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ABSTRACT

We present DuPO, a dual learning-based preference optimization framework that
generates annotation-free feedback via the generalized duality. DuPO addresses
two key limitations: Reinforcement Learning with Verifiable Rewards (RLVR)’s
reliance on costly labels and applicability restricted to verifiable tasks, and tra-
ditional dual learning’s restriction to strictly dual task pairs (e.g., translation
and back-translation). Specifically, DuPO decomposes a primal task’s input into
known and unknown components, then constructs its dual task to reconstruct the
unknown part using the primal output and known information (e.g., reversing math
solutions to recover hidden variables), broadening applicability to non-invertible
tasks. The quality of this reconstruction serves as a self-supervised reward to opti-
mize the primal task, synergizing with LLMs’ ability to instantiate both tasks via a
single model. Empirically, DuPO achieves substantial gains across diverse tasks:
it enhances the average translation quality by 2.1 COMET over 756 directions,
boosts the mathematical reasoning accuracy by an average of 6.4 points on three
challenge benchmarks, and enhances performance by 9.3 points as an inference-
time reranker (trading computation for accuracy). These results position DuPO as
a scalable, general, and annotation-free paradigm for LLM optimization.

1 INTRODUCTION

Large Language Models (LLMs) (Yang et al., 2025} (Grattafiori et al, |2024; |Liu et al.| 2024; |Ope-
nAll 2023} ALl [2024; [DeepMind, [2025) have shown remarkable progress in tasks like mathemat-
ical reasoning (Yang et al.l 2024bj [Shao et al., 2024; (Chen et al., 2025) and multilingual transla-
tion (Cheng et al., 2025} |Zhu et al.| 2024; |Li et al., [2024bic). To further enhance these capabilities,
researchers have increasingly adopted reinforcement learning (RL) paradigms like Reinforcement
Learning from Human Feedback (RLHF) (Grattafiori et al., 2024} Liu et al.,2024; Yang et al.| [2025))
and Reinforcement Learning with Verifiable Rewards (RLVR) (DeepSeek-AlL [2025; Team) 2025;|Yu
et al.| 2025} He et al., 2025} |Hu et al.| 2025b) have gained traction. Specifically, RLHF aligns mod-
els with human preferences but relies on costly, inconsistent human annotations (Lee et al., 2023;
Zhang et al.| 2024). RLVR addresses this for objective tasks (e.g., math, code) via binary rewards
from verifiable answers, reducing annotation burdens. However, RLVR still depends on external
supervision: acquiring verifiable answers remains a bottleneck, limiting scalability. Moreover, it
struggles with generative tasks (e.g., multilingual translation), where single references cannot cap-
ture diverse high-quality outputs (Jia et al.| |2025[; |Callison-Burch et al.|2006). Recent attempts (e.g.,
Al-Feedback/RLAIF (Lee et al., 2023)), Constitutional Al (Bai et al.,[2022)) merely swap dependen-
cies (human labels — teacher models/rules), failing to resolve the core bottleneck.

Dual learning (He et al., 2016) offers a self-supervised alternative by leveraging task duality to
generate intrinsic feedback: through paired “primal” and “dual” tasks (e.g., translation and back-
translation (Sennrich et al., 2015)), models validate outputs via cycle consistency, eliminating re-
liance on external labels. Given that LLMs possess diverse capabilities from extensive pretraining,
they could be trained across various tasks. However, applying this framework to LLMs is non-trivial,
which faces two critical challenges:

1. Limited Duality in Mutually Non-Invertible Tasks: Most real-world LLM tasks (e.g.,
ereative-writing;-math reasoning) lack strict invertibility. LLM’s output (e.g., a math solu-
tion) rarely contains enough information to reconstruct its input (e.g., the original problem),
breaking the duality cycle.



2. Bidirectional Competence Asymmetry: LLMs often exhibit uneven performance across
primal/dual tasks (e.g., strong at solving math problems but weak at generating problems
from solutions). Noisy self-signals from asymmetric tasks hinder optimization, reducing
the framework’s utility.

These mismatches render traditional dual learning ill-suited for general LLM optimization, leaving
it an open challenge.

In this paper, we propose DuPO (Dual Learning-based Preference Optimization), a framework
that aligns LLM generalization with a (relaxed) duality applicable to general tasks. At its core lies
a generalized duality framework (§3.2) built on complementary relationships: it decomposes each
input z into disjoint known (zj) and unknown (zx,,) components, then designs the dual objective to
reconstruct only z,, from the primal output y and the known input xy, rather than inverting the full
input. This framework resolves two asymmetries: it restores sufficient information flow between
the primal and dual tasks (task asymmetry) and reduces the complexity burden on the dual task side
(capability asymmetry). The formulation naturally synergizes with LLMs: their broad foundational
capabilities allow a single model to instantiate both primal and dual tasks without specific architec-
tures, while the dual task converts the model’s outputs into self-supervised reward signals, enabling
continual improvement without external annotations. This bidirectional benefit addresses a critical
challenge in LLM development: obtaining high-quality feedback for capability enhancement.

