_{\bar{u}}}$. $J_{\bar{u}}$
 184 denotes the spectrum norm of $\{J_g(\tilde{\mathbf{z}}_1^t), J_g(\tilde{\mathbf{z}}_2^t)\}$.*

185 If we can learn the optimal estimation $\hat{\mathbf{z}}^t$ of $\mathbf{z}^t \in \mathcal{Z}^t$ such that:
 186

$$\sup(p(\hat{\mathbf{z}})), \text{ s.t. } \sup(p_{\hat{g}^t}(\mathbf{x}^t)) \quad \& \quad \sup(p_{\hat{g}}(\mathbf{x}^t)) \quad (7)$$

187 then the identifiability results stated in Def. 3 are obtained.
 188

189 **Proof Sketch:** Our proof establishes identifiability via contradiction by assuming a latent variable
 190 \mathbf{z}^t simultaneously resides on two distinct latent manifolds. Differences between latent points are
 191 expressed as integrals involving the Jacobian of the generative function g , bounded by the spectral
 192 norm of the Jacobian multiplied by their latent-space distance. Since both latent points generate
 193 the same observed data, their output difference must be zero, implying a zero distance between
 194 distinct latent points. This result contradicts the theorem's assumption of a strictly positive minimal
 195 separation between distinct manifold points. Therefore, each observed data point must originate
 196 from a unique latent point, ensuring identifiability.
 197

198 **Remarks:** Assumption 1 & Assumption 2 guarantee the the existence of an intersection between
 199 $\bar{\mathcal{Z}}$ and $\tilde{\mathcal{Z}}$. The path-connectedness specified in Assumption 3 and The compactness property in
 200 Assumption 4 impose the geometric boundedness of the overlap between $\bar{\mathcal{Z}}$ and $\tilde{\mathcal{Z}}$. Assumption 5
 201 establishes critical upper bounds for the distances $\mathcal{D}(\tilde{\mathbf{z}}^t, \mathbf{z}^t)$.
 202

203 5 ICON APPROACH

204 Building upon our identifiability results, we now introduce **ICON** to estimate the latent causal vari-
 205 ables. Our approach aims to achieve the observational equivalence in Eq. 7 by modeling the data
 206 generating processes in Eqs. 1 and 2. In what follows, we introduce each part of our network
 207 individually.
 208

209 5.1 NETWORK DESIGN

210 Our network architecture is designed to uncover the latent variables for both PTA and ATA setup
 211 through carefully constructed flow-based models.
 212

216 **Network Structure for PTA approach** For the PTA setup described in Eq. 1, **ICON** formalizes
 217 the probabilistic joint distribution as:

$$218 \quad p(\mathbf{x}^t, \bar{\mathbf{z}}^t) = p_{g^t}(\mathbf{x}^t | \bar{\mathbf{z}}^t) p(\bar{\mathbf{z}}^t) \quad (8)$$

221 To implement the invertible mapping function g^t in Eq. 1, we employ General Incompressible-flow
 222 Network (GIN) Sorrenson et al. (2020), which provide a highly expressive class of normalizing
 223 flows with the following inverse mapping:

$$224 \quad \hat{\mathbf{z}}^t \sim \mathcal{N}(\hat{\mu}^t, \hat{\sigma}^t), \hat{\mu}^t, \hat{\sigma}^t = \hat{g}_{-1}^t(\mathbf{x}^t) \quad (9)$$

226 where \hat{g}_{-1}^t denotes the estimation of inverse of the mixing function g^t for PTA settings.

228 **Network Structure for ATA framework** In contrast to the PTA setting, the ATA framework in
 229 Eq. 2 requires to learn a task-invariant mixing function g , The joint distribution in this case is mod-
 230 eled as:

$$231 \quad p(\mathbf{x}^t, \tilde{\mathbf{z}}^t) = p_g(\mathbf{x}^t | \tilde{\mathbf{z}}^t) p(\tilde{\mathbf{z}}^t) \quad (10)$$

232 We implement this task-invariant mapping using another GIN model that processes data from all
 233 tasks:

$$235 \quad \hat{\tilde{\mathbf{z}}}^t \sim \mathcal{N}(\hat{\mu}^t, \hat{\sigma}^t), \hat{\mu}^t, \hat{\sigma}^t = \hat{g}_{-1}(\mathbf{x}^t) \quad (11)$$

237 5.2 LEARNING OBJECTIVE

239 In this work, we learn $\hat{\mathbf{z}}^t$ through maximum likelihood estimation (MLE). Specifically, we estimate
 240 $p(\hat{\mathbf{x}}^t)$ of Eq. 8 by optimizing the following objective:

$$242 \quad \mathcal{L}^t = \frac{1}{t} \sum_{i=1}^t \left(\frac{1}{|\mathbf{x}^t|} \sum_{\mathbf{x}^t} (\log p(\hat{g}_{-1}^t(\mathbf{x}^t))) \right) \quad (12)$$

244 where $|\mathbf{x}^t|$ denotes the number of \mathbf{x}^t of the task of t . Eq. 12 leverages the volume-preservation from
 245 GIN (Sorrenson et al., 2020).

