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ABSTRACT

Catastrophic interference, also known as catastrophic forgetting, is a fundamen-
tal challenge in machine learning, where a trained learning model progressively
loses performance on previously learned tasks when adapting to new ones. In
this paper, we aim to better understand and model the catastrophic interference
problem from a latent representation learning point of view, and propose a novel
theoretical framework that formulates catastrophic interference as an identifica-
tion problem. Our analysis demonstrates that the forgetting phenomenon can be
quantified by the distance between partial-task aware (PTA) and all-task aware
(ATA) setups. Building upon recent advances in identifiability theory, we prove
that this distance can be minimized through identification of shared latent vari-
ables between these setups. When learning, we propose our method ICON with
two-stage training strategy: First, we employ maximum likelihood estimation to
learn the latent representations from both PTA and ATA configurations. Subse-
quently, we optimize the KL divergence to identify and learn the shared latent
variables. Through theoretical guarantee and empirical validations, we establish
that identifying and learning these shared representations can effectively mitigate
catastrophic interference in machine learning systems. Our approach provides
both theoretical guarantees and practical performance improvements across both
synthetic and benchmark datasets.

1 INTRODUCTION

catastrophic interference represents a fundamental challenge in machine learning (Cha et al., 2021;
Liang & Li, 2023; Xiao et al., 2024), where a model trained sequentially on multiple tasks experi-
ences significant performance degradation on previously learned tasks when adapting to new ones.
This phenomenon manifests as a direct consequence of the distributional shift between tasks, cou-
pled with the model’s capability to preserve previously learned knowledge when optimizing for new
data. Therefore, the model must adapt to new tasks while preserving critical knowledge from earlier
experiences, mirroring human cognitive abilities to accumulate knowledge progressively.

Handling catastrophic interference presents unique theoretical challenges, as the model involves a
dynamic evolution of itself as it learns new tasks. This creates an inherent instability in the data rep-
resentation process —learning from new tasks fundamentally alters the model’s parameters, poten-
tially disrupting the representations learned for previous tasks. In other words, the learned data gen-
erating process changes from task to task as the models evolve. To better understand and model this
challenge, we take inspiration from recent advances in Causal Representation Learning (Schölkopf
et al., 2021; Kong et al., 2022; Li et al., 2023; Kong et al., 2024), and approach this problem via
modeling the data generating process through the mixing functions that map low-dimensional latent
variables to high-dimensional observations. More specifically, we distinguish between two configu-
rations in catastrophic interference handling: the partial-task aware (PTA) setting, which represents
a model trained on a subset of tasks, uses a mixing function that has only seen data up to the cur-
rent task, and the all-task aware (ATA) setting, which represents an ideal model trained on all tasks,
leverages a single task-invariant mixing function g.

In this work, we propose a new theoretical framework that formulates catastrophic interference as
a latent-variable identification problem. Our key insight is that catastrophic interference can be
quantified by measuring the distance between latent representations in PTA and ATA settings. By
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identifying the shared latent variables between these setups, we can establish a principled approach
to preserving knowledge across distributional shifts. Builds upon our theoretical findings, we in-
troduce an a two-stage learning methodology, Identifiable CatastrOphic iNterference (ICON). First,
we employ maximum likelihood estimation to learn the latent representations from both PTA and
ATA configurations independently. Subsequently, we optimize the KL divergence between these
representations to identify and learn their shared components. Through evaluating on both synthetic
data and real-world benchmarks, ICON effectively mitigate the catastrophic interference.

Our contributions are threefold: (1) We formulate catastrophic interference as a latent-variable iden-
tification problem, providing a novel theoretical perspective that quantifies forgetting through distri-
butional distances; (2) We establish identifiability conditions for the shared latent variables between
PTA and ATA setups, proving when and how knowledge can be preserved across distributional shifts
under certain assumptions; (3) Based on our theoretical findings, we develop a practical approach
that demonstrates superior performance on both synthetic data and standard benchmarks on han-
dling catastrophic interference, outperforming current state-of-the-art methods. By bridging theory
and practice, our work provides the first work delving into the nature of catastrophic interference
through identifications, and offers a principled framework.

