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Abstract
We investigate the impact of limited data on train-
ing pairwise energy-based models for inverse
problems aimed at identifying interaction net-
works. Utilizing the Gaussian model as testbed,
we dissect training trajectories across the eigen-
basis of the coupling matrix, exploiting the in-
dependent evolution of eigenmodes and reveal-
ing that the learning timescales are tied to the
spectral decomposition of the empirical covari-
ance matrix. We see that optimal points for early
stopping arise from the interplay between these
timescales and the initial conditions of training.
Moreover, we show that finite data corrections
can be accurately modeled through asymptotic
random matrix theory calculations and provide
the counterpart of generalized cross-validation in
the energy based model context. Our analytical
framework extends to binary-variable maximum-
entropy pairwise models with minimal variations.
These findings offer strategies to control overfit-
ting in discrete-variable models through empirical
shrinkage corrections, improving the management
of overfitting in energy-based generative models.
Finally, we propose a generalization to arbitrary
energy-based models by deriving the neural tan-
gent kernel dynamics of the score function under
the score-matching algorithm.

1. Introduction
Controlling overfitting is basic in machine learning, par-
ticularly as modern, over-parameterized architectures en-
hance learning capabilities. To prevent learning noise or
irrelevant patterns, numerous empirical solutions have been
proposed that modulate the model’s implicit bias through its
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Madrid, Spain. 2Escuela Técnica Superior de Ingenieros Indus-
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architecture and optimization, employing various implicit
regularization mechanisms (Belkin, 2021). Finding the op-
timal balance between maximizing data utility, preserving
generalization, and ensuring the privacy of training data rep-
resents a critical trade-off that can be challenging to pinpoint.
In supervised learning tasks like classification, overfitting
is readily identified using standard practices. Metrics like
test-set accuracy, particularly when augmented by cross-
validation in data-scarce scenarios, clearly signal overfitting,
enabling strategies like early stopping, regularization, and
hyperparameter tuning to mitigate it. Furthermore, training
and generalization performance in regression and classifi-
cation tasks are now well understood in certain simplified
regimes, such as high-dimensional ridge (Atanasov et al.,
2024; Advani et al., 2020; Saxe et al., 2014; Tomasini et al.,
2022) or logistic (Mai et al., 2019; Loffredo et al., 2024)
regression or numerous more complex setting of non-linear
regression in various scaling regime (see for instance (Mei
et al., 2018; Arnaboldi et al., 2023; Saad & Solla, 1995)
among many other recent works). This gives the possi-
bility to assess some simple indicator like the generalized
cross-validation (GCV) (Golub et al., 1979), an exact rela-
tion between train/test errors valid for the ridge regression
that can be derived using a leave-one-out argument (see
e.g. (Furtlehner, 2023)). This methodology is also relevant
in deep learning contexts (Wei et al., 2022), particularly in
over-parameterized regimes where it aligns with observed
stochastic gradient descent behaviors (Patil et al., 2024).

Recent advancements in training and architecture have
greatly enhanced the generative capabilities of neural net-
work models across various fields (Bengesi et al., 2024), en-
abling the creation of photorealistic images, credible speech
synthesis, and biologically functional synthetic proteins (Wu
et al., 2021). Despite this progress, selecting optimal mod-
els from a pool remains challenging due to noisy training
data often leading to undetected overfitting. Yet, detecting
overfitting in unsupervised learning settings, particularly for
generative modeling, is elusive but crucial, especially with
sensitive datasets like human genomic data (Yelmen et al.,
2021; 2023) and copyrighted content. Unlike supervised
learning, unsupervised learning lacks clear overfitting in-
dicators, complicating model development and validation.
While some theoretical insights on optimal regularization
tuning for simple energy-based models exist (Fanthomme
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et al., 2022), practical indicators such as early stopping
points during training dynamics remain undefined. More-
over, estimating log-likelihood for model selection poses
significant computational challenges (Béreux et al., 2022;
2024). Consequently, there is an urgent need for methods to
detect and mitigate overfitting in these contexts.

This paper focuses on energy-based models (EBMs) (Ack-
ley et al., 1985), which encode the empirical distributions
of various data types —such as neural recordings (Roudi
et al., 2009), images (Du & Mordatch, 2019), and ge-
nomic (Yelmen et al., 2021) or proteomic (Morcos et al.,
2011) sequences—into a probability framework rooted in
Boltzmann’s law. By adopting a Bayesian approach, EBMs
aim to maximize the likelihood function, enabling the gen-
eration of new data that closely resembles the training set
and facilitates the extraction of detailed microscopic in-
sights. EBMs range from simple Boltzmann Machines
(BMs) and Restricted Boltzmann Machines (RBMs) to more
complex architectures like convolutional neural networks,
making them versatile in statistical physics for solving in-
verse problems like deducing Hamiltonian parameters from
observed data. The interpretability of simple EBMs en-
ables to uncover underlying rules within datasets: this ca-
pability has proven highly effective in fields ranging from
neuroscience (Roudi et al., 2009) to bio-molecular struc-
ture prediction (Cocco et al., 2018) predominantly through
pairwise maximum-entropy models. Recent advancements
extend these applications, using complex EBMs to infer
high-order interactions (Decelle et al., 2024; 2025; Feinauer
et al., 2022; Feinauer & Lucibello, 2022) or constitutive
patterns (Tubiana et al., 2019; Decelle et al., 2023), signifi-
cantly deepening our comprehension of data structures.

This work develops a theoretical framework for understand-
ing and mitigating overfitting in EBMs. We begin with a
simple Gaussian model as a fundamental non-trivial exam-
ple, using it to quantitatively analyze overfitting through
synthetic experiments with predefined ground truths. We
examine eigenvalue dynamics using artificial covariance ma-
trices that simulate real datasets, exploring how overfitting
arises from different learning timescales associated with
various eigenmodes of the empirical covariance matrix. We
address inaccuracies in learned eigenvalues with corrections
based on random matrix theory (RMT), showing that the
quality of model generation in EBMs is less affected by
the lower modes of the covariance matrix, while the accu-
racy of inferred couplings is significantly impacted. We
demonstrate that regularization techniques like shrinkage
corrections are crucial to counteract overfitting, providing
a robust framework to refine EBM training by considering
finite-sample-size effects. This approach also informs our
analysis of more complex models like the BM, underscoring
the importance of regularization strategies to enhance model
reliability and predictive accuracy.

2. Gaussian Model
The Gaussian Energy-Based Model (GEBM) specifies a
multivariate Gaussian distribution for real-valued variables
x ∈ RN , characterized by 2-body interactions encoded
within a symmetric, positive-definite coupling matrix, J ∈
RN×N . The GEBM is the simplest model that effectively
captures the first and second-order statistics of a set of data.
For the purposes of this analysis, we assume 0 means for
the data components, thus simplifying the initial model by
excluding the learning of external biases. Nevertheless,
the theoretical framework presented below can be readily
extended to the above to accommodate non-zero means. The
probability distribution of a configuration x is then:

p (x |J)=(2π)
−N/2√

detJe−
1
2x

⊤Jx. (1)

It is straightforward to check that the population covariance
matrix of such distribution is C = EJ

[
xx⊤] = J−1, with

EJ [·] denoting the average with respect to (1).

Inference problem. Consider a datasetD = {xµ}Mµ=1 with
M entries generated with a GEBM model with coupling
matrix J∗. Our objective is then to find the parameters Ĵ
that best approximate the empirical distribution of the data
—formally pD(x) = M−1

∑M
µ=1 δ (x− xµ)—, with the

probabilistic model (1). Without prior information about
the model parameters J , the maximum likelihood (ML)

estimator ĴML,M is calculated as ĴML,M =
(
ĈM

)−1

,

where ĈM is the empirical covariance matrix from M data
points, provided it is invertible (MacKay, 2003). Denoting
with N the number of data components (data dimensions),
this condition requires that M ≥ N , assuming samples to
be independent. Clearly, when M →∞, ĴML,M recovers
the true set of parameters used to generated the data, J∗.

Training dynamics. The GEBM stands out as one of the
few high-dimensional inference problems where an analyt-
ical expression for the ML estimator is available, indepen-
dent of both M and N . However, our focus here is on the
training dynamics associated with an iterative maximization
of the likelihood function through gradient ascent dynamics,
as is typical in EBMs. This approach allows us to explore
the adaptive process of parameters’ estimation over time.

In the GEBM, the log-likelihood (LL) of the param-
eters J depends only on ĈM and it reads L(J) =

− 1
2

∑
i,j JijĈ

M
ij + 1

2 log detJ . This quantifies how well J
matches the observed data. In a standard gradient ascent
algorithm, the update rule for the parameters reads:

J t+1
ij = J t

ij + γ ∂L
∂Jij

, (2)

where γ is the learning rate. Assuming non-symmetric per-
turbations on the parameters Jij , the gradient in (2) reads:

∂L
∂Jij

=−ĈM
ij +EJ [xixj ]=−ĈM

ij +
(
J−1

)
ij
. (3)
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The second equality comes from the exact expression of
2-point correlations of the Gaussian model in terms of its
coupling matrix J : this is equivalent to assume that we
perfectly sample the model with an infinite amount of con-
figurations at any t. For a more generic EBM, another source
of noise should be added due to the finite number of samples
(or chains) used to estimate the empirical correlations used
to compute the gradient.

To analyze the learning dynamics, we use the spectral de-
composition of J and project the gradient onto its eigen-
basis, denoted by V = {vα}Nα=1. From (3), the gradient
projected on modes α and β is expressed as:

(
∂L
∂J

)
αβ

= −ĉMαβ +
δαβ

Jα
, (4)

where ĉMαβ is the projection of ĈM . Generally, for any

matrix M, we write mαβ
def
= v⊤

αMvβ .

This approach enables us to formulate a set of evolution
equations for the eigenvalues {Jα} and the rotation of the
eigenvectors. By assuming an infinitesimal learning rate,
we can transform the discrete-time update equation (2) into
a continuous set of differential equations (see Appendix A
for further derivation details):

τ
dJα
dt

=
1

Jα
−ĉMαα; τvα dv

β

dt
=

ĉMαβ
Jα−Jβ

for α ̸=β, (5)

where τ is a timescale set by the learning rate, τ = 1/γ.
From Eq. (5) we see that eigenvectors of J stop rotating
when they align with the eigenvectors of ĈM to cancel out
the numerator ĉMαβ . Eq. (5) can be integrated analytically,
and ĉMαα can be replaced by the matrix eigenvalue ĉMα .