247 Similarly, the learning objective for $p(\hat{\mathbf{x}}^t)$ of Eq. 10 from the true observations \mathbf{x}^t also employs
 248 MLE:

$$250 \quad \mathcal{L} = \frac{1}{T} \sum_{t=1}^T \left(\frac{1}{|\mathbf{x}^t|} \sum_{\mathbf{x}^t} (\log p(\hat{g}_{-1}(\mathbf{x}^t))) \right) \quad (13)$$

252 In this equation, following Sorrenson et al. (2020), the volume-preservation is used. When compar-
 253 ing with Eq. 12, we observe that Eq. 13 indicates \hat{g} being trained across all T tasks, highlighting the
 254 fundamental distinction between our PTA and ATA approaches.

255 In addition to Eq. 12 and Eq. 13, our work focuses on identifying and learning the sharing of latent
 256 variable \mathbf{z}^t . Based on our reinterpretation of Eq. 3, maximizing the distribution similarity of \mathbf{z}^t
 257 directly contributes to minimizing the catastrophic forgetting term \mathcal{F} . To achieve this objective, for
 258 each task t , we employ the KL divergence to further tune both \hat{g}_{-1}^t and g :

$$260 \quad \mathcal{KL} = \frac{1}{|\mathbf{x}^t|} \sum_{\mathbf{x}^t} q(\hat{\mathbf{z}}^t) \log \left(\frac{q(\hat{\mathbf{z}}^t)}{q(\bar{\mathbf{z}}^t)} \right) = \frac{1}{t} \sum_{i=1}^t \left(\frac{1}{|\mathbf{x}^t|} \sum_{\mathbf{x}^t} q(\hat{g}_{-1}^t(\mathbf{x}^t)) \log \left(\frac{q(\hat{g}_{-1}^t(\mathbf{x}^t))}{q(\hat{g}_{-1}^t(\mathbf{x}^t))} \right) \right) \quad (14)$$

263 where $q(\hat{\mathbf{z}}^t)$ and $q(\bar{\mathbf{z}}^t)$ denote the posterior of $\hat{\mathbf{z}}^t$ and $\bar{\mathbf{z}}^t$, which are learned using Eq. 9 and Eq. 11,
 264 respectively.

266 5.3 TRAINING AND INFERENCE

268 **Two-stage Training** **ICON** takes inspiration from Li et al. (2024) to implement a two-stage training
 269 mechanism. The first stage focuses on independently optimizing the objectives in Eq. 12 and Eq. 13.
 In the second stage, we jointly train both \hat{g}_{-1}^t and g by minimizing the KL divergence defined in

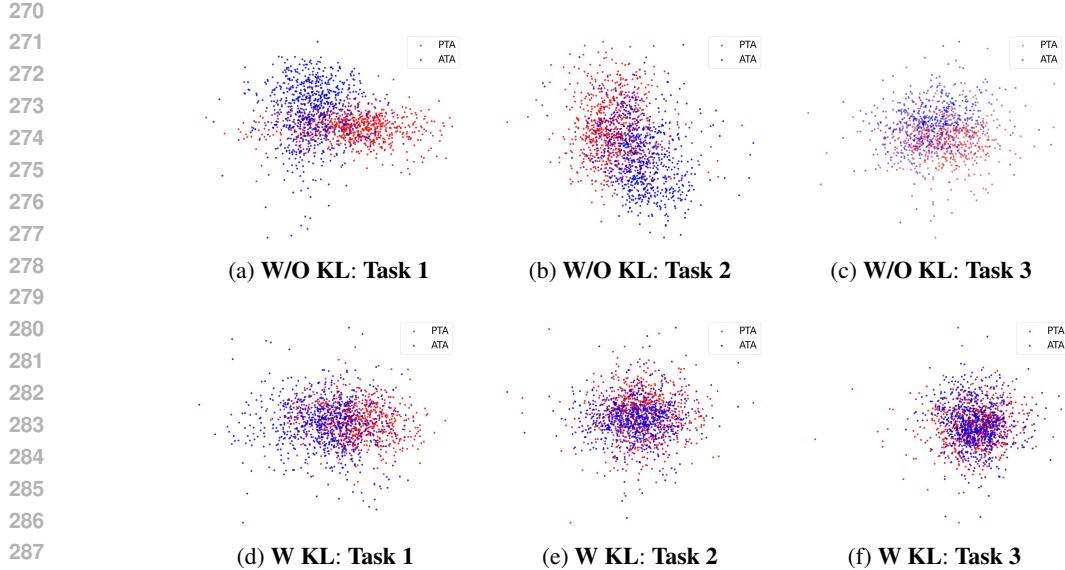


Figure 2: Visualization of latent space distributions across three tasks under PTA (blue) and ATA (red) setups from our simulations. The top row shows representations without optimizing the KL divergence in Eq. 14, displaying significant disparity between PTA and ATA. The bottom row demonstrates improved alignment through our proposed KL-based identification approach, illustrating effective mitigation of catastrophic forgetting across sequential tasks. For clear visualizations, each figure displays 1,000 uniformly sampled points \hat{z}^t and \tilde{z}^t , respectively.

Eq. 14. This process effectively reduces the discrepancies between the latent representations \hat{z}^t and \tilde{z}^t . Notably, during training, we process tasks sequentially, maintaining access to the task identity t to calculate the objective functions in Section 5.2.

Inference During inference stage, only \hat{g} is used as the goal of continual learning is to learn a task-invariant mixing function. Thus, **ICON** does not require t during inference since \hat{g} is task invariant.

