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ABSTRACT

We define laziness to describe a large suppression of variational parameter updates
for neural networks, classical or quantum. In the quantum case, the suppression is
exponential in the number of qubits for randomized variational quantum circuits.
We discuss the difference between laziness and barren plateau in quantum machine
learning created by quantum physicists in McClean et al. (2018) for the flatness of
the loss function landscape during gradient descent. We address a novel theoretical
understanding of those two phenomena in light of the theory of neural tangent
kernels. For noiseless quantum circuits, without the measurement noise, the loss
function landscape is complicated in the overparametrized regime with a large
number of trainable variational angles. Instead, around a random starting point
in optimization, there are large numbers of local minima that are good enough
and could minimize the mean square loss function, where we still have quantum
laziness, but we do not have barren plateaus. However, the complicated land-
scape is not visible within a limited number of iterations, and low precision in
quantum control and quantum sensing. Moreover, we look at the effect of noises
during optimization by assuming intuitive noise models, and show that variational
quantum algorithms are noise-resilient in the overparametrization regime. Our
work precisely reformulates the quantum barren plateau statement towards a pre-
cision statement and justifies the statement in certain noise models, injects new
hope toward near-term variational quantum algorithms, and provides theoretical
connections toward classical machine learning. Our paper provides conceptual
perspectives about quantum barren plateaus, together with discussions about the
gradient descent dynamics.

1 BARREN PLATEAU, LAZINESS AND NOISE

Variational quantum circuits Peruzzo et al. (2014); Yung et al. (2014); McClean et al. (2016);
Kandala et al. (2017); Cerezo et al. (2021a); Farhi et al. (2014) can be used to optimize cost function
measured on quantum computers. Specifically, these cost functions can be used for machine learning
tasks Wittek (2014); Wiebe et al. (2014); Biamonte et al. (2017); Schuld & Killoran (2019); Havlı́ček
et al. (2019); Liu et al. (2021b); Liu (2021); Farhi & Neven (2018). In this case variational quantum
circuits are addressed as quantum neural networks.

However, a generically designed variational quantum ansatz may not be applicable to real problems.
Specifically, a problem so-called barren plateau has been widely discussed in the variational quantum
algorithm community, which is believed to be one of the primary problems of quantum machine
learning McClean et al. (2018). The argument is given as follows. A typical gradient descent
algorithm will look like

θℓ(t+ 1)− θℓ(t) ≡ δθµ = −η ∂L
∂θℓ

, (1)

where θµ is the variational angle, and t is referring the time step of gradient descent dynamics. η is
the learning rate, and L is the loss function. The observation McClean et al. (2018) is that, if our
variational ansatz is highly random, due to the k-design integral formula Roberts & Yoshida (2017);
Cotler et al. (2017); Liu (2018; 2020), the derivative of the loss function is generically suppressed by
the dimension of the Hilbert space N , and we might encounter a situation where the variation of the
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loss function during gradient descent is very small, namely δL ≡ L(t+ 1)−L(t) ≪ 1 for the step t.
For instance, the second moment formula for Haar ensemble is∫

dUUijU
†
kl =

1

N
δilδjk . (2)

Here U is a unitary taken from a 1-design, and δ is the Kronecker delta and i, j, k, l are matrix indexes.
For higher moments random integrals Roberts & Yoshida (2017); Cotler et al. (2017); Liu (2018);
Fukuda et al. (2019); Liu (2020), the factor poly(1/N) will appear. Thus, the difference between
the variational angles during iterations will be suppressed by the dimension of the Hilbert space.
The work McClean et al. (2018) demonstrates this existence of the barren plateau (the statement
where δL ≪ 1) numerically and understands the result as a primary challenge of variational quantum
circuits. It is often considered to be quantum analogs to the vanishing gradient problem, but the
nature is fundamentally different Mohri et al. (2018); Roberts et al. (2021). A further explanation is
given in Appendix A.