We empirically validate DuPO on two representative tasks: mathematical reasoning and multilingual
translation, demonstrating significant and consistent improvements. By applying DuPO to one of the
strongest translation LLM, Seed-X-7B-Instruct (Cheng et al., 2025)), we demonstrate a significant
performance gain of 2.1 COMET points on the multilingual translation benchmark, bringing the
7B model to performance comparable to ultra-large SOTA systems. In mathematical reasoning, our
method yields robust gains across models of varying scales, from 1.5B to 7B parameters; notably,
DuPO improves the Qwen3-4B (Yang et al.,[2025) model’s score on three challenging mathematical
benchmark by 6.4 percentage points. Our comprehensive ablation studies confirm that our design,
the generalized duality, is crucial for achieving these results. Beyond training, DuPO acts as a
reranking mechanism at inference, boosting performance by 9.3 points without finetuning—enabling
smaller models to outperform stronger ultra-large LLMs like DeepSeek-R1 (DeepSeek-Al| 2025)
even without training. In summary, DuPO reimagines task duality for non-invertible LLM tasks.
It eliminates external annotation reliance, scales across tasks/domains, and enhances both training
and inference—offering a scalable path to align LLMs with diverse goals using self-supervised
feedback,

2 PRELIMINARIES

We can cast various tasks as conditional generation: with input space X and output space ), the
model generates y € ) via the LLM mp(y | x) given an input z € X.

2.1 PREFERENCE OPTIMIZATION

Preference optimization steers LLMs’ behavior by assigning scalar rewards to responses based on
their quality and higher-reward outputs are preferred and reinforced by the optimization. Formally,
given a reward function 7 : X x ) — R that quantifies output quality, the objective is:

MAX Ey oy (o) (2, ) M

In practice, r(z,y) is commonly derived from human preferences (RLHF), LLM judgments
(RLAIF), or verifiable correctness (RLVR). While numerous effective algorithms (e.g., PPO (Schul-
man et al., [2017), REINFORCE++ (Hu et al., 2025a), GRPO (Shao et al., [2024)) have been devel-
oped to optimize this objective, their performance ultimately hinges on the quality of the reward
signal. Consequently, the key challenge lies in obtaining accurate and scalable rewards, given that
existing sources are plagued by high costs, inherent biases, and limited coverage.

2.2 DUAL LEARNING

Dual learning offers a self-supervision signal by utilizing the task duality. We begin by formalizing
the task duality between a primal task and its dual counterpart.
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Figure 1: Challenges in Dual Learning and Solutions via Relaxed Duality Constraints. Dilem-
mas in applying dual learning — (a) Non-unique reconstruction of x from y breaks the closed-loop;
(b) Failure to reconstruct x from y due to competence asymmetry. Resolutions by relaxing duality
restrictions — (c¢) Predicting unknown component B to preserve uniqueness and adapt dual task
difficulty

Definition 1. A primal task is a mapping T, : X — Y, and a dual task is a mapping Tq : Y — X.
The pair (Tp, Tq) is said to form a dual pair if they satisfy the consistency principle:

Vx € X, d(x7 7&(7},(){))) < ex,

where d(-) : X X X — R is a domain-specific distance metric, and e > 0 is a tolerance threshold
that quantifies acceptable reconstruction errors in each space.

Leveraging this duality, we can construct a self-supervised reward to quantify the quality of a primal-
task output. Given an input x and its corresponding output y = 7,(x), we could define reward as

r(x,y) o exp(=A-d(x, Ta(y))) 2)

where A > 0 controls the sensitivity of the reward to reconstruction error. High-quality outputs
maximize the expected reward E[r(y)] by preserving information that is recoverable through the
duality cycle. This principle has been successfully applied in various domains, including machine
translation (He et al., 2016} Zou et al., [2025)).

3 DUAL LEARNING-BASED PREFERENCE OPTIMIZATION

In this section, we propose Dual Learning-based Preference Optimization (DuPO). Its core objec-
tive is to leverage the intrinsic relationships between tasks and their dual counterparts to generate
self-supervised rewards, enabling LLMs to improve performance without relying on expensive hu-
man annotations or complex handcrafted rules.

3.1 CHALLENGES IN DUAL LEARNING-BASED OPTIMIZATION

While task duality offers a promising self-supervised paradigm, its application to LLM optimization
is non-trivial, as it confronts two critical challenges that disrupt the closed-loop information flow.

Challenge I: Limited Duality in Non-Mutually Implicative Tasks. The utility of task duality
hinges on 7, and 7; being mutually implicative — specifically, the output y of 7, contains suffi-
cient information to reconstruct x via 7y, and vice versa. This property holds for canonical tasks
like machine translation, where y (a translation) preserves the semantic content of x (the source
sentence), enabling 7, (back-translation) to recover X = X.

However, most real-world tasks lack this mutual implicativity (Fig. [Ta). Consider mathematical
reasoning, where 7, solves a problem x (e.g., “A box contains 3 red and 5 blue balls; what is the
total?”) to produce y = 8. Here, y (the total count) is insufficient to uniquely reconstruct x via 7Ty,
as 8 could answer infinitely many disparate questions, such as “What is 10 — 27" or “What is the
atomic number of Oxygen?”. This underdetermined relationship breaks the duality loop: 7; cannot
reliably recover x from y, making the self-supervised reward (based on X ~ x) untrustworthy.



Challenge II: Bidirectional Competence Asymmetry. Even for mutual invertibility tasks, dual-
ity optimization is sensitive to the bidirectional competence of the LLM — the performance gap
between 7, and 7. If 7, is strong but 7, is weak, 7; may produce noisy x that distorts the su-
pervision signal (Fig. [Tb). This asymmetry is particularly pronounced in LLMs, where extensive
pretraining creates diverse but uneven capabilities across tasks, even within the same domain.