6 EXPERIMENTS

6.1 SYNTHETIC EXPERIMENTS

Experimental Setup To evaluate **ICON**’s ability to mitigate catastrophic forgetting (\mathcal{F}), we first conducted simulation experiments. We generated synthetic datasets satisfying the identifiability assumptions outlined in Theorem 4.

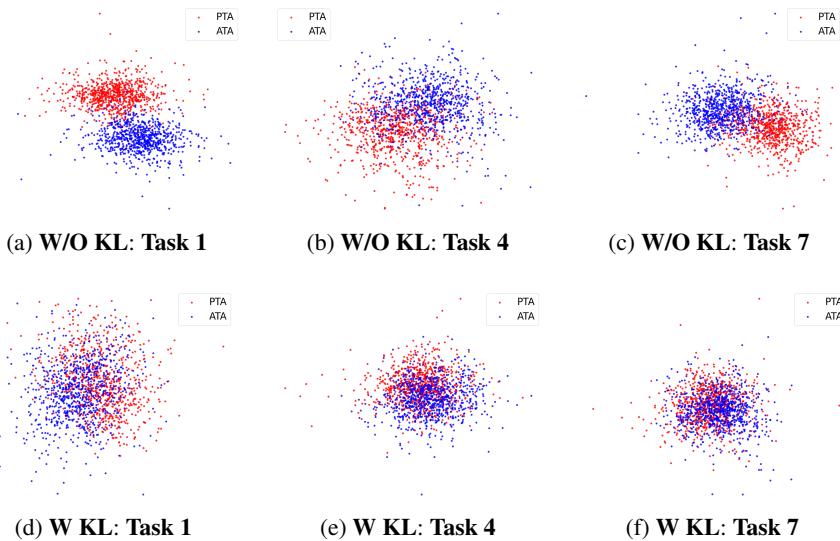
Specifically, our approach generated four distinct scenarios of observations, with each scenario corresponding to a particular task. The latent variables for each scenario comprised 16 dimensions, which we partitioned into two parts: (1) a 8-dimensional task-invariant component drawn from $\mathcal{N}(0, I)$ that remained constant across all tasks, and (2) a 8-dimensional task-specific component drawn from $\mathbf{z}_v \sim \mathcal{N}(\mu, \sigma^2 I)$, which varied between tasks. For each task, the data generation process begins with 10,000 latent data points, where $\mu \sim \text{Uniform}(-4, 4)$ and $\sigma^2 \sim \text{Uniform}(0.1, 1)$. Following the practices established in Kong et al. (2022); Li et al. (2023), we used a two-layer MLP to generate the observations, which comprise 16 dimensions.

In our synthetic experiments, we aim to determine whether \mathcal{F} could be minimized using our training objectives presented in Section 5.2. Therefore, we compare the average Root Mean Squared Error (RMSE) of the reconstructions across all 4 tasks obtained from the \hat{g} trained with our objective in Eq. 13, and the mixing function of ATA setup without Eq. 14.

Results and Discussions Table 1 summarizes our main findings on our simulations. We evaluate both PTA and ATA setup of **ICON** against the baseline without KL divergence of Eq. 14 in identifying the shared latent variable z^t .

324 Table 1: Average Root Mean Squared Error (RMSE) comparison between PTA and ATA frame-
 325 works, with and without optimizing KL divergence (Eq. 14). Lower values indicate better perfor-
 326 mance.

		Average RMSE $\times 10^{-1}$
328 PTA setup	w/o KL	0.12
329 ATA setup	w/o KL	0.20
330 PTA setup	w KL	0.12
331 ATA setup	w KL	0.13



352 Figure 3: Visualization of latent space distributions across Tasks 1, 4, and 7 on ImageNet-100
 353 dataset, comparing representations from PTA (blue) and ATA (red) frameworks. The top row shows
 354 results without using KL divergence optimization in Eq. 14, where significant distribution misalign-
 355 ment indicates catastrophic forgetting as training progresses through tasks. The bottom row demon-
 356 strates our **ICON** with KL divergence optimization, exhibiting substantially improved alignment.
 357 For visualization clarity, each subfigure displays 1,000 uniformly sampled points from the estimated
 358 latent representations $\hat{\mathbf{z}}^t$ (PTA framework) and $\tilde{\mathbf{z}}^t$ (ATA framework).

360 We can observe that **ICON** incorporating the KL divergence term substantially improves perfor-
 361 mance in the ATA setup, reducing the average MSE from 0.20 to 0.13 (a 35% improvement) across
 362 all tasks. Notably, this evidently indicates that our approach effectively handles the catastrophic
 363 forgetting by identifying the shared latent variables.

364 Figure 2 provides visual evidence of this improvement compared to the baseline without KL di-
 365 vergence. The latent space distributions across three tasks reveal that in the top row (without KL),
 366 there exists significant disparity between the PTA (blue) and ATA (red) representations, particularly
 367 pronounced in Tasks 1 and 2. This disparity directly corresponds to catastrophic forgetting in the
 368 model. In contrast, the bottom row (with KL) exhibits markedly reduced differences between the
 369 PTA and ATA setups. This improved alignment of latent representations confirms that our approach
 370 demonstrates its effectiveness in addressing catastrophic forgetting.

372 6.2 REAL-WORLD EXPERIMENTS

373 To verify the efficacy of our theory in complex real-world scenarios, we further conduct real-work
 375 experiments.

376 **Experimental Setup** We evaluate our approach on two standard benchmarks for handling catas-
 377 trophic interference: CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-100 (Deng et al., 2009).