The solution of (5) can be expressed in an explicit (although
not closed) form using Lambert W0 function, namely:

Jα (t) =
1

ĉMα
+

1

ĉMα
W0

[
Bαe−(ĉ

M
α )

2 t
τ

]
, (6)

with the constant Bα is fixed by the initial condition at
t = 0. Eq. (6) delineates the evolution of each eigenvalue,
which progresses independently once the eigenvectors of
J align with those of ĈM . A crucial aspect of this equa-
tion is that the relaxation time it takes for an eigenvalue to
reach its steady-state value J (∞)

α =limt→∞ Jα(t)=1/ĉMα
is inversely proportional to the square of the corresponding
eigenmode in the covariance matrix: indeed, for t→∞
Eq. (6) describes an exponential relaxation to the fixed point
with a timescale ∝ (ĉMα )−2.
This relationship shows that the evolution of each eigen-
value is closely linked to the significance of the correspond-
ing eigenvector in representing the data, so that stronger
modes in the covariance matrix are learned more quickly
than weaker ones. The idea that information is learnt pro-
gressively starting from strong PCA’s directions is closely

related to the concept of spectral bias (Rahaman et al., 2019)
- although here the decomposition is spectral rather than
in a Fourier basis - and it has been characterized theoreti-
cally in the case of linear regression (Advani et al., 2020).
The interaction between these varying timescales can result
in an initial phase where the strongest components of the
dataset’s PCA are effectively captured, followed by a phase
where training begins to adjust noise-dominated directions,
potentially leading to overfitting.

We’ve shown that GEBMs’ learning dynamics are governed
by the spectral decomposition of ĈM , with finite-sample
effects arising from changes in the spectrum due to finite
M . This falls within the realm of random matrix theory
(RMT) (Potters & Bouchaud, 2020), as we detail shortly.

Asymptotic RMT analysis. In our simplified setting of
GEBMs, the parameters of the model J(t) along the learn-
ing trajectory are an explicit function of the empirical
covariance matrix ĈM upon choosing the same constant
Bα = B > −1/e in (6) for the initialization (B = −1/e cor-
responds to the initialization J(0) = 0) and assuming that
J(t) is aligned with ĈM at t = 0. This choice simplifies
considerably the analysis, and as explained in Appendix G.
Using RMT, all relevant quantities can be derived in closed
forms based solely on the population spectrum ν and the
aspect ratio ρ =M/N , under the asymptotic proportional
scaling where M,N →∞ with ρ held constant.

We are interested in the train and test energies:

Etrain=N
−1Tr[JĈM ] and Etest=N

−1Tr[JC∗],

the coupling error EJ def
=N−1∥J − J∗∥2F , with ∥ · ∥2F , the

Frobenius norm, and the LL (train and test)

LLtrain,test
def
= 1

2N log det[J ]− 1
2Etrain,test (7)

where C∗ def
= limM→∞ ĈM is the population matrix. In

addition, we will also explore the behavior of the maxi-
mizer of the log-likelihood with regularization, i.e. L[J ] =
LLtrain[J ] − λA(J) focusing on A(J) = Tr[J2] for L2

ridge regularization, and A(J) = Tr[J ] for L̃1 lasso reg-
ularization on the spectrum. L̃1 is applicable since J is
symmetric and remains positive definite throughout the tra-
jectory, ensured by the logarithmic barrier.

We simply quote here the result of the asymptotic lim-
its (for ρ > 1, more details in Appendix G), based on
RMT (Marčenko & Pastur, 1967; Ledoit & Péché, 2011).
First, the spectral density ν̄ of ĈM reads in this limit:

ν̄(x) =
ρΛi(x)

πx
= ρ

πx
Γi(x)[

1−Γr(x)
]2

+Γi(x)2
, (8)

where Λ(z) = Λr(x) + iΛi(x) and Γ(z) = Γr(x)± iΓi(x)
for z = x+ i0+, obey the self-consistent equations

Λ(z) = 1
1−Γ(z)τ , Γ(z) = 1

ρ

∫ ν(dx)x
z−Λ(z)x ,
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Figure 1. (a): Eigenvalue spectra of the empirical covariance ma-
trices for MNIST dataset (Deng, 2012). Black lines show spectra
using the full dataset size (M∗), while scatter colored points rep-
resent subsets (M<M∗). (b): Black line shows a synthetic pop-
ulation eigenvalue spectrum based on (10) for N =100, r=0.9,
β = 0.9, γ = 1.1, x1 = 10−1, x2 = 10; colored points show the
eigenvalues from ĈM calculated by sampling different M config-
urations from a GEBM model with J∗=C∗−1 (Eq. (1)).

in terms of the population spectral density ν(dx). In turn
we obtain

Etrain = ρ
π

∫∞
0
dyj(y)

[
Λr(y)Γi(y) + Λi(y)Γr(y)],

Etest =
ρ
π

∫∞
0
dyj(y)Γi(y), (ρ ≥ 1),

while the coupling error takes the form

EJ =
∫∞
0

ν(dx)
x2 +

∫∞
0
ν̄(dx)j(x)

[
j(x)− 2

ρ
(1−ρ)+2ρΛr(x)

x

]

where j(x) is one of the analytical functions jt, jL1 and
jL2

corresponding respectively to the time dependent, L̃1

and L2 regularized forms of J . Remarkably, for the L̃1

regularized coupling matrix we get a deterministic relation
between the train and test energies (Appendix G)

Etest =
(
1− ρ−1Etrain

)−1
Etrain, (9)

which is the counterpart of GCV for GEBMs which might
be usable in practice for arbitrary EBM (in the same way as
GCV can be used for deep regression models), as it allows
one to get an estimation of the test LL. This concept remains
a topic for future research. Instead, we have focused on
strategies for data cleaning and regularization, specifically
employing shrinkage techniques (Bun et al., 2017). Using a
model of the data defined in the next section, allows us to
specify ν(x) in order to assess these strategies by comparing
with the expected optimal performances given by RMT.

3. Modeling realistic data covariances
To effectively study the impact of finite number of data on
the learning process of a GEBM in a controlled setting, we
need to define a synthetic model that facilitates the analysis
of different learning timescales. The first step is to artifi-
cially create a population covariance matrix C∗, from which

a ground truth coupling matrix J∗ is constructed, through
J∗ = C∗−1. Using this setup, we generate a multivariate
Gaussian distribution and extract M data points from it.
These data points are then used to train a new GEBM us-
ing the empirical covariance matrix, ĈM , derived from the
M of these samples, with the goal of inferring the original
model parameters.

As previously discussed, the training dynamics of each
mode of J are directly linked to the eigenvalues of ĈM . To
enhance this analysis, we have developed a synthetic model
for the spectrum of C∗, which influences the spectrum of
ĈM in scenarios with finite datasets. This model closely
mimics the eigenvalue spectra of real datasets, as illustrated
in Figure 1-(a), which shows the eigenvalue spectrum (in
descending order) of covariance matrices from MNIST for
several sizes M (more examples are given in Appendix B).
Our analysis reveals that the spectrum of ĈM remains rel-
atively stable w.r.t. M for a significant number of modes,
indicating ĉMα ≈ c∞α = c∗α. However, smaller eigenvalues
fluctuate markedly with M ; they tend to be underestimated
as M decreases, suggesting ĉMα < c∗α for small c∗α, and
are slightly overestimated for the larger eigenvalues. This
behavior is rigorously characterized using RMT tools in
simplified data models (Baik & Silverstein, 2006; Ledoit &
Péché, 2011). Additional insights into the conservation of
eigenvectors across modes are detailed in Appendix B.

Inspired by these findings, we will characterize our synthetic
population matrix C∗ by an eigenvalue spectrum {c∗α}Nα=1

generated according to a mixture of power laws. The cumu-
lative distribution is defined as follows:

P [λ<x]=r
[
x−x1

1−x1

]β
11(x1,1)
x +

[
r+(1−r)

(
x−1
x2−1

)γ]
11(1,x2)
x

(10)
where 11(a,b)

x denotes the indicator function in the interval
(a, b). This setup distinguishes between “strong” modes
with c∗α > 1 and “weak” modes with c∗α < 1, with their
prevalence controlled by parameter r. Parameters β and
γ represent the power-law exponents for these two cate-
gories, with x1 and x2 the respective lower and upper cut-
offs. Model (10) is chosen to i) mimic the eigenvalue distri-
bution of a realistic dataset’s covariance matrix, though our
numerical results are robust to specific spectral details, and
ii) to extract asymptotic quantities in the continuous-density
limit N,M →∞ (with ρ =M/N finite) using RMT.

Figure 1-(b) shows an example spectrum of population
eigenvalues c∗α from Eq. (10) with N = 100 (black line),
alongside empirical estimates of finite-data eigenvalues ĉMα
(scatter points) for various M values, demonstrating that
strong modes remain stable despite finite-M noise, while
weak modes are consistently underestimated. The full ma-
trix C∗ is finally assembled by projecting the diagonal ma-
trix of these eigenvalues onto a random orthogonal matrix
U∗ = {u∗

α}Nα=1, resulting in C∗ =
∑

α c
∗
αu

∗
αu

∗
α
⊤.
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Figure 2. Training dynamics of the GEBM from a population
matrix C∗ (in (a), with system size and parameters matching
those in Fig. 1-(b)), and from an empirical covariance matrix ĈM

(generated from C∗ through (2), with ρ= 2.11 (in (b)). (a)-(b)
display the analytic evolution of eigenvalues Jα toward the steady-
state (lines), and a comparison with numerical training (points, in
(a)). In all cases the initial condition is an identity matrix.

4. Training Dynamics on Synthetic Data
The introduced synthetic model enables analysis of training
dynamics in two scenarios: i) an ideal setting with an in-
finite amount of samples using C∗ as the data covariance
matrix, and ii) a more realistic situation with a finite dataset,
represented by the empirical covariance matrix ĈM .

Training Dynamics with Infinite Data. For clarity, we be-
gin by training our GEBM using the population covariance
matrix C∗. Fig. 2-(a) illustrates the evolution of the cou-
pling matrix eigenvalues Jα, comparing analytical solutions
from Eq. (6) and numerical iterative training using Eq. (2),
both starting from the same initial condition (Jα(0) = 1).
The analytical and numerical results match perfectly, demon-
strating the expected time-scale separation: eigenvalues Jα
corresponding to stronger covariance modes converge faster
to their fixed point J (∞)

α =J∗
α=1/c∗α, which are the small-

est in the coupling matrix, while weaker modes converge
slower. Starting from an initial condition J(0) that does
not commute with C∗, the coupling matrix must initially
align its eigenvectors with those of C∗, a process detailed
in Appendix C and guided by Eq. (5). Following this align-
ment, the eigenvalues evolve independently according to
Eq. (12), supporting our analytical approach. Notably, train-
ing directly from the population matrix achieves perfect
reconstruction of the original model, thereby avoiding any
discrepancies or generation errors as expected.

Impact of Finite Datasets: Interplay of Initialization and
Time Scales Favoring Early Stopping Strategies. We
explore the training dynamics using finite-data estimates
of the population covariance matrix, ĈM . With any finite
M , the GEBM trained with ĈM will show discrepancies
from the true model J∗. We track these discrepancies by
computing the reconstruction error EJ between J∗ and the
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J
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Figure 3. Results for GEBM training with finite data. (a)-(b)-(c)
display respectively the reconstruction error EJ, the test-LL and the
generation error EC, all plotted vs time, for various sample sizes M
(indicated by a color gradient from blue to red for increasing ρ=
M/N . Dashed black lines refer to a training from C∗ (i.e M→∞).
(d): comparison between time of minimum reconstructon (circles),
maximum test LL (diamonds) and time at which the generation
error converges to its steady-state value. These quantities are also
shown in the related panels for better clarity.

trained J(t) defined in the previous section. Fig 3-(a) illus-
trates the error’s evolution over training time. Beginning
from an identity matrix, at low ρ = M/N values, the er-
ror displays marked non-monotonic behavior, peaking at
a specific tmin(ρ) before stabilizing at the training’s fixed
point. At higher ρ, the error decreases monotonically until
stabilization, following a trend consistent with the M→∞
scenario (i.e. using C∗, in black dashed line). This behavior,
also noted in complex EBMs (Decelle et al., 2024; Agoritsas
et al., 2023), underscores the GEBM’s utility as a simple
model yet capturing complex phenomena in EBMs.

