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Abstract

Selective classification enables models to make
predictions only when they are sufficiently con-
fident, aiming to enhance safety and reliability,
which is important in high-stakes scenarios. Pre-
vious methods mainly use deep neural networks
and focus on modifying the architecture of clas-
sification layers to enable the model to estimate
the confidence of its prediction. This work pro-
vides a generalization bound for selective classifi-
cation, disclosing that optimizing feature layers
helps improve the performance of selective clas-
sification. Inspired by this theory, we propose
to explicitly improve the selective classification
model at the feature level for the first time, leading
to a novel Confidence-aware Contrastive Learn-
ing method for Selective Classification, CCL-SC,
which similarizes the features of homogeneous
instances and differentiates the features of hetero-
geneous instances, with the strength controlled
by the model’s confidence. The experimental re-
sults on typical datasets, i.e., CIFAR-10, CIFAR-
100, CelebA, and ImageNet, show that CCL-SC
achieves significantly lower selective risk than
state-of-the-art methods, across almost all cover-
age degrees. Moreover, it can be combined with
existing methods to bring further improvement.

1. Introduction
As Deep Neural Networks (DNNs) have been widely
adopted across various industries, the reliability of their
predictive outcomes has become increasingly critical. In
many high-stakes domains such as medical diagnosis (Es-
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teva et al., 2017), self-driving (Ghodsi et al., 2021), or secu-
rity systems (Talreja et al., 2017), erroneous predictions may
lead to serious repercussions (Amodei et al., 2016). The
concept of selective classification for DNNs emerges in this
context, providing a mechanism that allows a DNN to decide
whether to make a prediction on an instance based on its pre-
diction confidence estimation (El-Yaniv & Wiener, 2010).
The goal of selective classification typically revolves around
minimizing the model’s selective risk while maintaining a
high prediction coverage rate (Geifman & El-Yaniv, 2017).

The key issue in selective classification is how to select sam-
ples that may be predicted incorrectly and hand them over
to humans for delayed prediction. A direct method is to use
the maximum logit in the Softmax Layer (SR) (Hendrycks
& Gimpel, 2017; Geifman & El-Yaniv, 2017) of the model
as the confidence function; a higher value indicates that the
model is more confident in predicting the sample. Another
approach is to utilize the inferences of multiple models to es-
timate the prediction confidence, such as MC-dropout (Gal
& Ghahramani, 2016), deep ensemble (Lakshminarayanan
et al., 2017), and snapshot ensemble (Rabanser et al.,
2022). Given the expensive training or prediction costs,
recent works predominantly focus on individual selective
classification models. SelectiveNet (SN) (Geifman & El-
Yaniv, 2019) introduces an additional selection head to
learn the confidence of predictions within a given cover-
age constraint. Deep Gamblers (DG) (Liu et al., 2019) and
Self-Adaptive Training (SAT) (Huang et al., 2020; 2022)
add a homogeneous logit to the output layer, serving as an
“abstention head” to predict the confidence of abstaining
from making predictions. Feng et al. (2023) proposed an
additional Entropy-Minimization (EM) regularization loss
to make the model more confident in its predictions, and
applied it to the SAT method. However, their results suggest
that the state-of-the-art selective classification methods with
explicit selective heads actually lead to higher selective risk
compared to directly using SR for confidence prediction.

In this work, we provide a generalization bound for selec-
tive classification, disclosing that optimizing feature layers
to reduce variance between samples of the same category
is helpful for improving the performance. In addition, the
selective classification problem inherently requires models
to better differentiate between correctly classified and mis-
classified samples, and also requires consistency between
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the predictive confidence and the reliability of the classi-
fication results. Based on these analyses, we propose to
improve the performance of selective classification by ex-
plicitly optimizing the feature representation of the model
for the first time, instead of focusing on modifying the classi-
fication layer as in previous works. Specifically, we propose
a novel Confidence-aware Contrastive Learning method for
Selective Classification named CCL-SC, which aims to pull
normalized feature embeddings from the same class that are
correctly classified to be closer than embeddings that are
misclassified as the same class. The “pulling strength” is
controlled by the model’s confidence, i.e., the model pays
more attention to samples with higher confidence during
training, leading to a robust alignment between the model’s
predictive confidence and its actual accuracy.

We conduct experiments to compare our method CCL-SC
with SR (Hendrycks & Gimpel, 2017; Geifman & El-Yaniv,
2017), DG (Liu et al., 2019), SAT (Huang et al., 2020;
2022), and SAT+EM (Feng et al., 2023) on four typical
datasets including CIFAR-10, CIFAR-100, CelebA, and
ImageNet. The results show that CCL-SC achieves signifi-
cantly lower selective risk than these SOTA methods across
almost all degrees of coverage. The t-SNE visualization
clearly shows that CCL-SC achieves better feature represen-
tation, i.e., significant intra-class aggregation and inter-class
separation in the embedded feature space. We also perform
comprehensive sensitivity analyses of the hyper-parameters,
demonstrating the robustness of CCL-SC, and the align-
ment between our our proposed method and theory. It is
noteworthy that our method CCL-SC optimizes the model
from a different perspective compared to previous methods,
and thus it can effectively leverage techniques from existing
methods to further enhance the performance of selective
classification, which is empirically verified by combining
with SAT (Huang et al., 2020) and EM (Feng et al., 2023).

2. Related Work
2.1. Selective Classification

Selective classification, also known as confidence-based
classification, or classification with reject option (Chow,
1970), allows a model to make predictions only when it
is sufficiently confident, which has been extensively stud-
ied across multiple domains in machine learning, such as
support vector machines (Grandvalet et al., 2008), boost-
ing (Cortes et al., 2016), nearest neighbours (Hellman,
1970), online learning (Cortes et al., 2018), and human
assisted learning (Liu et al., 2023).

With the widespread application of deep learning, the con-
cept of selective classification for DNNs has been receiving
increasing attention, especially in situations where incorrect
predictions may lead to serious consequences. Geifman &

El-Yaniv (2017) proposed a method for converting trained
DNNs into selective classifiers by employing two confi-
dence functions, SR (defined as the maximal logit in the
softmax layer) and MC-dropout (defined as the negative
variance of aggregated predictive probabilities).

Another type of selective classification method for DNNs is
to modify the classification layer and train an additional se-
lection head (or abstention logit). SN (Geifman & El-Yaniv,
2019) is a three-headed network that includes prediction,
selection, and auxiliary head, where the selection head is
optimized to estimate the model’s confidence in prediction
for a given target coverage. DG (Liu et al., 2019) expands
the original m-class problem to a (m + 1)-class problem,
and uses the extra class to estimate the confidence of the
model in abstention. Similarly, SAT (Huang et al., 2020;
2022) also focuses its selection mechanism on the extra
class and introduces a soft label-based training mechanism
to guide the model in selecting which samples to abstain
from predicting. However, recent experimental findings
by (Feng et al., 2023) have shown that the methods utilizing
their explicit selection heads as the confidence function are
actually sub-optimal, and suggest using SR instead.

While we have been focusing on selective classification,
there are two important related topics, model calibra-
tion (Guo et al., 2017) and Human-AI collaboration sys-
tem (Sangalli et al., 2023). Both of them focus on the
confidence of the model. Model calibration adjusts the over-
all confidence level of the model to align its confidence
with uncertainty, which can be divided into two categories:
In-process and post-hoc methods. The in-process methods
involve specifically designed loss functions to optimize cali-
bration objectives, such as Soft AvUC/ECE loss (Karandikar
et al., 2021), and MMCE loss (Kumar et al., 2018). The post-
hoc methods globally adjust the confidence of the model
after training, such as temperature scaling (Guo et al., 2017),
which, however, often do not change the ranking of con-
fidence among samples, and thus cannot be directly used
for selective classification. The definition of Human-AI col-
laboration (Sangalli et al., 2023) is similar to that selective
classification, which uses model confidence to determine
which samples are delegated to human experts. The main
difference is that the goal of Human-AI collaboration is
more global, that is, optimizing AUCOC (Area Under Con-
fidence Operating Characteristics), and a loss function was
proposed to directly improve the AUCOC.

2.2. Contrastive Learning

Instead of modifying the classification layer, we focus on
optimizing feature representation for selective classification,
which is facilitated by contrastive learning. Here, we in-
troduce some related works on contrastive learning in both
unsupervised and supervised domains.
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Contrastive learning is a learning paradigm that maximizes
the similarity between related samples and minimizes the
similarity between unrelated samples, and has been com-
monly used for unsupervised representation learning. Oord
et al. (2018) introduced a widely used form of contrastive
loss function known as InfoNCE, which encourages the
model to learn useful features by comparing each positive
sample with multiple negative samples. He et al. (2020)
proposed Momentum Contrast (MoCo), which uses a dy-
namic dictionary and a momentum encoder to solve the
problem of insufficient diversity of negative samples caused
by limited batch sizes in end-to-end training methods (Oord
et al., 2018; Bachman et al., 2019), as well as the problem
of inconsistent features caused by slow update of features
in memory bank methods (Wu et al., 2018). Recently, con-
trastive learning has also been introduced to supervised
learning, where the label information is utilized to guide the
division of positive and negative samples, aiming to obtain
better feature representation. Khosla et al. (2020) proposed
using samples with the same label as positives and those
with different labels as negatives, and extended the InfoNCE
loss to scenarios with multiple positives per anchor.

While contrastive learning has been widely acknowledged
as an effective approach for learning feature representa-
tions, its application in selective classification remains less
explored. In this work, we leverage the strengths of con-
trastive learning to improve the feature representation of
the model, enabling the model to better distinguish between
correctly classified and incorrectly classified samples.

3. Selective Classification Problem
Let X and Y denote the feature space and the label space,
respectively. Let D be an unknown data distribution over
X × Y . Let F and G denote two families of functions
mapping X to [0, 1]

k and [0, 1], respectively. Our goal is to
learn a selective classification model (f, g) ∈ F × G:

(f, g)(x, y) =

{
f(x) if g(x) ≥ h;

Abstain if g(x) < h.
(1)

Here, f : X → [0, 1]
k represents a conventional classifier

that outputs a probability vector for k classes, with the
predictive class ŷ determined by ŷ = argmaxj fj(x), and
g : X → [0, 1] is a selective function that estimates the
confidence of f(x) (also known as the confidence function),
serving as a binary qualifier for f . That is, the model only
predicts when g(x) exceeds a predetermined threshold h.

