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Abstract

Continuous time-event sequence (CTES) forecasting is essential across diverse domains,
from healthcare to finance, requiring accurate prediction of both future event types and
their timestamps. Traditionally, CTES forecasting has been driven by Temporal Point
Processes (TPPs), which rely on intensity function-based priors. However, these methods
often fail to generalize effectively to real-world scenarios as well as perform poorly over longer
horizons. While recent diffusion-based approaches are promising, they are limited by the
need to define a fixed prior while training, such as number of events to forecast or time
horizon, which requires training multiple models for different horizon lengths. We present
Kairos, a novel model that reformulates CTES forecasting as a language modeling task. Our
model employs a decoder-only transformer architecture with a unified tokenization approach
that represents time and events in a shared embedding space. By structuring the input
as alternating event and time tokens, the model learns to capture the inherent temporal
relationships between events. Through comprehensive experiments on multiple large-scale
datasets, we demonstrate that Kairos consistently outperforms state-of-the-art baselines,
achieving average improvements of 4.5% and 7.8% in short-term forecasting for event and time
respectively and 14.41% improvement in long-term forecasting. Additionally, we conduct
extensive ablation studies and qualitative analysis to understand the inner workings of Kairos.
Keywords: Continuous Time-Event Sequences; Language modeling applications; Self-
consistency; Temporal reasoning; Event prediction

© 2025 A. Gupta, S. Verma, S. Bisht, N. Verma, P. Aggarwal, V.P.K. Grandhi & A. Persad.
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1. Introduction

Continuous time-event sequences (CTES) are defined as the sequence of discrete events and
associated times in the continuous domain. These sequences are present in various domains
such as healthcare (Wang et al., 2018), e-commerce (Herndndez et al., 2017), social networks
(Yang et al., 2011), etc. Forecasting CTES is crucial for various practical applications; for
instance, modeling a patient’s hospital visits as a CTES and predicting future health events
can enable proactive healthcare interventions. CTES forecasting poses unique challenges, as it
requires precise predictions of both future events and their associated timestamps, a complexity
that distinguishes it from traditional sequence prediction problems (Mei and Eisner, 2017).
This task can be further categorized into short-term forecasting, which focuses on predicting
the next immediate event and its timestamp, and long-term forecasting, which aims to predict
multiple future events along with their timestamps over an extended time horizon.

Temporal point processes (TPPs) have been widely explored in literature (Daley and
Vere-Jones, 2007; Hawkes, 1971; Mei and Eisner, 2017; Shchur et al., 2021) to address CTES
forecasting. TPPs model the likelihood of each event’s instantaneous occurrence using an
intensity function, which is computed based on the historical time-event data. Classical
TPPs employ Hawkes processes (Laub et al., 2015) to define the intensity function (A(t)) for
a particular event type (k) as A\g(t) = ux +Zj:tj<twk (t—t;) where i, is the base intensity
for that event type and ¥ (-) is a pre-specified decaying function (e.g., exponential function
or power-law function). Intuitively, the intensity function shows that the intensity of an event
diminishes with increasing time difference after the previous event of the same type. This
indicates that each event occurrence increases the intensity of subsequent events, also referred
to as self-excitation (Daley and Vere-Jones, 2007). However, this formulation lacks the
flexibility needed for many applications due to its assumption of no interdependence between
different types of events. Neural TPPs address this limitation by parameterizing the intensity
function with Recurrent Neural Networks (RNNs), making it more adaptable to real-world
datasets (Mei and Eisner, 2017). Recent advances have further improved these models through
transformer-based architectures which are currently state-of-the-art approaches for modeling
CTES with TPPs (Zuo et al., 2020; Yang et al., 2022). However, these approaches often face
challenges in scenarios where the distribution of event occurrences does not align with the
assumptions underlying intensity-based modeling (Shchur et al., 2021).