For instance, in machine translation optimization, let x = “The quick brown fox jumps over the
lazy dog” (English) and y = “Der schnelle braune Fuchs springt iiber den faulen Hund” (correct
German translation). A high-quality y should enable 7; to back-translate to x = x. However, if Ty
struggles with nuanced vocabulary (e.g., “schnelle” — “fast” instead of “quick”), X might be “The
fast brown fox jumps over the lazy dog” — a divergence from x that erroneously penalizes y despite
its correctness.

Using separate models for 7, and 7, as was common in traditional dual learning, merely sidesteps
the challenge of intrinsic competence asymmetry (Wang et al., |2018)). This imbalance still arises
from the distinct natures and complexities of the primal-dual tasks, destabilizing the self-supervised
feedback loop.

3.2 GENERALIZED DUALITY FRAMEWORK VIA COMPLEMENTARY TASK

To address the two-fold challenges, we propose generalized duality that redefines task duality
through complementary dependencies. It transcends traditional duality’s strict input-output rever-
sal requirement by leveraging partial and stable dependencies between task components, enabling
robust self-supervised rewarding even for tasks lacking inherent mutual implicativity.

Definition 2. Let the input space X of a primal task T, be decomposed into two disjoint subspaces:
X (known components) and X,, (unknown components), such that X = X3, U X,,. The primal task
Tp is a mapping Ty : X — Y that maps x € X to an output space’y € Y. Its complementary dual
task T.q is a mapping that leverages y and the known component Xy, to reconstruct the unknown
component X,, € Xy:

Tea s (¥, Xk) = Xu-
The pair (Tp, Tea) is said to form a generalized dual pair if they satisfy the complementary consis-

tency principle:
Vxe X,y =Tp(x): d(xu, Tealy, xx)) <,

where d(-) : X x X — RY is a domain-specific distance metric, and € > 0 is a tolerance threshold.

Leveraging this generalized duality, we can construct a self-supervised reward to quantify the pref-
erence of a primal-task output analogously to Def. [T} Given an input x € X with decomposition
x = (zx, ¥,) and its corresponding output y = T,,(x), the reward is defined as

T(X7 y) X €xp (_>\ -d (Xu7 ﬂd(ya Xk))) ) (3)

where A > 0 controls reward sensitivity.

Example 1: Generalized Duality Feedback for a Two-Sum Task: A + B

The primal task 7, : y <+ X, + X, is to compute the sum of two numbers, with its input and
output as:

— The input x is decomposed as x < (A, B), where x;;, = A (a known number) and x,, = B (an
unknown number, without loss of generality).
— The output y is the result of sum: C = A + B.

The complementary dual task T.q : X, <=y — X, is designed to reconstruct the unknown compo-
nent x,,, using the primal output y (i.e. C') and the known x, (i.e. A):

X, B =C-A

Then, we can directly quantify whether B (original unknown) and B’ (reconstructed unknown)
are consistent as reward signal:

r(x,y) < exp (=X -I(B # B')).

Here, I(-) is an indicator function: it equals 0 if B = B’ (consistent) and 1 otherwise (inconsis-
tent). This ensures the reward is maximized when B and B’ match, and reduced otherwise.




A simple two-sum task is illustrated in Example [T, When generalizing to practical applications,
DuPO also splits the input and selects a component of the input (eg., a numerical variable in math
problem) to serve as the unknown part z,, and construct the corresponding dual task. To further
improve the task duality, the selection could follow principles like Answerability of the Dual Ques-
tion and Uniqueness of the Correct Completeness (see Appendix [A|for details). Moreover, DuPO’s
flexibility also allows for task-specific distance metrics d(-). We could employ BLEU scores for
multilingual translation, while for mathematical reasoning, we evaluate variable equality, yielding
binary rewards, with case studies provided in Appendix [D]

Remark 1. Compared to traditional dual learning, which suffers from strict mutual implicativ-
ity (i.e., y must fully encode x) and bidirectional competence asymmetry, our generalized duality
framework offers three fundamental advantages:

1. Overcomes the Invertibility Constraint. By redesigning the dual objective from recon-
structing the full input x to only a selected unknown component x,,, our framework fun-
damentally bypasses the stringent requirement of task symmetry. This relaxation is the key
to unlocking dual learning for tasks that are inherently non-invertible, where the primal
output does not contain sufficient information to recover the entire input.

2. Mitigates the Competence Asymmetry. The difficulty of the dual task is significantly re-
duced in two ways. First, the known component X;. acts as a strong contextual anchor,
constraining the solution space for reconstruction. Second, we can simply yet effectively
select an x,, that is not only feasibly reconstructible but also act as a faithful reward signal
for the primal task’s solution quality (Appendix[A)). This directly addresses the “weak dual”
pitfall and ensures the self-supervised reward is reliable and informative.

3. Enables Broad Applicability. It unlocks dual learning for a broad class of tasks previously
considered unsuitable, including complex domains such as mathematical reasoning, code
generation, and dialogue systems where input-output relationships are partial.

3.3 PoLiCcY OPTIMIZATION WITH COMPLEMENTARY REWARD

The core of our Dual Learning-based Preference Optimization (DuPO) framework is to optimize
LLM:s using duality-derived self-supervised complementary rewards r(y ), without external annota-
tions. The objective is to maximize the expected reward based on the (complementary) dual task:

j(@) = ]Eyw‘n'g(y\x) [T(Xa y)] ) (4)

where 7y (y|x) denotes the LLM’s policy (parameterized by ) for generating output y given in-
put x = (x,,Xx). Notably, DuPO is compatible with various RL algorithms (e.g., PPO, REIN-
FORCE++), we adopt GRPO (Shao et al.,|2024) in our experiments for its simplicity and efficiency.