2 RELATED WORK

2.1 HANDLING CATASTROPHIC FORGETTING

Existing learning methods can be categorized into five primary approaches when handling catas-
trophic interference: (1) Regularization-based methods introduce constraints on model parameters
or outputs within the loss function to mitigate catastrophic forgetting when learning new tasks. Rep-
resentative works include Chaudhry et al. (2018); Aljundi et al. (2018); Hou et al. (2019); Cha et al.
(2021). (2) Memory replay-based methods explicitly store and revisit past experiences by maintain-
ing a subset of previous task samples, thereby reducing forgetting. Notable examples include Arani
et al. (2022); Caccia et al. (2022); Bonicelli et al. (2022); Sarfraz et al. (2023); Wang et al. (2023b);
Liang & Li (2023). (3) Gradient-projection-based methods mitigate forgetting by constraining gra-
dient updates to subspaces that minimize interference with prior knowledge. Relevant studies in-
clude Chaudhry et al. (2020); Farajtabar et al. (2020); Saha et al. (2021); Wang et al. (2021); Lin
et al. (2022); Qiao et al. (2024); Xiao et al. (2024). (4) Architecture-based methods dynamically
adjust the neural network structure to integrate new tasks while preserving performance on previous
ones. Key contributions in this category include Mallya & Lazebnik (2018); Serra et al. (2018); Li
et al. (2019); Hung et al. (2019). (5) Bayesian-based methods leverage Bayesian inference princi-
ples to model uncertainty and facilitate new task while maintaining prior knowledge. Representative
works include Kao et al. (2021); Henning et al. (2021); Pan et al. (2020); Titsias et al. (2020); Rudner
et al. (2022).

2.2 IDENTIFIABILITY OF LATENT VARIABLES WITH DISTRIBUTION SHIFTS

Identifying latent variables in causal representation learning has emerged as a foundational paradigm
for understanding representation learning in deep neural networks (Schölkopf et al., 2021; Khe-
makhem et al., 2020). This approach typically assumes latent variables z generate observed data x
through a generative function. However, when this function exhibits nonlinearity—as is common
in deep learning models—recovering the original latent variables becomes technically challenging
(Khemakhem et al., 2020).

To address this challenge, several recent works (Li et al., 2023; Song et al., 2023; Chen et al., 2024;
Zheng & Zhang, 2024; Morioka & Hyvarinen, 2024) have introduced auxiliary labels u that induce
distributional shifts in the latent components across different conditions. While effective in certain
scenarios, these approaches depend critically on assuming the access to multiple disparate distri-
butions with overlapping supports, including the target distribution. Furthermore, recent advances
by (Yao et al., 2024; Kong et al., 2024) either require labeled grouping data generating process
or assume identical mixing functions across different data generating processes. Our theoretical
framework overcomes these limitations by eliminating the need for either labeled diverse generating
processes or identical mixing functions. This broadened scope encompasses earlier work such as
(Yao et al., 2024; Kong et al., 2024) as a special case or ours.
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3 PROBLEM SETUP

Figure 1: The illustration
of our definition of subspace
identification in Def. 3. Given
two space of latent variables
of PTA setup Zt ∋ zt and
ATA approach Z̃t ∋ z̃t, we
aim to identify their intersec-
tion zt ∈ Zt = Zt ∩ Z̃t.

Given T tasks in total, we aim to learn a task-invariant model to
adapt to all tasks. However, the possible data distributions shift
across tasks raises the challenge of catastrophic forgetting, where
a model’s performance on previously learned task t could degrade
after training on all T tasks.

In this section, to formally characterize the nature of catastrophic
forgetting, we present two data generating processes.

We term the first one by partial-task aware (PTA) approach, lever-
aging the mixing functions g:t from task 1 to task t − 1 (t > 1),
resulting T − 1 mixing functions of PTA setup in total:

xt = g:t(zt) (1)

where xt ∈ RK denotes the observations of task t, the nonlinear
mixing function g:t : RN is a diffeomorphism onto RK , and zt ∈
RN denotes the task-specific continuous latent variable.