Traditional TPP models primarily focus on short-term forecasting. For long-term forecast-
ing, they rely on the thinning algorithm (Lewis and Shedler, 1979) via auto-regressive event
sampling which was shown to perform poorly (Deshpande et al., 2021). Xue et al. (2022) have
tackled the long-term forecasting challenge in TPPs by generating multiple sequences and
employing an energy function to select the most relevant one. However, it still relies on the
TPP-based generation, constraining its overall performance. Recently, diffusion-based models
have been proposed (Zeng et al., 2024) to overcome these shortcomings by directly learning
the joint probability distribution of event types and inter-arrival times. However, these models
require the number of events or time horizon to be specified in advance for the diffusion
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process training. This constraint becomes problematic in real-world scenarios where the
number of future events can vary significantly across sequences, potentially requiring separate
models for sequences with varying number of expected events or different time horizons.

To address the limitations of existing models, we propose Kairos, a decoder-only trans-
former model designed to tackle the CTES forecasting problem using language modeling.
Our approach transforms CTES data into a sequence of event and time tokens, reframing
the task as a next-token prediction problem. This reformulation eliminates the need for
implicit assumptions about the data distribution (as required by TPPs (Shchur et al., 2019)),
offering a more flexible framework to model CTES. Kairos learns a joint representation of
events and times, similar to diffusion models, but without relying on priors such as the
number of events or the time horizon. Furthermore, we leverage recent advances in language
modeling, such as top-k and top-p sampling (Holtzman et al., 2019; Radford et al., 2019)
and the self-consistency principle (Wang et al., 2022), to enhance long-term forecasting.
Kairos generates multiple diverse sequences and refines them to obtain the optimal sequence
through consensus decoding (Mei et al., 2019), which helps mitigate error accumulation in
long-term forecasting by identifying common patterns across multiple generations.

In summary, the contributions of our work are as follows:

e We propose Kairos, a novel model for CTES forecasting that represents a paradigm shift
towards language modeling. By moving beyond intensity function-based formulation
of TPPs and diffusion approaches which require a fixed prior, Kairos offers greater
flexibility in capturing real-world scenarios.

e We introduce a unified tokenization approach to enable joint representation of time
and event in a shared embedding space. This approach facilitates cross-modal learning
between temporal and event information. Through structural analysis, we study how
this unified representation enhances the model’s ability to predict both time and event
types accurately.

e We conduct comprehensive benchmarks on multiple large open-source datasets, demon-
strating that Kairos outperforms state-of-the-art baselines for CTES forecasting. We
further study the workings of the model by analysing the attention patterns and the
impact of self consistency.

2. Related Work

TPPs have been widely used for CTES forecasting across various domains (Daley and Vere-
Jones, 2007). While classical TPPs like Hawkes processes pioneered CTES forecasting, their
intensity-based formulation limited their ability to model complex temporal dependencies.
The advent of deep learning architectures catalyzed a shift towards incorporating neural
networks to learn complex patterns in CTES, giving birth to neural TPPs. Initial RNN-based
approaches (Du et al., 2016; Mei and Eisner, 2017) showed improvements over classical
methods but struggled with long-term dependencies. Transformer-based neural TPPs (Yang
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et al., 2022; Zuo et al., 2020) addressed this limitation, capturing both short-term and long-
term dependencies in CTES modelling. These approaches were developed for next event-time
forecasting and were extended to long-term forecasting using auto-regressive generation.
The accumulation of errors in auto-regressive generation significantly impacts the models’
performance on the long-term forecasting task. This limitation was addressed by recent works
like HYPRO (Xue et al., 2022) which employ additional modules to mitigate accumulation of
auto-regressive errors. However, neural TPPs remain constrained by their reliance on intensity
functions, affecting their cross-domain adaptability (Shchur et al., 2021; Omi et al., 2019).

The limitations of intensity-based methods led to the development of non-intensity based
approaches for CTES modeling. Lin et al. (2022) explored various generative approaches, like
diffusion, variational inference and GANSs for improving the predictive performance of TPPs.
Recent advances include probabilistic denoising diffusion models for long-term forecasting
(Liidke et al., 2023) and their extension to marked sequences (Zeng et al., 2024). However,
these diffusion-based approaches require pre-specified priors like forecasting horizon, limiting
their effectiveness for modelling irregularly occurring events.