Evaluating the performance of a selective classifier often
involves two metrics: coverage and selective risk (Geifman
& El-Yaniv, 2017). Coverage relies only on the selective

function g, which is defined as:

ϕ(g) ≜ E(x,y)∼D I[g(x) ≥ h],

where the indicator function I[·] is 1 if the inner expression
is true and 0 otherwise. Selective risk is defined as:

R(f, g) ≜
E(x,y)∼D{L[f(x), y] · I[g(x) ≥ h]}

ϕ(g)
, (2)

where L is typically the 0/1 loss for classification. Thus,
coverage ϕ(g) measures the ratio of instances that are clas-
sified by the model, and selective risk R(f, g) measures the
loss of the model when making predictions. In this paper,
we follow the common modeling of the selective classifi-
cation problem (Geifman & El-Yaniv, 2019; Huang et al.,
2020; Feng et al., 2023), i.e., to minimize the selective risk
within a given target coverage ctarget:

minR (f, g) s.t. ϕ (g) ≥ ctarget. (3)

4. Theoretical Analysis
In this section, we analyze the generalization performance
of a DNN-based selective model for selective classification.
For the conventional classifier f of a selective model (f, g),
we denote its feature embedding layer as c, and the final
classification layer as l, i.e., f = l ◦ c : X → [0, 1]k. For
a sample x with its corresponding label y, we denote the
output of the feature embedding layer c as c(x), i.e., the
non-normalized feature embedding of x.

For analytical convenience, we add the coverage constraint
in Eq. (3) to the objective function (i.e., selective risk in
Eq. (2)) as a penalty term, yielding the following selective
classification loss:

L0(f, g,x, y)= L[f(x), y]·I[g(x) ≥ h]+λ·I[g(x) < h],

where we use the 0/1 loss L[f(x), y]=I[argmaxj fj(x) ̸=
y], and λ > 0 is the penalty coefficient which regulates the
trade-off between minimizing selective risk and achieving
high coverage rates to satisfy the constraint. Thus, the
learning problem requires utilizing a set of labeled sam-
ples S = {(x1, y1) , . . . , (xm, ym)}, which are assumed
to be independently and identically distributed and drawn
from the unknown data distribution Dm, to determine a pair
(f, g) ∈ F × G that achieves a small expected selective
classification loss E(x,y)∼D[L0(f, g,x, y)].

Margin loss is commonly used to analyze the generalization
error of models (Mohri et al., 2018; Lyu et al., 2019; 2022;
Wu et al., 2022; He et al., 2024). Here, we employ the
margin loss associated with Max Hinge (Cortes et al., 2023)

Lρ,ρ′

MH(f, g,x, y) = max
{
max{1 + α

2
(
g(x)

ρ′
− γ(x)

ρ
), 0},

max{λ(1− β
g(x)

ρ′
), 0}

}
,
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as a surrogate loss function for the selective classification
loss L0(f, g,x, y), where ρ, ρ′ are two parameters associ-
ated with the minimum margins of f and g, respectively,
α, β > 0, and γ(x) is the margin of sample x on the clas-
sification layer of f , i.e., γ(x) ≜ fy(x) −maxj ̸=y fj(x).
The margin loss Lρ,ρ′

MH(f, g,x, y) is actually a convex upper
bound on L0(f, g,x, y). The first term max{1 + α

2 (
g(x)
ρ′ −

γ(x)
ρ ), 0} of Lρ,ρ′

MH indicates that the samples chosen for clas-
sification but classified incorrectly should be either correctly
classified with a ρ-margin or modified in confidence to be
rejected with a ρ′-margin (i.e., emphasizing that the model
will not predict incorrectly when choosing to make predic-
tions). The second term max{λ(1 − β g(x)

ρ′ ), 0} indicates
that every sample subjected to rejection should have its
confidence adjusted to be selected for classification with
a ρ′-margin (i.e., emphasizing the model’s selection of as
many samples as possible to predict).

For a feed-forward DNN f = l ◦ c with ReLU activation
function and its associated selective function g, we prove in
Theorem 4.1 that the selective classification generalization
error of (f, g) can be bounded by the empirical margin loss
E(x,y)∼S [L

ρ,ρ′

MH(f, g,x, y)] at its classification layer and an-
other term positively related with Varintra[c(x)]. Note that
Varintra[c(x)] = tr[

∑k
i=1 Cov[c

i(x)]/k] denotes the intra-
class variance, where Cov[ci(x)] denotes the covariance
matrix of the feature embeddings of all samples with label
i, k is the number of classes, and tr denotes the trace of
a matrix. That is, Varintra[c(x)] denotes the variance of
feature representations for samples within the same class.

Theorem 4.1. ∀ρ, ρ′, α, β, λ > 0, and ∀δ > 0, with proba-
bility at least 1− δ over a training set of size m, we have:

E(x,y)∼D[L0(f, g,x, y)] ≤ E(x,y)∼S

[
Lρ,ρ′

MH(f, g,x, y)
]

+ 4

√
∥l∥22 Varintra[c(x)] + 4ρ̃2 + ρ̃2∥l∥22 ln 6m

δ

ρ̃2m∥l∥22
,

where ∥l∥2 denotes the L2-norm of the classification layer
l’s parameters, and ρ̃ = min{ρ/(4α), ρ′/(4βλ+ 2α)}.

Theorem 4.1 discloses that the generalization performance
of a selective classification model is associated not only
with the empirical margin loss at the classification layer
but also with the feature representation at the feature layer.
Specifically, a smaller intra-class variance of feature rep-
resentation will enhance the generalization performance
of selective classification. The proof is accomplished by
bounding the Kullback–Leibler divergence term in a PAC-
Bayesian lemma with the variance of perturbation, which is
related to the intra-class variance Varintra[c(x)] of feature
representation and the margin parameter ρ̃, and the proof
details are provided in Appendix B due to space limitation.

5. CCL-SC Method
For selective classification, previous works focus on modi-
fying the classification layer of a model to enable the model
to better estimate its prediction confidence (Geifman & El-
Yaniv, 2019; Liu et al., 2019; Huang et al., 2020; Feng et al.,
2023). Inspired by Theorem 4.1, we improve the model’s
selective classification performance from a new perspective,
that is, we optimize the feature representation of the model
to aggregate the feature representations of samples in the
same category, which aligns naturally with the paradigm
of contrastive learning. For the loss function of the classi-
fication layer, we utilize the cross-entropy loss, which is a
smooth relaxation of the margin loss and is easier to opti-
mize for DNNs (Cao et al., 2019). SR (Hendrycks & Gim-
pel, 2017; Geifman & El-Yaniv, 2017), i.e., the maximum
predictive class score maxj fj(x), is used as the selective
function g in our method.

Contrastive learning has been used in supervised learn-
ing (Khosla et al., 2020), which simply defines positive
and negative samples as those with the same label and dif-
ferent labels, respectively, and optimizes the feature repre-
sentation by pulling positive samples closer than negative
samples. However, previous contrastive learning methods
do not consider the correctness and confidence of the predic-
tion for the samples (Wu et al., 2018; He et al., 2020; Chen
et al., 2020; Khosla et al., 2020; Zhang et al., 2022), which
cannot directly meet the requirement of selective classifica-
tion: Correctly classified samples should be separated from
misclassified samples, and the model’s confidence function
should reflect the reliability of its classifications, i.e., sam-
ples with higher confidence are more likely to be classified
correctly. To address this issue, we redefine the positive and
negative samples according to the predicted results of the
current model: a sample is positive/negative if the prediction
matches the anchor’s label and is correct/incorrect. Then,
we design a new contrastive loss function to separate the fea-
ture representations of correctly classified and misclassified
samples by making the anchor’s features more similar to
its positive samples and less similar to its negative samples;
and to pay more attention to samples with higher confidence
during training by weighting the loss with the model’s SR.

Figure 1 briefly illustrates our proposed method CCL-SC.
In the following, we will provide detailed introduction to its
key components, i.e.,

• How to define and construct positive/negative samples?

• How to design a loss function to incentivize the model
to learn features conducive to selective classification,
and to make it sensitive to the model’s SR?

• How to use the proposed loss to train the model?
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Figure 1. Illustration of the proposed CCL-SC method. The right part outlines our definition of positive/negative samples: a sample is
positive/negative if the prediction matches the anchor’s label and is correct/incorrect. Two independent queues store positive and negative
samples, respectively. The middle part displays the characteristic of the proposed CSC loss: prompting the model to separate correctly
classified and misclassified samples at the feature level and focus on samples with high prediction confidence. The black arrow on the left
represents forward calculation, while the yellow and red ones represent backpropagation of the cross-entropy and CSC loss, respectively.

5.1. Constructing Positive and Negative Samples

To enhance the model’s ability to discern the correctness of
predictions, we define positive and negative samples based
on whether the model predicts the sample correctly. A
positive sample xp for the anchor x with label y is defined
as a sample that is predicted to belong to the class y and is
correctly classified. A negative sample xn is defined as a
sample that is incorrectly predicted to belong to the class
y. In other words, although the true label of the negative
sample is different from y, the model incorrectly classifies
it into the same class. The right part of Figure 1 illustrates
the definition of positive and negative samples.

Due to the dependency on the model predictions, positive
and negative samples have to be sampled from batches.
However, sampling solely from the current mini-batch is
often insufficient, particularly when dealing with a large
number of classes, such as the ImageNet dataset with 1000
classes. To address this issue, we adopt the approach used in
MoCo (He et al., 2020), introducing queues as dictionaries
to reuse samples from different batches, while utilizing a
momentum encoder (denoted as fθm) to generate sample
features. The parameters θm of the momentum encoder are
updated based on the original encoder parameters θ:

θm ← q · θm + (1− q) · θ, (4)

where q ∈ [0, 1) is the momentum coefficient to control
the magnitude of updates. But unlike MoCo, our method
maintains two separate queues P and Q, to store positive
and negative samples, respectively. Each element in the
queue is a tuple composed of the normalized feature and

the predicted class of a sample. We denote P (y) ⊆ P and
N(y) ⊆ N as the positive samples and negative samples for
an anchor with label y. For simplicity, we use queues of the
same size s to store positive and negative samples.

