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Abstract

We explore the possibility of exact algorithmic learning with gradient-based meth-
ods and introduce a differentiable framework capable of strong length general-
ization on arithmetic tasks. Our approach centers on Differentiable Finite-State
Transducers (DFSTs), a Turing-complete model family that avoids the pitfalls of
prior architectures by enabling constant-precision, constant-time generation, and
end-to-end log-parallel differentiable training. Leveraging policy-trajectory obser-
vations from expert agents, we train DFSTs to perform binary and decimal addition
and multiplication. Remarkably, models trained on tiny datasets generalize without
error to inputs thousands of times longer than the training examples. These results
show that training differentiable agents on structured intermediate supervision could
pave the way towards exact gradient-based learning of algorithmic skills. Code
available at https://github.com/dngfra/differentiable-exact-algorithmic-learner.git.

1 Introduction

The dream of AGI envisions systems capable of exact learning of algorithmic skills — such as
searching, sorting, or arithmetic — from a reasonable dataset of examples [38| 9} [17]. Here, exact
learning refers to the criterion proposed by Angluin [3] which requires correct application of a
ground-truth rule to every possible input. More formally, given a finite problem alphabet ¥ and an
unknown model M™* computing some function f* : D — ¥* over an input domain D C ¥*, the
exact learning paradigm requires a learner £ to identify f* with probability 1 after observing some
part of M*’s computation on finitely many inputs z1,...,zy € D.

In this paper, we entertain the idea of gradient-based exact learning and provide as evidence a simple
differentiable agent capable of unprecedented state-of-the-art length generalization on arithmetic
tasks. In pursuing the ambitious goal of differentiable exact learning, a couple of considerations arise.

Training Data. First, we cannot expect our differentiable learner £ to identify every computable
function f* from input-output examples (z, f*(z)) alone. Indeed, Gold [13]] showed that no algorithm
can exactly learn the class of recursive functions in the limit from input—output examples (Theorem
L.5), highlighting the inadequacy of such training data. Consequently, we adopt the formal framework
of Papazov and Flammarion [30] for learning algorithms in the limit from observations of intermediate
steps. As we will soon discuss, the addition of observable intermediate steps, termed policy-trajectory
observations (PTOs), allows us to reduce the intractable problem of learning recursive functions to
the more manageable one of learning finite-state transducers (FSTs) [30l see Theorem 16].

Model Class. Second, since for any computable f*, we want gradient-based search to find some
differentiable model capable of executing f*, we need to ensure the computationally universality
(or Turing-completeness) of our model class. To the best of our knowledge, all previously proposed
universal model families commit at least one of the following two unforgivable sins for optimization:
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e Exploding Computation Time: RNNs and Neural GPUs with unbounded precision of internal
arithmetic [37} 32]]; Transformers with growing context windows and unbounded/scaling internal
arithmetic [32, [27, 5]; recurrent models with growing differentiably referenceable memories [16]];

¢ Uninformative Gradients: Architectures with non-differentiable adaptive-computation-time
mechanisms [[14}[11]; models interacting with an external environment without differentiable (or
even continuous) feedback [10 34].

These caveats hurt gradient-based optimization. The first not only causes an inference-time explosion
but also increases the computational distance between emitting an output and receiving a gradient
signal. The second produces gradients with dubious optimization information in a discontinuous loss
landscape. Thus, the cited works achieve Turing-completeness at the cost of rendering gradient-based
training impossible. In contrast, by allowing our Differentiable Finite-State Transducer (DFST)
family free motion over an external environment, we addresses all three limitations and present a
framework with constant precision, constant-time output generation, computational universality, and
the capacity for end-to-end differentiable training.

Note that we omit any optimization critique of other neurosymbolic architectures such as Neural
Turing Machines [15], GPUs [21]], Neural Random-Access Machines [23]], Neural Programmer-
Interpreters [33], Pointer Networks [40], and Hierarchical Attentive Memories [2], since these model
families lack computational universality and therefore cannot, in principle, exactly learn arbitrary
algorithms. Moreover, most of the listed architectures can only express linear memory algorithms.