4 EXPERIMENT

We validate the efficacy of DuPO on two representative tasks: multilingual translation and math-
ematical reasoning. Below, we detail the experimental setup, datasets, and evaluation metrics for
each task, followed by key results.

4.1 EXPERIMENT SETUP

Base Model. We evaluate DuPO on a diverse set of strong and popular base models to demonstrate
its effectiveness and robustness. For translation tasks, we employ Seed-X-7B-Instruct (Cheng et al.,
2025)), one of the strongest open-source translation models. For mathematical reasoning, we select
models of varying scales and capabilities, including small-scale yet powerful DeepSeek-R1-Distill-
Qwen-1.5B (DeepSeek-Al [2025) and its larger counterpart DeepSeek-R1-Distill-Qwen-7B, both
distilled from the SOTA DeepSeek-R1. We also include Qwen3-4B (Yang et al., [2025), the latest
strong small LLM, and the most capable open-source reasoning model, OpenReasoning-Nemotron-
7B (Moshkov et al.,[2025)). These models represent strong and representative baselines within their
respective model scales, ensuring comprehensive evaluation. Additionally, we also include some
SOTA and impressive ultra-large models like Doubao-1.5/1.6-Thinking (ByteDance Seed Team,
20235)), Claude-Sonnet4-Thinking, and DeepSeek-R1 (DeepSeek-Al, 2025) for comparison.

Dataset. For translation tasks, we focus on 28 languages that are aligned with the language cover-
age of Seed-X, selecting 1,000 prompts for each language from a multilingual pre-training dataset
to create our training prompt set. Additionally, we collect 7,000 parallel data entries across these



ESA Seed-X-7B-Instruct w/ DuPO =1 GPT-40 =1 DeepSeck-R1-0120 EEEl Google Translate

Model BLEU COMET BLEURT Avg.

Qwen3-8B 21.7 84.8 658 574
Doubao-1.5-Thinking 26.2 87.9 71.7 619
Qwen3-235B-22B 28.4 88.8 739  63.7
DeepSeek-R1-0528  30.2 89.2 75.0 648

Seed-X-7B-Instruct ~ 28.8 87.0 72.6  62.8

3.67 366 364

En2XX Zh2XX Avg

w/ DuPO (ours) 303 89.1 746 647  Figure 2: Human Evaluation Scores (0-

4) on the Seed-X-Challenge for 14 Lan-
Table 1: Multilingual Translation Perfor- guage Directions. DuPO achieves per-
mance Across 756 Translation Directions in formance comparable to or even surpass-
28 Languages. DuPO significantly improves all ing ultra-large models such as GPT-40 and
metrics and performs comparably to its strong DeepSeek-R1-0120, while significantly out-
counterparts (DeepSeek models). performing Google Translate.

specified languages to support our experiments from the dev set of Flores-200 (NLLB Team, [2024).
For mathematical reasoning tasks, we utilize questions from a mixture of publicly available math-
ematics datasetsﬂ These diverse datasets are widely used to synthesize SFT data or provide oracle
labels for RL, training LLMs on complex reasoning tasks.

Benchmarks. For comprehensive evaluation, we include various tasks and benchmarks:

* Multilingual Translation: We construct an automatic evaluation set by randomly sam-
pling 50 instances for each of the 756 translation directions (across 28 languages) from
the Flores test seﬂ This dataset, comprising 37,800 samples, will be released to facilitate
reproducibility. We employ BLEU (Papineni et al [2002), COMET (Rei et al., [2020), and
BLEURT (Sellam et al., 2020) as evaluation metrics. For human evaluation, we use the
Seed-X-Challenge (Cheng et al., 2025 ﬂ a challenging benchmark to test the boundaries
of LLMs’ translation capabilities with diverse linguistic elements across multiple domains.
Human experts assess accuracy, fluency, and idiomaticity, scoring translations from Chi-
nese or English to seven languages on a 0-4 scale (higher score denotes better translation).

* Mathematical Reasoning: We evaluate our approach on multiple benchmarks, including
AMC23 (MAA| 2023), AIME24, AIME25 and HMMT (Balunovic et al., 2025)), to assess
performance in standardized contest environments. For each problem, we sample 32 re-
sponses using a temperature of 0.8 and a maximum reasoning budget of 32,000 tokens,
then report the average accuracy (Avg@32).

Ultra-large models like DeepSeek-R1 and Doubao-1.6-thinking are accessed via their official APIs.
More details about training are provided in Appendix

4.2 MAIN RESULTS
4.2.1 DUPO Boo0sTs LLM’S PERFORMANCE ON VARIOUS TASKS

DuPO achieves strong performance on diverse tasks, including multilingual translation and mathe-
matical reasoning. On multilingual translation, DuPO elevates the backbone to a SOTA performance
level, rivaling and even surpassing significantly ultra-large LLMs. As detailed in Tab. [I} applying
DuPO to the Seed-X-7B-Instruct model boosts its performance by 1.5, 2.1, and 2.0 across three
automatic evaluation metrics. This performance even surpasses that of current SOTA closed-source
ultra-large language models, such as Doubaol.5-thinking (+2.8) and Qwen3-235B-22B (+1.0), and
is on par with the performance of the latest DeepSeek-R1. As shown in Fig.[2] DuPO demonstrates
remarkable performance, achieving results comparable to state-of-the-art ultra-large models such
as GPT-40 and DeepSeek-R1. Moreover, DuPO substantially outperforms widely-used commercial
closed-source systems like Google Translate, showcasing a clear advantage in translation quality as
perceived by human evaluators.