Although the existence of the barren plateau is verified by numerous works Cerezo et al. (2021b);
Pesah et al. (2021); Cerezo & Coles (2021); Arrasmith et al. (2021), the theoretical understanding of
the barren plateau problem is unclear. Moreover, the classical machine learning community has been
successfully demonstrated its practical usage in science and business for years, and many successful
classical neural network algorithms have been run for large scales. For example, Generative
Pre-trained Transformer-3 (GPT-3) from OpenAI Brown et al. (2020) has used 175
billion of training parameters, and it is one of the most successful natural language processing models
up to date. Considering the standard LeCun initialization of weights W with the normalization of the
variance σ2

W Mohri et al. (2018); Roberts et al. (2021); Liu et al. (2021a)

E(WijW
†
kl) =

σ2
W

width
δikδjl , (3)

and its formal similarity to Equation 2, we might imagine that similar issues will happen for classical
neural networks too: they might be highly overparametrized in the large-width limit. Here, σW is
a number that is independent of the size of the neural networks, and we set the width of the neural
network to be the same in each layer for simplicity. In fact, in Appendix A, we will show that in the
classical large-width neural network, the barren plateau will also happen: the trainable weights do
not run that much during gradient descent.

So, why classical overparametrized neural networks are supposed to be practical and good, but the
barren plateaus of quantum neural networks are crucial challenges? In this paper, we define the
primary theoretical argument towards the quantum barren plateau, the large suppression of the right
hand side of Equation 1, as laziness. In the quantum context, the suppression is from the dimension
of the Hilbert space, while in the classical case, the suppression is from the width of the classical
neural networks. In a more precise language, laziness is referring to small δθµ, and barren plateau is
referring to small δL.

Moreover, we will show that laziness may not imply the quantum barren plateau, from the per-
spective of overparametrization theory and representation learning theory through quantum neural
tangent kernels (QNTKs) Liu et al. (2021a; 2022a). In this paper, for quantum neural networks
overparametrization is referring to the fact where LTr(O2)/N2 ≈ O(1), where O is the operator we
are optimizing, L is the number of trainable angles, and η is the learning rate as a constant.

Defining quantum analogs of neural tangent kernels from their classical counterparts Lee et al. (2017);
Jacot et al. (2018); Lee et al. (2019); Sohl-Dickstein et al. (2020); Yang & Hu (2020); Yaida (2020);
Arora et al. (2019); Dyer & Gur-Ari (2019); Halverson et al. (2021); Roberts (2021); Roberts et al.
(2021); Roberts & Yaida (2021), we show that from the first-principle theoretical derivation, random
(noiseless) quantum neural networks are still efficient to learn in the large-L limit without barren
plateaus, despite their laziness. In fact, although each trainable angle does not move much due to the
small magnitude of the gradient, the combined effect of many of them on the loss function will still be
significant. In addition, there exist good enough achievable local minima that minimize the training
error. See Figure 1 for an illustration. The requirements for making this to happen is especially when
LTr(O2)/N2 ≈ O(1), and we have a small learning rate and the mean square loss function. In the
case of large Hilbert space dimension without overparametrization, the exponential decay rate during
gradient descent might be small, which may not make this phenomenon manifest in the polynomial
training iterations. In practice, what we see is a very slow decay of loss functions. Interestingly,
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in this case quantum noises will not affect us significantly until exponential numbers of iterations.
Thus, the averaged QNTK, K̄, proportional to Tr(O2)L/N2, explains the existence of the barren
plateau in practice, with or without noises. On the other hand, in the overparametrization regime
where ηLTr(O2)/N2 ≈ O(1), the exponential decay of gradient descent process is visible.

We note that the large-L expansion is a quantum analog of the classical neural tangent kernel theory at
large width. In fact, we will show in Section 3 that we have similar large-width expansion comparing
the classical theory, where in our model, classical width corresponds to L. The dimension of the
Hilbert space plays an important role in the calculation. Moreover, the correspondence between
quantum and classical neural networks might be explained by some physical heuristics, from the
duality between matrix models and quantum field theories. See Appendix C for a brief discussion.

Moreover, we need to point out that laziness is intrinsically still a precision problem. More precisely,
it could be primarily from quantum measurement and quantum control, since the size of classical
devices could scale as log(1/ϵ) for given precision ϵ, while variational quantum circuits cannot,
due to the measurement error and the limitation of quantum control McClean et al. (2018). Thus,
it naturally motivates us to think about how to include the effect of noise in the gradient descent
calculation. In our work, we introduce a simple and intuitive noise model by adding random variables
in the gradient descent dynamics. We show that in the overparametrization regime, our variational
quantum algorithms are noise-resilient. More precisely, we find that the residual training error scales
as

ε2(t) ≈ (1− ηK)2t
(
ε2(0)− σ2

θ

η(2− ηK)

)
+

σ2
θ

η(2− ηK)
, (4)

with the neural tangent kernel K and the standard deviation of the noise introduced in the variational
angles σθ. Thus, in the late time, we get

L(∞) =
1

2
ε2(∞) ≈ σ2

θ

2η(2− ηK)
. (5)

Thus, in the overparametrized regime, we could set ηK ≈ O(1), so schematically,

L(∞) ≈ O(
σ2
θ

η
) , (6)

indicating that we could get good predictions at the end as long as we sufficiently control the noises.
We will give more details in the following sections.