5.2. Confidence-aware Supervised Contrastive Loss

Let zi = c(xi)/∥c(xi)∥ denote the normalized feature em-
bedding of sample xi through the embedding layer c. Then,
zi · zj is just the cosine similarity c(xi) · c(xj)/(∥c(xi)∥ ·
∥c(xj)∥) between the feature representations of samples xi

and xj . We introduce a new loss function called Confidence-
aware Supervised Contrastive (CSC) loss, by combining a
contrastive learning loss in the form of infoNCE (Oord et al.,
2018) with the predictive confidence SR of the model. Given
an anchor x with label y, its CSC loss is defined as

LCSC =
maxj fj(x)

−|P (y)|
∑

xp∈P (y)

log
exp (z · zp/τ)∑

xa∈A(y) exp (z · za/τ)
,

where maxjfj(x) is SR, serving as a weight coefficient
to dynamically adjust the magnitude of LCSC , A(y) =
N(y)∪{xp} denotes the set of all negative samples of the
anchor x and the current positive sample xp, and τ is a
temperature hyper-parameter controlling the emphasis of
LCSC on difficult samples. We set τ to a commonly used
value of 0.1. LCSC compels the anchor to be closer to
the positive samples and farther from the negative samples,
thereby achieving the goal of distinguishing between cor-
rectly classified and misclassified samples; and focusing on
the samples with high confidence by combining SR.
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Enhanced feature learning for selective classification.
Unlike previous contrastive learning methods, the CSC loss
utilizes both the label and prediction information of samples,
providing strong supervision for each anchor. Through the
contrastive learning of multiple positive and negative sam-
ples, the CSC loss encourages the model to learn features
that can better distinguish between correct and incorrect pre-
dictions, enabling the model to learn more robust embedding
spaces. Note that to ensure a fair comparison with previous
selective classification methods, we do not acquire positive
samples through additional data augmentation techniques,
which was common in contrastive learning.

Mining samples with high confidence but poor features.
The gradient of LCSC with respect to the normalized feature
embedding z of the anchor x can be calculated as

maxjfj(x)

−τ

( ∑
xp∈P (y)

( 1

|P (y)|
−Xz,zp

)
zp−

∑
xn∈N(y)

Xz,znzn

)
,

where Xz,zj=exp(z·zj/τ)/
∑

xa∈N(y)∪{xj}exp(z·za/τ).
Thus, the higher the value of the confidence SR (i.e.,
maxjfj(x)) and the poorer the feature representation (i.e.,
dissimilar from positive samples and similar to negative
samples), the larger the gradient scale of the CSC loss for
z. By modulating the loss with the model’s SR, the CSC
loss directly prioritizes learning from instances where the
model is more certain, since the loss of the samples with low
prediction confidence is small. Thus, the features of sam-
ples with low prediction confidence will be distinguished
from those of high-confidence samples, improving the dis-
criminability of samples with different confidence levels.
Similar to the supervised contrastive loss in (Khosla et al.,
2020), the CSC loss has the ability to mine difficult samples,
that is, the model will pay more attention to samples with
high prediction confidence but poor feature representation.

5.3. Training with CSC Loss

We now introduce the training method with the proposed
CSC loss. Different from the conventional two-stage train-
ing manner “pre-train then finetune” used in typical con-
trastive learning methods (He et al., 2020; Chen et al., 2020;
Khosla et al., 2020), we employ a one-stage manner to opti-
mize the classification layers and convolutional layers of the
model together, because the CSC loss involves the predictive
information of the model.

The model f is initially trained using the cross-entropy loss
LCE for Es epochs. When e ≥ Es and meanwhile both
queues P and Q have been updated more than s tuples,
the training gradient consists of two parts: the gradient of
the CSC loss LCSC returned from the last feature embed-
ding layer c, and the gradient of the cross-entropy loss LCE
returned from the classification layer l. We use a weight

coefficient w to balance these two loss items. The param-
eters θ of the model f will be updated using an optimizer
based on the combined loss. As introduced in Section 5.1,
when e ≥ Es, a momentum encoder fθm is used to generate
positive and negative samples. When the epoch e equals
Es, the parameters θm of the momentum encoder fθm are
initialized to the parameters θ of the current model f , which
ensures that the momentum encoder has a favorable initial
accuracy. After that, the parameters θm of the momentum
encoder will be updated according to Eq. (4) at each train-
ing step. The samples generated by the momentum encoder
will be used to update the queues P and Q, which store
positive and negative samples, respectively. Note that fθm
will not be optimized by the optimizer. The pseudo-code of
the training method is shown in Algorithm 1 in Appendix C.

6. Experiments
In this section, we will give the experimental settings and
results. Due to space limitation, some details are shown
in Appendix D to I. The codes are provided in https:
//github.com/lamda-bbo/CCL-SC.

Datasets We conduct experiments on four commonly used
datasets, i.e., CelebA (Liu et al., 2015), CIFAR-10/CIFAR-
100 (Krizhevsky et al., 2009), and ImageNet (Deng et al.,
2009). CelebA is a large-scale face attributes dataset, con-
sisting of over 200,000 celebrity images, and the challenging
label ‘attractive’ is used as the target for binary classifica-
tion. CIFAR-10 and CIFAR-100 are two datasets containing
images across 10 and 100 categories, with 5,000 and 500
images per category, respectively. ImageNet contains 1000
categories of images, with 1300 images per category. The
experiments on CIFAR-10, CIFAR-100, and CelebA are run
with 5 seeds, and those on ImageNet are run with 3 seeds.

Baselines We compare our method against SOTA selec-
tive classification methods, including SAT (Huang et al.,
2020; 2022), SAT with Entropy-Minimization regulariza-
tion (SAT+EM) (Feng et al., 2023), and DG (Liu et al.,
2019). Based on (Feng et al., 2023), we include the results
of using SR as the confidence function for these methods
as well. We also compare with a common baseline denoted
as SR (Hendrycks & Gimpel, 2017; Geifman & El-Yaniv,
2017), which is a vanilla classifier trained via the cross-
entropy loss and uses SR as the confidence function. We do
not compare with SN (Geifman & El-Yaniv, 2019) since pre-
vious methods such as SAT+EM have already demonstrated
their superiority over SN. Additionally, SN requires retrain-
ing for different coverage rates, resulting in significantly
higher training costs compared to other methods.

Hyper-parameters For each dataset, we utilize 20% of the
training set as the validation set to tune hyper-parameters.
We test the momentum coefficient q ∈ {0.9, 0.999, 0.999},
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Table 1. Selective risk (%) on CIFAR-10 for various coverage rates (%). The mean and standard deviation are calculated over 5 trials. The
best entries are marked in bold. The symbol ‘•’/‘◦’ indicates that CCL-SC is significantly better/worse than the corresponding method,
according to the Wilcoxon rank-sum test with significance level 0.05.

Coverage CCL-SC SAT+EM+SR SAT+EM SAT+SR SAT DG+SR DG SR

100 5.97±0.11 6.14±0.07 6.14±0.07 6.16±0.13• 6.16±0.13• 6.34±0.16• 6.34±0.16• 6.25±0.07
99 5.32±0.05 5.61±0.06• 5.58±0.06• 5.63±0.09• 5.63±0.11• 5.77±0.16• 5.75±0.18• 5.69±0.07•
98 4.87±0.04 5.11±0.07• 5.14±0.03• 5.16±0.07• 5.14±0.13• 5.27±0.19• 5.23±0.19• 5.16±0.06
97 4.41±0.07 4.66±0.09• 4.69±0.06• 4.67±0.05• 4.74±0.11• 4.82±0.16• 4.70±0.20 4.67±0.04•
95 3.56±0.06 3.85±0.09• 3.93±0.06• 3.87±0.08• 3.97±0.11• 3.98±0.13• 3.83±0.13• 3.81±0.07•
90 2.01±0.07 2.20±0.07• 2.34±0.09• 2.26±0.12• 2.35±0.16• 2.37±0.13• 2.26±0.10• 2.19±0.12•
85 1.10±0.06 1.23±0.07• 1.31±0.07• 1.27±0.09• 1.36±0.10• 1.39±0.09• 1.32±0.11• 1.25±0.13•
80 0.69±0.08 0.67±0.07 0.71±0.07 0.71±0.09 0.74±0.09 0.86±0.08• 0.72±0.10 0.68±0.08

and the weight coefficient w ∈ {0.1, 0.5, 1.0}. For the
queue size s, we set it based on the number of classes in the
dataset: for datasets with fewer classes such as CelebA and
CIFAR-10, s = 300; for datasets with more classes such as
CIFAR-100 and ImageNet, we set s = 3000 and s = 10000,
respectively. We train the model on the entire training set to
evaluate performance. Detailed hyperparameter settings for
each method on each dataset are provided in Appendix D.1.

Networks and Training Following prior work, for CIFAR-
10 and CIFAR-100, we employ VGG16 (Simonyan & Zis-
serman, 2015) as the backbones of selective classifiers.
ResNet34 and ResNet18 (He et al., 2016) are utilized for
ImageNet and CelebA, respectively. For the same dataset,
all compared methods utilize the same data augmentation
and training parameters to ensure a fair comparison. The de-
tailed settings of training parameters and data augmentation
are provided in Appendix D.2 and D.3, respectively.

6.1. Comparison with State-of-the-art Methods

Table 1 shows the results on CIFAR-10, which has a low
classification difficulty but is most widely used in selective
classification. It can be observed that the selective risk of all
methods on CIFAR-10 is below 1% at coverage 80%. We
do not include the results for lower coverage as the selective
risk approaches almost zero thereafter. Our method CCL-
SC achieves the lowest selective risk when coverage is at
least 85%. However, we can also see that the discrimination
of different methods on CIFAR-10 is relatively low, which
is consistent with previous works (Huang et al., 2020; 2022;
Feng et al., 2023), mainly due to the insufficient number of
misclassified samples. As a result, we focus on the other
three datasets that are not saturated with accuracy.

Table 2 shows the selective risk of different methods at var-
ious coverage on CelebA and CIFAR-100. For CelebA,
CCL-SC performs the best across all degrees of coverage.
Compared to any other method, CCL-SC performs signifi-
cantly better on at least 7/13 coverage rates, according to
the Wilcoxon rank-sum test (Wilcoxon, 1945) with signif-
icance level 0.05. For CIFAR-100, CCL-SC achieves the

lowest selective risk when coverage is at least 50% or equal
to 10%, and is only worse than SAT-related methods in the
range of 20% to 40%. According to the significance test,
CCL-SC is significantly better than SAT-related methods
when the coverage is at least 60%, and only significantly
worse than SAT+SR at 30% coverage.