Unlike the PTA approach, the second data generating process rep-
resents the all-task aware (ATA) paradigm, which aims to learn a
mixing function g that can handle all T tasks. ATA meets the goal
of continual learning in the sense that it works on all domains:

xt = g(z̃t) (2)

Simialrly, z̃t ∈ RN denotes the continous latent variable for the task t, g is an nonlinear mixing
function and diffeomorphism onto RK . For both Eqs. 1 and 2, we focus on the undercomplete case,
i.e., N ≤ K.

We are now ready to connect catastrophic forgetting with Eq. 1 and 2. Let us define a G ⊂ g:t :
Rz → Rx, where G denotes a hypothesis class. l : G×Rx → [0, Bl] denotes the loss function, where
Bl > 0 is a constant. In this work, we leverage the negative log-likelihood for l, i.e., l(ĝ:t,xt) =
− log pĝ:t(xt). Similar, we define a lost function l(ĝ,xt) = − log pĝ(x

t) Following the defintion
1.1 in Wang et al. (2024), we reinterpret the catastrophfic forgetting F by:

F = Et
1

|xt|
∑
xt

(−l(ĝ:t,xt) + l(g,xt)) (3)

where |xt| denotes the sample numbers of xt. This formulation aligns with Definition 1.1 in Wang
et al. (2024) by utilizing negative log-likelihood as the performance measurement metric, i.e., Eq. 3
quantifies the difference between two data generating process from Eq. 1 and Eq. 2, respectively.

Given the invertibility of both mapping functions g:t and g, and both zt and z̃t live in RN , we
establish the observed differences under Eq. 2 and Eq. 1 uniquely determined by the underlying
differences between their respective latent representations zt and z̃t. This allows us to decompose
zt and z̃t into two parts: their difference and their overlap. In this work, to minimize F in Eq. 3, we
focus on identifying the overlap between zt and z̃t across the PTA and ATA settings. Formally, for
the latent variable manifolds Zt ∋ zt and Z̃t ∋ z̃t, we denote their intersection by Zt = Zt ∩ Z̃t.
∀zt ∈ Zt, zt = z̃t = zt. We introduce the definition of the identifiability in the following (subspace
identifiability suffices):

(Identifiability of latent variables shared by Eqs. 1 and 2): For any pair of mixing functions
(gt, g) defined in Equations 1 and 2 respectively, there exists a shared latent space region Zt where
the latent variables from both the PTA and ATA settings coincide. ∀zt ∈ Zt, there exists an invert-
ible transformation t such that: ẑt = t(zt).

4 IDENTIFIABILITY THEORY

To establish our identifiability results, we begin with formalizing the distance between two manifolds
Zt

1 and Z2t as:
D(Zt

1 ,Zt
2) = inf z′

1∈Zt
1 ,z

′
2∈Zt

2
∥z′1 − z′2∥2 (4)
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where z′ denotes points on the boundary support of Zt
, and z̃′ denotes points on the boundary

support of Z̃t. Here, ∥ · ∥2 represents the Euclidean distance.

We define the minimum distance from a point zt to any point in the manifold Z̃t for the ATA setting:
D(z̃t, zt) = arg min

z̃t∈Z̃t
∥z̃t − zt∥2 (5)

Similarly, for the PTA setting, we define:
D(zt, zt) = arg min

zt∈Zt
∥zt − zt∥2 (6)

Having established the necessary distance metrics, we are now ready to present our identifiability
results.
Theorem 1. Given the data generating process in Eq. 1 and Eq. 2, if the following assumptions are
satisfied:

1. (Smoothness and invertibility) The mixing function gt in Eq. 1, and g in Eq. 2 are smooth
functions and invertible everywhere;

2. (The existence of intersection) For the latent variable manifolds Zt ∋ zt and Z̃t ∋ z̃t,
their intersection Zt = Zt ∩ Z̃t ̸= ∅.

3. (Path-connected) both Zt
and Z̃t are path-connected;

4. (Compactness) The spaces of observed variables xt and x̃t are closed and bounded;

5. (Constrained out-of-intersection distance) ∀z̃t /∈ Zt, if ∃Z̃t
1 , Z̃t

2 , the distance D(z̃t, zt)

between the out-of-intersection z̃t and zt is constrained by D(z̃t, zt) ≤ D(Z̃t
1,Z̃

t
2)

2Jũ
. Jũ

denotes the spectrum norm of {Jg(z̃t1), Jg(z̃t2)}.