Main Contributions. Our paper introduces a simple, differentiable, Turing-complete, and paralleliz-
able setup consisting of a DFST agent which interacts with an external environment through action
tokens. We train our DFST model on observed computational traces (PTOs) from expert agents
performing four different arithmetic tasks: binary addition and multiplication (add2, mult2) and
decimal addition and multiplication (add10, mult10) of two numbers. For add2 and add10, we train
on tiny datasets consisting of 20 and 225 examples, respectively, featuring summands with at most 3
digits. Training on these datasets led to both robust and probabilistic length generalization (RLG and
PLGﬂ of 3850 and 2450 digits, respectively. Testing for correctness beyond these numbers of digits
leads to OutOfMemory errors on our A100-SXM4-80GB GPU. Similarly, for mult2 and mult10, we
train on datasets consisting of 3844 and 10000 samples, respectively, featuring multiplicands with up
to 5 digits. Training on these datasets led to RLG and PLG of 600 and 180 digits, respectively, and
we could not test on larger numbers due to insufficient memory. In particular, as far as we tested, we
could not find a single error in the computation of our best trained models for each arithmetic task.
Moreover, we achieved this state-of-the-art length generalization with a well-motivated scratchpad
data in the form of PTOs and a straightforward training procedure, robust to different random seeds.

Table 1: Neural GPU vs. DFST on Arithmetic Tasks

Framework Metric add2 addi10 mult2 multl0
# Samples ~ 200k N/A ~ 200k N/A
Neural GPU # Model Parameters 10368  N/A 10368  N/A
Max Train Number Length 20 N/A 20 N/A
w/ Input-Output Data  Robust LG <20 N/A <8 N/A
Probabilistic LG > 2000 N/A > 2000 N/A
# Samples 20 225 3844 10000
DFST (ours) # Model Parameters 1020 8900 5280 162108
Max Train Number Length 3 3 5 5
w/ PTO Data Robust LG > 3850 >2450 > 600 > 180
Probabilistic LG >3850 >2450 > 600 > 180

Bold numbers indicate inability to test on longer inputs due to GPU memory constraints. We achieved
the reported values for each of the three random seeds we tested.

Related Work. Since exact learning represents the limit of length generalization, we review in
passing some experimental results on length generalization in sequence-to-sequence models. Recent
empirical studies [20} [12} 25, 35| 22| [19] demonstrated that Transformers, modified RNNs, and

'We formally define RLG and PLG for arithmetic tasks in Section



LSTMs length-generalize poorly on a variety of simple algorithmic tasks when trained on input-
output data. With additional data-formatting strategies — such as task-specific index hints, optimized
positional encodings, input reversing, position coupling, and scratchpad guidance — multiple works
on arithmetic generalization in Transformers [4} |19, 42| 24! 43| [18| [7, 18] achieved non-trivial 2-3x
length generalization with high but not perfect exact-match accuracy (EMA).

Interestingly, similar to us, Hou et al. [[18] train on scratchpad data consisting of the computational
traces of a Turing machine (TM) designed to solve the specific algorithmic task. However, whereas
our agent only observes the evolution of the TM tape, Hou et al. [18] train with access to the TM
state transitions, effectively trivializing the task, as the transformer merely needs to memorize the
given algorithm without performing any program synthesis.

Finally, we make a detailed comparison in Table T| with the prior work [21} [31]] most relevant to our
paper. Kaiser and Sutskever [21] introduce a Neural Cellular Automaton, called the Neural GPU,
which achieves remarkable PLG when trained solely on input-output examples of binary addition and
multiplication. Unfortunately, Price et al. [31] report that the Neural GPU’s generalization capacity
highly depends on the random seed used for training and initialization. Only a few random seeds
and hyperparameter configurations lead to 2000-digit PLG, and all trained models fail on highly
structured and symmetric examples containing only a few digits. In contrast, our training procedure
shows robustness to different random seeds, and our trained models achieve perfect accuracy on long
symmetric examples as far as we could test. Furthermore, our DFST agents train with only a simple
learning-rate schedule, while the Neural GPU training depends on multiple intricate techniques,
including curriculum learning, gradient-noise injection, gradient scheduling, relaxation-pull, dropout,
and gate cut-off. Hence, as shown in Table [T} the use of observable intermediate steps increases
the robustness and simplicity of the training procedure, greatly diminishes the number of training
samples, and enables the learning of the challenging decimal arithmetic tasks.