We can also observe from Table 2 that those methods (i.e.,
SAT+EM, SAT, DG) based on the additional selection head
will generally become better if using SR as the confidence
function, as observed in (Feng et al., 2023). Furthermore,
the improvement is larger on CIFAR-100 than on CelebA
with only two classes, which could be attributed to the in-
creased difficulty of learning additional logits as the num-
ber of classes increases. Note that the relative rankings
of SAT+EM, SAT, and DG in our experiments are also
consistent with the overall rankings reported in previous
works (Huang et al., 2020; 2022; Feng et al., 2023).

Table 3 shows the comparison with the two currently best-
performing methods SAT+EM+SR and SAT on ImageNet.
Note that their results are directly from (Feng et al., 2023),
and the comparison is fair as all training settings are same.
We can observe that CCL-SC always performs the best, ex-
cept at 10% coverage. However, one may argue that the
performance improvement is due to the accuracy improve-
ment, because CCL-SC achieves 1% accuracy improvement
over other methods at full coverage. To mitigate this con-
cern, we also load checkpoints when training is completed
in just 100 epochs, and the results are shown in the CCL-
SC* column of Table 3. Now our method achieves slightly
lower accuracy than SAT+EM+SR at full coverage, but still
outperforms both SAT+EM+SR and SAT when the coverage
is between 20% and 80%.

6.2. Comparison with Other Related Methods

As described in Section 2.1, selective classification is closely
related to model calibration and Human-AI collaboration. In
this section, we introduce five methods from model calibra-
tion, including Focal loss (Lin et al., 2017), Adaptive Focal
loss (Mukhoti et al., 2020), Soft AvUC loss (Karandikar
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Table 2. Selective risk (%) on CelebA and CIFAR-100 for various coverage rates (%). The mean and standard deviation are calculated
over 5 trials. The best entries are marked in bold. The symbol ‘•’/‘◦’ indicates that CCL-SC is significantly better/worse than the
corresponding method, according to the Wilcoxon rank-sum test with significance level 0.05. The w/t/l denotes the number of cases where
the selective risk of CCL-SC is significantly lower, almost equivalent, or significantly higher, compared to the corresponding method.

CelebA

Coverage CCL-SC SAT+EM+SR SAT+EM SAT+SR SAT DG+SR DG SR

100 18.71±0.16 19.04±0.30 19.04±0.30 19.20±0.37• 19.20±0.37• 19.26±0.23• 19.26±0.23• 19.30±0.13•
95 17.00±0.09 17.55±0.33• 17.74±0.31• 17.65±0.33• 17.82±0.32• 17.82±0.26• 18.06±0.29• 17.80±0.12•
90 15.47±0.14 16.06±0.36• 16.24±0.31• 16.17±0.31• 16.38±0.30• 16.27±0.32• 16.87±0.28• 16.30±0.12•
85 14.03±0.17 14.56±0.36• 14.72±0.28• 14.65±0.27• 14.92±0.21• 14.81±0.27• 15.61±0.27• 14.81±0.11•
80 12.51±0.21 13.12±0.39• 13.21±0.29• 13.17±0.29• 13.38±0.21• 13.43±0.34• 14.36±0.30• 13.37±0.13•
75 11.05±0.20 11.69±0.37• 11.72±0.36• 11.78±0.26• 11.90±0.19• 12.11±0.32• 13.01±0.33• 11.98±0.15•
70 9.73±0.14 10.33±0.32• 10.35±0.28• 10.41±0.27• 10.49±0.23• 10.81±0.37• 11.73±0.40• 10.62±0.14•
60 7.16±0.09 7.84±0.43• 7.73±0.37• 8.00±0.35• 7.94±0.28• 8.28±0.43• 8.99±0.43• 8.06±0.29•
50 4.93±0.16 5.51±0.44• 5.41±0.42 5.71±0.25• 5.68±0.18• 6.17±0.58• 6.27±0.37• 5.92±0.23•
40 3.09±0.14 3.66±0.54 3.50±0.49 3.82±0.22• 3.77±0.17• 4.35±0.67• 3.86±0.28• 4.03±0.24•
30 1.87±0.15 2.16±0.45 2.06±0.35 2.33±0.16• 2.15±0.21 2.81±0.68 2.16±0.26 2.49±0.24•
20 0.92±0.12 1.10±0.25 1.02±0.21 1.21±0.14• 1.12±0.13 1.65±0.37• 1.10±0.12 1.45±0.12•
10 0.25±0.08 0.41±0.12 0.37±0.12 0.54±0.12• 0.49±0.06• 0.80±0.21• 0.41±0.14 0.50±0.12•

w/t/l / 8/5/0 7/6/0 14/0/0 12/2/0 13/1/0 11/3/0 14/0/0

Avg. Rank 1.00 2.54 2.77 4.46 5.00 6.85 6.62 6.15

CIFAR-100

Coverage CCL-SC SAT+EM+SR SAT+EM SAT+SR SAT DG+SR DG SR

100 26.55±0.26 26.96±0.14• 26.96±0.14• 26.98±0.16• 26.98±0.16• 27.12±0.30• 27.12±0.30• 27.19±0.33•
95 23.54±0.15 24.14±0.12• 24.16±0.10• 24.17±0.18• 24.25±0.14• 24.28±0.26• 24.35±0.38• 24.37±0.29•
90 20.97±0.20 21.52±0.22• 21.56±0.10• 21.59±0.15• 21.68±0.16• 21.72±0.29• 21.84±0.40• 21.86±0.31•
85 18.57±0.20 19.08±0.21• 19.14±0.18• 19.09±0.22• 19.18±0.19• 19.35±0.16• 19.43±0.32• 19.43±0.40•
80 16.07±0.15 16.71±0.18• 16.73±0.23• 16.64±0.19• 16.84±0.23• 16.89±0.19• 17.20±0.37• 17.09±0.45•
75 13.60±0.19 14.30±0.19• 14.53±0.28• 14.21±0.23• 14.49±0.22• 14.44±0.29• 14.97±0.48• 14.58±0.39•
70 11.23±0.16 11.94±0.21• 12.07±0.20• 11.83±0.18• 12.11±0.20• 12.05±0.42• 12.81±0.64• 12.28±0.29•
60 6.83±0.15 7.51±0.16• 7.83±0.07• 7.54±0.09• 7.79±0.22• 7.75±0.61• 8.91±0.75• 7.71±0.33•
50 3.95±0.22 4.08±0.15 4.30±0.15• 4.10±0.24 4.32±0.19 4.40±0.56 5.48±0.72• 4.36±0.17•
40 2.29±0.33 2.12±0.15 2.37±0.20 2.00±0.04 2.38±0.10 2.45±0.50 3.16±0.49• 2.18±0.13
30 1.26±0.17 1.05±0.11 1.37±0.16 0.96±0.10◦ 1.21±0.10 1.68±0.59 2.07±0.57 1.29±0.11
20 0.71±0.12 0.54±0.15 0.77±0.08 0.54±0.14 0.67±0.12 1.14±0.50 1.65±0.49• 0.78±0.11
10 0.36±0.08 0.48±0.12 0.58±0.21 0.42±0.16 0.48±0.23 0.74±0.29• 1.28±0.30• 0.58±0.21

w/t/l / 8/5/0 9/4/0 8/4/1 8/5/0 9/4/0 12/0/0/ 9/4/0

Avg. Rank 1.69 2.23 4.54 2.46 4.69 6.00 7.62 6.23

Table 3. Selective risk (%) on ImageNet for various coverages (%).
The mean and standard deviation are calculated over 3 trials. The
best and runner-up entries are bolded and underlined, respectively.

Cov. CCL-SC SAT+EM+SR SAT CCL-SC*

100 26.26±0.10 27.27 ± 0.05 27.41 ± 0.08 27.31±0.04
90 20.68±0.07 21.57 ± 0.19 22.67 ± 0.24 21.71±0.03
80 15.76±0.07 16.83 ± 0.06 18.14 ± 0.28 16.78±0.03
70 11.39±0.10 12.34 ± 0.11 13.88 ± 0.14 12.25±0.04
60 7.55±0.09 8.45 ± 0.05 10.11 ± 0.15 8.34±0.03
50 4.79±0.04 5.57 ± 0.17 6.82 ± 0.07 5.33±0.06
40 2.95±0.04 3.77 ± 0.00 4.32 ± 0.33 3.35±0.05
30 1.83±0.05 2.32 ± 0.15 2.68 ± 0.14 2.03±0.04
20 1.22±0.05 1.35 ± 0.20 1.82 ± 0.13 1.23±0.04
10 0.72±0.05 0.55 ± 0.05 1.27 ± 0.34 0.68±0.07

et al., 2021), Soft ECE loss (Karandikar et al., 2021), and
MMCE loss (Kumar et al., 2018), as well as AUCOC
loss (Sangalli et al., 2023) from Human-AI collaboration
into selective classification. Tabel 8 in Appeidx E shows that
CCL-SC has the lowest selective risk at various coverage
rates compared to these methods.

6.3. Alignment between Proposed Theory and Method

Theorem 4.1 discloses that a smaller intra-class variance of
feature representation of a model will enhance its generaliza-
tion performance of selective classification, and our method
CCL-SC explicitly optimizes this aspect. Although previous
experiments have confirmed the superiority of our method
in the generalization performance of selective classification,
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we still need to answer through experiments whether our
method has really obtained lower intra-class variance and
tighter bounds in Theorem 4.1 compared to other selective
classification methods. We show the changes of the intra-
class variance and the bound in Theorem 4.1 of different
methods during the training process on CIFAR-100 in Fig-
ure 2 in Appendix F. It can be observed that CCL-SC does
have the lowest intra-class variance and the lowest bound. It
is worth mentioning that the relative order of the intra-class
variance and the bounds of different methods is consistent
with their actual order of selective risk, and the methods
with similar selective risk (such as SAT+EM and SAT) also
have similar intra-class variance/bound, indicating the im-
portance of intra-class variance for selective classification
performance and the usefulness of our bound.

6.4. Learned Feature Representation

Because our method CCL-SC explicitly optimizes the fea-
ture layer of the model, we compare its learned feature
representations with those of SR trained only using the
cross-entropy loss on CIFAR-10 at coverage 95%. The t-
SNE (Van der Maaten & Hinton, 2008) visualization shown
in Figure 3 in Appendix G clearly demonstrates that CCL-
SC achieves more significant inter-class separation and intra-
class aggregation in the feature space, which confirms that
optimizing the feature layer contributes to performance im-
provement in selective classification.

6.5. Ablation Studies and Hyper-parameter Sensitivity

Next, we conduct ablation studies and parameter sensitivity
analysis on CIFAR-100 for the proposed method CCL-SC.