If we can learn the optimal estimation ẑt of zt ∈ Zt such that:
sup(p(ẑ)), s.t. sup(pĝ:t(x

t)) & sup(pĝ(xt)) (7)

then the identifiability results stated in Def. 3 are obtained.

Proof Sketch: Our proof establishes identifiability via contradiction by assuming a latent variable
zt simultaneously resides on two distinct latent manifolds. Differences between latent points are
expressed as integrals involving the Jacobian of the generative function g, bounded by the spectral
norm of the Jacobian multiplied by their latent-space distance. Since both latent points generate
the same observed data, their output difference must be zero, implying a zero distance between
distinct latent points. This result contradicts the theorem’s assumption of a strictly positive minimal
separation between distinct manifold points. Therefore, each observed data point must originate
from a unique latent point, ensuring identifiability.

Remarks: Assumption 1 & Assumption 2 guarantee the the existence of an intersection between
Z̄ and Z̃ . The path-connectedness specified in Assumption 3 and The compactness property in
Assumption 4 impose the geometric boundedness of the overlap between Z̄ and Z̃ . Assumption 5
establishes critical upper bounds for the distances D(z̃t, zt).

5 ICON APPROACH

Building upon our identifiability results, we now introduce ICON to estimate the latent causal vari-
ables. Our approach aims to achieve the observational equivalence in Eq. 7 by modeling the data
generating processes in Eqs. 1 and 2. In what follows, we introduce each part of our network
individually.

5.1 NETWORK DESIGN

Our network architecture is designed to uncover the latent variables for both PTA and ATA setup
through carefully constructed flow-based models.

4
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Network Structure for PTA approach For the PTA setup described in Eq. 1, ICON formalizes
the probabilistic joint distribution as:

p(xt, zt) = pg:t(xt|zt)p(zt) (8)

To implement the invertible mapping function gt in Eq. 1, we employ General Incompressible-flow
Network (GIN) Sorrenson et al. (2020), which provide a highly expressive class of normalizing
flows with the following inverse mapping:

ẑ
t ∼ N (µ̂

t
, σ̂

t
), µ̂

t
, σ̂

t
= ĝ:t−1(x

t) (9)

where ĝ:t−1 denotes the estimation of inverse of the mixing function gt for PTA settings.

Network Structure for ATA framework In contrast to the PTA setting, the ATA framework in
Eq. 2 requires to learn a task-invariant mixing function g, The joint distribution in this case is mod-
eled as:

p(xt, z̃t) = pg(x
t|z̃t)p(z̃t)d (10)

We implement this task-invariant mapping using another GIN model that processes data from all
tasks:

ˆ̃zt ∼ N (ˆ̃µt, ˆ̃σt), ˆ̃µt, ˆ̃σt = ĝ−1(x
t) (11)

5.2 LEARNING OBJECTIVE

In this work, we learn ẑ
t

through maximum likelihood estimation (MLE). Specifically, we estimate
p(x̂t) of Eq. 8 by optimizing the following objective:

Lt =
1

t

t∑
i=1

( 1

|xt|
∑
xt

(
log p(ĝ:t−1(x

t))
))

(12)

where |xt| denotes the number of xt of the task of t. Eq. 12 leverages the volume-preservation from
GIN (Sorrenson et al., 2020).

Similarly, the learning objective for p(x̂t) of Eq. 10 from the true observations xt also employs
MLE:

L =
1

T

T∑
t=1

( 1

|xt|
∑
xt

(
log p(ĝ−1(x

t))
))

(13)

In this equation, following Sorrenson et al. (2020), the volume-preservation is used. When compar-
ing with Eq. 12, we observe that Eq. 13 indicates ĝ being trained across all T tasks, highlighting the
fundamental distinction between our PTA and ATA approaches.