2 Learning Framework

Intelligent agents in the wild hardly ever learn novel algorithmic tasks from input-output observations.
Instead, real-life learners observe computational processes and reconstruct the ground-truth function
by making sense of the intermediate steps. We briefly restate the formalization of this idea due
to Papazov and Flammarion [30]] before adapting the framework to our setting. We start with the
underlying environment, which we model as a symbolic universe.

Definition 2.1 (Symbolic Universe). Given an enumerable set G and a finite set of symbols ¥
containing the empty symbol A, a world-state w : G — ¥ is a function with finitely many non-empty
assignments. The symbolic universe U = U (G, X)) is the set of all such world-states.

The set G serves as the geometry of the universe. For our setup, we will only work on an unbounded
2-dimensional grid G' = Z2 and observe the computation of grid agents.

Definition 2.2 (Grid Agent). A grid agent operating in a symbolic universe 2/(Z?,¥) constitutes
a triple M = (Q,U, §), where Q is a finite set of states and 6 : Q x Z?> x U — Q x Z*> x U is a
computable transition function with perception restrictions given below.

The grid agent M evolves and interacts with the environment according to the deterministic transition
rules §(q,p,w) = (¢',p',w’), where ¢ — ¢’ € Q denotes the state update, p — p’ € Z? — the
shift in perception, and w — w’ € U — the change of the world-state. Importantly, (i) 6(q, p, w)
depends only on the current state g and the observed cell w(p); (ii) [|[p — p'[|2 < 1 —1i.e., the agent
moves continuously up (U), down (D), left (L), right (R), or stays (S); and (iii) M can only edit the
world-state at position p. For a complete interaction trace, we specify an initial state gy € @, an
initial perceived cell py € Z?, and a final state ¢¢ € @ as a halting condition. Note that by setting
M ={U,D,L,R,S}, we can essentially redefine the transition function  as a mapping from @ x 3
to @ x ¥ x M. Clearly, grid agents extend Turing machines to the plane, and hence, the family of
grid agents G is computationally universal.

Grid agents also naturally model how human teachers navigate around a blackboard, with ¢ cor-
responding to the teacher’s state of mind, p — the chalk’s position, and w(p) and w’(p) — the
currently observed and written symbol, respectively. This analogy allows us to derive the policy-
trajectory observations defined in [30]. Indeed, at time ¢ € N, the students have no access to the
teacher’s current neural state g, but can still observe how the teacher M reacts with a symbol token
st = we(pt) € X and a motion token m; = “p;y1 — pi”” € M to the current partial observation



x; = wy(p;) € X. Thus, the students observe the trajectory (x4, a;);_ of the history-dependent
policy mar(xo, ..., 2t) = ar = (st, m) enacted by the teacher — hence the name, PTOs.

In our code base, we constructed 4 grid agents Magda2, Magda10, Muu1t2, Mmu1t10 €mulating the
aforementioned 4 arithmetic tasks and operating on 4 problem alphabets Y.4a0 = {0,1,\, +},
Yadato = {0,..., 9, A\ +} Epaae2 = {0, 1, A, x}, Zpuaeio = {0,...,9, A, x}. Each of these grid
agents receives as input a string z = a o b (where o = +/x) horizontally written on the grid, while
all other cells remain empty, and proceeds to compute, leaving only the final answer on the grid.

A Differentiable Learner. Papazov and Flammarion [30] showed that a computationally costly
learning-by-enumeration strategy provably identifies any computational agent M * in the limit from
PTOs. In this paper, we consider a more efficient gradient-based approach. Namely, we assume
that the ground-truth model M™* comes from the universal class G of grid agents and train a DFST
(defined below), on a small dataset of computational traces from M™.