This analysis shows that with limited data, there is an opti-
mal training duration beyond which model inference accu-
racy declines, highlighting a sweet point for early stopping.
However, detecting this point without ground truth is chal-
lenging: it does not coincide with the peak of test LL (as
in (b)), a phenomenon also noted in RBMs (Decelle et al.,
2024). Moreover, the generation’s quality, given error be-
tween C(t) = J(t)−1 and the population matrix C∗ in (c)
(computed as EC

def
= ∥C∗−C(t)∥F), stabilizes well before

tmin(ρ) and remains flat afterwards. This suggests that the
generation quality of the GEBM isn’t solely dependent on
the model itself, as evidenced by consistent generation er-
rors at both the minimum-error point tmin and the training’s
fixed point, indicating this metric fails to capture the deteri-
oration of model parameters over time. These optimal times
are shown against ρ in Fig 3-(d). Additional evaluation
metrics are discussed in Appendix F.

Fig. 2-(b) illustrates the evolution of eigenvalue Jα over
time for a sample size with ρ=2.11. Initially, the stronger
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Figure 4. (a)-(c): for ρ=M/N =1.5 we plot the reconstruction
error during training (in (a), vs t) and the final reconstruction
obtained using a L2-norm regularization (in (c), vs λ). (b): train-
ing time achieving optimal reconstruction error (points) and time
of maximum test LL (squares), plotted vs ρ. (d): optimal value
of regularization prior λ vs ρ, again selecting the optimum w.r.t.
reconstruction error and w.r.t. the test LL. All panels show com-
parisons between numerical results for various N (colored lines)
against asymptotic results from RMT (black line).

modes (deep red curves), which are less influenced by low-
M induced noise, quickly stabilize, aligning their eigen-
values ĉMα close to the population values c∗α, marked by
black crosses. This early alignment to very small and rela-
tively accurate values makes the error curve (EJ) for finite
M closely resemble that of the M→∞ scenario. However,
after a period around tmin(ρ), the model starts encoding the
weaker modes (blue lines), which are systematically under-
stated relative to the population, causing J (∞)

α =1/ĉMα to
significantly exceed the ground-truth J∗

α = 1/c∗α. If train-
ing begins from small Jα values, there’s a critical point
where the eigenvalues temporarily align more closely with
their ground-truth than at the fixed point, effectively cre-
ating an optimal time t∗α where Jα(t∗α) ≈ J∗

α. This align-
ment markedly decreases discrepancies between the trained
model’s eigenvalues and those of the true model, highlight-
ing the significance of initial conditions in training dynamics.
Yet, the specific initial values of Jα(0) are less critical, as
long as they are substantially smaller than 1/ĉMα for the
weaker modes of ĈM (see Appendix D for further details).

Now, we can also explain the stable generation performance
of the GEBM, shown in Fig. 3-(c), using scale separation ar-
guments. Generation error mainly depends on the strongest
ĉMα values, which are learned early on, whereas the over-
all model quality is controlled by the weakest ĉMα (where
J
(∞)
α = 1/ĉMα ), which minimally affects generation error

due to their small value. While this phenomenon appears
unique to the GEBM, a similar effect is observed in binary
pairwise EBMs (cf. Sec. 6).

Asymptotic analysis. Our findings so far have been es-
tablished by numerically integrating the gradient ascent
dynamics (i.e. using Eq. (2) with a slow learning rate), or
with the analytical expression for the eigenvalue evolution
(Eq. (6)). In both cases, we utilized empirical covariance ma-
trices extracted from a finite number of samplesM , sampled
from the distribution (1) with finite N . These results are
almost insensible to the choice of the population spectrum
as discussed in Appendix F.

We demonstrate that the phenomena of overfitting and finite-
M corrections can be accurately modeled using RMT to
predict the N,M →∞ limit, thereby removing the need
for empirical data. Detailed methodologies are provided
in Appendix G. For a constant ρ=M/N =1.5, Fig. 4-(a)
compares the reconstruction error of J(t) over the train-
ing period for various N values (colored lines) against the
asymptotic RMT prediction (dashed black lines), showing
strong consistency as N increases. This agreement extends
to the evolution of the test LL (not shown) and the timing of
the minimum error and peak test LL as functions of ρ (see
Fig. 4-(b)). Notably, the optimal stopping times for the two
estimators do not coincide, yet finite (N,M) trainings align
precisely with the asymptotic predictions.

5. Protocols to mitigate overfitting
In the GEBM, non-monotonic behavior stems from adjust-
ments to the eigenvalues of ĈM compared to the popu-
lation covariance matrix. In fact, one can easily check
that replacing the population eigenvectors while retaining
M -dependent eigenvectors to form an optimally corrected
matrix, ĈM

val-pop
def
=
∑

α c
∗
αu

M
α uM

α
⊤, almost eliminates the

non-monotonic effects on model quality and overfitting, as
shown in Fig. 5 (a) (green), and in other datasets or ρ values
we see the bump completely disappear. While effective, this
approach is useless for real experiments where the popula-
tion matrix is unknown. Nonetheless, this idealized scenario
informs the design of protocols aimed at minimizing overfit-
ting and reducing reliance on uncontrollable early-stopping
strategies. We now explore common strategies to mitigate
overfitting within our framework, focusing on regularization
and shrinkage corrections. We also introduce a versatile
downsampling-guided mode-fitting scheme that allows cir-
cumvent the traditional limitations of RMT strategies, and
design corrections that should be valid beyond GEBMs.

Regularization. In machine learning, regularization pri-
ors are standard for preventing overfitting. In the GEBM,
they constrain the growth of eigenvalues Jα, avoiding sub-
optimal fixed points affected by mode fluctuations in ĈM .
For training dynamics, L2 regularization is applied to the
coupling matrix J , and similar outcomes are achieved with
projected L1-regularization on J’s eigenbasis, (a protocol
that facilitating asymptotic RMT analysis). The impact of
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Figure 5. Effect of data-correction protocols on the training a
GEBM (in (a), for ρ = 2.8) and on the final model’s quality as a
function of ρ (in (b)): comparison of the reconstruction error EJ

between training from an empirical covariance matrix ĈM (blue),
optimal L2-regularization (w.r.t. reconstruction, red), shrinkage
formula (cyan). The settings are the same as in Fig.3.

regularization at the fixed point is studied for finiteN and in
the N →∞ limit via RMT. Fig. 4 (c) shows the reconstruc-
tion error as a function of λ, with empirical results aligning
closely with RMT predictions. An optimal λopt minimizes
the error but does not match to the value that maximizes the
test LL (see (d)), complicating λopt’s identification without
knowing the population parameters, akin to identifying opti-
mal early stopping. Further details on regularized training
and RMT are provided in Appendices H.1 and G. Red line in
Fig. 5-(a) illustrates the error over time for a L2 regularized
training using the optimal parameter λopt.

Shrinkage correction protocols are pivotal in statistical
learning and signal processing for estimating covariance
matrices, particularly when the sample size is small relative
to data dimensionality (Bun et al., 2017). Some of these pro-
tocols use rotationally invariant estimators (RIEs) to adjust
eigenvalues distorted by sampling noise (Ledoit & Wolf,
2004; 2020), while preserving eigenvectors, ensuring cor-
rections are independent of the coordinate system. Based
on RMT, RIEs align the eigenvalues of finite-sample covari-
ance matrices to minimize the deviation of the covariance
matrix from the population one. Using the optimal RIE
from (Bun et al., 2017), we correct our ĈM matrices, and
use them for training our GEBMs. Depicted in light blue in
Fig. 5-(a), this new training shows significant improvements
in model inference quality, although some non-monotonic
behaviors persist. The main drawback of this approach is
that it is specific to the GEBM case.

Polynomial fit of eigenmodes. To overcome the limitation
of RIEs, we introduce a simple strategy to correct empiri-
cally the eigenvalues of ĈM : the idea is to downsample our
dataset to obtain Ĉm with m < M and use the correspond-
ing eigenvalues ĉmα values to extrapolate the m→∞ limit
from a linear fit in 1/m (as expected from (Baik & Silver-
stein, 2006)). Additional details are given in Appendix H.2.
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Figure 6. Results on the BM for the inverse Ising problem. (a)-(b):
Training dynamics. (a): Reconstruction error (Frobenius norm)
vs time (number of updates), for different values of dataset’s size.
(b1)-(b2)-(b3): evolution of eigenmodes Jα during training for
3 values of ρ: comparison between numerics (blue lines) and
analytic curve (red). Black crosses indicate the true models’ eigen-
values βĴα. (c): effect between data-correction strategies on the
inferred model. Comparison between optimal L2-regularization
(red), standard ML-training (blue), modes-fitting (orange) and best
reconstruction computed at tmin (green).

We then use the extrapolated eigenvalues to clean our co-
variance matrix and run a new training. The evolution of the
reconstruction error is shown in Fig. 5-(a) (yellow).

Comparison of strategies. The effectiveness of various
strategies to counteract overfitting is depicted in Fig. 5-(b),
presenting the reconstruction error across different ρ values.
Notably, the optimal L2 regularization, the ĈM

val-pop strategy,
and the performance at the optimal early stopping point
derived from RMT all follow similar trajectories, with a
1/
√
ρ scaling for large ρ as expected. While the high per-

formance of these strategies stems from knowing the true
model to optimize parameters—not usable in practice—we
demonstrate that similar performance can be achieved with
RMT-based shrinkage corrections or empirical polynomial
fits. These methods do not require prior knowledge of the
model, making them especially suitable for real-world infer-
ence applications.

6. Boltzmann Machine for inverse Ising
We extend our analysis to the Boltzmann Machine (BM) or
the so-called inverse Ising problem (Nguyen et al., 2017),
adapting our approach to binary variables x={±1}N . This
model is able to capture multimodal distributions through
its pairwise energy function E(x) = −∑i<j Jijxixj −∑

i hixi, with parameters θ = (J ,h). Due to the lack
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of closed-form solutions for the correlation functions and
likelihood in BMs, we employ a mean-field approximation
suitable e.g. at high temperatures. This approximation
allows for an analytic, albeit not exact, expression linking
the model’s correlation matrix C to the coupling matrix J
as C = (IN − J)−1, facilitating an analytical exploration
of the training dynamics shown in (Agoritsas et al., 2023)
and further elaborated in Appendix I.