In addition to Eq. 12 and Eq. 13, our work focuses on identifying and learning the sharing of latent
variable zt. Based on our reinterpretation of Eq. 3, maximizing the distribution similarity of zt

directly contributes to minimizing the catastrophic forgetting term F . To achieve this objective, for
each task t, we employ the KL divergence to further tune both ĝ:t and g:

KL =
1

|xt|
∑
xt

q(ˆ̃zt) log
(q(ˆ̃zt)
q(ẑ

t
)

)
=

1

t

t∑
i=1

( 1

|xt|
∑
xt

q(ĝ−1(x
t)) log

(q(ĝ−1(x
t)

q(ĝ:t−1(x
t)

))
(14)

where q(ˆ̃zt) and q(ẑ
t
) denote the posterior of ˆ̃zt and ẑ

t
, which are learned using Eq. 9 and Eq. 11,

respectively.

5.3 TRAINING AND INFERENCE

Two-stage Training ICON takes inspiration from Li et al. (2024) to implement a two-stage training
mechanism. The first stage focuses on independently optimizing the objectives in Eq. 12 and Eq. 13.
In the second stage, we jointly train both ĝ:t and ĝ by minimizing the KL divergence defined in

5
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(a) W/O KL: Task 1 (b) W/O KL: Task 2 (c) W/O KL: Task 3

(d) W KL: Task 1 (e) W KL: Task 2 (f) W KL: Task 3

Figure 2: Visualization of latent space distributions across three tasks under PTA (blue) and ATA
(red) setups from our simulations. The top row shows representations without optimizing the KL di-
vergence in Eq. 14, displaying significant disparity between PTA and ATA. The bottom row demon-
strates improved alignment through our proposed KL-based identification approach, illustrating ef-
fective mitigation of catastrophic forgetting across sequential tasks. For clear visualizations, each
figure displays 1,000 uniformly sampled points ẑ

t
and ˆ̃zt, respectively.

Eq. 14. This process effectively reduces the discrepancies between the latent representations ẑ
t

and
ˆ̃zt. Notably, during training, we process tasks sequentially, maintaining access to the task identity t
to calculate the objective functions in Section 5.2.

Inference During inference stage, only ĝ is used as the goal of continual learning is to learn a task-
invariant mixing function. Thus, ICON does not require t during inference since ĝ is task invariant.

6 EXPERIMENTS

6.1 SYNTHETIC EXPERIMENTS

Experimental Setup To evaluate ICON ’s ability to mitigate catastrophic forgetting (F), we first
conducted simulation experiments. We generated synthetic datasets satisfying the identifiability
assumptions outlined in Theorem 4.

Specifically, our approach generated four distinct scenarios of observations, with each scenario cor-
responding to a particular task. The latent variables for each scenario comprised 16 dimensions,
which we partitioned into two parts: (1) a 8-dimensional task-invariant component drawn from
N (0, I) that remained constant across all tasks, and (2) a 8-dimensional task-specific component
drawn from zv ∼ N (µ, σ2I), which varied between tasks. For each task, the data generation pro-
cess begins with 10, 000 latent data points, where µ ∼ Uniform(−4, 4) and σ2 ∼ Uniform(0.1, 1).
Following the practices established in Kong et al. (2022); Li et al. (2023), we used a two-layer MLP
to generate the observations, which compriese 16 dimensions.

In our synthetic experiments, we aim to determine whether F could be minimized using our training
objectives presented in Section 5.2. Therefore, we compare the average Root Mean Squared Error
(RMSE) of the reconstructions across all 4 tasks obtained from the ĝ trained with our objective in
Eq. 13, and the mixing function of ATA setup without Eq. 14.

Results and Discussions Table 1 summarizes our main findings on our simulations. We eval-
uate both PTA and ATA setup of ICON against the baseline without KL divergence of Eq. 14 in
identifying the shared latent varaible zt.

6
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Table 1: Average Root Mean Squared Error (RMSE) comparison between PTA and ATA frame-
works, with and without optimizing KL divergence (Eq. 14). Lower values indicate better perfor-
mance.