Definition 2.3 (Differentiable Finite-State Transducer Agent). Given a symbol-token alphabet X
and a motion-token alphabet M, a DFST of dimension d operating over the symbolic grid ¢ (Z?, X))
with motion vocabulary M consists of 3 trainable weight tensors A € RIZIxdxd B ¢ RIEx[Z|xd
C € RIZIXIMIxd and a trainable initial hidden state 2o € R?. Upon observing a one-hot symbol

encoding ; € RI*! at time ¢ > 0, which corresponds to the currently perceived part of the world-state
we(pt), the DFST performs the following updates:

hit1 = A[xt]ht
§t = B[J]t]ht
’ﬁ’Lt = C[l’t]ht,

and outputs a symbol token o; = argmax(§;) € 3 and a motion token p; = argmax(rmy) € M,
which change the world-state and shift the perception as in Figure

Observation: x, = w/(p,)

DFSTg: Perception: World-State:
ht+1 = A[xt]ht D1 = Pr + 1y wt+l(pt) =0

Action: @, = (6, ) = argmax((BIx], Clx)h,)

Figure 1: A DFST agent interacting with and external environment.

Let us denote by A, the space of p—precision DFSTs. Let ¢, : A, — G denote the mapping that
equates a DFST agent My(A, B, C, ho) with a grid agent M (Q, §) by building the set of states ) from
the 2P¢ possible values for h; and by constructing the transition function & from the tensors A, B, C.
Clearly, a DFST with a hidden-state dimension d can express the policy of any grid agent with at most
d states by one-hot encoding the state transitions d into the tensors A, B, C. In other words, if M € G
has d states qo, - . ., gq—1, > has k symbols s, .. ., sp—1, and M has r motion tokens my, ..., m,_1,
we let ¢;, s;, and m; correspond to the basis vectors e; in R¢ RF, and R", respectively. Then, we
set h = ey, and if 6(q;, s;) = (qir, 851, m4), we set A°[4,4',i] = 1, B%[j,5',i] = 1,C%[j,£,i] = 1,
and we define all other tensor weights as 0. Thus, the updates issued by the DFST(A%, B®, C?, hg)
exactly emulate §, and we arrive at the following theorem.

Theorem 2.1 (Universality of DFESTS). The map v, : A, — G is surjective. In particular, for any
precision p € N, the DFST family A, is Turing-complete when interacting with an external symbolic
grid U(Z?,X). Moreover, any d—state grid agent admits emulation by DFST agents of dimension d.

The novelty in our proposed model family comes from the decoupling of the differentiable agent
and the environment. Indeed, sequential models such as transformers and RNNs move in a single
direction with no means of controlling the next interaction spot with the environment. We amend this
limitation by allowing our DFST control unit to not only edit the grid but also to issue commands for
where the next interaction should occur.



We emphasize the point that any sequential neural network capable of state tracking (i.e., emulating
a finite-state transducer) could, in principle, learn the policy of a grid agen M* € G. Such models
include RNNs, LSTMs, GRUs [} 136, |41} 126, 39] but not transformers or diagonal and non-gated
SSMs (28, 129]]. Nevertheless, we chose the DFST as our trainable model due to its linear structure
and simplicity, which we hope will inspire future theoretical analysis. Moreover, since DFSTs contain
no nonlinearities, parallel scans (a la Blelloch [6]]) allow for fast log-parallel training.

3 Experimental Details

We train on PTOs from the expert grid agents My.sxr With the MSE loss % Ztho[(ét —51)% +
(7y — my)?] under the next-action prediction (NAP) objective. Here, s; and m; denote the one-hot
encodings of the symbol and motion tokens emitted by the expert models at time ¢t > 0.

Identity Initialization. We train four DFST control units D.442, Daga10; Dmuit2, and Dyyit10 With
hidden-state dimensions matching the number of states of the corresponding ground-truth grid agent:
i.e., 12, 20, 32, and 108. We initialize the state-transition matrices A[i],Vi € X, as the identity
I; € R¥*4 and the tensors B and C' as 0. We initialize each coordinate of hg uniformly at random
and independently in the interval (0,1), after which we normalize h to have a unit Euclidean norm.

Optimizer. We use the standard Adam optimizer with a cosine annealing scheduler and no warm-up
period. We start the training of Dagd10, Dmuite, and Dyyiv10 With a learning rate of 0.001, and the
training of D440 — With a learning rate of 0.01. We always use batch size 32 and £f1oat32 precision.