378 Table 2: Average classification accuracy (%) comparison on ImageNet-100 and CIFAR-100 datasets.
 379 The best results are highlighted in **bold**, and the second best are in underline.

	ImageNet-100	CIFAR-100
CoOp (Zhou et al., 2022)	79.14	81.17
MaPLe (Khattak et al., 2023)	79.23	82.74
AttriCLIP (Wang et al., 2023a)	82.39	79.31
Continual-CLIP (Thengane et al., 2022)	83.99	78.65
CLIP-Adapter (Gao et al., 2024)	84.13	78.75
CLAP (Jha et al., 2024)	<u>87.76</u>	<u>86.13</u>
ICON (ours)	88.91	87.07

389 CIFAR-100 comprises 60,000 RGB images (32×32 pixels) distributed across 100 classes. Following established protocols, we partition this dataset into 10 sequential tasks, each containing 10
 390 distinct classes. Each class contains 500 training and 100 testing samples, ensuring a balanced
 391 evaluation framework. For ImageNet-100, a carefully curated subset of the full ImageNet dataset,
 392 we utilize higher-resolution images (224×224 pixels) from 100 classes. The dataset provides ap-
 393 proximately 1,300 training and 50 testing samples per class. Consistent with recent state-of-the-art
 394 approach, such as CLAP (Zhou et al., 2022; Thengane et al., 2022; Gao et al., 2024; Wang et al.,
 395 2023a; Khattak et al., 2023; Derakhshani et al., 2023; Jha et al., 2024), ImageNet-100 is divided
 396 into 10 tasks with 10 classes per task. Across both benchmarks, we report the average classification
 397 accuracy on test data across all tasks.

398 Since both datasets focus on image classification tasks, we adapt **ICON** using noise contrastive
 399 estimation (NCE) (Gutmann & Hyvärinen, 2010). First, we train our model using the objec-
 400 tives defined in Equations 12, 13, and 14. Subsequently, we define our NCE loss \mathcal{L}^c as: $\mathcal{L}^c =$
 401 $-\sum_k \log \frac{\exp(\text{sim}(\hat{\mathbf{z}}_k^t, \hat{\mathbf{e}}_k)/\tau)}{\sum_m \exp(\text{sim}(\hat{\mathbf{z}}_k^t, \hat{\mathbf{e}}_m)/\tau)}$, where $\text{sim}(\cdot, \cdot)$ represents the cosine similarity between the text
 402 embeddings $\hat{\mathbf{e}}_*$ of the class labels and the learned latent variables $\hat{\mathbf{z}}_k^t$, and τ is a temperature param-
 403 eter controlling the sharpness of the distribution. Notably, the text embeddings $\hat{\mathbf{e}}_*$ are from all task.
 404 Prior to computing \mathcal{L}^c , we project $\hat{\mathbf{z}}^t$ to a 512-dimensional embedding space using an MLP layer,
 405 aligning with the dimensionality of the text embeddings. For both datasets, we set the dimensionality
 406 of the latent representations $\hat{\mathbf{z}}^t$ and $\hat{\mathbf{z}}^t$ to 24.

407 For feature extraction across all tasks and experiments, we employ the Vision Transformer (ViT-
 408 B/16) backbone from Radford et al. (2021) to obtain image features \mathbf{x}^t , by following Zhou et al.
 409 (2022); Thengane et al. (2022); Gao et al. (2024); Wang et al. (2023a); Khattak et al. (2023); De-
 410 rakhshani et al. (2023); Jha et al. (2024). To ensure fair comparison with prior work, we maintain
 411 consistent replay memory configurations. Specifically, we randomly sample 2,000 exemplars for the
 412 CIFAR-100 dataset and 1,000 exemplars for the ImageNet-100 dataset. We optimize our network
 413 using AdamW Loshchilov & Hutter (2019) with an initial learning rate of 0.002 and weight decay
 414 of 10^{-2} , employing a cosine annealing schedule for learning rate decay. For the contrastive learn-
 415 ing objective, we set the temperature parameter $\tau = 0.07$ in the NCE loss \mathcal{L}^c . We implement our
 416 framework in PyTorch and conduct all experiments on a single NVIDIA GeForce RTX 3090 GPU
 417 with 24GB memory.

418 **Results and Discussions** Table 2 presents our comparative evaluation against state-of-the-art ap-
 419 proaches for handling catastrophic interference on ImageNet-100 and CIFAR-100 benchmarks. Our
 420 **ICON** demonstrates superior performance across both datasets, achieving 88.91% and 87.07% aver-
 421 age accuracy on CIFAR-100 and ImageNet-100, respectively.

422 On ImageNet-100, **ICON** surpasses the current state-of-the-art method (CLAP) by 1.15%, demon-
 423 strating the effectiveness of our identification-based framework on the real-world scenarios. Simi-
 424 larly, **ICON** outperforms the previous best method (CLAP) from 86.13% to 87.07%, represent-
 425 ing a substantial margin improvement. The consistent performance improvements across both
 426 datasets validate the capability of **ICON** to handle catastrophic forgetting with respect to previous
 427 approaches. We trace this capability back to the advantage of identifying shared latent representa-
 428 tions between PTA and ATA setup.

429 Figure 3 provide visual evidence of the effectiveness of **ICON** for catastrophic forgetting handling
 430 on the ImageNet-100 dataset. In the top rows (without KL divergence), we observe substantial mis-

Table 3: Average classification accuracy (%) of our ablation studies.