Average RMSE ×10−1

PTA setup w/o KL 0.12
ATA setup 0.20
PTA setup w KL 0.12
ATA setup 0.13

(a) W/O KL: Task 1 (b) W/O KL: Task 4 (c) W/O KL: Task 7

(d) W KL: Task 1 (e) W KL: Task 4 (f) W KL: Task 7

Figure 3: Visualization of latent space distributions across Tasks 1, 4, and 7 on ImageNet-100
dataset, comparing representations from PTA (blue) and ATA (red) frameworks. The top row shows
results without using KL divergence optimization in Eq. 14, where significant distribution misalign-
ment indicates catastrophic forgetting as training progresses through tasks. The bottom row demon-
strates our ICON with KL divergence optimization, exhibiting substantially improved alignment.
For visualization clarity, each subfigure displays 1,000 uniformly sampled points from the estimated
latent representations ẑ

t
(PTA framework) and ˆ̃zt (ATA framework).

We can observe that ICON incorporating the KL divergence term substantially improves perfor-
mance in the ATA setup, reducing the average MSE from 0.20 to 0.13 (a 35% improvement) across
all tasks. Notably, this evidently indicates that our approach effectively handles the catastrophic
forgetting by identifying the shared latent variables.

Figure 2 provides visual evidence of this improvement compared to the baseline without KL di-
vergence. The latent space distributions across three tasks reveal that in the top row (without KL),
there exists significant disparity between the PTA (blue) and ATA (red) representations, particularly
pronounced in Tasks 1 and 2. This disparity directly corresponds to catastrophic forgetting in the
model. In contrast, the bottom row (with KL) exhibits markedly reduced differences between the
PTA and ATA setups. This improved alignment of latent representations confirms that our approach
demonstrates its effectiveness in addressing catastrophic forgetting.

6.2 REAL-WORLD EXPERIMENTS

To verify the efficacy of our theory in complex real-world scenarios, we further conduct real-work
experiments.

Experimental Setup We evaluate our approach on two standard benchmarks for handling catas-
trophic interference: CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-100 (Deng et al., 2009).

7
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Table 2: Average classification accuracy (%) comparison on ImageNet-100 and CIFAR-100 datasets.
The best results are highlighted in bold, and the second best are in underline.

ImageNet-100 CIFAR-100
CoOp (Zhou et al., 2022) 79.14 81.17
MaPLe (Khattak et al., 2023) 79.23 82.74
AttriCLIP (Wang et al., 2023a) 82.39 79.31
Continual-CLIP (Thengane et al., 2022) 83.99 78.65
CLIP-Adapter (Gao et al., 2024) 84.13 78.75
CLAP (Jha et al., 2024) 87.76 86.13
ICON (ours) 88.91 87.07

CIFAR-100 comprises 60,000 RGB images (32×32 pixels) distributed across 100 classes. Fol-
lowing established protocols, we partition this dataset into 10 sequential tasks, each containing 10
distinct classes. Each class contains 500 training and 100 testing samples, ensuring a balanced
evaluation framework. For ImageNet-100, a carefully curated subset of the full ImageNet dataset,
we utilize higher-resolution images (224×224 pixels) from 100 classes. The dataset provides ap-
proximately 1,300 training and 50 testing samples per class. Consistent with recent state-of-the-art
approach, such as CLAP (Zhou et al., 2022; Thengane et al., 2022; Gao et al., 2024; Wang et al.,
2023a; Khattak et al., 2023; Derakhshani et al., 2023; Jha et al., 2024), ImageNet-100 is divided
into 10 tasks with 10 classes per task. Across both benchmarks, we report the average classification
accuracy on test data across all tasks.

Since both datasets focus on image classification tasks, we adapt ICON using noise contrastive
estimation (NCE) (Gutmann & Hyvärinen, 2010). First, we train our model using the objec-
tives defined in Equations 12, 13, and 14. Subsequently, we define our NCE loss Lc as: Lc =

−
∑

k log
exp(sim(ˆ̃zt

k,êk)/τ)∑
m exp(sim(ˆ̃zt

k,êm)/τ)
, where sim(·, ·) represents the cosine similarity between the text

embeddings ê∗ of the class labels and the learned latent variables ˆ̃ztk, and τ is a temperature param-
eter controlling the sharpness of the distribution. Notably, the text embeddings ê∗ are from all task.
Prior to computing Lc, we project ˆ̃zt to a 512-dimensional embedding space using an MLP layer,
aligning with the dimensionality of the text embeddings. For both datasets, we set the dimensionality
of the latent representations ẑ

t
and ˆ̃zt to 24.