Similar to GEBMs, an analytical description of spectral
dynamics can be applied to BMs, though with certain lim-
itations due to two main factors: a) the ML estimator for
the coupling matrix J(t) may not strictly preserve the same
eigendecomposition as ĈM , despite typically observing a
nice alignment for the strongest modes; and b) the binary
nature of the variables is not accounted for in the diagonals
of the covariance matrices. We must remove the diagonal
constraint to allow independent evolution of the modes, sim-
ilar to the GEBM scenario, since a spherical constraint as
in (Fanthomme et al., 2022) would introduce mode coupling.
This decision is crucial for deriving approximate analytical
expressions for training dynamics; without it, the problem
becomes intractable in time. However, the proper fixed
point alone can still be effectively analyzed using mean field
techniques (Kappen & Rodrı́guez, 1998).

As detailed in Appendix I, we can project the gradient on
the spectral basis of ĈM and obtain an approximate analytic
expression for the evolution of the eigenvalues of J :

τ dJα

dt ≈ ĉMα − 1
1−Jα

, (11)

Jα (t) ≈ 1− 1
ĉMα
− 1

ĉMα
W0

[
Bαe

−(ĉMα )
2 t

τ

]
, (12)

whose fixed point is J∞
α ≈1−(ĉMα )−1. This fixed point is

shifted due to our unconstrained diagonal, and neither is J
traceless, as compared to the complete treatment. However,
Eq. (12) still qualitatively captures the training dynamics of
BMs, revealing significant differences from the GEBM sce-
nario where Jα and cα are no longer inversely proportional.
Notably, the smallest cα values are associated with negative
Jα values which are not necessarily small in absolute terms,
which significantly contribute to the reconstruction of J .
Additionally, for positive Jα, Jα increases when ĉMα does.

Results. We conducted numerical experiments training an
Ising-BM on equilibrium data sampled from a 2D Ising
model (i.e. defining J∗ on a 2D nearest neighbors lattice)
with N = 8× 8 spins at high temperature (β = 0.1). Fig-
ure 6 presents the results: Panel (a) shows the reconstruction
error between the trained model and the ground truth βJ∗

for different ρ values, revealing a non-monotonic trend at
low ρ that mirrors observations made with GEBMs (a be-
havior which is robust w.r.t. the system size, see Fig. 20
in Appendix I). Panels (b1)-(b3) track the eigenvalue evo-
lution during training for three ρ values, comparing nu-

merical results (eigenspectrum of J(t)) with the analytic
curve from Eq. (12). While the trends align qualitatively,
particularly in capturing the separation of time scales, the
analytic curves consistently underestimate the actual eigen-
value evolution due to the overlooked diagonal constraint
in the BM model. Nonetheless, this timescale separation
is similar to that observed in the GEBM: stronger covari-
ances (ĉMα > 1↔ Jα > 0) are learned faster, while weaker
covariances (ĉMα < 1 ↔ Jα < 0) take longer. This pat-
tern indicates that the training dynamics are dominated by
the convergence of weak ĉMα . In sparse Ising models, this
involves learning the negative spectrum of J . Unlike in
GEBMs where negative eigenvalues do not exist, in BMs,
these later-encoded modes significantly impact the overall
reconstructed J due to their large absolute eigenvalues, even
though they have negligible effect in sampling quality. Ac-
curately inferring sparse Ising models hinges on effectively
learning weaker covariances, heavily influenced by finite-
data noise. However, training good generative models is
considerably faster, see Appendix I.

Strategies similar to those used in GEBMs can be employed
to mitigate overfitting in BMs, with comparable outcomes
as shown in Fig. 6-(c). Shrinkage formulas are not applica-
ble to BMs, yet the empirical polynomial fit correction for
the eigenvalues proves still effective at reducing overfitting
effects. This is a very good outcome as it is the only non-
informative correction (as the identification of tmin or λopt
requires knowing J∗).

7. Theoretic extension to generic EBM
learning

The analysis of overfitting for simple models such as the
GEBM or the BM constitutes a preparatory attempt to ad-
dress this question in the broader context of EBMs. Let us
see now to which extent the analyses of overfitting carried
out so far is also relevant for more general EBMs. The
line of arguments bears some similarity with the one justi-
fying that high-dimensional linear regressions are relevant
to analyze deep learning (Belkin et al., 2018; Hastie et al.,
2022). To this end let us consider the score-matching al-
gorithm (Hyvärinen & Dayan, 2005) as a theoretical proxy
for the analyses of overfitting in EBM. Even though this
approach might appear sub-optimal in many circumstances
we postulate that the mechanisms leading to overfitting have
similar origin as in more sophisticated methods. Consider
a generic EBM of the form p(x|θ) = Z−1 (θ) e−E(x|θ)

where θ ∈ RP is the vector of parameters and having a train
set D = {xi, i = 1, . . .M} of size M . Defining the score
function as ψ(x|θ) def

= −∇xE(x|θ), the score matching loss
is given by LSM(θ) = 1

2 Êx

[∥∥(ψ(x|θ) − ∇ log p̂(x)
∥∥2
]
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which, thanks to a by part integration rewrites as

LSM(θ) = Êx

[1
2

∥∥∇
(
E(x|θ)

∥∥2−∆E(x|θ)
]
+Cst. (13)

Notice first that for the GEBM, this leads to a learning
dynamics of the coupling matrix corresponding to dJ(t)

dt =

−
(
ĈJ(t) + J(t)Ĉ

)
+ I leading to the solution

jt(x) =
1− e−xt

x
, (14)

when assuming that the initial condition commutes with
Ĉ. More generally, the dynamics of the score function is
governed by a neural tangent kernel (NTK) (Jacot et al.,
2018). We have

dψ(x|θt)
dt

= −Êx′

[
Kt(x,x

′)
(
ψ(x′|θt)−∇ log p̂(x′)

)]

(15)
with Kt(x,x

′) = ∂θ⊤ψ(x|θt)∂θψ(x′|θt)⊤. Integrating by
parts the second term we obtain

dψ(x|θt)
dt

= −Êx′

[
Kt(x,x

′)
(
ψ(x′|θt)

]
+ ϕ̂t(x) (16)

with ϕ̂t(x) = −Êx′

[
∂θ⊤ψ(x|θ)∂θ∇⊤

x′ψ(x′|θ)
]

=

−Êx′

[
∇x′ · Kt(x,x

′)
]
. As for supervised learning

we expect a kernel regime for large enough network’s
width (Chizat et al., 2019). Then K becomes deterministic,
the dynamics is linear, with ψ(x, t) an explicit function of
the kernel matrix K(xs,xs′) on the training set. Indeed,
the NTK dynamics takes place on a reproducing kernel
Hilbert space (RKHS) of finite dimension corresponding
either to HP

def
= Span{∂θqψ(x|θ), q = 1, . . . P}, or to the

HM
def
= Span{K(x,xs), s = 1, . . .M}, depending respec-

tively on whether we are in the under or over-parameterized
regime. In the latter case K̂ss′

def
= 1

MK(xs,xs′) is full rank
and we have

ψ̂(t) = −1− e−K̂(t−t0)

K̂
ϕ̂+ ψ̂(t0) (17)

where ψ̂(t) and ϕ̂ are respectively the vectors
{ψ(xs|θt), s = 1, . . .M} and {ϕ̂(xs), s = 1, . . .M} and
assuming ψ̂(t0) = 0. In any case we can consider only
the projection of ψ on the RKHS, its transverse part being
assumed to be zero at t = t0. As a result, the dynamics
takes place in the “empirical” RKHS and we have

ψ(x|θt) =
1

M

M∑

s=1

K(x,xs)βs(t) (18)

where the vector β is obtained from (17) yielding finally

ψ(x|θt) = −K̂(x)⊤
jt(K̂)

K̂
ϕ̂+ ψ(x|θt0) (19)

where K̂(x) = { 1
MK(x,xs), s = 1, . . .M} is the vector

of empirical features spanning HE . Additionally θt is di-
rectly read off from ψ(x|θt) at first order in θt in the lazy
regime

ψ(x|θt) ≈ ∇⊤
θ ψ(x|θt0)(θt − θt0) (20)

Using the parameter-sample duality eventually leads to

θt = θt0 +
jt(C

(M))

C(M)
ϕ(M) (21)

where

C(M) =
1

M

M∑

s=1

∇θψ(xs|θ)⊤∇θ⊤ψ(xs|θ) (22)

ϕ(M) def
=

1

M

M∑

s=1

∇θψ(xs|θ)⊤ϕ̂(xs) (23)

In GEBM case we recover (14) by letting ψ(x|θ) = θx,
K(x,x′) = 1

2 (xx
′⊤ + x⊤x′) and ϕ̂(x) = x, leading to

ϕ(M) = C(M) with C(M) = 1
M

∑M
i=1 xix

t
i.

8. Discussion
This work presents a theoretical framework to understand
overfitting in simple energy-based models, using the eigen-
decomposition of the data covariance matrix to analyze
training dynamics. We illustrate how the principal com-
ponents control a timescale separation, where information
progressively encoded from the strongest to the weakest
data modes. Due to varying impacts of finite-size noise
on different components, this results in an early-stopping
point dictated by their interplay. Furthermore, we show that
finite sample corrections can be very accurately described
analytically using asymptotic RMT analyses. This analysis
provide us with an analogous of the GCV in the context
of EBM, which deserves further empirical investigations.
This analysis is exact for Gaussian EBMs and approximate
for Ising-BMs at high temperatures, capturing similar phe-
nomena observed in more complex EBMs like RBMs. We
discuss data-correction protocols typically used to mitigate
overfitting and propose to extend these strategies to more
complex models leveraging higher-order data correlations
(e.g. by exploiting the SVD decomposition). Further inves-
tigations into RMT may clarify how early-stopping points
relate to the asymptotic properties of the covariance ma-
trix’s spectrum or which should be the proper observables to
pinpoint them without a prior knowledge of the data model.
Finally, an extension of the theory to EBM via a neural tan-
gent kernel dynamics of the score function deserves further
experimental investigations to find relevant hypothesis for
the spectrum of population covariance matrices of tangent
features.

9



A theoretical framework for overfitting in energy-based modeling

Acknowledgments
Authors acknowledge financial support by the Comunidad
de Madrid and the Complutense University of Madrid
through the Atracción de Talento program (Refs. 2019-
T1/TIC-13298 & Refs. 2023- 5A/TIC-28934), the project
PID2021-125506NA-I00 financed by the “Ministerio de
Economı́a y Competitividad, Agencia Estatal de Investi-
gación” (MICIU/AEI/10.13039/501100011033), the Fondo
Europeo de Desarrollo Regional (FEDER, UE) and the
French ANR grant Scalp (ANR-24- CE23-1320).

Impact Statement
This paper aims to advance the field of Machine Learning
by deepening our understanding of generative models under
data scarcity. While our findings may have broad societal
implications, we do not identify any that require specific
emphasis at this stage.

References
Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. A learning

algorithm for Boltzmann machines. Cognitive science, 9
(1):147–169, 1985.

Advani, M. S., Saxe, A. M., and Sompolinsky, H. High-
dimensional dynamics of generalization error in neural
networks. Neural Networks, 132:428–446, 2020.

Agoritsas, E., Catania, G., Decelle, A., and Seoane, B. Ex-
plaining the effects of non-convergent MCMC in the train-
ing of energy-based models. In Krause, A., Brunskill,
E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J.
(eds.), Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Ma-
chine Learning Research, pp. 322–336. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/agoritsas23a.html.