Language modeling’s success in predicting sequential data has extended beyond natural
language to various domains, including computer vision (Chen et al., 2020); protein sequencing
(Jumper et al., 2020) and time series forecasting (Ansari et al., 2024). These models excel at
learning complex patterns and long-range dependencies, with various decoding strategies like
greedy sampling, top-p sampling (Holtzman et al., 2019), top-k sampling (Fan et al., 2018)
. These decoding methods were further improved by Wang et al. (2022) by introducing the
concept of self-consistency principle, which is based on the intuition that multiple reasoning
paths are required for obtaining the correct answer for complex reasoning tasks.

3. Methodology

3.1. Mathematical Formulation

In CTES, we define a sequence of timestamp-event tuples as S={(t;,e;)}._,, where t; is the
timestamp of the occurrence of event e;. Each event e; belongs to one of the K classes, ¢; €E,
with |E|=K. The sequence of timestamps is monotonically increasing (t; <tz <...<tr) and
the intervals between events can be irregular, i.e. there may exist ¢ >0:¢; 11 —t; Fti1o—tiy1.
While formulating the forecasting problem, we transition from using absolute timestamps to
inter-event times for representing temporal data, driven by two key considerations: (1) the in-
tensity function, fundamentally depends on the inter-event time, and (2) forecasting inter-event
times typically results in a more stationary process than using timestamps (Yang et al., 2022).

Consequently, we redefine the sequence S as S={(7i,e;)}_,, where 7, =t;—t;_1 for i > 1
and 71 =0. Formally, given a historical sequence Sg, = {(7;,e;) }; with L <T, our primary goal

is to learn a function f which predicts the sequence for next N events: f(Sg) = {(7;,e:)} f;(]g )
3.2. Model Details

We solve the CTES forecasting problem of predicting both the next event and inter-event time
by transforming it into a next-token prediction (NTP) problem. Specifically, we transform the
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Figure 1: Architectural Overview of Kairos .

original sequence S={(7i,e;)}1_; of length T into an alternating sequence of time intervals
and event types: S=71,e1,72,€1,...,71,er of length 27

Given S, our goal is to learn a function f that predicts the probability of the next token
u; in the sequence by minimizing the following loss:

2T

L=argminy _[6u,ex-le(u,if) +0u,e-Ir(u;,i;)] (1)
Jer j=1

where ;= f(uj|ui,...,uj—1) , F represents the function set, out of which f is the optimal
function, 1 is an indicator function, § is the Kronicker delta function (The Kronicker delta
function outputs 1 when the condition in the subscript is true and 0 otherwise), lg and It
are the categorical cross-entropy loss functions for event and time tokens respectively, and
[u1,u2,...,u;—1] is the sequential stream of past tokens. Figure 1 illustrates the architecture of
our proposed model, Kairos, which consists of three main components: Time-Event Tokenizer,
Transformer Layers and Generator.
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3.2.1. TiME-EVENT TOKENIZER

The first step involves pre-processing the input sequence and converting it into a series of
discrete tokens. Kairos embeds both events and time in a shared embedding space. This
design choice is aimed at enabling the model to jointly learn the complex relationship between
events and time, rather than treating them as two separate streams of information. This
architectural choice is further justified in Section 4.3.2.

Specifically, we transform the inter-event time, a continuous value, into the discrete domain.
Inspired by previous works that use language modeling for time-series tasks (Ansari et al.,
2024), we represent inter-event time in our sequence data as quantized buckets, which can
enhance the model’s ability to identify meaningful patterns, while reducing noise. Formally,
we identify the maximum inter-event time (say 7,,,) and generate B equal width bins , where B
is a hyperparameter that determines the granularity of time discretization. The quantization
function ¢:R—{0,1,2,...,B} and dequantization function d:{0,1,2,...,B} — R used by our
model are defined as follows:

round ( ZXE) f0<z<7, ) | X Tom,
a(x)= (=) | d(j)=" (2)
B if x>7,

After quantizing the inter-event time, we obtain a completely discretized sequence. This
sequence is tokenized using a unified vocabulary![E,T] , where |E|=K and |T|=B+1.