SR-weighted We verify whether the SR-weighted man-
ner in the proposed CSC loss LCSC really improves the
performance of selective classification. Table 9 in Ap-
pendix H shows that the original CCL-SC method using
the SR-weighted CSC loss consistently achieves lower se-
lective risk than that using the unweighted CSC loss across
all coverage degrees.

The contrastive learning method of CCL-SC We first con-
duct ablation experiments for the construction of negative
samples. For convenience, we name the ablation method
CCL-SC2. For the negative samples of the samples that are
correctly classified as class y, CCL-SC2 contains not only
the samples misclassified as class y in the queue defined
in CCL-SC, but also the samples from other classes in the
queue. Table 10 in Appendix H shows that even with the
addition of negative samples, the performance of CCL-SC2
will not be improved compared to the original CCL-SC.
This implies that the improvement of the performance is
likely to be from the negative samples we define. To confirm
this conclusion, we conduct another ablation study in which
we remove the negative samples defined in CCL-SC, and

only use randomly sampled samples from other categories
as negative samples. For simplicity, we name this ablation
method CCL-SC3. Table 11 in Appendix H shows that
CCL-SC3 has a significant performance decrease compared
to CCL-SC, which demonstrates the effectiveness of our
strategy to construct negative samples.

We also conduct ablation experiments for the whole con-
trastive method of CCL-SC. Specifically, we introduce
the positive and negative sample definition method and
loss function from (Khosla et al., 2020) into our CCL-SC
method, while keeping the other components consistent. We
name this ablation method CCL-SC+SupCon. The com-
parison results on CIFAR-100 are shown in Table 11 in
Appendix H. It can be observed that the selective classifi-
cation performance of the original CCL-SC is better than
CCL-SC+SupCon.

Hyper-parameter Sensitivity We then analyze the influ-
ence of four important hyper-parameters: the momentum
coefficient q, queue size s, weight coefficient w, and initial
epochs Es. Tables 13 to 16 in Appendix H show that the
performance of CCL-SC is generally not sensitive to their
settings, i.e., CCL-SC can achieve good performance in a
wide range of these hyper-parameters. Detailed results can
be found in Appendix H.

6.6. Combination of CCL-SC and Existing Methods

Finally, we are to verify another benefit of CCL-SC, i.e.,
it can be seamlessly integrated with existing methods that
optimize the model at the classification layer, because CCL-
SC operates on the feature representation of the model. Here,
we combine CCL-SC with SAT (Huang et al., 2020; 2022)
and EM (Feng et al., 2023) methods. That is, the loss
function at the classification layer is modified from the cross-
entropy loss to the loss of SAT with EM regularization.
Table 17 and Tabel 18 in Appendix I show that such a
combination outperforms the original CCL-SC significantly.

7. Conclusion
This paper proves a generalization bound for selective clas-
sification, disclosing that optimizing feature layers to re-
duce intra-class variance is helpful for improving the per-
formance. Inspired by this theory, we adapt contrastive
learning to explicitly optimize the model at the feature layer,
resulting in the new method CCL-SC for selective classifi-
cation. Extensive experiments show that CCL-SC clearly
outperforms state-of-the-art methods, and can also be nat-
urally combined with existing techniques to bring further
improvement. This work supplements previous selective
classification methods which focus solely on modifying the
classification layer, and might encourage the exploration of
new methods considering the optimization of feature layer.
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A. Table of Notations

Table 4. Key symbols and notations.

Sign Description

X The feature space.
Y The label space.
k The number of classes.
D The data distribution over X × Y .
F The families of predictive probability functions mapping X to [0, 1]

k.
f(x) The vector composed of the predicted probabilities of f for sample x across k classes.
G The families of confidence functions mapping X to [0, 1].

g(x) The confidence of f(x) estimated by the selective function g.
c The feature embedding layer of the classifier f .
l The final classification layer of f .
ŷ The predictive class by f .

ϕ(g) The coverage relies on the selective function g.
R(f, g) The Selective risk of the selective model (f, g).

h The threshold that determines whether the model chooses to classify or not.
S The training set.
m The number of training samples.
P The queue of all positive samples.
Q The queue of all negative samples.
z The the normalized feature embedding of sample x through the embedding layer c.

B. Theorem Proofs
Theorem. ∀ρ, ρ′, α, β, λ > 0, and ∀δ > 0, with probability at least 1− δ over a training set of size m, we have:

E(x,y)∼D[L0(f, g,x, y)] ≤ E(x,y)∼S

[
Lρ,ρ′

MH(f, g,x, y)
]
+ 4

√
∥l∥22 Varintra[c(x)] + 4ρ̃2 + ρ̃2∥l∥22 ln 6m

δ

ρ̃2m∥l∥22
,

where ∥l∥2 denotes the L2-norm of the classification layer l’s parameters, and ρ̃ = min{ρ/(4α), ρ′/(4βλ+ 2α)}.

Proof. To obtain the bound of the gap between the expected selective classification loss E(x,y)∼D[L0(f, g,x, y)] and the

empirical margin loss E(x,y)∼S

[
Lρ,ρ′

MH(f, g,x, y)
]
, we start to prove a PAC-Bayesian bound:

Lemma B.1. Let fw : X → Y be any predictor with parameters w, and P be any distribution on the parameters that is
independent of the training data. Then, for any ρ, ρ′, α, β, δ > 0, with probability at least 1− δ over the training set of size
m, for any w, and any random perturbation u s.t. Pu [maxx∈S |fw+u(x)− fw(x)|2 < min

{
ρ
4α ,

ρ′

4βλ+2α

}]
≥ 1/2, we

have

E(x,y)∼D[L0(f, g,x, y)] ≤ E(x,y)∼S

[
Lρ,ρ′

MH(f, g,x, y)
]
+ 4

√
DKL(w + u | P ) + ln 6m

δ

m− 1
, (5)

where DKL(P | Q) denotes the Kullback-Leibler divergence between P and Q.

Proof of Lemma B.1. Let w′ = w + u, and Sw be the set of perturbations with the following property:

Sw ⊆
{
w′
∣∣∣∣max
x∈S
|fw′(x)− fw(x)|2 < min{ ρ

4α
,

ρ′

4βλ+ 2α
}
}
.
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Let q be the probability density function over the parameters w′. We construct a new distribution Q̃ over predictors fw̃
where w̃ is restricted to Sw with the probability density function:

q̃(w̃) =

{
q(w̃) if w̃ ∈ Sw;

0 otherwise .

According to the lemma assumption, we have Z = P [w′ ∈ Sw] ≥ 1/2. Therefore, we can bound the change of the margins
and the confidence scores for any instance:

max
i,j∈[k],x∈S

|(|fw̃(x)[i]− fw̃(x)[j]|)− (|fw(x)[i]− fw(x)[j]|)| < ρ

2α
,

max
x∈S
|gw̃(x)− gw(x)| < ρ′

4βλ+ 2α
.

Here we define a perturbed loss function as:

E(x,y)∼D[L
ρ/2,ρ′/2
MH (f, g,x, y)] = PD

[
γ(x) ≤ ρ

2α

]
· PD

[
g(x) > − ρ′

4βλ+ 2α

]
+ λ · PD

[
g(x) >

ρ′

4βλ+ 2α

]
.

We can get the following bounds:

E(x,y)∼D[L0 (fw, gw,x, y)] ≤ E(x,y)∼D

[
L
ρ/2,ρ′/2
MH (fw̃, gw̃,x, y)

]
,

E(x,y)∼S

[
L
ρ/2,ρ′/2
MH (fw̃, gw̃,x, y)

]
≤ E(x,y)∼S

[
Lρ,ρ′

MH (fw, gw,x, y)
]
.

Finally, using the proof of Lemma 1 in (Neyshabur et al., 2018), with probability 1− δ over the training set we have:

E(x,y)∼D[L0 (fw, gw,x, y)] ≤ Ew̃

[
E(x,y)∼D

[
L
ρ/2,ρ′/2
MH (fw̃, gw̃,x, y)

]]
≤ Ew̃

[
E(x,y)∼S

[
L
ρ/2,ρ′/2
MH (fw̃, gw̃,x, y)

]]
+ 2

√
2DKL(w̃∥P ) + ln 2m

δ

m− 1

≤ E(x,y)∼S

[
Lρ,ρ′

MH (fw, gw,x, y)
]
+ 2

√
2DKL(w̃∥P ) + ln 2m

δ

m− 1

≤ E(x,y)∼S

[
Lρ,ρ′

MH (fw, gw,x, y)
]
+ 4

√
DKL (w′∥P ) + ln 6m

δ

m− 1
.

Next, we will consider adding perturbation parameters u ∼ N
(
0, σ2I

)
to the parameters of the classification layer w, i.e.,
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w′ = w + u, and we assume that the learned feature c(x) is centered, i.e., E[c(x)] = 0. Then, we have

E[∥w′c(x)−wc(x)∥22] = E[∥u∥22∥c(x)∥22]
= σ2E[∥c(x)∥22]
= σ2 tr(E[c(x)c(x)⊤]− E[c(x)]E[c(x)]⊤)
= σ2 tr[Cov[c(x)]]

= σ2 tr[E[Cov[c(x)|y]] + Cov[E[c(x)|y]]]

= σ2 tr

∑
i∈[k]

Cov[ci(x)]/k +
∑
i ̸=j

(E[ci(x)]− E[cj(x)])(E[ci(x)]− E[cj(x)])⊤/k(k − 1)


= σ2 tr

∑
i∈[k]

Cov[ci(x)]/k

+
∑
i ̸=j

tr
[
(E[ci(x)]− E[cj(x)])(E[ci(x)]− E[cj(x)])⊤

]
/k(k − 1)

≤ σ2 tr

∑
i∈[k]

Cov[ci(x)]/k

+
∑
i̸=j

(2ρ̃)2/(∥l∥22k(k − 1))

= σ2 tr

∑
i∈[k]

Cov[ci(x)]/k

+ 4ρ̃2/∥l∥22.

According to the Markov inequality, we have

Pβ

max
x∈S
|fw′(x)− fw(x)|22 ≥

σ2

δ
·

tr

∑
i∈[k]

Cov[ci(x)]/k

+ 4ρ̃2/∥l∥22

 ≤ δ.

We set δ = 1/2, such that the inequality holds with a probability at least 1/2 :

max
x∈S
|fw′(x)− fw(x)|22 ≤ 2σ2

tr

∑
i∈[k]

Cov
[
ci(x)

]
/k

+ 4ρ̃2/∥l∥22

 .