Arnaboldi, L., Stephan, L., Krzakala, F., and Loureiro, B.
From high-dimensional & mean-field dynamics to dimen-
sionless odes: A unifying approach to sgd in two-layers
networks. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 1199–1227. PMLR, 2023.

Atanasov, A., Zavatone-Veth, J., and Pehlevan, C. Scal-
ing and renormalization in high-dimensional regression.
arXiv preprint arXiv:2405.00592, 2024.

Baik, J. and Silverstein, J. W. Eigenvalues of large sample
covariance matrices of spiked population models. Journal
of multivariate analysis, 97(6):1382–1408, 2006.

Belkin, M. Fit without fear: remarkable mathematical phe-
nomena of deep learning through the prism of interpola-
tion. Acta Numerica, 30:203–248, 2021.

Belkin, M., Ma, S., and Mandal, S. To understand deep
learning we need to understand kernel learning. In proc.
of ICML, pp. 541–549. PMLR, 2018.

Bengesi, S., El-Sayed, H., Sarker, M. K., Houkpati, Y.,
Irungu, J., and Oladunni, T. Advancements in generative
ai: A comprehensive review of gans, gpt, autoencoders,
diffusion model, and transformers. IEEE Access, 2024.
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A. Derivation of projected gradient equations
Starting from the log-likelihood’s derivative w.r.t. a parameter Jij , we can assume that in the limit of an infinitely small
learning rate γ → 0 we can replace the discrete-time update equation for the parameter (2) into a differential equation for
the evolution of each parameter Jij :

Jij (t+ 1) = Jij (t) + γ
∂L
∂Jij

∣∣∣∣
J(t)

−→ 1

γ

dJij
dt

=
∂L
∂Jij

∣∣∣∣
J(t)

. (24)

We now decompose the rhs of the above expression in terms of time-evolution of eigenvalues and eigenvectors of J at time
t. Given the eigendecomposition Jij =

∑
γ v

γ
i Jγv

γ
j , we have

dJij
dt

=
d

dt

∑

γ

vγi Jγv
γ
j =

∑

γ

(
dvγi
dt

Jγv
γ
j + vγi

dJγ
dt

vγj + vγi Jγ
dvγj
dt

)
. (25)

We now project this on the eigenbasis of the eigenvectors of J , which after simple algebraic manipulations leads to

∑

ij

vαi
dJij
dt

vβj = δαβ
dJα
dt

+ (1− δαβ)


∑

i

vαi
dvβi
dt

Jβ +
∑

j

dvαj
dt

Jαv
β
j


 (26)

= δαβ
dJα
dt

+ (1− δαβ) (Jβ − Jα)
∑

i

vαi
dvβi
dt

, (27)

where we used the property d
(
uα · uβ

)
= 0 because they are vectors of an orthonormal basis. Finally, combining Eqs. (4)

and (27) separating the contributions for α = β and α ̸= β we get to Eq. (5) in the main text.
A final note on the log-likelihoods’ gradient: in the first expression (3) we have assumed that perturbations are not symmetric,
that is when taking the derivative w.r.t. Jij for i ̸= j we assume that Jij ̸= Jji. Assuming instead symmetric perturbations
one would get a slight different form of the log-likelihood’s gradient w.r.t. (3), given by:

∂L
∂Jij

= Λij

[
−ĈM

ij +
(
J−1

)
ij

]
, (28)

with Λij = 1− δij/2. From the point of view of the training fixed point this is not an issue, the ML estimator is exactly
the same in both cases. However, the modified gradient (28) leads to a slight different dynamics: in particular, it is not
anymore true that the dynamics can be exactly decomposed into a separate evolution for the different eigenvalues of J by
following the above steps. One could either include symmetric constraints on the eigendecomposition when computing
the projected gradient (a more cumbersome process from a mathematical point of view, see e.g. (Magnus & Neudecker,
1999)) or simply double the learning rate on the diagonal terms i = j to compensate for the factor Λij . Nevertheless, the
difference between the analytic evolution (i.e. Eq. (6), obtained assuming non-symmetric perturbation) and a numerical
training performed using the gradient (28) are almost coincident as seen from Figure 7. None of the results presented in the
manuscript is affected by such a difference in the gradient computation.

B. Finite-M fluctuations of eigenbasis
We detail additional eigenvalue spectra of covariance matrices from various datasets in Fig. 8, complementing those in
Fig. 1 of the main text. The spectra for CIFAR-10 (Krizhevsky et al., 2009) and the Human Genome Dataset (Consortium
et al., 2015) are displayed in (a) and (b), respectively. Panel (c) illustrates the empirical covariance matrix from equilibrium
configurations sampled from a 2D Ising model with periodic boundaries at high temperature (β = 0.1), i.e. in a paramagnetic
phase. Panel (d) presents another synthetic spectrum, generated through a mixture of power-laws from Eq. (10), but using a
different set of parameters than those used for Fig. 1-(b) (and used for the trainings in Figs. 2 and 3). This new spectrum
was used for the figures involving comparisons with RMT (Figs. 4, 5), for numerical stability issues with the integration of
the RMT equations. Nonetheless, all the results presented in the main text about the training dynamics of the GEBM can be
perfectly reproduced on a wide range of the parameters defining the population eigenvalues, so that the qualitative picture
that emerges from our analysis is extremely robust with respect to specific details of the spectrum.
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Figure 7. Difference in the eigenvalues’ evolution in the training of a GEBM when imposing symmetry or allowing asymmetry in the
perturbation of Jij . The points correspond to numerical results obtained by enforcing symmetry on Jij after each update during training
(i.e. using Eq. (28)), while the lines represent analytical expressions derived for the case of non-symmetric perturbations (i.e. Eq. (6)).
The setting is the same as Figure 2 in the main text.
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Figure 8. (a)-(b)-(c): Eigenvalue spectra of the empirical covariance matrix of real datasets, respectively CIFAR-10 (in (a)) , Human
Genome Dataset (in (b)), and a dataset made of equilibirum configurations of a 2-d Ising model of size N = 162 at β = 0.1 (in (c)) .
Black lines represent the spectrum computed with the full set of available data (of size M∗), while scatter colored points show the result
for a subset of data M < M∗. (d): the black line shows a synthetic population eigenvalue spectrum generated according to (10), with
N = 100, and r = 0.5, β = 1.0, γ = 0.5, x1 = 10−1, x2 = 10; colored points display the eigenvalues of the empirical covariance
matrix ĈM computed by sampling M configurations from a GEBM with J∗ = C∗−1 (from (1)) for different values of M .

Fig. 9 illustrates how the eigenbasis of the covariance matrix for real datasets remains consistent against downsampling.
Starting with the eigenbasis decomposition of the covariance matrix for the largest available dataset M∗—considered our
closest approximation to the population matrix ĈM∗ ≈ Ĉ∞ = C∗—we denote its eigenvector matrix as U∗ = {u∗

α}Nα=1.
These eigenvectors are arranged columnwise and sorted in descending order by their corresponding eigenvalue. For each
reduced sample size M < M∗, we perform a similar decomposition on the resultant empirical covariance matrix ĈM , with
its basis represented as UM =

{
uM
α

}N
α=1

. To evaluate the preservation of eigenvectors, we calculate the norm of the matrix
product between a projection operator P n —defined as P n = U∗

1:n (incorporating the first n eigenvectors of C∗)— and
the α-th eigenvector of ĈM , uM

α . This measurement determines whether uM
α falls within the subspace spanned by the

first n eigenvectors of C∗, thereby helping to mitigate eigenvector oscillations due to exchanges between the ordering of
the associated eigenvalues. Fig. 9 shows the norm

∥∥∥P n⊤ · uM
α

∥∥∥ plotted versus n and for each value of α, for the same 4

datasets of Fig. 8. We can observe that for high values of M most eigenvectors are well preserved: this means that most
eigenvectors of ĈM are contained in the subspace spanned by C∗, as the norm of such a matrix product raises sharply to 1
when n ≈ α. On the other hand, when M is lowered (lower panels on each subplot) the conservation starts to deteriorate,
especially in the middle-lower part of the spectrum. Interestingly, we observe that the most conserved directions (at least
in (a)-(b)) are both the strongest covariance modes and the lowest ones, a phenomenon already highlighted in (Bun et al.,
2018).
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Figure 9. Finite-M fluctuations of eigenvectors in the covariance matrix of datasets. The four panels show the norm of the matrix product
between the n-th projection operator P n, containing the first n eigenvectors of the population matrix C∗ (for a real dataset, we just take
the covariance matrix with the full available data M∗) and the α-th eigenvector of the covariance matrix ĈM with M < M∗. (a)-(b)-(c)
respectively refer to MNIST dataset (Deng, 2012), Human Genome dataset, and equilibrium configurations drawn from a 2d Ising model
(same setting as in Fig. 8-(c). (d) refers to a synthetic Gaussian Model generated as discussed in the main text with the same settings as in
Fig. 1. All panels show the results for two values of M , a larger one at the top and a lower one at the bottom. Results are plotted w.r.t. the
projector index n and each line correspond to a different α.

C. Training dynamics in GEBM with non-commutative initialization
This section provides a brief follow-up to what discussed in the first part of Section 4, concerning the training dynamics of a
GEBM. For simplicity we focus here only on the infinite-sample scenario (i.e. when training from C∗), although the same
reasoning holds also for finite data. We are also interested in describing the training dynamics for a generic initialization of
the matrix J , which in general will not commute with C∗. In this scenario, the model has also to learn the eigenvectors
of C∗. Fig. 8 shows the evolution of the coupling matrix eigenvalues Jα according to Eq. (6) (shown with solid lines), in
comparison to a numerical training done iteratively maximizing the likelihood as in Eq. (2) (points). The initial condition
here is a matrix J(0) constructed from a random population of modes Jα(0) ∼ U [0, 1] and projected on to a random
orthogonal matrix. In this way, J(0) and C∗ do not commute. At the beginning of the training, there is indeed a discrepancy
between theory and simulations, because of the wrong assumption of independence of eigenvalues. Once eigenvectors align,
the evolution proceeds independently for each eigenvalue and perfectly follows Eq. (6).

Note that the initial oscillations of the mode-to-mode eigenvector overlap in Fig. 10-(b) is due to the fact that eigenvalue
learning is non monotonic at the beginning, so that there is an initial exchange in the ordering of the eigenvectors. Nonetheless,
after an initial transient all the eigenvectors align to their counterparts in the covariance matrix. This alignment process and
with a much faster timescale w.r.t. the learning of eigenvalues (especially the ones associated to weaker covariances): for
this reason, the assumption leading to our analytic description about independency on the eigenvalues’ evolution remains
justified for practical purposes. This reasoning about eigenvector alignment holds for any input covariance matrix: what
determines the non trivial dynamics of the reconstruction error (explained in Sec. 4) is fully determined by the noise in the
eigenvalues.
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Figure 10. Training dynamics of the GEBM from a population matrix C∗. The system size and the parameters defining C∗ are the same
as in Fig. 8-(d). (a): Evolution of eigenvalues, comparison between analytic solution (full line) and numerical training (points). The initial
condition J(0) is constructed from a random distribution of modes and projecting it back on to a random orthogonal matrix which differs
from the eigenbasis of C∗, so that the two matrices do not commute. (b): Alignment of eigenvectors, computed as the mode-to-mode
overlap between eigenvectors of the population matrix u∗

α and eigenvectors of J , i.e. vα. Red-ish (resp. blue-ish) colors correspond to
strong (resp. weak) covariances c∗α. The learning rate is set to γ = 10−3.