3.2.2. TRANSFORMER LAYERS

Tokenized sequences are first passed through an embedding layer with a dimension of d,odel,
where dpoqel denotes the model’s capacity. After embedding, the sequence is processed
through several transformer layers with causal masking (Vaswani, 2017). Subsequently, an
affine layer projects the transformer’s output from Rfmedel to RB+HE+L A softmax function
is then applied to produce a probability distribution over the token universe.

3.2.3. GENERATOR

We employ two strategies for the generator: single-generation and multi-generation.
Single-Generation: In this strategy, we use top-k and top-p sampling at each step.
After generating the next token, the token is detokenized to retrieve either the event type
or the time gap bin 2. If the detokenized token corresponds to a time value, we apply the
dequantization function (defined in Equation 2) to compute the inter-event time. To predict
the next N events along with their respective time gaps, our model generates 2N tokens in
an autoregressive manner, followed by detokenization and dequantization to construct the
future time-event sequence. The model learns to predict the alternate sequence of time and
event tokens, and any mismatch in the order is captured by the long-term forecasting metric.

1. This token universe does not consider special tokens used for training like padding token, start/end of
sequence tokens etc.

2. We do not explicitly enforce the alternating pattern of times and events during generation which is a
simple pattern learnt by language models from training data (Linzen et al., 2016)
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Multi-Generation: Moving beyond the traditional sampling approaches such as top-k
and top-p sampling which only generate a single possible sequence, we explore the broader
paradigm of self-consistency that has emerged in recent literature (Wang et al., 2022) to
increase the search space and reduce auto-regressive error accumulation. This involves
generating multiple sequences from language models and then aggregating them to form
a more consistent output. Specifically, we implement this methodology through consensus
decoding (Mei et al., 2019). Kairos generates M different proposals using top-k and top-p
sampling, denoted as G'={g, }1_,. Our goal is to produce a single generation § € U%zl Im
that achieves the minimum Bayes risk. The Bayes risk for a generation g is defined as
Z%zl wm L(g,9m), where wy, is the weight of sequence g,, given the input, and L(g,g,)
denotes the loss of g with respect to g,,. We use the Optimal Transport Distance (OTD)
(Mei et al., 2019) as the loss metric and employ the inverse of the perplexity (p,,,!) for each

generation as the weight metric (w,,). The perplexity of a generation g, = {u;} l.g:"i‘ is given by:

pm:e_T:MZLQ:'IEL‘lOgP(ui‘ul’Uanyui—l) (3)
Consensus decoding (Mei et al., 2019) defines an algorithm using addition, deletion and
edit to iteratively align each of the generations g,, to obtain g, which achieves the minimum

Bayes risk. In Section 4.4.2, we demonstrate how consensus decoding operates within Kairos.

Table 1: Performance comparison of different models on short-term forecasting task with
following metrics: Eacc (%) in 1st row (higher is better) and Tryse in 2nd row
(lower is better). Best metrics in bold and second best metrics is underlined.

Model Metrics Taxi Taobao SO-2K SO-400K Retweets Mean Rank
Face 89.02+0.90 43.57+0.00 42.50+0.00 17.60+4.49 52.74 + 2.32

RMTPP e 0.371+0.00 0.134+0.00 1.374+000 2591 +000 0.617 +0.01 3.5
cip P 9L01E016 5957000 4250+000 30744013 5944+ 016 o
Trase 0371 £0.00 0134 %000 1.374+0.00 2505 £0.00 0.619 + 0.00 :
angp  FAc  B855 409 4363006 42005298 2017+ 189 51134228 »
Thase 0435+ 0.01  0.136 +0.00  1.366 +0.00 2.583 +0.01  0.640 + 0.03 ‘
p  Frce  O085+040 59714020 44.26+0.29 25744248 G0.00:+039 vs
Thuse 0371 £0.00 0134 +£0.00 1.374+0.00 2.566+0.02 0.619 % 0.00 :
. Face 91.08 +0.16 60.18 + 0.37 43.94 + 0.37 32.18 + 0.25 60.49 + 0.05
KaerS ot | n NN 1.1