For simplicity, we use Varintra [c(x)] to denote the intra-class variance tr
[∑

i∈[k] Cov
[
ci(x)

]
/k
]
, then we have

max
x∈S
|fw′(x)− fw(x)|22 ≤ 2σ2

(
Varintra [c(x)] + 4ρ̃2/∥l∥22

)
.

Since we now prove that the perturbation caused by random vector u is bounded by a term relative to the variance σ, we can
preset the value of σ to make the random perturbation satisfy the condition for Lemma B.1.

max
x∈S
|fw′(x)− fw(x)|22 ≤ 2σ2

(
Varintra [c(x)] + 4ρ̃2/∥l∥22

)
= min

{
ρ

4α
,

ρ′

4βλ+ 2α

}2

= ρ̃2.

We can derive σ = ρ̃/
√
2 (Varintra [c(x)] + 4ρ̃2/∥l∥22) from the above inequality. Naturally, we can calculate the Kullback-

Leibler divergence in Lemma B.1 with the chosen distributions for P ∼ N
(
0, σ2I

)
:

DKL(w + u∥P ) ≤ |w|2

2|w|2σ2
=

1

2σ2
≤ ∥l∥

2
2 Varintra [c(x)] + 4ρ̃2

ρ̃2∥l∥22
.
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Put it in Lemma B.1, for any w, with probability of at least 1− δ we have:

E(x,y)∼D[L0(f, g,x, y)] ≤ E(x,y)∼S

[
Lρ,ρ′

MH(f, g,x, y)
]
+ 4

√
∥l∥22 Varintra [c(x)] + 4ρ̃2 + ρ̃2∥l∥22 ln 6m

δ

ρ̃2m∥l∥22
.

C. Training with CSC Loss

Algorithm 1 Training with CSC loss
Input: Data {(xi, yi)}mi=1, initial model f
Parameter: momentum coefficient q, queue size s, weight coefficient w, initial epochs Es

1: for e = 1 : maximum epochs do
2: if e = Es then
3: Initialize θm = θ
4: end if
5: for each mini-batch in the current epoch e do
6: if e ≥ Es then
7: if Both queues P and Q have been updated more than s tuples then
8: L = w · LCSC + LCE
9: else

10: L = LCE
11: Fetch {(zi, fθm

(xi))}ni=1 of mini-batch data;
12: Update P by {(zi, fθm

(xi)) | fθm
(xi) = yi}ni=1;

13: Update Q by {(zi, fθm
(xi)) | fθm

(xi) ̸= yi}ni=1

14: end if
15: θm ← q · θm + (1− q) · θ;
16: else
17: L = LCE
18: end if
19: Update the parameters θ of the model f using an optimizer based on L
20: end for
21: end for

Algorithm 1 provides the pseudo-code of the training method with the proposed CSC loss. Different from the conventional
two-stage training manner “pre-train then finetune” used in typical contrastive learning methods (He et al., 2020; Chen et al.,
2020; Khosla et al., 2020), we employ a one-stage manner to optimize the classification layers and convolutional layers of
the model together, because the CSC loss involves the predictive information of the model.

The model f is initially trained using the cross-entropy loss LCE for Es epochs. When e ≥ Es and meanwhile both queues
P and Q have been updated more than s tuples, the training gradient consists of two parts: the gradient of the CSC loss
LCSC returned from the last feature embedding layer c, and the gradient of the cross-entropy loss LCE returned from the
classification layer l. We use a weight coefficient w to balance these two loss items. The parameters θ of the model f will be
updated using an optimizer based on the combined loss. As introduced in Section 5.1, when e ≥ Es, a momentum encoder
fθm is used to generate positive and negative samples. When the epoch e equals Es, the parameters θm of the momentum
encoder fθm are initialized to the parameters θ of the current model f , which ensures that the momentum encoder has a
favorable initial accuracy. After that, the parameters θm of the momentum encoder will be updated according to Eq. (4) at
each training step. The samples generated by the momentum encoder will be used to update the queues P and Q, which
store positive and negative samples, respectively. Note that fθm will not be optimized by the optimizer.
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D. Detailed Experimental Settings
D.1. hyper-parameters

We utilize 20% of the training set for each dataset as the validation set to tune hyper-parameters. We test the momentum
coefficient q ∈ {0.90.99, 0.999}, and the weight coefficient w ∈ {0.1, 0.5, 1.0}. For the queue size s, we set it based on the
number of classes in the dataset: for datasets with fewer classes such as CelebA and CIFAR-10, we set s = 300; for datasets
with more classes such as CIFAR-100 and ImageNet, we set s = 3000 and s = 10000, respectively. For the initial epochs
Es, we test it on datasets with total training epochs of 300 using the values {50, 100, 150, 200}; for datasets with total
training epochs of 150, we test the values {50, 100}; for datasets with training epochs of 50, we evaluate the values {0, 1}.
Table 5 lists the hyperparameter settings of CCL-SC on each dataset. After tuning the hyper-parameters, we train the model
on the entire training set to evaluate performance.

Table 5. The hyper-parameters settings of CCL-SC on various datasets.

Dataset q s w Es

CIFAR-10 0.999 300 0.5 150
CIFAR-100 0.99 3000 1.0 150

CelebA 0.999 300 0.5 1
ImageNet 0.999 10000 0.1 50

For the hyper-parameters of the baseline methods, we follow the settings provided in their origin paper or released codes.
Nevertheless, due to the absence of performance evaluation on CIFAR-100 and CelebA in prior work, we have also applied
the same parameter-tuning steps outlined for our method to calibrate the parameters of the baseline methods. Table 6 lists
the hyperparameter settings for each baseline on CIFAR-100 and CelebA.

Table 6. The hyper-parameters settings of the baselines on various datasets.

Dataset Method hyper-parameters

CIFAR-100
Deep Gambler Initial epochs Es = 200, Reward o = 4.6

SAT Initial epochs Es = 200, Momentum term mSAT = 0.9
SAT+ER Initial epochs Es = 200, Momentum term mSAT = 0.9, Entropy weight β = 0.001

CelebA
Deep Gambler Initial epochs Es = 0, Reward o = 2.0

SAT Initial epochs Es = 0, Momentum term mSAT = 0.9
SAT+ER Initial epochs Es = 0, Momentum term mSAT = 0.9, Entropy weight β = 0.01

D.2. Networks and Training

Following prior work, for CIFAR-10 and CIFAR-100, we use VGG16 (Simonyan & Zisserman, 2015) as the backbones of
selective classifiers. The models are trained for 300 epochs using SGD, with an initial learning rate of 0.1, a momentum of
0.9, a weight decay of 5e-4, and a mini-batch size of 64. The learning rate was reduced by 0.5 every 25 epochs.

For ImageNet, we use ResNet34 (He et al., 2016) trained for 150 epochs using SGD, with an initial learning rate of 0.1, a
momentum of 0.9, a weight decay of 5e-4, and a mini-batch size of 256. The learning rate was reduced by 0.5 every 10
epochs.

For CelebA, we use ResNet18 (He et al., 2016) trained for 50 epochs using Adam, with an initial learning rate of 1e-5, and a
mini-batch size of 64. When evaluating the performance of each method on the CelebA dataset, we employ the checkpoint
with the highest accuracy on the CelebA’s original separate validation set to assess its performance on the test set.
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D.3. Data Augmentation Methods for each Dataset

For the same dataset, all compared methods utilize the same data augmentation to ensure a fair comparison. For the commonly
used selective classification benchmark datasets (including CIFAR-10, and ImageNet) in previous works (Geifman & El-
Yaniv, 2019; Liu et al., 2019; Huang et al., 2020; 2022; Feng et al., 2023), we adopt the data augmentation settings that have
been commonly utilized. For the newly considered challenging selective classification datasets in this work, CIFAR-100 and
CelebA, we apply commonly used data augmentation methods from the field of image classification that are tailored for
these datasets. Table 7 presents a summary of the data augmentation methods utilized for each of the datasets.

Table 7. Data augmentation methods utilized for each of the datasets.

Dataset Data Augmentation

CIFAR-10
RandomCrop

RandomHorizontalFlip

CIFAR-100
RandomCrop

RandomHorizontalFlip

CelebA RandomHorizontalFlip

ImageNet
RandomResizedCrop

RandomHorizontalFlip
ColorJitter

E. Comparison with Other Related Methods
As described in Section 2.1, selective classification is closely related to model calibration and the Human-AI collaboration.
In this section, we introduce five methods from model calibration, including Focal loss (Lin et al., 2017), Adaptive Focal
loss (Mukhoti et al., 2020), Soft AvUC loss (Karandikar et al., 2021), Soft ECE loss (Karandikar et al., 2021), and MMCE
loss (Kumar et al., 2018), as well as AUCOC loss (Sangalli et al., 2023) from the Human-AI collaboration into selective
classification. Tabel 8 shows that CCL-SC has the lowest selective risk at various coverage rates compared to these methods.

Table 8. Selective risk (%) on the CIFAR-100 for various coverage rates (%). The mean and standard deviation are calculated over 5 trials.
The best entries are marked in bold.

Coverage CCL-SC Adaptive Focal Soft AvUC Soft-ECE MMCE AUCOC Loss Focal Loss

100 26.55±0.26 27.96±0.12 27.93±0.12 26.81±0.06 27.14±0.24 26.75±0.07 28.08±0.22
95 23.54±0.15 25.26±0.24 24.99±0.05 23.93±0.16 24.30±0.24 23.89±0.05 25.38±0.26
90 20.97±0.20 22.63±0.17 22.20±0.08 21.40±0.1 21.66±0.12 21.33±0.19 22.64±0.37
85 18.57±0.20 20.13±0.09 19.68±0.04 18.84±0.10 18.95±0.25 19.17±0.10 20.11±0.43
80 16.07±0.15 17.77±0.08 17.12±0.05 16.35±0.03 16.35±0.19 16.21±0.05 17.64±0.18
75 13.60±0.19 15.48±0.14 14.76±0.01 14.15±0.11 14.21±0.13 13.95±0.04 15.34±0.14
70 11.23±0.16 13.07±0.11 12.46±0.10 11.57±0.07 11.60±0.16 11.47±0.13 13.17±0.11
60 6.83±0.15 8.73±0.01 7.93±0.13 7.28±0.08 7.32±0.05 7.26±0.13 8.85±0.12
50 3.95±0.22 5.67±0.13 4.29±0.05 4.51±0.07 4.32±0.10 4.21±0.02 5.69±0.11
40 2.29±0.33 4.14±0.29 2.48±0.02 3.10±0.02 3.16±0.11 2.31±0.09 4.59±0.01
30 1.26±0.17 3.87±0.07 1.63±0.03 2.72±0.15 2.63±0.03 1.69±0.04 4.25±0.05
20 0.71±0.12 3.95±0.25 1.58±0.03 2.85±0.20 2.40±0.05 1.26±0.16 4.70±0.30
10 0.36±0.08 4.55±0.45 1.45±0.15 2.85±0.15 2.20±0.00 0.88±0.04 5.05±0.25

F. Alignment between Proposed Theory and Method
In this section, we show the changes of the intra-class variance and the bound in Theorem 4.1 of different methods during the
training process on CIFAR-100 in Figure 2. It can be observed that CCL-SC does have the lowest intra-class variance and the
lowest bound. It is worth mentioning that the relative order of the intra-class variance and the bounds of different methods is
consistent with their actual order of selective risk, and the methods with similar selective risk (such as SAT+EM and SAT)
also have similar intra-class variance/bound, indicating the importance of intra-class variance for selective classification
performance and the usefulness of our bound.
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Figure 2. The intra-class variance (a) and the bound in Theorem 4.1 (b) changes of different methods during the training process on
CIFAR-100. In (b), we also include the generalization error of CCL-SC.