D. Robustness of results w.r.t. initialization at finite M

We show in Fig. 11 some analogous results w.r.t. Fig. 2-(b) for the training dynamics of the GEBM in the case of finite M
(here we set ρ =M/N = 2.11) by varying the initialization. In this case, we do not care about eigenvectors’ alignment as in
the previous section: we only consider different initializations for the eigenmodes of the coupling matrix, i.e. {Jα}Nα=1. We
can observe how the non-monotonic behavior of the reconstruction error (plotted in the bottom rows for each initialization)
is robust against different standard, uninformative and small initializations, and it keeps appearing as long as Jα(0) < 1/ĉMα
for the majority of the eigenvalues (especially the ones corresponding to weak covariances). We can also observe how,
increasing the initial conditions to higher values than the fixed point (i.e. moving from columns (1)-(2)-(3) to the right most
ones (4)-(5)) the non-monotonic behavior disappears, indicating that the early-stopping break-point no longer exists and that
there is now a way to mitigate the overfitting effects with this strategy. However, it is common practice to start with small
values. Moreover, in more complex EBMs where sampling is required to estimate the correlations of the model in the LL
gradient (e.g., BMs or RBMs), it may be a very bad idea to assume extreme initializations (i.e. far from an uninformative
initialization where the parameters of the model are small): this could lead to ergodicity problems in sampling, as the model
may get stuck in spin-glass-like phases, a phenomenon that has been well studied in several EBMs (see e.g. (Decelle et al.,
2018)).
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Figure 11. Results on the training dynamics GEBM at finite amount of data by varying the initial conditions. Panels (a)’s (top row) show
the eigenvalues’ evolution (according to Eq. (12)), while panels (b)’s (bottom row) show the corresponding reconstruction error EJ w.r.t the
ground truth model J∗; all quantities are shown versus time. Each column corresponds instead to a different initial condition. From left to
right: an identity-like initialization (Jα(0) = 1) in column (1), as in Fig. 2-(b); a small-coupling initialization in (Jα(0) = 10−2), in
column (2); two random initialization of modes (resp. in the boundaries [10−1; 10] and [1; 30] in column (3)-(4)); a constant initialization
to very high values larger than the fixed point, i.e. (Jα(0) = 50 > 1/ĉMα ) in column (5). All trainings are performed analytically, with an
empirical covariance matrix ĈM generated with the same settings as in Fig. 2 with ρ = M/N = 2.11.

E. Additional generation quality metrics
In this section we consider an additional metric to compute the discrepancy between the trained model and the true one,
namely the Wasserstrein distance (Delon et al., 2022). Figure 12 shows the same data as in Figure 3 of the main text, now
including the evolution of the Wasserstrein distance between the trained model and the true one w.r.t. training time. Also
this quantity shows a non-monotonic behavior in t especially for low M , with a clear early-stopping point. In the rightmost
panel, we compare the locations of the minima of each error estimator (and the maximum of the log-likelihood) as functions
of ρ. We observe that the time point corresponding to the minimum Wasserstein distance follows a trend very similar to that
of the maximum log-likelihood.

F. GEBM analysis with various eigenvalue spectra
This section presents additional results on the GEBM, analogous to Fig. 3 in the main text, obtained using alternative spectra
for the population covariance matrix. To assess the robustness of our findings with respect to spectral choice, we replicate
the analysis using both synthetic and empirical spectra.

First, in Fig. 13, we consider a synthetic spectrum distinct from Eq. (10): for N = 100, we generate 10 dominant modes
with amplitudes uniformly distributed in [2, 10], and a bulk of N − k = 90 noisy modes with amplitudes in [10−1, 1]. The
qualitative behavior, including overfitting effects, remains unchanged.

Next, we repeat the analysis using empirical spectra: specifically, the eigenvalues of the sample covariance matrices from
the MNIST and Human Genome Dataset (HGD), shown in Figs. 14 and 15, are used as population spectra. The resulting
dynamics, analogous to Fig. 12, again show no qualitative deviations. In all cases, the non-monotonic temporal behavior of
key metrics and the early-stopping times are preserved.
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Figure 12. We compare the results shown in Fig. 3, obtained using various generation quality measures, with the corresponding curves
computed using the Wasserstein distance. (a)-(b)-(c)-(d) display respectively the reconstruction error EJ, the test-LL, the Wasserstein
distance and the generation error EC, all plotted vs time, for various sample sizes M (indicated by a color gradient from blue to red
for increasing ρ=M/N . Dashed black lines refer to a training from C∗ (i.e. M →∞). (e): comparison between time of minimum
reconstruction (circles), maximum test LL (diamonds), minimum Wasserstein distance (squares) and time at which the generation error
converges to its steady-state value. These quantities are also shown in the related panels for better clarity. Apart on panel (d), this figure
contains the same information and quantities as Fig. 3.
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Figure 13. Same plots as in Fig. 12, this time obtained by training a GEBM starting from a synthetic population covariance matrix
spectrum of dimension N = 100, with a set of 10 dominant modes with amplitudes uniformly distributed in the interval [2, 10], and a
bulk of N − k = 90 noisy modes with amplitudes uniformly distributed between 10−1 and 1.
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Figure 14. Same plots as in Fig. 12, this time obtained by training a GEBM starting from the eigenvalue spectrum of the empirical
covariance matrix computed from the MNIST dataset, with a cutoff at 10−6 to filter out weak modes.
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Figure 15. Same plots as in Fig. 12, this time obtained by training a GEBM starting from the eigenvalue spectrum of the empirical
covariance matrix computed from the HGD dataset, with a cutoff at 10−12 to filter out weak modes.
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G. Asymptotic analysis through Random Matrix Theory
G.1. General case

Various quantities appearing in the core of the manuscript are explicit function of the empirical covariance matrix ĈM and
as such are amenable to asymptotic analysis thanks to random matrix theory (RMT). These quantities are respectively the
train, test energy (associated to the EBM), the coupling error and the LL (train and test). For the sake of clarity, we repeat
them here:

Etrain =
1

N
Tr[JĈM ], (29)

Etest =
1

N
Tr[JC∗], (30)

EJ def
=

1

N
∥J − J∗∥2F (31)

LLtrain,test
def
=

1

2N
log det[J ]− 1

2
Etrain,test, (32)

where C∗ def
= limM→∞ ĈM is the population matrix, ∥ · ∥2F the Frobenius norm while J is the estimation of the coupling

matrix from the train samples x assumed to be of the form x = Fz, with E(zz⊤) = I, FF⊤ = ĈM , τ = ∥x∥ distributed
w.r.t. some density σ(τ). Depending on the setting (dynamical, spectral L̃1 or L2) J may appear in three different explicit

functional form jt, j
(L̃1)
α and j(L2)

α of ĈM . We have

jt(x) =
1

x

(
1 +W0[−e−x2t−1]

)
, training dynamics, (33)

j(L̃1)
α , =

α

1 + αx
, (L1 (spectral) regularization), (34)

j(L2)
α , =

α

2

(√
x2 +

4

α
− x
)
, (L2 regularization). (35)

A derivation of Eqs. (34)-(35) is given in Appendix H.1. The jt corresponds to the situation where all eigenvalues Jα have
the initial condition Jα(0) = 0 and follow the time evolution of Eq. (6). Let us call generically j the functions given above.

Using the resolvant

G(M)(z)
def
=

1

zI− ĈM
ç,

we can express the various quantities of interest with help of Cauchy integrals

Etrain =
1

2iπ

∮

C
dzj(z)Tr

[
G(M)(z)C(M)

]
,

Etest =
1

2iπ

∮

C
dzj(z)Tr

[
G(M)(z)C∗],

EJ = Tr
[
C∗−2]+ 1

2iπ

∮

C
dz
(
j2(z)Tr

[
G(M)(z)

]
− 2j(z)Tr

[
G(M)(z)C∗−1]),

LLtrain,test =
1

2iπ

∮

C
dz

log[j(z)]

2
Tr
[
G(M)(z)

]
− Etrain,test

2
,

where C is a contour of integration around the real axis. Next, from RMT, in the proportional asymptotic limit M,N →∞
with fixed M/N = ρ, G(M)(z) has a deterministic equivalent (Hachem et al., 2007) G, defined as

G(z) =
1

zI− Λ(z)C∗ ,
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with C∗ the population matrix and Λ(z) is given implicitly by the following self-consistent equations (Marčenko & Pastur,
1967)

Λ(z) =

∫
σ(τ)

1− Γ(z)τ
, (36)

Γ(z) =
1

ρ

∫
ν(dx)x

z − Λ(z)x
, (37)

with ν(dx) the spectral density of the population matrix and where

Γ
def
= lim

N,M→∞
M
N

=ρ

α

M
Tr
[
G(M)C∗]. (38)

For sake of clarity we do not consider the Marchenko-Pastur equations in full-generality and actually assume the fluctuation
of z to be negligible i.e. we take σ(τ) = δ(τ − 1). Letting ν̄(dx) the asymptotic limit of the empirical spectrum in the
proportional regime, its Stieltjes transform is given by the trace of the resolvent:

g(z)
def
=

∫
ν̄(dx)

z − x .

Then the bulk spectrum is given by the Stieltjes transform

g(y + iϵ) = gr(y) + iπ
ϵ

|ϵ| ν̄(y),

which rewrites (disregarding the pole at z = 0 for ρ < 1)

ν̄(y) =
ρΛi(y)

πy
=

ρ

πy

Γi(y)[
1− Γr(y)

]2
+ Γi(y)2

. (39)

Along the contour we integrate over z = y + iϵ with ϵ infinitesimal. In the limit ϵ→ 0, both Λ and Γ may acquire a finite
imaginary part which we write as

lim
ϵ→0±

Λ(z) = Λr(y)± Λi(y)

lim
ϵ→0±

Γ(z) = Γr(y)± Γi(y).

In terms of these quantities we obtain the following equations for the train and test energies:

Etrain =
ρ

π

∫ ∞

0

dyj(y)
[
Λr(y)Γi(y) + Λi(y)Γr(y)],

Etest =
ρ

π

∫ ∞

0

dyj(y)Γi(y) + 11{ρ<1}j(0)c(ρ),

where c(ρ) given implicitly by ∫
ν(dx)x

x+ c(ρ)
= ρ. (40)

Etrain may also be written

Etrain =

∫ ∞

0

dyyj(y)ν̄(y),

with ν̄(y) given in (39).