On mathematical reasoning, the results in Tab. |2] clearly demonstrate that DuPO yields consistent
and significant performance improvements across all models at different scales and baseline reason-
ing ability. On the most powerful OpenReasoning-Nemotron-7B model, applying DuPO increased

"More details on math data preparation can be found in Appendix H

Zhttps://huggingface.co/datasets/openlanguagedata/flores_plus
*https://github.com/ByteDance-Seed/Seed-X-7B/tree/main/challenge_set
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Model AMC23 AIME24 AIME25 HMMT Avg.

DeepSeek-R1-0120 97.7 79.8 70.0 442 72.9
Claude-Sonnet4-Thinking 97.5 82.5 70.0 48.3 74.6
Doubao-1.5-Thinking 99.4 86.3 73.3 57.7 79.2
Doubao-1.6-Thinking 98.8 88.4 834 60.1 82.7
DeepSeek-R1-0528 99.4 91.4 87.5 714 87.4
DeepSeek-R1-Distill-Qwen-1.5B 67.5 20.0 20.0 13.3 30.2
w/ DuPO (ours) 72.5 30.0 26.7 16.7 36.5 (+6.3)
DeepSeek-R1-Distill-Qwen-7B 85.0 56.7 36.7 20.0 49.6
w/ DuPO (ours) 90.0 63.3 40.0 26.7 55.0 (+5.4)
Qwen3-4B 95.0 70.0 66.7 40.0 67.9
w/ DuPO (ours) 97.5 83.3 70.0 46.7 74.4 (+6.5)
OpenReasoning-Nemotron-7B 95.0 83.3 73.3 56.7 77.1
w/ DuPO (ours) 97.5 83.3 90.0 66.7 84.4 (+7.3)

Table 2: Mathematical Reasoning Performances (%) on Representative Benchmarks. DuPO
significantly improves the performances across models with varying base capabilities, enabling
Qwen3-4B to outperform DeepSeek-R1-0120 and OpenReasoning-Nemotron-7B to achieve impres-
sive performance (+7.3).

the average score from 77.1% to 84.4%, achieving impressive performance. This trend of signif-
icant gains continues on the mid-sized Qwen3-4B model, which saw its average score boosted by
6.5 points from 67.9% to 74.4%, even surpassing the ultra-large model DeepSeek-R1-0120. The
approach remains remarkably effective on DeepSeek’s distilled models as well. Even on DeepSeek-
R1-Distill-Qwen-1.5B, the least reasoning capability among the strong baselines, we still achieved
a 6.3-point increase in average accuracy. Our framework’s performance is further validated by con-
crete examples in multilingual translation and mathematical reasoning (case studies in Appendix D).

4.2.2 DUPO SCALES TO VARIOUS BACKBONES EFFECTIVELY

To validate the robustness and generalization of our proposed DuPO framework, we extend our
evaluation to the LIaMA architectural family. Our experiments are conducted on two LIaMA archi-
tectural models: LlaMA-3.1-8B (Grattafiori et al.,|2024) and OctoThinker-8B-Hybrid-Base (Wang
et al., 2025)), the latter of which has undergone middle training on mathematical reasoning knowl-
edge. Considering the significant difference in model ability, we select two benchmarks of moderate
difficulty, AMC23 (MAA,2023) and MATHS500 (Hendrycks et al.,2021)). For a fair comparison, all
models are finetuned using identical training data and settings. Results are listed in Tab.

As seen, DuPO’s effectiveness is not tied to a specific model architecture; it serves as a robust and
generalizable enhancement, delivering significant improvements to diverse backbones regardless
of their initial reasoning proficiency. DuPO lifts the average score of LlaMA-3.1-8B to 32.1%,
a +24.0 percentage-point gain over the vanilla model, and surpasses SimpleRL-Zoo (Zeng et al.,
2025)) (which relies on oracle-labeled answers during training) by 13.1%. When applied to the
OctoThinker-8B-Hybrid-Base (Wang et al.,2025)), our DuPO approach yields even more impressive
performance improvements of +50.0 on AMC23 and +27.4 on MATH500, achieving an average
performance of 62.5.

4.2.3 DUPO INCENTIVIZES REASONING CAPABILITY ON BASE MODEL

Further validating DuPO’s versatility, we demonstrate its effectiveness even when applied directly to
a base model without a preliminary supervised fine-tuning (SFT) phase for activation of reasoning
behavior. We track the learning dynamics by simultaneously collecting the primal task accuracy
(“Forward Acc”) and dual task accuracy (“Backward Acc”) on the training set and its generalization
performance on three unseen test set.

As shown in Fig. 3] DuPO provides a stable and effective pathway to awaken and generalize the
latent reasoning abilities of a base model, validating its utility as a powerful training methodol-
ogy. Specifically, the training dynamics reveal a clear and substantial improvement on the primal
task, with the “Forward Acc” soaring from a nascent 15.2% to 56.5%.



MOdel AMC23 MATHSOO Avg‘ —e— AMC AIME24 AIME25 =4~ Forward Acc Backward Acc

LlaMA-3.1-8B 2.5 136 8.1
w/ SimpleRL-Zoo 15.0 230 190 g
w/ DuPO (ours) 20.0 44.2 321 » w0
OctoThinker-8B-Hybrid-Base 5.0 42.6 23.8 g:
w/ DuPO (ours) 55.0 700 625 <%
0 5b 160 150 260 ZéO 360
Steps

Table 3: Performances (%) of DuPO on Dif-
ferent Backbone Models. DuPO even surpasses
SimpleRL-Zoo, which utilizes labeled answers as
reward. DuPO’s potential is further exemplified
by OctoThinker, which underwent additional mid-
dle training.