G. Learned Feature Representation
In this section we compare its learned feature representations with those of SR trained only using the cross-entropy loss
on CIFAR-10 at coverage 95%. The t-SNE (Van der Maaten & Hinton, 2008) visualization shown in Figure 3 clearly
demonstrates that compared to SR, our method CCL-SC achieves more significant inter-class separation and intra-class
aggregation in the feature space for selecting samples for classification. This confirms that optimizing the feature layer
contributes to performance improvement in selective classification.

(a) SR (b) CCL-SC

Figure 3. The t-SNE Visualization (Van der Maaten & Hinton, 2008) of SR and CCL-SC feature representations on the CIFAR-10 dataset
at 95% coverage. Point colors indicate class categories. Light-colored points represent samples selected for abstaining from predicting.

H. Ablation Study and Hyper-parameter Sensitivity Results
SR-weighted To verify whether the weighting manner based on SR in the proposed CSC loss LCSC really improves the
performance of selective classification, we evaluate the model trained using CSC loss without applying weights (i.e.,
L′

CSC = 1
−|P (y)|

∑
xp∈P (y) log

exp(z·zp/τ)∑
xa∈A(y) exp(z·za/τ)

), and the results on the CIFAR-100 dataset are shown in Table 9. It
can be observed that SR-weighted (i.e., original CCL-SC method) consistently achieves lower selective risk than using the
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unweighted CSC loss across all degrees of coverage, and performs significantly better on at 5/13 coverage rates, according
to the Wilcoxon rank-sum test (Wilcoxon, 1945) with significance level 0.05. This result demonstrates the effectiveness of
CSC loss combined with model confidence for selective classification problems.

Table 9. Selective risk (%) on the CIFAR-100 dataset for various coverage rates (%). The means and standard deviations are calculated
over 5 trials. The best entries are marked in bold. The symbol ‘•’/‘◦’ indicates that SR-weighted (i.e., original CCL-SC) is significantly
better/worse than Unweighted, according to the Wilcoxon rank-sum test with significance level 0.05.

Coverage SR-weighted Unweighted

100 26.55±0.26 26.72±0.15
95 23.54±0.15 23.84±0.11•
90 20.97±0.20 21.28±0.16•
85 18.57±0.20 18.69±0.21
80 16.07±0.15 16.15±0.17
75 13.60±0.19 13.67±0.16
70 11.23±0.16 11.40±0.20
60 6.83±0.15 7.31±0.14•
50 3.95±0.22 4.52±0.13•
40 2.29±0.33 2.54±0.23
30 1.26±0.17 1.47±0.22
20 0.71±0.12 0.82±0.09
10 0.36±0.08 0.58±0.12•

The contrastive learning method of CCL-SC We conduct experiments with different queue sizes s = 300 and s = 3000.
We first conduct ablation experiments for the construction of negative samples. For convenience, we name the ablation
method CCL-SC2. For the negative samples of the samples that are correctly classified as class y, CCL-SC2 contains not
only the samples misclassified as class y in the queue defined in this paper, but also the samples from other classes in the
queue. Table 10 shows that even with the addition of negative samples from other categories, the performance of CCL-SC2
will not be improved compared to the original CCL-SC. However, this leads to more training costs. This implies that the real
improvement in model performance is likely to be from the negative samples we define.

Table 10. Selective risk (%) on the CIFAR-100 dataset for various coverage rates (%). The means and standard deviations are calculated
over 5 trials. The best entries are marked in bold.

Coverage CCL-SC s = 300 CCL-SC2 s = 300 CCL-SC s = 3000 CCL-SC2 s = 3000

100 26.73±0.21 26.72±0.28 26.55±0.26 26.48±0.27
95 23.89±0.16 23.87±0.18 23.54±0.15 23.74±0.29
90 21.22±0.15 21.22±0.12 20.97±0.20 21.12±0.26
85 18.76±0.17 18.85±0.10 18.57±0.20 18.67±0.24
80 16.36±0.21 16.37±0.08 16.07±0.15 16.20±0.28
75 13.88±0.18 14.05±0.10 13.60±0.19 13.79±0.27
70 11.37±0.23 11.58±0.19 11.23±0.16 11.42±0.30
60 7.09±0.10 7.30±0.19 6.83±0.15 7.50±0.28
50 4.06±0.23 4.36±0.18 3.95±0.22 4.68±0.18
40 2.29±0.18 2.47±0.23 2.29±0.33 2.62±0.02
30 1.24±0.08 1.32±0.31 1.26±0.17 1.44±0.21
20 0.78±0.14 0.73±0.17 0.71±0.12 0.97±0.12
10 0.50±0.17 0.49±0.12 0.36±0.08 0.58±0.13

To confirm this conclusion, we conduct another ablation study in which we remove the negative samples defined in CCL-SC,
and only use randomly sampled samples from other categories as negative samples. We name this ablation method CCL-SC3.
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The experimental results are shown in Table 11. It can be observed that CCL-SC3 has a significant performance decrease
compared to CCL-SC, which demonstrates the effectiveness of our strategy to construct negative samples.

Table 11. Selective risk (%) on the CIFAR-100 dataset for various coverage rates (%). The means and standard deviations are calculated
over 5 trials. The best entries are marked in bold.

Coverage CCL-SC s = 300 CCL-SC3 s = 300 CCL-SC s = 3000 CCL-SC3 s = 3000

100 26.73±0.21 27.11±0.09 26.55±0.26 26.87±0.35
95 23.89±0.16 24.28±0.14 23.54±0.15 23.94±0.41
90 21.22±0.15 21.70±0.17 20.97±0.20 21.33±0.31
85 18.76±0.17 19.24±0.20 18.57±0.20 18.89±0.28
80 16.36±0.21 16.76±0.21 16.07±0.15 16.41±0.21
75 13.88±0.18 14.27±0.19 13.60±0.19 13.96±0.14
70 11.37±0.23 11.86±0.25 11.23±0.16 11.58±0.17
60 7.09±0.10 7.54±0.20 6.83±0.15 7.34±0.37
50 4.06±0.23 4.13±0.12 3.95±0.22 4.04±0.17
40 2.29±0.18 2.13±0.04 2.29±0.33 2.19±0.11
30 1.24±0.08 1.14±0.14 1.26±0.17 1.15±0.08
20 0.78±0.14 0.72±0.05 0.71±0.12 0.76±0.10
10 0.50±0.17 0.44±0.08 0.36±0.08 0.40±0.14

We also conduct ablation experiments for the whole contrastive method of CCL-SC. Specifically, We introduce the positive
and negative sample definition method and loss function from (Khosla et al., 2020) into our CCL-SC method, while keeping
the other components consistent. We name this ablation method CCL-SC+SupCon. The comparison results on CIFAR-100
are shown in Table 11. It can be observed that the selective classification performance of the original CCL-SC is better than
CCL-SC+SupCon, which uses vanilla supervised CL.

Table 12. Selective risk (%) on the CIFAR-100 dataset for various coverage rates (%). The means and standard deviations are calculated
over 5 trials. The best entries are marked in bold.

Coverage CCL-SC s = 300 CCL-SC+SupCon s = 300 CCL-SC s = 3000 CCL-SC+SupCon s = 3000

100 26.73±0.21 26.99±0.13 26.55±0.26 26.77±0.17
95 23.89±0.16 24.14±0.06 23.54±0.15 23.91±0.14
90 21.22±0.15 21.49±0.12 20.97±0.20 21.31±0.15
85 18.76±0.17 19.10±0.13 18.57±0.20 18.80±0.17
80 16.36±0.21 16.64±0.24 16.07±0.15 16.36±0.22
75 13.88±0.18 14.19±0.19 13.60±0.19 13.98±0.26
70 11.37±0.23 11.74±0.21 11.23±0.16 11.63±0.09
60 7.09±0.10 7.26±0.16 6.83±0.15 7.24±0.10
50 4.06±0.23 4.15±0.07 3.95±0.22 4.13±0.03
40 2.29±0.18 2.25±0.20 2.29±0.33 2.32±0.09
30 1.24±0.08 1.25±0.17 1.26±0.17 1.27±0.11
20 0.78±0.14 0.82±0.13 0.71±0.12 0.87±0.10
10 0.50±0.17 0.48±0.10 0.36±0.08 0.50±0.09

We then conduct sensitivity analyses on the hyper-parameters in our method. Specifically, when varying one hyperparameter,
we keep the other hyper-parameters fixed.

Momentum coefficient q. Tabel 13 shows the influence of momentum coefficient q ∈ {0, 0.9, 0.99, 0.999} on the
selective classification performance of our method. Our method achieves stable selective risk when employing q values in
{0.9, 0.99, 0.999}. Specifically, our method exhibits inferior performance when q is set to 0 compared to other values. This
can be attributed to the momentum encoder used for constructing positive and negative sample features losing its momentum
update properties, where Eq. (4) degenerates into θm = θ. Consequently, there is a significant reduction in the consistency
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of feature representations in the queue. This observation is consistent with the findings reported in (He et al., 2020).

Table 13. Selective risk (%) of CCL-SC using various momentum coefficient m for various coverage rates (%) on the CIFAR-100. The
means and standard deviations are calculated over 5 trials. The best entries are marked in bold.