The coupling error takes the form for any ρ > 0

EJ =

∫ ∞

0

ν(dx)

x2
+

∫ ∞

0

ν̄(dy)j2(y)− 2

ρ

∫ ∞

0

ν̄(dy)

y

[
(1− ρ) + 2ρΛr(y)

]
j(y)

+ 11{ρ<1}

[
(1− ρ)j2(0) + 2j(0)

(1− ρ
c(ρ)

−
∫ ∞

0

ν(dx)

x

)]
,

but in practice we consider only the under-parameterized regime corresponding to ρ > 1.
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G.2. Special case of spectral L1 Regularization

The case corresponding to the form (34) can be treated more directly without use of Cauchy integrals. In that case,
considering instead the resolvant

G(M) =
1

I+ αĈM
,

with the inverse penalty

α =
1

λ

introduced here for convenience. This leads to the following form of the various quantities of interest

Etrain =
α

N
Tr[G(M)ĈM ] (41)

Etest =
α

N
Tr[G(M)C∗]. (42)

Ecouplings
def
=

1

N
∥αG(M) − J∥2F (43)

LLtrain,test =
1

2N
Tr[logαG(M)]− 1

2
Etrain,test. (44)

In the scaling limit we again have a deterministic equivalent (Hachem et al., 2007) of the resolvent of the form

G =
1

I+ ΛC∗

where the fixed point equations now read (σ(τ) = δ(τ − 1))

Γ =
α

ρ

∫
ν(dx)

x

1 + Λx
(45)

Λ =
α

1 + Γ
(46)

with again Γ given by (38). The expression for Etrain,test are straightforward in the scaling limit:

Etrain = 1−
∫

ν(dx)

1 + Λx

Etest =
Γ

ρ
.

Remarkably, thanks to a leave-one out argument there is a deterministic relationship between the train and test energy. For
s ∈ Itrain, we have a leave-one out relation of the form

G(M)xs =
G(M)

\s xs

1 + α
Mxt

sG
(M)

\s xs

where G(M)

\s is the resolvant obtained after removing s from the train set. Assuming the samples to be of the form xs = Fzs

with FF t = C with zs = N (0,MI) such that E(zszt
s) = I, then for large N we have the concentration property

xt
sG

(M)

\s xs =
1

M
Tr
[
G(M)C

]
+O

( 1√
M

)
.

As a result for large N,M we immediately obtain

Etrain =
Etest

1 + 1
ρEtest

,
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which can be reverted as
Etest =

Etrain

1− 1
ρEtrain

. (47)

Concerning the error on the couplings, we have

EJ =
1

N
Tr
[(
αG(M) − J∗)2]

=
1

N

(
α2Tr

[
G(M)2] + Tr

[
J∗2]− 2αTr

[
G(M)J∗])

From Ledoit-Péchet the last term simply reads (up to O
(
1/
√
M
)

corrections):

1

M
Tr
[
G(M)J∗] = 1

M
Tr
[ J∗

I+ ΛC∗

]
=

1

M
Tr
[ J∗2

J∗ + Λ

]

For the first term we use the following identity:

G(M)2 = G(M)) + α
d

dα
G(M)

As a result, asymptotically we have:

Tr
[
G(M)2

]
= Tr

[ 1

I+ ΛC∗

]
+ α

d

dα
Tr
[ 1

I+ ΛC∗

]

=
(
1− Λ′(α)

)
Tr
[ 1

I+ ΛC∗

]
+ Λ′(α)Tr

[ 1

(I+ ΛC∗)2

]

For this we need to compute Λ′(α) which can be done from the self-consistent equation (46,45):

Λ′(α) =
Λ2

α2

ρ

ρ−Q[Λ]

with

Q[Λ] =
1

M
Tr
[ Λ2C∗2

(I+ ΛC∗)2

]

Ultimately we obtain:

EJ =
1

M
Tr
[( α

1 + ΛC∗ −
1

C∗

)2]
+
α2(1− Λ′)

M
Tr
[ ΛC∗

(1 + ΛC∗)2

]
,

So we have
EJ =

∫
ν(dx)

[ α

1 + Λx
− 1

x

]2
+ α2(1− Λ′)

∫
ν(dx)

Λx

(1 + Λx)2

Finally, concerning LLtrain,test we don’t see how to avoid the Cauchy integral, but the train-test relationship (47) has an
important consequence, because it allows us to get a very precise estimation of the test likelihood when M becomes large:

LLtest(J) =
1

2
log det(J)− Etrain

1− 1
ρEtrain

as long as J is the function (34) of C(M). For general EBM models we have a LL of the form

LLtrain,test[J ] = − logZ[J ]− Etrain,test[J ]

so by analogy with GCV, it is not excluded that we can use this train-test relation in practice.

23



A theoretical framework for overfitting in energy-based modeling

H. Details on data-correction protocols
In this section, we analyze the effect of different ways to improve the estimation of the covariance matrix’s eigenvalues in
order to avoid or diminish the effect of overfitting during the training dynamics.

H.1. Training dynamics with regularization prior for finite N

We first discuss what happens to the training in the presence of a regularization. We employ two regularization protocols: a
standard L2-norm, and a projected L1-norm. The choice of the second regularization is justified because it allows to have
a maximum-a-posteriori coupling matrix which commutes with the original covariance matrix ĈM , as it happens in the
absence of regularization, thus facilitating the asymptotic analysis through RMT discussed in Appendix G.

H.1.1. L2 REGULARIZATION

The log-posterior now reads
1

M
log p (J | D) = LD (J)− λ

4
Tr
(
J2
)

(48)

where λ is the reguavlarization strength. The derivative w.r.t. the parameters now reads

1

M

∂ log p (J | D)
∂Jij

=
[
−ĈM

ij +
(
J−1

)
ij
− λJij

]
(49)

Notice that the new term commutes with the second one (J and J−1 are diagonal in the same basis), so even in this case
the maximum-a-posteriori matrix ĴMAP will share the same basis as ĈM , as it happens in the absence of regularization.
Therefore, we can apply the same reasoning discussed in the main text and project the log-posterior’s gradient on the basis
of J . The evolution equation of each eigenvalues reads:

τ
dJα
dt

=
1

Jα
− ĉMα − λJα, (50)

Although there exist no closed expression for the full time-dependent solution of Eq. (50), it is possible at least to compute
analytically its fixed point:

J (∞)−L2
α (λ) =

1

2λ

[
−ĉMα +

√
(ĉMα )

2
+ 4λ

]
(51)

The full coupling matrix corresponding to the above fixed point is finally computed projecting back Eqs. (51) onto the
eigenbasis of ĈM , that is J (∞)−L2 (λ) =

∑
α J

(∞)−L2
α (λ)uM

α uM
α

⊤.

H.1.2. SPECTRAL L̃1-NORM

This regularization schemes utilizes a L1-norm but on the projected basis of the coupling matrix J . This construction still
allows to employ a similar formula to Eq. (12) to describe the evolution of eigenvalues, each one independently on the
others. The original differential equation describing the evolution of Jα is now modified as

1

γ

dJα
dt

=
1

Jα
− ĉMα − λ, (52)

whose fixed point reads

J (∞)−L̃1
α (λ) =

1

ĉMα + λ
(53)

Note that equations (51)- (53) just derived are the same ones as Eqs. (35)-(34) in Appendix 6, respectively.

H.1.3. RESULTS ON THE EFFECT OF REGULARIZATION

We can check the performances of either type of regularization by looking at the training fixed point, and at how it modifies
the quality of the inferred model. In Fig. 16-(a), we show the reconstruction error EJ computed between the ground truth and
the inferred model in the presence of a regularization prior with strength λ, both for the L2-norm (solid lines) and for the
spectral-L1 norm (dashed lines), for a given value of number of samples: here we have ρ =M/N = 1.5. Comparison is
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Figure 16. Effect of the regularization priors on the inferred model’s quality. (a): the plot shows the reconstruction error EJ computed
between the ground truth and the inferred model in the presence of a regularization prior with strength λ. Solid lines refer to the L2 norm,
while dashed lines to the spectral-L1 norm, both discussed in Section H.1. For each prior, we compare finite-size results (colored lines)
and RMT asymptotic estimations. (b)-(c): we show the values of the regularization strength λopt that achieves optimal reconstruction of
the model (lines with scatter points), and the optimal value of the regularization that maximizes the test log-likelihood (lines with scatter
diamonds). Panels (b) (resp. (c)) refers to the optimal values when using the L2-norm (resp. the spectral L1-norm). Note that (b)-(c) are
on the same y-scale. Settings are the same as in Fig. 4.

shown between finite-size trainings (colored lines) and RMT estimation (black lines). All the quantities are plotted versus
the regularization strength λ: we can observe how there is clear non-monotonic behavior with a minimum developing at a
certain λopt. As one might expect the optima value differs between the two regularization priors, i.e. λL2

opt ̸= λL̃1
opt . Results

on both priors are shown in the same panel to highlight that the two regularization schemes have qualitatively the same
effect on the final reconstruction error: that is, the quality of the inferred model at the optimal value is the same for both
regularizations. Panels (b)-(c) show instead the optimal value of λ computed either by minimizing the reconstruction error
(shown with points) or by maximizing the test log-likelihood (diamonds). Panel (b) is actually a repetition of Fig. 4-(d) and
refers to the L2-prior, while (c) refers to the L1 spectral prior. Again, we can observe a similar behavior of the two norms,
with the only difference that λL2

opt < λL̃1
opt independently on the chosen criterion. Finally, all the optimal values go to 0 when

ρ→∞, as expected.

What is the effect of the regularization on the training dynamics? Considering that the standard training has a non-monotonic
behavior w.r.t. the training time, we would expect that, since the regularization strongly improves on the models’ quality
w.r.t. the standard case (at least at the optimal optimizing regularization strength λopt), such a non-monotonic behavior is
diminished. This is indeed the case, as shown by Fig. 17-(a), displaying different training curves for different regularization
strengths: the closest the regularization to its optimal value (highlighted in red), the smoother the model’s quality is w.r.t.
training time. At the optimal point the model’s quality is completely non-monotonic and approaches the fixed point at the
same reconstruction error as the minimum w.r.t. time.

Actually, due to the simplicity of the GEBM it is even possible to interpret the L2 regularization as a shrinkage correction
protocol. Consider indeed the training fixed point given by Eq. (50). We stress again that the maximum-posterior matrix
J has the same basis decomposition as the empirical covariance matrix, because the regularization term commutes with
the other two terms in Eq. (50). By the dualism between covariance matrix and coupling matrix in the Gaussian EBM, we
can think at the reciprocal values of Eq. (50) as eigenvalues of a corrected covariance matrix w.r.t. ĈM , depending on λ.
We can therefore define another eigenvalue-corrected covariance matrix, by using the analytic fixed point on the training
dynamics obtained through the regularization:

ĈM
val−L2(λ)

=
∑

α

1

J
(∞)−L2
α (λ)

uM
α uM

α
⊤ (54)

By definition, the training fixed point obtained using i) a training dynamics with the un-touched empirical covariance matrix
ĈM plus the regularization term or ii) a regularization-free dynamics using matrix (54) are the same. Fig. 17-(a) shows
indeed how the regularization modifies the eigenvalues of ĈM when interpreting the fixed point of the training dynamics
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Figure 17. Effect of different L2-norm regularization strengths λ on the GEBM’s learning dynamics. Panel (a) shows the reconstruction
error vs time. The dotted blue line corresponds to the standard training over ĈM . All the other full lines correspond to a training with a
certain value of regularization strength λ, obtained by numerically solving Eq. (50) for all modes. The regularization strength λ increases
from yellowish colors to blueish (see the colorbar at the right). The curve corresponding to the optimal regularization that minimizes the
reconstruction error after training is highlighted in red. Panel (b): plot of the equivalent covariances modes corrected by the regularization.
For each curve, we scatter plot these values Eq. (54) against the population eigenvalues. Here we set ρ = 1.66.

as a shrinkage correction. Each set of points shows the quantities 1/J
(∞)−L2
α (λ) (i.e. the eigenvalues of (54) ) vs the

population ones c∗α. It is intuitive to notice that the optimal regularization (red points) is the one that makes such corrected
eigenvalues as close as possible to the population ones. This entire reasoning holds analogously with the spectral L1 norm.