Figure 3: Training Progress of DuPO on
Qwen3-4B-Base. The performance consis-
tently improves on the primal/dual task (For-
ward/Backward Acc) and the benchmarks.

Model AIME24 AIME25 Avg,
DeepSeek-R1-0120 79.8 70.0 74.9
Claude-Sonnet4-Thinking 82.5 70.0 76.3
DeepSeek-R1-Distill-Qwen-1.5B 20.0 20.0 20.0

w/ DuPO rewarding 53.3 24.1 38.7 (+18.7)
Qwen3-4B 70.0 66.7 68.4

w/ DuPO rewarding 86.6 68.9 77.7 (+9.3)

Table 4: Inference-Time Scaling on Mathematical Reasoning Using DuPO Rewarding (Back-
ward Acc) for Reranking. Our method improves the performance of policy models with varying
base ability, without requiring additional training.

This up-
ward trajectory provides direct evidence that the reward signal derived from our dual-task serves
as an effective guide for enhancing the model’s reasoning. More importantly, this acquired skill
demonstrates robust generalization. Performance on the test set AMC23 leaped from 20% to 70%,
with similarly significant gains observed on the AIME24 and AIME25 datasets.

4.2.4 DUPO SCALES REASONING DURING INFERENCE WITHOUT TRAINING

Beyond serving as a reward signal for RL training, the DuPO mechanism can be naturally applied as
a training-free, inference-time reranking strategy to improve the reasoning capabilities of any LLM.
The process unfolds in three stages: 1) Similar to the rollout stage during RL process, we could
prompt any given policy model to generate diverse reasoning trajectories. 2) For each candidate
trajectory, we use its final answer to ask the policy model to solve the corresponding dual question
automatically constructed without accessing labeled answer. We could apply more computation by
performing K (K = 8 in our experiments) sampling runs on each dual question for a more reliable
reward estimate, a practice distinct from RL training. 3) Finally, for each test set question, we select
the trajectory with the highest backward accuracy on its dual questions as the final output.

As presented in Tab. [] the experimental results demonstrate that DuPO provides accurate reward
signals, effectively guiding models towards correct reasoning, serving as an efficient approach for
scaling reasoning capabilities even without training. On the two challenging AIME benchmarks,
applying DuPO as a reranking method improves the average performance of Qwen3-4B by 9.3
points, elevating its accuracy from 68.4% to 77.7% without any additional training. Notably,
the DuPO-enhanced Qwen3-4B surpasses DeepSeek-R1 and Claude-Sonnet4-Thinking (77.7% vs.
74.9%/76.3% on average). The impact on DeepSeek-R1-Distill-Qwen-1.5B is even more pro-
nounced, with an 18.7 point increase (20.0% to 38.7%).

4.3 EFFECTS OF TASK DUALITY

To verify the efficacy of our component selection strategy, we conduct an ablation study by remov-
ing it and training on the entire unfiltered dataset. The results, illustrated in Figure 4{ reveal a clear
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Figure 4: Performance Ablation of DeepSeek-R1-Distill-Qwen-1.5B/Qwen3-4B on Mathemat-
ical Reasoning. Our unknown component selection strategy reduces training noise and improves
these models’ performance across three benchmarks.

trend: removing the selection strategy results in a significant performance degradation across most
benchmarks. This is further evidenced by an average accuracy drop of 3.6 and 5.4 percentage points
for the 1.5B and 4B models, respectively. The result validates our strategy’s effectiveness, confirm-
ing that by improving task duality, it provides a cleaner reward signal that is crucial for achieving
superior performance.

5 RELATED WORK

5.1 PREFERENCE OPTIMIZATION FOR LLMS

Preference optimization is pivotal for aligning LLMs with desired behaviors, with current research
dominated by three paradigms reliant on external supervision. RLHF (Ouyang et al} [2022)) aligns
models with human preferences, but is fundamentally hampered by the cost and inconsistency of
human annotation (Lee et al.l 2023 Zhang et al., 2024). As a cost-effective alternative, LLM-as-a-
Judge (Zheng et al.| 2023} [Lee et al.| 2023)) utilizes a powerful LLM for evaluation. The reliability
is perpetually undermined by the judge model’s own performance limitations and intrinsic biases,
such as sensitivity to response ordering or stylistic artifacts (Wang et al.| [2024; |Gudibande et al.,
2023} L1 et al.l [2024a). In parallel, RLVR has shown success in domains like mathematics by
using ground-truth outcomes as reward signals (DeepSeek-Al} 2025; Team, 2025} |Yang et al.,|{2025)).
However, this paradigm’s continued reliance on labeled answers as external supervision and it’s ill-
suited for free-form tasks, such as multilingual translation, that inherently lack a single, definitive
ground truth. Recent self-supervised paradigms explore alternative reward sources. Some leverage
consistency checks between problem paraphrases (Zhang et al.||2025), while others utilize self-play
to generate a curriculum (Huang et al., [2025)), which requires managing a multi-agent adversarial
process.

DuPO
differs by sourcing its reward from the intrinsic, dual structure of a task itself and provides a reliable
and self-contained verification signal, sidestepping dependencies on auxiliary data generation or the
complexities of adversarial dynamics.