Trvse 0.323 £0.00 0.131 + 0.00 1.282 + 0.00 2.338 + 0.01 0.568 + 0.01

4. Evaluation

4.1. Experimental Setup

We evaluate Kairos against state-of-the-art models on five datasets for both short-term and
long-term forecasting. For fair comparison, we maintain comparable parameter counts across
all models. Results show mean and standard deviation over five trials. Models were trained
on an Nvidia-A10 GPU. Our model uses a two-layer decoder (2 attention heads, dim=16)
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Table 2: Optimal Transport Distance (OTD) of different models on long-term forecasting
task (lower is better). Best metric is in bold and second best metric is underlined.

Generation

Strategies Model Taxi Taobao SO-2K SO-400K Retweets Mean Rank
(=}

RMTPP 32.37+£0.04 41.54+£0.00 60.79+0.00 45.17+2.19  35.86 £0.10 8.0
Sinele NHP 3146 +£0.03 38.83+0.16 60.75+0.00 40.26+0.15 31.38 £0.61 6.4
Generition AttNHP 31.50+£0.25 36.72+£0.94 59.424+0.68 30.11+£3.38 22.57 £1.89 5.0
T THP 31.64+£0.20 38.36+0.23 60.54+0.02 40.14+141 33.63+£0.04 6.4
Kairos (M=1) 17.64 £0.52 3299+0.73 37.37+£0.21 25.24+0.09 16.76 £ 0.13 2.8
Multi- HYPRO (M=20)3 20.76 35.70 39.07 38.48 18.94 4.2
Generation  CDIff (M=T7) 17.22+0.51 3356 £0.20 36.46 £0.43 20.37 £0.18 13.974 +0.17 2.2

Kairos (M=T7) 14.99 4+ 0.19 28.89 4+ 0.39 29.65 + 0.11 14.98 + 0.04 13.967 + 0.13 1.0

with PyTorch Lightning and HuggingFace transformers, trained with batch size 128, AdamW
(Ir=0.001), up to 100 epochs (early stopping patience=20). Generation parameters: top-k=20,
top-p=0.95, temperature=1.0, OTD cost=1.5.

4.1.1. DATASETS

We evaluate Kairos on five real-world datasets: Taobao (Alibaba, 2018) (user browsing, K =17,
3hr units, 51 avg. length, 1300/200/500 train/val/test), SO-2k (Leskovec and Krevl, 2014)
(Q&A awards, K =22, 11-day units, 65 avg. length, 1400/400/400), SO-400k (StackExchange)
(Q&A awards, K =96, 55-day units, 51 avg. length, 340K /80K /80K), Taxi (Whong, 2014)
(NYC taxi events, K =10, lhr units, 37 avg. length, 1400/200/400), and Retweets (Zhao
et al., 2015) (retweet sequences, K =3, 1hr units, 154 avg. length, 96K /32K /32K). We used
preprocessed versions for Taobao, SO-2k and Taxi from Xue et al. (2022).

4.1.2. EVALUATION METRICS

For short-term forecasting (N=1 as defined in Section 3.1), we use Next Event Accuracy
(EAce, higher is better) measuring prediction accuracy of the next event type, and Next Time
RMSE (TrumsE, lower is better) evaluating time prediction error. For long-term forecasting
(N=20 event-timestamp pairs), we use Optimal Transport Distance (OTD), which measures
the minimum cost of editing predicted sequences into ground-truth sequences, similar to edit
distance (Miller et al., 2009) or dynamic time warping (Furtuna, 2008). Following Xue et al.
(2022); Zeng et al. (2024), we report average OTD across cost constants C'=0.05,0.5,1,1.5,2,3,4
(lower is better), with predictions trimmed beyond a time horizon equal to the forecast horizon
multiplied by mean inter-event time.