Coverage q = 0 q = 0.9 q = 0.99 q = 0.999

100 26.72±0.21 26.41±0.22 26.55±0.26 26.52±0.29
95 23.92±0.30 23.56±0.15 23.54±0.15 23.64±0.27
90 21.27±0.20 20.91±0.21 20.97±0.20 20.96±0.32
85 18.71±0.27 18.47±0.17 18.57±0.20 18.51±0.26
80 16.19±0.31 15.96±0.22 16.07±0.15 15.97±0.24
75 13.74±0.33 13.53±0.19 13.60±0.19 13.61±0.30
70 11.33±0.28 11.19±0.18 11.23±0.16 11.18±0.16
60 6.98±0.15 6.94±0.13 6.83±0.15 6.97±0.12
50 4.10±0.07 4.05±0.17 3.95±0.22 4.05±0.20
40 2.34±0.19 2.41±0.21 2.29±0.33 2.26±0.23
30 1.33±0.18 1.30±0.19 1.26±0.17 1.23±0.20
20 0.90±0.29 0.81±0.16 0.71±0.12 0.67±0.14
10 0.60±0.21 0.46±0.19 0.36±0.08 0.34±0.05

Avg. Rank 3.92 2.00 2.15 1.85

Queue size s. Tabel 14 shows the performance comparison of our method when maintaining different queue sizes
s ∈ {300, 1000, 3000, 10000, 50000}. Surprisingly, our method demonstrates performance improvements compared to
previous methods, shown in Table 2, even when the queue size is set to a remarkably small value, such as 300. Moreover,
as the queue size increases, our method exhibits further improvements in performance, particularly in cases with higher
coverage.

Table 14. Selective risk (%) of CCL-SC using various queue size s for various coverage rates (%) on the CIFAR-100. The means and
standard deviations are calculated over 5 trials. The best entries are marked in bold.

Coverage s = 300 s = 1000 s = 3000 s = 10000 s = 50000

100 26.73±0.21 26.71±0.18 26.55±0.26 26.45±0.24 26.08±0.04
95 23.89±0.16 23.79±0.19 23.54±0.15 23.62±0.25 23.22±0.07
90 21.22±0.15 21.09±0.29 20.97±0.20 21.00±0.27 20.66±0.08
85 18.76±0.17 18.65±0.31 18.57±0.20 18.39±0.34 18.19±0.13
80 16.36±0.21 16.22±0.37 16.07±0.15 15.84±0.34 15.73±0.08
75 13.88±0.18 13.73±0.32 13.60±0.19 13.31±0.42 13.42±0.11
70 11.37±0.23 11.44±0.24 11.23±0.16 11.01±0.33 11.09±0.17
60 7.09±0.10 7.15±0.18 6.83±0.15 6.88±0.24 6.94±0.18
50 4.06±0.23 4.29±0.16 3.95±0.22 4.13±0.21 4.15±0.14
40 2.29±0.18 2.37±0.16 2.29±0.33 2.26±0.24 2.44±0.09
30 1.24±0.08 1.21±0.14 1.26±0.17 1.17±0.07 1.42±0.21
20 0.78±0.14 0.70±0.20 0.71±0.12 0.65±0.08 0.75±0.20
10 0.50±0.17 0.48±0.19 0.36±0.08 0.40±0.09 0.48±0.12

Avg. Rank 4.23 3.85 2.38 1.85 2.54

Weight coefficients w. Table 15 presents a comparison of the performance of models trained with varying w ∈
{0.1, 0.5, 1.0, 2.0} applied to the CSC loss. It can be observed that when a relatively larger weight coefficient is as-
signed, that is, when the CSC loss has a greater impact on model training, the resulting models exhibit better performance,
which also confirms the effectiveness of the CSC loss.

22



Confidence-aware Contrastive Learning for Selective Classification

Table 15. Selective risk (%) of CCL-SC using various weight coefficient w on the CIFAR-100. The means and standard deviations are
calculated over 5 trials. The best entries are marked in bold.

Coverage w = 0.1 w = 0.5 w = 1.0 w = 2.0

100 26.90±0.04 26.59±0.09 26.55±0.26 26.25±0.09
95 24.12±0.08 23.79±0.13 23.54±0.15 23.41±0.16
90 21.44±0.12 21.08±0.14 20.97±0.20 20.79±0.14
85 19.12±0.15 18.68±0.21 18.57±0.20 18.34±0.19
80 16.59±0.21 16.27±0.26 16.07±0.15 15.89±0.19
75 14.24±0.15 13.83±0.21 13.60±0.19 13.48±0.15
70 11.65±0.21 11.39±0.27 11.23±0.16 11.12±0.11
60 7.37±0.26 7.06±0.13 6.83±0.15 7.09±0.15
50 4.20±0.18 3.97±0.07 3.95±0.22 4.24±0.24
40 2.39±0.15 2.34±0.18 2.29±0.33 2.39±0.22
30 1.40±0.20 1.29±0.18 1.26±0.17 1.31±0.12
20 0.96±0.09 0.83±0.21 0.71±0.12 0.75±0.16
10 0.76±0.08 0.48±0.16 0.36±0.08 0.50±0.18

Avg. Rank 3.85 2.62 1.54 1.92

Initial epochs Es. Table 16 compares the performance of our method when using different initial epochs Es ∈
{50, 100, 150, 200, 250}. It can be observed that our method consistently exhibits stable and robust performance when Es

is set between 50 and 150. The performance tends to deteriorate only if the initial epochs are set too large (i.e., our training
mechanism is utilized too late), which leads to insufficient convergence and fluctuations in model performance.

Table 16. Selective risk (%) of CCL-SC using various initial epochs Es for various coverage rates (%) on the CIFAR-100. The means and
standard deviations are calculated over 5 trials. The best entries are marked in bold.

Coverage Es = 50 Es = 100 Es = 150 Es = 200 Es = 250

100 26.71±0.16 26.56±0.18 26.55±0.26 26.81±0.24 27.13±0.34
95 23.88±0.23 23.69±0.15 23.54±0.15 23.97±0.23 24.25±0.35
90 21.27±0.21 21.16±0.08 20.97±0.20 21.34±0.17 21.65±0.34
85 18.71±0.26 18.65±0.08 18.57±0.20 18.86±0.23 19.20±0.28
80 16.30±0.27 16.15±0.12 16.07±0.15 16.37±0.21 16.77±0.27
75 13.84±0.23 13.73±0.16 13.60±0.19 13.91±0.15 14.40±0.32
70 11.50±0.21 11.38±0.29 11.23±0.16 11.43±0.27 12.02±0.24
60 7.04±0.11 7.06±0.21 6.83±0.15 7.16±0.24 7.55±0.17
50 4.28±0.19 4.16±0.12 3.95±0.22 4.10±0.17 4.59±0.25
40 2.36±0.18 2.20±0.16 2.29±0.33 2.48±0.36 3.13±0.34
30 1.22±0.10 1.18±0.11 1.26±0.17 1.51±0.24 2.22±0.29
20 0.58±0.12 0.79±0.08 0.71±0.12 0.94±0.20 1.57±0.14
10 0.38±0.16 0.46±0.16 0.36±0.08 0.62±0.21 0.94±0.41

Avg. Rank 2.77 2.15 1.31 3.77 5.00

I. Further improvement of CCL-SC
Since CCL-SC operates on the feature representation of the model, it can be seamlessly integrated with existing methods
that optimize the model at the classification layer. In this section, we combine CCL-SC with SAT (Huang et al., 2020; 2022)
and EM (Feng et al., 2023) methods. Specifically, when the current epoch is greater than Es, for a sample x with label y,

23



Confidence-aware Contrastive Learning for Selective Classification

we modify the loss function at the classification layer of the model from the cross-entropy loss to the following form:

LSAT+EM = −ty log fy(x)− (1− ty) log f(k+1)(x) + β H (f(x)) ,

whereH is the entropy function, and β controls the weight of its influence. The training target t is dynamically updated using
the rule t← mSAT · t+ (1−mSAT) · f(x), where the momentum term mSAT ∈ (0, 1) regulates the weighting of predictions.
The first term ty log fy(x) of LSAT+EM encourages the model to correctly classify the samples, while the second term
(1− ty) log f(k+1)(x) encourages the model to abstain from making predictions on samples with low confidence. Due to
the combination of the SAT and EM methods, two new hyper-parameters, mSAT and β, are introduced. Here we do not
adjust these hyper-parameters but rather directly use the settings for mSAT and β as introduced in Appendix D.

Table 17 and Tabel 18 present comparisons between the original CCL-SC and the improved CCL-SC (i.e., CCL-
SC+SAT+EM) on CIFAR-100 and ImageNet, respectively. The results demonstrate that the improved CCL-SC shows
superior performance in selective classification and outperforms the original CCL-SC across all degrees of coverage except
40% on ImageNet. This discovery shows that CCL-SC not only exhibits superior performance when utilized independently
but also highlights high compatibility with other methods to further enhance the performance of selective classification.

Table 17. Selective risk (%) on the CIFAR-100 dataset for various coverage rates (%). The means and standard deviations are calculated
over 5 trials. The best entries are marked in bold.

Coverage CCL-SC CCL-SC+SAT+EM

100 26.55±0.26 26.41±0.08
95 23.54±0.15 23.51±0.16
90 20.97±0.20 20.85±0.20
85 18.57±0.20 18.31±0.17
80 16.07±0.15 15.79±0.17
75 13.60±0.19 13.41±0.15
70 11.23±0.16 11.06±0.19
60 6.83±0.15 6.72±0.18
50 3.95±0.22 3.67±0.15
40 2.29±0.33 1.97±0.18
30 1.26±0.17 1.05±0.10
20 0.71±0.12 0.49±0.11
10 0.36±0.08 0.26±0.05

Table 18. Selective risk (%) on ImageNet dataset for various coverage rates (%). The means and standard deviations are calculated over 5
trials. The best entries are marked in bold.

Coverage CCL-SC CCL-SC+SAT+EM

100 26.26±0.10 26.01±0.12
90 20.68±0.07 20.41±0.06
80 15.76±0.07 15.46±0.03
70 11.39±0.10 11.08±0.02
60 7.55±0.09 7.36±0.05
50 4.79±0.04 4.76±0.01
40 2.95±0.04 2.99±0.03
30 1.83±0.05 1.83±0.06
20 1.22±0.05 1.17±0.07
10 0.72±0.05 0.66±0.07
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