5.2 DUAL LEARNING

Dual learning enhances model performance by leveraging intrinsic task symmetry, where a primal
task and its complementary dual task mutually provide supervision. He et al.|(2016) first introduced
dual learning for machine translation, which uses bidirectional tasks (e.g., En—Zh and Zh—En) to
generate pseudo-labels via back-translation (Sennrich et al.,|2015), reducing reliance on parallel cor-
pora—a breakthrough for low-resource language pairs. Building on this foundation, the paradigm
has proven highly versatile—spanning multi-modal (Y1 et al., 2017; Zhu et al. 2017} Ren et al.,
2020) and knowledge reasoning (Dognin et al.|[2020), and extending to reinforcement learning (Luo
et al.| |2019; Bahng et al, 2025). In modern LLMs, it further refines output quality and enforces
semantic consistency (Zou et al., [2025; (Chen et al., 2024). However, the reliance on strict task
duality, requiring mutually invertible tasks—precludes its application to open-ended or creative do-
mains. In this work, we generalize the dual learning paradigm, moving beyond this rigid invertibility
constraint.



6 CONCLUSION

We introduce DuPO, a dual learning-based preference optimization framework that eliminates the
need for costly human annotations and handcrafted rewards in LLM training. Its core innova-
tion, generalized duality, generates self-supervised feedback by decomposing and reconstructing
input spaces, addressing critical limitations of traditional dual learning and preference optimization
paradigms. DuPO’s effectiveness is validated across diverse tasks: in mathematical reasoning, it
boosts average accuracy by 6.4 percent points across models from 1.5B to 7B, while in multilingual
translation, it elevates a 7B model to rival larger SOTA LLMs with COMET score gains of up to 2.1
across 756 translation directions. Furthermore, as a training-free reranker, DuPO enables smaller
models to outperform significantly larger LLMs by up to 9.3 points. This model-agnostic and task-
versatile design positions DuPO as a scalable, annotation-efficient solution for more autonomous,
adaptable, and cost-effective LLM optimization.

REPRODUCIBILITY STATEMENT

To ensure the full reproducibility of our work, we provide a comprehensive description of our
methodology and experimental setup. We detail the step-by-step application of our method in Ap-
pendix [A]and the pipeline for training data construction in Appendix [B] For training and evaluation,
Section specifies the large language models and datasets utilized, while Appendix |C] lists the
corresponding hyperparameters and configurations used. Furthermore, illustrative case studies are
presented in Section[D]to offer qualitative insights into our method’s application. To further promote
reproducibility and facilitate future research, we will also open-source our code.
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A CONSTRUCTION OF DUAL QUESTION FOR MATH REASONING

We propose a simple approach for construction of dual question for mathematical reasoning. The
algorithm operates on mathematical expressions and performs the following key steps:

1. Pattern Recognition and Exclusion: The algorithm first identifies numerical candidates
within the expression while excluding numbers in specific contexts: subscripts (x1, x2), in-
equality constraints (z < 5), common exponential bases (27, 10¥), and function arguments

(f3)).

2. Variable Generation and Replacement: For each valid numerical candidate, the system
generates a unique variable identifier of the form Variable;,, where str is a randomly
generated lowercase string. The original number is then substituted with this variable.

3. Question Generation of Dual Task: Using the transformed expression and the original
answer, the algorithm constructs inverse problems following templates such as: “Given
that the correct answer is {answer}, determine the value of {variable}.”

This methodology enables systematic generation of problem variants while preserving mathematical
validity and semantic coherence. From a single primal question, multiple dual questions can be
derived. To ensure that these dual questions robustly satisfy the properties of duality, we filter the
candidates using the following two principles:

1. Answerability of the Dual Question: For the set of sampled answers collected for a given
primal question, at least one answer must be capable of correctly solving the corresponding
dual question.

2. Uniqueness of the Correct Completeness: Among the same set of sampled answers, at
most one should correctly answer the dual question.

Taken together, these two principles ensure that for any selected dual question, there is one and only
one correct answer within the pool of candidate solutions for the primal task. This establishes the
one-to-one correspondence necessary for generating a reliable self-supervised reward signal.

B MATH RL DATASET PREPARATION

Our dataset preparation process began with the collection of 1,815,942 prompts from various pub-
licly available datasets (Chen et al.| [2025; |Albalak et al., [2025; He et al.| 2025} [Ji et al., [2025).
After deduplication, we obtained 318,649 primal questions and generated 1,059,671 dual questions
through our designed steps as discussed above. After that, we employed Qwen2.5-7B-Instruct (Yang
et al} [2024a) to sample 32 candidate answers for each primal question and then prompted it to an-
swer the corresponding dual question based on these candidates. Subsequently, we rigorously fil-
tered out all dual questions that failed to meet our predefined principles above. We repeated this
sampling and filtering process with Qwen3-4B (Yang et al., [2025), this time with 8 candidate an-
swers per question. The resulting collection of high-quality, diverse mathematical questions along
with corresponding dual questions formed our final RL training set, providing a robust foundation
for our reinforcement learning process in the mathematical domain.

C EXPERIMENT DETAILS

We present more details about our training as follows. For the training process, we use a train batch
size of 512, mini batch size of 32, sampling temperature of 1.0, and 16 rollouts per prompt.

with a learning rate of le-6 and weight decay of 0.1 (following the
default configuration in verl), with gradient clipping set to 1.0. For translation tasks, we set the
maximum input length to 2,048 tokens and output length to 4,096 tokens. For mathematical tasks,
we use the same input length but extend the maximum output length to 30,000 tokens.

D CASE STUDY

To illustrate the efficacy of our DuPO approach, we present two representative scenarios in Tab. 5]
that demonstrate how DuPO provides a reliable reward signal across diverse domains.