4.1.3. BASELINES

We benchmark against four Neural TPP-based models for short-term forecasting: RNN-based
RMTPP (Du et al., 2016), LSTM based NHP (Mei and Eisner, 2017); and transformer-based
models: THP (Zuo et al., 2020) and AttNHP (Yang et al., 2022). These have proven to be the
state-of-the-art in short-term forecasting as benchmarked by Xue et al. (2024). For long-term
forecasting with multiple generations, we compare Kairos (M=7) with HYPRO (Xue et al.,

3. Due to HYPRO’s long computation time, we could only run one iteration on the reported datasets.
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2022) and CDiff (Zeng et al., 2024). HYPRO (Hybridly normalized neural probabilistic
model) combines an autoregressive base model with an energy function to discriminate
amongst multiple generations. CDiff is the state-of-the-art diffusion based model for long
term forecasting which utilizes joint probability distribution of types and inter-arrival times
for multiple events to output future event-time sequence.

For long-term forecasting, baselines employ varying number of generations for bench-
marking. Based on this, we evaluate our model in two settings: single-generation and
multiple-generation. We compare the TPP-based baselines with Kairos in single generation
setting. In multiple generation setting, we use the number of generations (M) as 20 and 7 for
HYPRO and CDiff respectively, as specified in their papers, while for Kairos we use M = 7.

4.2. Comparison with baselines

4.2.1. SHORT-TERM FORECASTING

Table 1 compares our model with baseline methods across various datasets for short-term fore-
casting. Kairos achieves the highest mean rank, followed by THP, a TPP-based baseline that
also utilizes a Transformer architecture. Kairos outperforms THP by 4.5% on Ez.. and 7.8%
on Tryrsg. This improvement can be attributed to two key factors: the adoption of language
modeling paradigm and the joint learning of both time and event representations. The language
modeling approach helps with learning complex patterns in sequential data, while joint learning
allows the model to leverage the underlying relation between temporal and event information.
We present an empirical analysis of the contribution of both these changes in Section 4.3.2.

4.2.2. LONG-TERM FORECASTING

Table 2 shows that Kairos outperforms other baselines in both single generation and multiple
generation settings, notably outperforming HYPRO using a single generation, even when the
latter relies on 20 generations. In multi-generation setting, Kairos outperforms the diffusion
based baseline (CDiff) by 14.41%. The superior performance of our approach can be attributed
to its ability to leverage the latest sampling strategies from the language modeling paradigm:
(1) top-k and top-p sampling for single-generation, which retains high-probability predictions,
mitigating exposure bias and ensuring coherence in long event sequences (Holtzman et al.,
2019); and (2) usage of self consistency through consensus decoding, which smooths out
uncertainties and mitigates outliers, resulting in robust predictions that more accurately align
with the true probability distribution of future events and their timing. Further ablations in
Section 4.3.1 highlight the importance of these sampling strategies for long-term generation
whereas Section 4.4.2 tries to understand how consensus decoding reduces auto-regressive
error accumulation.

4.3. Ablation Studies

In this section, we perform ablations to the study the impact of various design choices and
structural components of Kairos . Furthermore, in the supplementary material, we study
how utilizing additional compute by increasing number of generations and the model capacity
can further lead to performance improvement.
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Table 3: Design choices and sampling strategies comparison on SO-400K dataset.

Backbone Earcc(%) TrMSE Generation Sampling OTD
Encoder-decoder 30.06 2.27 Stliategy Strategy

Transformer Single Greedy 41.85
Decoder-only 3218  2.34 Generation  top-k and top-p ~ 25.24
Transformer Multi- Simple Aggregation 24.57
State space model 30.84 2.32 Generation Consensus Decoding 14.98

4.3.1. IMPACT OF SAMPLING STRATEGY ON LONG-TERM FORECASTING

We examine various sampling strategies for long-term generation and present our findings
on the SO-400K dataset. In the single-generation setting, we compare the performance of
greedy decoding with top-k and top-p sampling. For greedy decoding, the token with the
highest probability is selected at each step. As shown in Table 3, top-k and top-p sampling
outperforms greedy decoding by 39.6% in terms of OTD. This significant performance gap
is consistent with findings from Holtzman et al. (2019) and Fan et al. (2018), which highlight
that greedy decoding often favors generic and repetitive patterns.