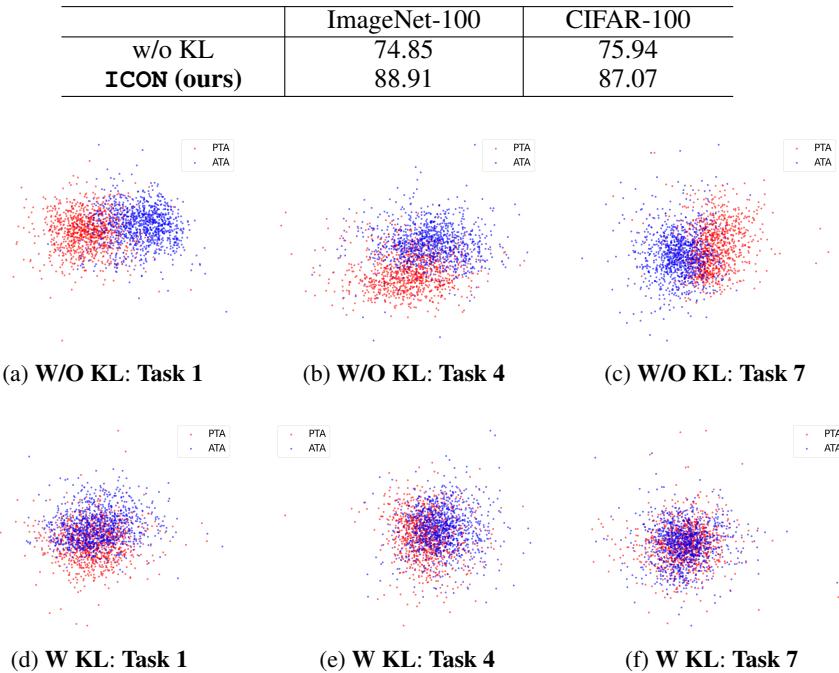


Figure 4: Visualization of latent space distributions across Tasks 1, 4, and 7 on CIFAR-100 benchmark, comparing representations from partial-task aware (PTA, blue) and all-task aware (ATA, red) frameworks. The top row displays results without KL divergence optimization (Eq.14), revealing significant distributional misalignment that indicates catastrophic forgetting. The bottom row demonstrates our **ICON** approach with KL divergence optimization, exhibiting substantially improved alignment between PTA and ATA representations. Each subfigure displays 1,000 uniformly sampled points from the estimated latent representations $\hat{\mathbf{z}}^t$ (PTA framework) and $\hat{\mathbf{z}}^t$ (ATA framework) for visualization clarity.

alignments between the PTA (blue) and ATA (red) representations. These misalignments indicates the existence of catastrophic forgetting as the distributions occupy distinctly separate regions of the latent space. In contrast, the bottom rows (with KL divergence optimization) exhibits remarkably improved alignments between the PTA and ATA representations across all three tasks. These alignments confirms the superior classification performance, as quantified in Table 2.

Ablation Studies In this section, we conduct ablation studies to asses the contribution of KL divergence for solving catastrophic forgetting on the ImageNet-100 and CIFAR-100 datasets.

We summarize the results of our ablation study in Table 3. The results demonstrate that our full ICON framework significantly outperforms the variant without KL divergence optimization across both benchmarks. The dramatic performance gap (88.91% versus 74.85% on ImageNet-100, and 87.07% against 75.94% on CIFAR-100) highlights the critical importance of our KL divergence optimization component, which explicitly maximize the shared latent variables \mathbf{z}^t to the end of minimizing the catastrophic forgetting \mathcal{F} in Eq. 3.

7 CONCLUSION

In this paper, we have presented a theoretical framework that characterizes catastrophic forgetting through the lens of identification theory. Upon our identifiability results, we establish a principled approach to mitigating the catastrophic forgetting challenge in continual learning. The empirical results on **ICON** validate our theoretical framework, demonstrating superior performance on both synthetic data and standard continual learning benchmarks.