For feature extraction across all tasks and experiments, we employ the Vision Transformer (ViT-
B/16) backbone from Radford et al. (2021) to obtain image features xt, by following Zhou et al.
(2022); Thengane et al. (2022); Gao et al. (2024); Wang et al. (2023a); Khattak et al. (2023); De-
rakhshani et al. (2023); Jha et al. (2024). To ensure fair comparison with prior work, we maintain
consistent replay memory configurations. Specifically, we randomly sample 2,000 exemplars for the
CIFAR-100 dataset and 1,000 exemplars for the ImageNet-100 dataset. We optimize our network
using AdamW Loshchilov & Hutter (2019) with an initial learning rate of 0.002 and weight decay
of 10−2, employing a cosine annealing schedule for learning rate decay. For the contrastive learn-
ing objective, we set the temperature parameter τ = 0.07 in the NCE loss Lc. We implement our
framework in PyTorch and conduct all experiments on a single NVIDIA GeForce RTX 3090 GPU
with 24GB memory.

Results and Discussions Table 2 presents our comparative evaluation against state-of-the-art ap-
proaches for handling catastrophic interference on ImageNet-100 and CIFAR-100 benchmarks. Our
ICON demonstrates superior performance across both datasets, achieving 88.91% and 87.07% aver-
age accuracy on CIFAR-100 and ImageNet-100, respectively.

On ImageNet-100, ICON surpasses the current state-of-the-art method (CLAP) by 1.15%, demon-
strating the effectiveness of our identification-based framework on the real-world scenarios. Sim-
ilarly, ICON outperforms the previous best method (CLAP) from 86.13% to 87.07%, represent-
ing a substantial margin improvement. The consistent performance improvements across both
datasets validate the capability of ICON to handle catastrophic forgetting with respect to previous
approaches. We trace this capability back to the advantage of identifying shared latent representa-
tions between PTA and ATA setup.

Figure 3 provide visual evidence of the effectiveness of ICON for catastrophic forgetting handling
on the ImageNet-100 dataset. In the top rows (without KL divergence), we observe substantial mis-
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Table 3: Average classification accuracy (%) of our ablation studies.

ImageNet-100 CIFAR-100
w/o KL 74.85 75.94

ICON (ours) 88.91 87.07

(a) W/O KL: Task 1 (b) W/O KL: Task 4 (c) W/O KL: Task 7

(d) W KL: Task 1 (e) W KL: Task 4 (f) W KL: Task 7

Figure 4: Visualization of latent space distributions across Tasks 1, 4, and 7 on CIFAR-100 bench-
mark, comparing representations from partial-task aware (PTA, blue) and all-task aware (ATA, red)
frameworks. The top row displays results without KL divergence optimization (Eq.14), reveal-
ing significant distributional misalignment that indicates catastrophic forgetting. The bottom row
demonstrates our ICON approach with KL divergence optimization, exhibiting substantially im-
proved alignment between PTA and ATA representations. Each subfigure displays 1,000 uniformly
sampled points from the estimated latent representations ẑ

t
(PTA framework) and ˆ̃zt (ATA frame-

work) for visualization clarity.

alignments between the PTA (blue) and ATA (red) representations. These misalignments indicates
the existence of catastrophic forgetting as the distributions occupy distinctly separate regions of the
latent space. In contrast, the bottom rows (with KL divergence optimization) exhibits remarkably
improved alignments between the PTA and ATA representations across all three tasks. These align-
ments confirms the superior classification performance, as quantified in Table 2.

Ablation Studies In this section, we conduct ablation studies to asses the contribution of KL
divergence for solving catastrophic forgetting on the ImageNet-100 and CIFAR-100 datasets.

We summarize the results of our ablation study in Table 3. The results demonstrate that our full
ICON framework significantly outperforms the variant without KL divergence optimization across
both benchmarks. The dramatic performance gap (88.91% versus 74.85% on ImageNet-100, and
87.07% against 75.94% on CIFAR-100) highlights the critical importance of our KL divergence
optimization component, which explicitly maximize the shared latent variables zt to the end of
minimizing the catastrophic forgetting F in Eq. 3.