In the multiple-generation setting, we implement a naive aggregation baseline to incor-
porate self-consistency across generations by computing mean values for time indices and
applying majority voting for event indices across multiple generations. Table 3 shows that
consensus decoding improves performance by 39% in terms of OTD over simple aggregation.
This improvement is attributed to the fact that naive aggregation can result in degenerate
sequences that violate conditional constraints, as noted in Wang et al. (2022).

4.3.2. STRUCTURAL ANALYSIS

A detailed analysis was conducted to understand the incremental benefits of transitioning to
language modeling and jointly learning event and time representations. To evaluate this, we im-
plemented a new model using the same decoder-only transformer but with separate embeddings
for events and times. These embeddings are concatenated at each step, and predictions are
made through two distinct heads: one for time and one for event. The tokenization mechanism
and loss remain as described in Section 3. This model represents an intermediate state between
the THP model and Kairos, incorporating language modeling without joint representation.
Table 4 compares its performance with THP and Kairos on SO-400K dataset, showing that
transitioning to language modeling improves E4.. by 10.33% and reduces Trarsg by 5.38%,
with joint representation further improving F 4. by 13.63% and reducing Tryrsg by 3.38%.

4.4. Understanding working of Kairos

This section provides an in-depth examination of the model’s behaviour by studying the atten-
tion weights for time/event tokens and the role of consensus decoding in long-term forecasting.
4.4.1. ANALYSING ATTENTION PATTERNS OF KAIROS

The attention weights of the Kairos model are analyzed to assess its ability to learn meaningful
temporal and event relationships for CTES modeling. The initial analysis focuses on the types
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Table 4: Structural Analysis of Kairos components.
Models Eace(%) TrMse
Intensity Loss (THP) 25.74  2.566

NTP with Separate Representation 28.40  2.428
NTP with Joint Representation (Kairos)  32.27  2.346
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Figure 2: Attention contribution of
event and time tokens on each Figure 3: Percentage contribution of historical

other on SO-400K dataset. tokens to future predictions.

of tokens the model attends to while predicting event and time tokens. To understand the types
of tokens the model attends to, we aggregate the attention scores separately for event and time
tokens at each layer and head, as suggested in Sharma et al. (2022). We then aggregate the total
attention scores on basis of type of token attended to and type of token predicted. This score is
then normalized with token’s total number of occurrences, giving us the average attention con-
tribution of time and event token on each other. Figure 2 shows that, while predicting an event
token, Kairos applies 59.46% attention to time tokens, and while predicting time, it relies more
on event tokens (62.59% attention). This underscores the importance of jointly learning event
and time representations and demonstrates how Kairos enables cross-learning between them.

Additionally, we investigate the positional dependency on past tokens when Kairos predicts
a token. To quantitatively understand the positional dependence on past tokens, we aggregate
the attention weights on basis of past indices of event token while predicting time token and
vice-versa. These attention weights are then normalized with total number of occurrences
to provide percentage contribution of historical tokens to future predictions. Figure 3 reveals
an exponential decay in the influence of past tokens, resembling the decay function in Hawkes
processes. This finding indicates that Kairos captures temporal patterns akin to traditional
TPP models without relying on intensity-based loss formulations.
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4.4.2. EXAMINING THE
IMmPACT OF CONSENSUS DECODING ON LONG-TERM FORECASTING IMPROVEMENT

First the impact of consensus decoding is analyzed as a function of the forecast horizon length.
Figure 4 illustrates that as the forecast horizon length increases, the performance gap between
Kairos single-generation and Kairos multiple-generation widens. This occurs because the like-
lihood of errors in single-generation predictions grows with longer horizons, whereas consensus
decoding leverages information from multiple generations to correct some of these errors.