486 REFERENCES
487

- 488 Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
489 Memory aware synapses: Learning what (not) to forget. In *Proceedings of the European confer-
490 ence on computer vision*, pp. 139–154, 2018.
- 491 Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general con-
492 tinual learning method based on complementary learning system. In *International Confer-
493 ence on Learning Representations*, 2022. URL <https://openreview.net/forum?id=uxxFrDwrE7Y>.
- 494
- 495 Lorenzo Bonicelli, Matteo Boschini, Angelo Porrello, Concetto Spampinato, and Simone Calder-
496 ara. On the effectiveness of lipschitz-driven rehearsal in continual learning. *Advances in Neural
497 Information Processing Systems*, 35:31886–31901, 2022.
- 498
- 499 Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
500 New insights on reducing abrupt representation change in online continual learning. In *Interna-
501 tional Conference on Learning Representations*, 2022.
- 502
- 503 Sungmin Cha, Hsiang Hsu, Taebaek Hwang, Flavio Calmon, and Taesup Moon. Cpr: Classifier-
504 projection regularization for continual learning. In *International Conference on Learning Repre-
505 sentations*, 2021.
- 506
- 507 Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
508 walk for incremental learning: Understanding forgetting and intransigence. In *Proceedings of the
509 European conference on computer vision*, pp. 532–547, 2018.
- 510
- 511 Arslan Chaudhry, Naeemullah Khan, Puneet Dokania, and Philip Torr. Continual learning in low-
512 rank orthogonal subspaces. *Advances in Neural Information Processing Systems*, 33:9900–9911,
513 2020.
- 514
- 515 Guangyi Chen, Yifan Shen, Zhenhao Chen, Xiangchen Song, Yuewen Sun, Weiran Yao, Xiao Liu,
516 and Kun Zhang. Caring: Learning temporal causal representation under non-invertible generation
517 process. *arXiv preprint arXiv:2401.14535*, 2024.
- 518
- 519 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
520 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
521 pp. 248–255. Ieee, 2009.
- 522
- 523 Mohammad Mahdi Derakhshani, Enrique Sanchez, Adrian Bulat, Victor G Turrisi da Costa,
524 Cees GM Snoek, Georgios Tzimiropoulos, and Brais Martinez. Bayesian prompt learning for
525 image-language model generalization. In *Proceedings of the IEEE/CVF International Confer-
526 ence on Computer Vision*, pp. 15237–15246, 2023.
- 527
- 528 Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for contin-
529 ual learning. In *International Conference on Artificial Intelligence and Statistics*, pp. 3762–3773.
530 PMLR, 2020.
- 531
- 532 Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
533 and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. *International
534 Journal of Computer Vision*, 132(2):581–595, 2024.
- 535
- 536 Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
537 for unnormalized statistical models. In *Proceedings of the thirteenth international conference on
538 artificial intelligence and statistics*, pp. 297–304. JMLR Workshop and Conference Proceedings,
539 2010.
- 540
- 541 Christian Henning, Maria Cervera, Francesco D’Angelo, Johannes Von Oswald, Regina Traber,
542 Benjamin Ehret, Seijin Kobayashi, Benjamin F Grewe, and João Sacramento. Posterior meta-
543 replay for continual learning. *Advances in Neural Information Processing Systems*, 34:14135–
544 14149, 2021.

- 540 Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
 541 incrementally via rebalancing. In *Proceedings of the IEEE/CVF conference on computer vision*
 542 and pattern recognition, pp. 831–839, 2019.
- 543 Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song
 544 Chen. Compacting, picking and growing for unforgetting continual learning. *Advances in Neural*
 545 *Information Processing Systems*, 32, 2019.
- 546 Saurav Jha, Dong Gong, and Lina Yao. CLAP4CLIP: Continual learning with probabilistic finetun-
 547 ing for vision-language models. In *The Thirty-eighth Annual Conference on Neural Information*
 548 *Processing Systems*, 2024. URL <https://openreview.net/forum?id=rF1YRtZfoJ>.
- 549 Ta-Chu Kao, Kristopher Jensen, Gido van de Ven, Alberto Bernacchia, and Guillaume Hennequin.
 550 Natural continual learning: success is a journey, not (just) a destination. *Advances in neural*
 551 *information processing systems*, 34:28067–28079, 2021.
- 552 Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shah-
 553 baz Khan. Maple: Multi-modal prompt learning. In *Proceedings of the IEEE/CVF conference on*
 554 *computer vision and pattern recognition*, pp. 19113–19122, 2023.
- 555 Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvärinen. Variational autoen-
 556 coders and nonlinear ica: A unifying framework. In *International conference on artificial intelli-
 557 gence and statistics*, pp. 2207–2217. PMLR, 2020.
- 558 Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor Akin-
 559 wande, and Kun Zhang. Partial disentanglement for domain adaptation. In Kamalika Chaudhuri,
 560 Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of*
 561 *the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine*
 562 *Learning Research*, pp. 11455–11472. PMLR, 17–23 Jul 2022.
- 563 Lingjing Kong, Guangyi Chen, Petar Stojanov, Haoxuan Li, Eric P. Xing, and Kun Zhang. To-
 564 wards understanding extrapolation: a causal lens. In *The Thirty-eighth Annual Conference on*
 565 *Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=2squ766Iq4>.
- 566 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 567 2009.
- 568 Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
 569 structure learning framework for overcoming catastrophic forgetting. In *International Conference*
 570 *on Machine Learning*, pp. 3925–3934. PMLR, 2019.
- 571 Yuke Li, Guangyi Chen, Ben Abramowitz, Stefano Anzellotti, and Donglai Wei. Learning causal
 572 domain-invariant temporal dynamics for few-shot action recognition. In *Forty-first International*
 573 *Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=LvuuYqU0BW>.
- 574 Zijian Li, Ruichu Cai, Guangyi Chen, Boyang Sun, Zhifeng Hao, and Kun Zhang. Subspace identi-
 575 fication for multi-source domain adaptation. In *Thirty-seventh Conference on Neural Information*
 576 *Processing Systems*, 2023. URL <https://openreview.net/forum?id=BACQLWQW8u>.
- 577 Yan-Shuo Liang and Wu-Jun Li. Loss decoupling for task-agnostic continual learning. *Advances in*
 578 *Neural Information Processing Systems*, 36, 2023.
- 579 Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for
 580 continual learning. In *International Conference on Learning Representations*, 2022.
- 581 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 582 ence on Learning Representations*, 2019.
- 583 Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
 584 pruning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*,
 585 pp. 7765–7773, 2018.