H.2. Empirical shrinkage correction through modes fitting

A simple way to perform a heuristic shrinkage correction is to down-sample the empirical covariance matrix and estimate the
asymptotic eigenvalues through a fitting procedure. Starting from the available dataset with M samples - whose covariance
matrix is ĈM - we can randomly extract subsets of N < m < M samples and estimate the eigenvalues of the size-reduced
covariance matrices Ĉm. Every time a down-sampling procedure of this kind is performed, both the eigenvalues and the
eigenvectors will be different from the original ĈM ; however, we here suppose to account for the eigenvalues, keeping the
basis fixed to the one of ĈM . After applying this computation to different values of N < m < M , for each eigenvalue α
we can fit the resulting data {ĉmα }m∈(N ;M ] according to

ĉα (m) =
1

mν
AM

α +BM
α (55)

with ν being an exponent of choice. The coefficients BM
α will represent the asymptotic estimate of the α-th eigenvalue of

the population matrix, c∗α, corresponding to the m→∞ extrapolation. After fitting each mode separately, we can construct
an eigenvalue-corrected covariance matrix as

Ĉval−fit =
∑

α

BM
α uM

α uM
α

⊤ (56)

This procedure can in principle be generalized e.g by using a combination of powers in the fitting function, although in this
work we only restricted to the functional form (56); secondly, the estimation of the fitting coefficients can be improved by
collecting mean values of eigenvalues {ĉmα }m∈(N ;M ] by evaluating the down-sampled covariance matrix Ĉm multiple times
with different subsets of the M original data. In the experiments presented in the main text for the GEBM (orange line in
Fig. 5-(b)), we used a simple linear fitting in 1/m (ν = 1) and 10 random resampling for each value of m, from which the
mean eigenvalue is extracted to perform the fit. This linear scaling (in 1/m) for the finite-size fluctuation of the eigenvalues
in the GEBM is also justified by theoretical evidence (see e.g. (Ledoit & Péché, 2011)). In the experiments for the Ising-BM
instead, (orange line in Fig. 6-(c)) we find that best reconstruction is achieved with ν = 1/2, while a linear fitting has always
very bad performances. Also in this case we used 10 resampling steps. An example of such a fitting procedure is shown in
Figure 18 for both the GEBM (in (a)) and for the BM (in (b)), in each case for a given value of M .
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Figure 18. Examples of eigenmode fitting procedures for the GEBM and the Ising-BM. Each panel illustrates the procedure used to fit
the eigenmodes of the covariance matrix ĈM by downsampling to m < M samples, in order to extrapolate their behavior as m → ∞,
following Eq. (55). Panel (a) refers to the GEBM used in the main text (e.g., Fig. 5). For a fixed value of M such that ρ = M/N = 1.66,
we show a subset of eigenvalues {ĉMα } (denoted by + markers), along with their downsampled counterparts {cmα } for several values
of m < M (small circles). These downsampled eigenvalues are obtained by randomly selecting m samples from the full dataset and
computing the eigenvalues of the resulting covariance matrix, averaged over 10 independent instances. Dashed black lines correspond to
fits using Eq. (55) with ν = 1, and colored diamonds indicate the extrapolated intercepts BM

α , i.e., the estimated eigenvalues at m → ∞.
Crosses mark the population eigenvalues {c∗α}, showing that the fitted extrapolations are significantly closer to the true population
spectrum than the empirical eigenvalues obtained from M samples. Panel (b) shows the analogous procedure for the Ising-BM, using
ρ = 7.81. In this case, the best fits are obtained with ν = 1/2, and the horizontal axis is accordingly rescaled as 1/

√
m.

I. Eigendecomposition of training dynamics on Boltzmann Machine
We consider a Ising-like Boltzmann Machine for the inference of binary-valued data. The probability of a configuration x
where xi ∈ [−1, 1] at given parameters is expressed as

p (x | J ,h) = 1

Z
e
∑

i<j Jijxixj+
∑

i xihi . (57)

We suppose to generate equilibrium configurations from a known model with θ∗ = (J∗,h∗) (eventually these parameters
are rescaled by an external factor β that plays the role of an external inverse temperature), and we want to infer back the
original model through a likelihood maximization procedure. The LL of a certain set of parameters θ = (J ,h) is given by

LD (J ,h) =
1

M

M∑

µ=1

log p (xµ | J ,h) =
∑

i<j

JijED [xixj ] +
∑

i

hiED [xi]− logZ (58)

where ED [·] denotes the average w.r.t. the dataset D = {xµ}Mµ=1. In what follows, for the analytic treatment of the training
dynamics in the ML procedure we neglect the problem of learning the external fields hi. This assumption is consistent with
a scenario where the data have null magnetizations. Therefore, the gradient of the LL w.r.t. the couplings Jij reads

∂LD

∂Jij
= ED [xixj ]− EJ [xixj ] = ĈM − EJ [xixj ] , (59)

Then, the couplings are updated as

Jij(t+ 1)← Jij(t) + γ
∂LD(t)

∂Jij
, (60)

where γ is the learning rate. From here, we can assume an ideal training with an infinitesimal learning rate to recast the
evolution equation of the matrix J in time in the following matrix form

τ
dJij
dt

=
∂LD

∂Jij

∣∣∣∣
J(t)

=⇒ τ
dJ

dt
= ĈM −

〈
xx⊤〉

J
. (61)
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where EJ [·] denotes the average w.r.t. to model (57), and τ = 1/γ. Note that, since we assumed to neglect local
magnetizations, the r.h.s (61) computed in its diagonal entries is 0. This is consistent with the fact that self-couplings Jii do
not evolve in time, because they correspond to constant energy terms in the energy function. In order to make the models’
correlation EJ

[
xx⊤] analytically treatable, we implement now a mean-field approximation. We can exploit the following

exact expression (self-consistent) for the correlator (Suzuki & Kubo, 1968), which we further expand for high temperatures

EJ [xixj ] = δij + (1− δij)EJ

[
xi tanh

∑

k

Jjkxk

]
≈ δij + (1− δij)

∑

k

JjkEJ [xixk] , (62)

Then, in matrix form (Cij = EJ [xixj ]) we get

C = IN + JC − diag [JC] (63)

where IN is the identity matrix of size N , and the operator diag [M] extracts the diagonal part of a matrixM. The last term
is introduced to correct the wrong estimation of the diagonal entries of C, which should be equal to 1. The problem is that
the above equation does not admit a simple analytical solution for the model’s correlation matrix C, which was the original
goal. Instead, is typical implemented in the literature is the following expression of the linear response correlations

C = f(J) = (IN − J)−1 (64)

which gives a reliable estimate of the correlation matrix and is at the core of well-studied mean-field like expression for the
inferred couplings (Kappen & Rodrı́guez, 1998; Ricci-Tersenghi, 2012). However, the diagonal entries of (64) are not in
general equal to 1. Normally, this is not an issue because one is interested in correlations for i ̸= j (i.e. off-diagonal entries).
However, in our approach such a diagonal mismatch creates a non-null gradient on the diagonal entries of J . Indeed, by
plugging Eq. (64) into the LL’s gradient, we get

τ
dJ

dt
= ĈM − (IN − J)−1 (65)

Now, the diagonal part of the r.h.s. of Eq. (65) not null anymore. In order to circumvent this additional issue, a possible
solution could be to modify the gradient by remove the diagonal terms - which would results in an nonphysical evolution of
the self-couplings - ”by hand” :

τ
dJ

dt
= ĈM − (IN − J)−1 + diag

[
IN − (IN − J)−1

]
(66)

The last term in the above expression correctly fixes the diagonal problem for the matrix J in the gradient. This strategy is
similar to what carried out in (Fanthomme et al., 2022) where the authors impose a add a spherical constraint on the gradient
in the form of a Lagrange multiplier. However, this leads to a complicated expression even for the training fixed point
because the evolution of all the eigenvalues is now coupled. For this reason, since here we are interested in the dynamics of
training, adding this constraint would result into a system of coupled differential equations for the eigenvalues, which has
computationally the same complexity of the original problem, so there would be no gain in that. The simplest strategy is
therefore to use the approximate expression for the correlator and avoid adding the constraint, so to use the gradient (65) as
it is. Although it might seem a crude approximation, it still allows us to decompose the dynamics in the same way as for the
GEBM. Before going on, it is worth noticing that the diagonal matching problem is at the core of some refined mean-field
like approximations for binary (Ising-like) maximum-entropy models which exploit e.g. iterative diagonal consistency tricks
(see e.g (Yasuda & Tanaka, 2013; Kiwata, 2014) ). Therefore, as explained in Sec. 4 for the GEBM we can project the
log-likelihood’s gradient onto the eigenbasis of J , leading to an expression for the rotation of eigenvectors (same one as in
(5)) and another one for the evolution of its eigenvalues, which is given below:

τ
dJα
dt

= ĉMαα −
1

IN − Jα
(67)

which is the same equation shown in the main text (Eq. (11)). As explained in the main text, the solution of the above
equation describes an independent evolution of eigenvalues which is not quantitative accurate with respect to the numerical
results, but still captures the qualitative trend: in particular, it perfectly describes the separation of timescales in terms of
PCA’s modes during the training dynamics, an effect which is observed also in the numerical results (see panels (b) in
Fig. 6).
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Figure 19. Supplementary results on the Boltzmann Machine for the inverse Ising problem. The model, dataset and training setting are the
same as in Fig. 6. (a): we show the error between the covariance matrix of generated configurations from the model (along the training
trajectory) and the covariance matrix of the training set ĈM , so EĈM =

∥∥∥ĈM −Cgen(t)
∥∥∥

F
. (b): plot of the generation error computed

w.r.t. a test set, again between the covariance matrices, i.e. ECtest =
∥∥C test −Cgen(t)

∥∥
F
. Both quantities are plotted versus training time

(number of updates) for different values of M shown in the colorbar. The learning rate is set to γ = 10−2.
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Figure 20. Supplementary results on the Boltzmann Machine for the inverse Ising problem. The model, dataset and training setting are
the same as in Fig. 6, except for the system size which here is equal to a lattice size of L = 32, so that N = L2 = 1024. We show the
Frobenius norm of the error between the true model and the trained one versus training time (number of updates) for different values of
ρ = M/N shown in the colorbar. The learning rate is set to γ = 10−2.
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