Data Selection. We create a data sampling function DS(R, task, p, ¢, N) which for radix R and
arithmetic task task, samples all PTOs from Myasxr on number pairs (a, b) with at most p digits —
that is, a total of R?(RP — 1)?/(R — 1)? samples. Then, DS samples all R? pairs of ¢-digit numbers
made of a single digit repeated g times. After that, if N > R?(RP —1)2/(R —1)? + R?, DS samples
at random another N — R%(RP — 1)?/(R — 1)? + R? unique pairs of numbers having up to ¢ digits.
For add2 weuse p = 1,q = 3, N = 20, for add10 — p = 1,q = 3, N = 225, for mult2 —
p=1,qg=>5 N = 3844, and for mult10 — p = 1,q = 5, N = 10000.

Length Generalization. We define the Probabilistic Length Generalization (PLG) of a model as the
largest number of digits m such that the model achieves perfect EMA when tested on 5 random pairs
of numbers having exactly m digits and 5 random pairs of numbers having at most m digits. We
define the Robust Length Generalization (RLG) of a model as the largest number of digits m such
that PLG > m and the model achieves perfect EMA on the R? pairs of m-digit numbers that have m
identical digits. We noticed after extensive testing that (as observed by Price et al. [31]) same-digit
numbers constitute the hard test instances for generalization. Clearly, RLG < PLG. In Section we
show the relationship between longer training time and RLG for experiments with random seed 42. In
Table (1] our reported values for PLG and RLG reflect our experiments on add2, add10, mult2, and
mult10 for training lengths 500k, 500k, 3mln, and 3mln iterations, respectively, over the 3 random
seeds 42, 5, and 22, demonstrating the simplicity and robustness of our training procedure.

Memory Constraints. During training, our DFST models observe PTOs of lengths at most 70 for
the addition tasks and at most 464 for the multiplication tasks. However, the lengths of PTOs from
Magda, Maga10, Muuit2, Muw1v10 On number pairs with 3850, 2450, 600, and 180 digits, respectively,
become on the order of 30mln, 12mln, 6mln, and 500k operations. Checking the EMA on sequences
above these lengths completely fills the memory of our A100-SXM4-80GB GPU.

Verifying Exact Learning. We draw attention to the fact that verifying whether two grid agents follow
the same deterministic policy reduces to deciding the equivalence of two Turing machines. Since
the language EQqy; = { (M1, Ms) | L(My) = L(M,) } is undecidable, no general procedure
can check whether 7y, . = TD,..x DY just observing the descriptions of Myasxr and Diaskr.
Consequently, we rely on random tests to gain confidence in the ability of Dyaskr.

4 Conclusion

Our results demonstrate that Differentiable Finite-State Transducers achieve unprecedented length
generalization on arithmetic tasks using simple, gradient-based training. This work provides a
concrete step toward the broader goal of enabling differentiable agents to learn precise algorithmic
behavior through structured intermediate supervision. We hope that our minimalist, differentiable,
and Turing-complete framework will inspire further theoretical explorations of the loss landscape of
algorithmic learning.
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A Robust Length Generalization vs. Training Time

In this section we report the experimental results that highlight the trade-off between robust length
generalization and training time across various model sizes and training tasks. Our findings indicate
that increased training times correlate with lower training loss and improved length generalization

capabilities.
Training Loss (Add2)
1071 4 —— 0.125mln
0.25min
1073 4 —— 0.5mln
%) 1075 4
1%2]
=]
—
f=] —
é 10 7 J
=
10—9 p
10—11 4

0 1 2 3 4 5
Iteration

RLG (Add2)
38004 — RLG - o
3600 -
3400
Q
-
= 3200 A
3000 -
2800 - ‘
0 1 2 3 4 5
Iteration leb5

Figure 2: Binary addition: Training loss (left) and RLG (robust length generalization, right) across
training iterations.
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Figure 4: Binary Multiplication: Training loss (left) and RLG (robust length generalization, right)
across training iterations.
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Figure 5: Decimal Multiplication: Training loss (left) and RLG (robust length generalization, right)
across training iterations.
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