To show this at a more granular level, multiple-generations and the consensus decoding
output are analyzed for a sample of users. The 550-day forecast horizon is divided into 36-day
bins, and the Intersection over Union (IoU) between predicted and ground truth events is
calculated for each bin. Figure 5 shows that consensus decoding consistently achieves equal
or higher IoU scores compared to individual generations, confirming that self-consistency
across multiple generations effectively reduces errors.
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Figure 4: Comparison of Kairos (single Figure 5: Comparison of Consensus
generation) and Kairos (multi- Generation with each indi-
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horizons. timesteps.

4.5. Inference efficiency

Table 5 compares the inference time of Kairos with various baseline models across multiple
datasets, for both single (M=1) and multi-generation (M=7) settings. All models are bench-
marked on Nvidia L40s GPUs. In the single-generation setting, Kairos achieves comparable
inference times to other baselines while delivering superior performance (as shown in Table 1).
More notably, in the multi-generation setting, Kairos demonstrates better efficiency, running
approximately 10 times faster than CDiff and HYPRO on the SO-400k and Retweets datasets.
This speed advantage highlights that our optimizations for long-term forecasting maintain
computational efficiency, unlike other long-term baselines such as CDiff, which requires multi-
ple denoising steps that significantly increase computation time. Our analysis on the SO-400k
dataset reveals that consensus decoding consumes only 0.025 minutes per 1,000 samples out
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Table 5: Comparison of Inference time (minutes per 1000 samples) and number of parameters

Model Taxi SO-400k Retweets

THP 0.06/26.3K  0.19/37.4K  0.09/25.4K
NHP 0.21/59.1K  5.93/70.1K 14.70/58.2K
RMTPP 0.05/2.8K 0.07/8.4K 0.07/2.4K

AttNHP 0.13/11.9K  1.01/49.8K 2.28/11.3K
HYPRO*(M=20) 28.67/19.3K 31.67/11.1K 57.67/6.5K
CDiff (M=T7) 0.51/14.5K  6.58/22.2K 10.16/18.5K

Kairos (M=1) 0.07/26.7K  0.12/46.4K 0.18/27.5K
Kairos (M=7) 0.30/26.7K  0.62/46.4K  0.91/27.5K

of the total processing time of 0.617 minutes per 1,000 samples. This demonstrates that
concensus decoding is relatively efficient compared the overall computational requirements
and utilizes less than 5% of the total time.

5. Conclusion and Future Work

In this paper, we introduce Kairos, a novel model for CTES forecasting that shifts away
from traditional TPP and diffusion-based approaches towards language modeling. The
model represents events and time in a shared embedding space as alternating sequences of
inter-arrival times and events, leveraging decoder-only transformer-based language models to
learn the joint representation between time and event tokens. The paradigm shift makes the
formulation flexible and allows us to utilize language modeling enhancements like top-k and
top-p sampling. We demonstrate superior performance compared to existing baselines: for
short-term forecasting, we achieve a 4.5% improvement in event accuracy (Facc) and a 7.8%
reduction in time root mean square error (Trysg) compared to THP which is the current state-
of-the-art model for short-term forecasting. We further extend the concept of self-consistency
to CTES domain by utilizing consensus decoding which improves long-term forecasting
performance by reducing the accumulation of auto-regressive errors. We demonstrate in the
multiple generation setting, we are able to outperform CDiff by 14.41% in long-term forecasting.

Our structural analysis reveals how Kairos improves upon TPP-based baselines. Through
examination of attention weights, we demonstrate the model’s ability to learn meaningful
temporal and event patterns. Additionally, we show how consensus decoding with multiple
generations helps mitigate auto-regressive error accumulation, thereby improving long-term
forecasting performance.

While our current implementation uses cross-entropy loss to jointly train the model on time
and event tokens, incorporating time-specific losses such as ordinal loss could further enhance
the model’s temporal pattern learning capabilities. Although we currently employ consen-
sus decoding to leverage additional computational resources, recent advances in test-time
computation could enable mid-generation interventions to further improve performance.

4. Batch size=1 for HYPRO due to unavailability of batched inference in official repository.
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