7 CONCLUSION

In this paper, we have presented a theoretical framework that characterizes catastrophic forgetting
through the lens of identification theory. Upon our identifiability results, we establish a principled
approach to mitigating the catastrophic forgetting challenge in continual learning. The empirical
results on ICON validate our theoretical framework, demonstrating superior performance on both
synthetic data and standard continual learning benchmarks.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 PROOF OF THEOREM 4.1

Proof: We proceed our proof by contradiction, focusing on the latent space z̃t in the ATA setting.
Suppose that zt ∈ Zt simultaneously resides on two distinct manifolds Z̃t

1 and Z̃t
2 . Under this

assumption, there exist points z̃t1 ∈ Z̃t
1 and z̃t2 ∈ Z̃t

2 such that we can establish the following:

g(z̃t1)− g(zt) =

(∫ 1

0

Jg(λz
t + (1− λ)z̃t1)dλ

)
h1 (15)

g(z̃t2)− g(zt) =

(∫ 1

0

Jg(λz
t + (1− λ)z̃t2)dλ

)
h2 (16)

where h1 = z̃t1 − zt, h2 = z̃t2 − zt. The L.H.S of Eq.15 and 16 uses the fact that the shared
observation can be mapped through either g or gt from zt.

We take the substraction of Eq.15 and Eq.16:

g(z̃t1)− g(z̃t2) =

(∫ 1

0

Jg(λz
t + (1− λ)z̃t1)dλ

)
h1

−
(∫ 1

0

Jg(λz
t + (1− λ)z̃t2)dλ

)
h2 (17)

Let us denote Λ1 =
(∫ 1

0
Jg(λz

t + (1− λ)z̃t1)dλ
)
h1, and Λ2 =

(∫ 1

0
Jg(λz

t + (1− λ)z̃t2)dλ
)
h2.

Eq.17 implies that:

||Λ2 − Λ1|| ≥ D(Z̃t
1 , Z̃t

2)

=⇒ ||Λ2||+ ||Λ1|| ≥ D(Z̃t
1 , Z̃t

2)

=⇒ Jũ(||h2||+ ||h1||) ≥ D(Z̃t
1 , Z̃t

2)

=⇒ max(||h2||, ||h1||) ≥
D(Z̃t

1 , Z̃t
2)

2Jũ
(18)

where Jũ denotes the spectral norm of the Jacobian matrices
(
Jg(z̃

t
1), Jg(z̃

t
2)
)
. This directly contra-

dicts our assumption that D(z̃t, zt) ≤ D(Z̃t
1,Z̃2t)
2Jũ . Therefore, zt can only be explained by a single

manifold within Z̃t.

Given the injectiveness of g in Eq.2, the correct estimate ˆ̃zt is feasible for z̃t as Eq.7 suggests. Utiliz-
ing an analogous constraint to Assumption 5, we can bound the distance between the estimated latent
variables as follows: D(ˆ̃zt, ẑt) ≤ D(Ẑt

1,Ẑ
t
2))

2Jˆ̃u
. Jˆ̃u denotes the spectrum norm of

(
Jĝ(ˆ̃z

t
1), Jg(ˆ̃z

t
2)
)
.

Extending our contradiction statement, let us denote the difference ˆ̃zt1 − ẑt as ĥ. Any incorrect
estimate ˆ̃zt would lead to:

||ĥ|| ≥ D(Ẑt
1 , Ẑt

2))

2Jˆ̃u

(19)

This directly contradicts our established constraint assumption. Therefore, such incorrect estimates
are excluded from the feasible solution space.

B IMPLEMENTATION DETAILS

We detail the network architectures for both synthetic and real-world experiments in Section 6.1 and
6.2, respectively.

For both synthetic and real-world experiments, we optimize our network using AdamW (Loshchilov
& Hutter, 2019) with an initial learning rate of 0.002 and weight decay of 10−2, employing a co-
sine annealing schedule for learning rate decay. For the contrastive learning objective, we set the
temperature parameter τ = 0.07 in the NCE loss Lc. We implement our framework in PyTorch and
conduct all experiments on a single NVIDIA GeForce RTX 3090 GPU with 24GB memory.
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C THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs to detect and correct grammatical errors throughout the manuscript.
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