- 594 Hiroshi Morioka and Aapo Hyvärinen. Causal representation learning made identifiable by grouping
 595 of observational variables. In *Forty-first International Conference on Machine Learning*, 2024.
- 596
- 597 Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard Turner, and Mo-
 598 hammad Emtiyaz E Khan. Continual deep learning by functional regularisation of memorable
 599 past. *Advances in Neural Information Processing Systems*, 33:4453–4464, 2020.
- 600 Jingyang Qiao, Xin Tan, Chengwei Chen, Yanyun Qu, Yong Peng, Yuan Xie, et al. Prompt gra-
 601 dient projection for continual learning. In *The Twelfth International Conference on Learning
 602 Representations*, 2024.
- 603
- 604 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 605 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 606 models from natural language supervision. In *International conference on machine learning*, pp.
 607 8748–8763. PMLR, 2021.
- 608
- 609 Tim GJ Rudner, Freddie Bickford Smith, Qixuan Feng, Yee Whye Teh, and Yarin Gal. Contin-
 610 ual learning via sequential function-space variational inference. In *International Conference on
 Machine Learning*, pp. 18871–18887. PMLR, 2022.
- 611
- 612 Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
 613 *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=3AOj0RCNC2>.
- 614
- 615 Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Error sensitivity modulation based experience
 616 replay: Mitigating abrupt representation drift in continual learning. In *The Eleventh International
 Conference on Learning Representations*, 2023.
- 617
- 618 Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
 619 Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of
 the IEEE*, 109(5):612–634, 2021. doi: 10.1109/JPROC.2021.3058954.
- 621
- 622 Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
 623 forgetting with hard attention to the task. In *International conference on machine learning*, pp.
 4548–4557. PMLR, 2018.
- 624
- 625 Xiangchen Song, Weiran Yao, Yewen Fan, Xinshuai Dong, Guangyi Chen, Juan Carlos Niebles,
 626 Eric Xing, and Kun Zhang. Temporally disentangled representation learning under unknown
 627 nonstationarity. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- 628
- 629 Peter Sorrenson, Carsten Rother, and Ullrich Köthe. Disentanglement by nonlinear ica with general
 630 incompressible-flow networks (gin). In *International Conference on Learning Representations*,
 2020. URL <https://openreview.net/forum?id=rygeHgSFDH>.
- 631
- 632 Vishal Thengane, Salman Khan, Munawar Hayat, and Fahad Khan. Clip model is an efficient con-
 633 tinual learner. *arXiv preprint arXiv:2210.03114*, 2022.
- 634
- 635 Michalis K. Titsias, Jonathan Schwarz, Alexander G. de G. Matthews, Razvan Pascanu, and
 636 Yee Whye Teh. Functional regularisation for continual learning with gaussian processes. In
 637 *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=HkxCzeHFDB>.
- 638
- 639 Runqi Wang, Xiaoyue Duan, Guoliang Kang, Jianzhuang Liu, Shaohui Lin, Songcen Xu, Jinhu Lü,
 640 and Baochang Zhang. Attriclip: A non-incremental learner for incremental knowledge learning.
 641 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 3654–3663, 2023a.
- 642
- 643 Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space of feature
 644 covariance for continual learning. In *Proceedings of the IEEE/CVF conference on Computer
 Vision and Pattern Recognition*, pp. 184–193, 2021.
- 645
- 646 Zhenyi Wang, Enneng Yang, Li Shen, and Heng Huang. A comprehensive survey of forgetting in
 647 deep learning beyond continual learning. *IEEE Transactions on Pattern Analysis and Machine
 Intelligence*, 2024.

- 648 Zifeng Wang, Zheng Zhan, Yifan Gong, Yucai Shao, Stratis Ioannidis, Yanzhi Wang, and Jennifer
649 Dy. Dualhsic: Hsic-bottleneck and alignment for continual learning. In *International Conference*
650 *on Machine Learning*, 2023b.
- 651
- 652 Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Hebbian learning
653 based orthogonal projection for continual learning of spiking neural networks. In *The Twelfth*
654 *International Conference on Learning Representations*, 2024.
- 655 Dingling Yao, Danru Xu, Sebastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius,
656 Julius von Kügelgen, and Francesco Locatello. Multi-view causal representation learning with
657 partial observability. In *The Twelfth International Conference on Learning Representations*, 2024.
- 658
- 659 Yujia Zheng and Kun Zhang. Generalizing nonlinear ica beyond structural sparsity. *Advances in*
660 *Neural Information Processing Systems*, 36, 2024.
- 661 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
662 language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022.
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 PROOF OF THEOREM 4.1

Proof: We proceed our proof by contradiction, focusing on the latent space $\tilde{\mathbf{z}}^t$ in the ATA setting. Suppose that $\mathbf{z}^t \in \mathcal{Z}^t$ simultaneously resides on two distinct manifolds $\tilde{\mathcal{Z}}_1^t$ and $\tilde{\mathcal{Z}}_2^t$. Under this assumption, there exist points $\tilde{\mathbf{z}}_1^t \in \tilde{\mathcal{Z}}_1^t$ and $\tilde{\mathbf{z}}_2^t \in \tilde{\mathcal{Z}}_2^t$ such that we can establish the following:

$$g(\tilde{\mathbf{z}}_1^t) - g(\mathbf{z}^t) = \left(\int_0^1 J_g(\lambda \mathbf{z}^t + (1 - \lambda) \tilde{\mathbf{z}}_1^t) d\lambda \right) h_1 \quad (15)$$

$$g(\tilde{\mathbf{z}}_2^t) - g(\mathbf{z}^t) = \left(\int_0^1 J_g(\lambda \mathbf{z}^t + (1 - \lambda) \tilde{\mathbf{z}}_2^t) d\lambda \right) h_2 \quad (16)$$

where $h_1 = \tilde{\mathbf{z}}_1^t - \mathbf{z}^t$, $h_2 = \tilde{\mathbf{z}}_2^t - \mathbf{z}^t$. The L.H.S of Eq.15 and 16 uses the fact that the shared observation can be mapped through either g or g^t from \mathbf{z}^t .