Scenario 1: Mathematical Reasoning Validation. In mathematical reasoning, DuPO derives dual
task questions from the primal task question where key numerical parameters are replaced with
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Scenario 1: DuPO on Mathematical Reasoning

Primal Task Let AABC have circumcenter O and incenter I with A 1 OI,
circumradius 13, and inradius 6. Find AB - AC. (Correct Answer: 468)
Dual Task #1 Let AABC have circumcenter O and incenter I with TA 1 OI,

circumradius Vg, and inradius 6. Find AB - AC. Check your work: If
the solution for above question is [ answer ], what must V;;, have been?

Dual Task #2 Let’s examine: Let AABC have circumcenter O and incenter I with
IA 1 OI, circumradius 13, and inradius V;.;. Find AB - AC. When the
solution for above question is [ answer |, what’s the corresponding V/.;?

Candidates Answer: 468 Backward Accuracy: 69.1%
Answer: 108 Backward Accuracy: 0%
Answer: 312 Backward Accuracy: 0%

Scenario 2: DuPO on Machine Translation (MT)

Primal Task Translate to Chinese: As knowledge of Greek declined, the West found
itself cut off from its Greek philosophical and scientific roots.
Reference BEERIEFRRIVEETE, PR | HoA B 2 IR AR -

Primal MT #1 & A IS ERIRRER, AU E OS5 A ERE EARERIF R
E£TER . (BLEU: 45.85)

Dual MT #1 As knowledge of Greek declined, the West found itself cut off from its
philosophical and scientific roots in Greece.(BLEU: 82.07)

Primal MT #2 BEE XS A BETE R T R, BT AL E CS A RS AR AR
JRBR4ETF K - (BLEU: 28.65)
Dual MT #2 As understanding of the Greek language gradually fades, the West finds

itself cut off from the roots of Greek philosophy and science.(BLEU:
16.11)

Table 5: Case Studies of DuPO on Mathematical Reasoning and Machine Translation. DuPO
validates each candidate’s quality through a corresponding dual task, reliably identifies the superior
solution over inferior ones.

variables, and the model tries to work backwards conditioned on candidate answers. When given
a geometry problem about triangle properties, three candidate answers are sampled: 468, 108, and
312. DuPO automatically derives two dual questions by replacing the circumradius (13) and inradius
(6) with variables, asking the model to deduce these values from the proposed answer. The candidate
answer 468 achieves 69.1% accuracy on dual task, while the incorrect answers (108 and 312) totally
fail to answer the dual task.

Scenario 2: Machine Translation Quality Assessment. For translation tasks, DuPO leverages re-
verse direction translation as the dual task to evaluate translation quality. Given an English sentence
about Greek philosophical decline, two Chinese translation candidates are generated and subse-
quently back-translated to English. The first translation achieves a BLEU score of 45.85 in the
forward direction and 82.07 in the back-translation, demonstrating semantic preservation and trans-
lation fidelity. In contrast, the second candidate shows degraded performance with BLEU scores of
28.65 and 16.11, respectively, indicating semantic drift and poor translation quality.

These case studies validate DuPQO’s core hypothesis: high-quality solutions maintain consistent in-
formation across dual task formulations, while inferior solutions exhibit significant degradation.
This dual validation mechanism provides a robust framework for automatic quality assessment with-
out requiring ground truth labels.

E PERFORMANCE GAP ANALYSIS BETWEEN DUPO AND ORACLE
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Figure 5: Training curves of DuPO vs. Oracle-RLVR/Oracle-DAPO. DuPO closely tracks the
oracle baseline that uses ground-truth answer for verifiable reward throughout training.

baselines, Oracle-RLVR and Oracle-DAPO, where both utilize ground-truth answers to verify
rollouts as reward signals. Specifically, Oracle-RLVR utilizes the exact same dataset as DuPO,
serving as a direct baseline. In contrast, Oracle-DAPO employs the DAPO (2023) dataset,
which is a representative high-quality annotated dataset from the open-source community. These
oracles indicate the performance upper bound of the RLVR paradigm given accurate supervision.
For efficiency, we conducted experiments using Qwen3-4B-Base with 8192 maximum output length.

As shown in Figure B] DuPO closely tracks Oracle-RLVR throughout the training process. By
step 600, both methods reach nearly identical performance levels at approximately 35% accuracy.
This close alignment indicates that our self-verification reward signals are accurate and effective.
Furthermore, we observe that the performance of Oracle-DAPO is comparable to that of both DuPO
and Oracle-RLVR. This similarity suggests that our x,, selection strategy has a minimal impact on
the data distribution, thereby demonstrating the robustness of DuPO.

F LIMITATION DISCUSSION

DuPO has demonstrated its effectiveness on mathematical reasoning (representing complex reason-
ing tasks) and machine translation (representing constrained generation tasks), providing a novel
pathway for self-supervised training in LLMs. However, fully open-ended tasks remain inherently
challenging. Tasks such as creative writing, where outputs are highly unconstrained and evaluation
criteria are subjective, require further exploration to effectively extract the unknown component and
construct meaningful dual problems. Intuitively, taking creative writing as an example, specific con-
straints in user instruction (e.g., theme, style, tone) might be extracted as the unknown component
x,, for reconstruction. However, the practical implementation and validation of such mechanisms in
these open-ended domains constitute important directions for future work.

G THE USE OF LARGE LANGUAGE MODELS

We utilized a Large Language Model (LLM) as an assistive tool to proofread the manuscript for
grammatical errors and to provide suggestions for improving clarity and flow. All suggestions were
manually reviewed by the authors, who made the final decisions on all textual modifications to
enhance the paper’s readability.
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