We take the substraction of Eq.15 and Eq.16:

$$\begin{aligned} g(\tilde{\mathbf{z}}_1^t) - g(\tilde{\mathbf{z}}_2^t) &= \left(\int_0^1 J_g(\lambda \mathbf{z}^t + (1 - \lambda) \tilde{\mathbf{z}}_1^t) d\lambda \right) h_1 \\ &\quad - \left(\int_0^1 J_g(\lambda \mathbf{z}^t + (1 - \lambda) \tilde{\mathbf{z}}_2^t) d\lambda \right) h_2 \end{aligned} \quad (17)$$

Let us denote $\Lambda_1 = \left(\int_0^1 J_g(\lambda \mathbf{z}^t + (1 - \lambda) \tilde{\mathbf{z}}_1^t) d\lambda \right) h_1$, and $\Lambda_2 = \left(\int_0^1 J_g(\lambda \mathbf{z}^t + (1 - \lambda) \tilde{\mathbf{z}}_2^t) d\lambda \right) h_2$. Eq.17 implies that:

$$\begin{aligned} \|\Lambda_2 - \Lambda_1\| &\geq \mathcal{D}(\tilde{\mathcal{Z}}_1^t, \tilde{\mathcal{Z}}_2^t) \\ \implies \|\Lambda_2\| + \|\Lambda_1\| &\geq \mathcal{D}(\tilde{\mathcal{Z}}_1^t, \tilde{\mathcal{Z}}_2^t) \\ \implies J_{\tilde{\mathbf{u}}}(\|h_2\| + \|h_1\|) &\geq \mathcal{D}(\tilde{\mathcal{Z}}_1^t, \tilde{\mathcal{Z}}_2^t) \\ \implies \max(\|h_2\|, \|h_1\|) &\geq \frac{\mathcal{D}(\tilde{\mathcal{Z}}_1^t, \tilde{\mathcal{Z}}_2^t)}{2J_{\tilde{\mathbf{u}}}} \end{aligned} \quad (18)$$

where $J_{\tilde{\mathbf{u}}}$ denotes the spectral norm of the Jacobian matrices $(J_g(\tilde{\mathbf{z}}_1^t), J_g(\tilde{\mathbf{z}}_2^t))$. This directly contradicts our assumption that $\mathcal{D}(\tilde{\mathbf{z}}^t, \mathbf{z}^t) \leq \frac{\mathcal{D}(\tilde{\mathcal{Z}}_1^t, \tilde{\mathcal{Z}}_2^t)}{2J_{\tilde{\mathbf{u}}}}$. Therefore, \mathbf{z}^t can only be explained by a single manifold within $\tilde{\mathcal{Z}}^t$.

Given the injectiveness of g in Eq.2, the correct estimate $\hat{\mathbf{z}}^t$ is feasible for $\tilde{\mathbf{z}}^t$ as Eq.7 suggests. Utilizing an analogous constraint to Assumption 5, we can bound the distance between the estimated latent variables as follows: $\mathcal{D}(\hat{\mathbf{z}}^t, \tilde{\mathbf{z}}^t) \leq \frac{\mathcal{D}(\hat{\mathcal{Z}}_1^t, \hat{\mathcal{Z}}_2^t)}{2J_{\hat{\mathbf{u}}}}$. $J_{\hat{\mathbf{u}}}$ denotes the spectrum norm of $(J_{\hat{g}}(\hat{\mathbf{z}}_1^t), J_g(\hat{\mathbf{z}}_2^t))$.

Extending our contradiction statement, let us denote the difference $\hat{\mathbf{z}}_1^t - \hat{\mathbf{z}}^t$ as \hat{h} . Any incorrect estimate $\hat{\mathbf{z}}^t$ would lead to:

$$\|\hat{h}\| \geq \frac{\mathcal{D}(\hat{\mathcal{Z}}_1^t, \hat{\mathcal{Z}}_2^t)}{2J_{\hat{\mathbf{u}}}} \quad (19)$$

This directly contradicts our established constraint assumption. Therefore, such incorrect estimates are excluded from the feasible solution space.

B IMPLEMENTATION DETAILS

We detail the network architectures for both synthetic and real-world experiments in Section 6.1 and 6.2, respectively.

For both synthetic and real-world experiments, we optimize our network using AdamW (Loshchilov & Hutter, 2019) with an initial learning rate of 0.002 and weight decay of 10^{-2} , employing a cosine annealing schedule for learning rate decay. For the contrastive learning objective, we set the temperature parameter $\tau = 0.07$ in the NCE loss \mathcal{L}^c . We implement our framework in PyTorch and conduct all experiments on a single NVIDIA GeForce RTX 3090 GPU with 24GB memory.

756 **C THE USE OF LARGE LANGUAGE MODELS (LLMs)**
757

758 We use LLMs to detect and correct grammatical errors throughout the manuscript.
759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809