This paper is mostly written for audiences in the area of quantum computing and quantum machine
learning. However, some of the discussions are also applicable in a general classical machine learning
setup. For more general audiences, we give a small introduction on quantum computing, quantum
machine learning and k-design theories for random unitaries. Combined with comparisons to other
works, introduction of the backgrounds is provided in Section 2. In Section 3, we discuss the theory
of QNTK and its relation on laziness. In Section 4 we discuss precision of variational parameters and
the noise. In Section 5, we provide overviews on our findings. Some technical results and numerical
experiments are summarized in Appendix.

2 BACKGROUNDS, DEFINITIONS AND RELATED WORKS

In this section, we provide background reviews, definitions, and related works. The backgrounds
are summarized in Section 2.1, 2.2, and 2.3, from quantum computing, quantum machine learning,
to k-design theories in quantum information science. Readers could skip those sections if they are
familiar with the corresponding theories.

2.1 QUANTUM MECHANICS, COMPUTING AND NOISES

We start with a short introduction to quantum computing with the language of linear algebra for
readers who are not familiar with physics. Further details could be found in standard text books,
including Nielsen & Chuang (2002).

In quantum mechanics, physical states are represented as vectors, where we denote them with the
so-called Dirac notation |a⟩. We will only consider the vectors living in the linear space with the
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Figure 1: Density plots of the loss function landscape comparing usual and overparametrized
variational quantum circuits. We illustrate the landscape by color plots of the loss function for two
variational angles. Left: the traditional understanding of barren plateaus where we have the a single
optimal point. Right: in the overparametrized case, the landscape is not barren, since for a random
initial point, we get many good enough local optima that could minimize the loss function. Note that
those plots are schematic since it is not possible to directly plot the loss function landscape in very
high dimensions, and it might be interesting to visualize the true landscape using some visualization
tools in future works (like Rudolph et al. (2021)). In order to visualize it in O(1) numbers of iterations,
one might have to have the number of trainable angles L comparable to the dimension of the Hilbert
space N .
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complex dimension N = 2n, and n is called the number of qubits. One can expand the vector |a⟩
through the basis expansion, |a⟩ =

∑N−1
i=0 ai |i⟩, where |i⟩ is the basis vector and ai is the coefficients.

Here, we only consider finite-dimensional vectors, so we could define an inner product of vectors.
One can specify the dual vector space by the space of linear operations on the states, where we write
the dual vectors as ⟨a|. The inner product is defined as ⟨a|b⟩ =

∑
i a

∗
i bi where the basis states are

orthogonal, and the vector space becomes a Hilbert space. Physical states are, in fact, normalized
vectors in the Hilbert space.

In quantum mechanics, observables like energy and momentum are represented by Hermitian opera-
tors in the Hilbert space. For a given operator O, like energies, the operator will have the eigenspace
expansion with the eigenvector |oi⟩ and the eigenvalue oi. One could write the eigenspace expansion
as O =

∑
i oi |oi⟩ ⟨oi|. |oi⟩ could form a complete basis in the whole Hilbert space, and for an

arbitrary state as a normalized vector |ψ⟩, we could expand |ψ⟩ =
∑

i ψi |oi⟩. This expansion has a
physical meaning: the number |ψi|2 represents the probability of observing the eigenvalue oi when
we observe the operator O in the state |ψ⟩. Since O is Hermitian, all the eigenvalues are real, so
we observe real observables. Since the state |ψ⟩ is normalized, we have

∑
i |ψi|2 = 1, satisfying

the definition of probability (it is called the Born rule). The above rules of quantum mechanics are
verified by all experiments in the physical world as far as we know.

Moreover, the quantum dynamics, namely the time (t) evolution of quantum states, is given by the
unitary operator U(t) in the Hilbert space, acting on the state |ψ⟩. From linear algebra, we know
that U(t) |ψ⟩ is always satisfying the normalization condition of probabilities, and thus the total
probability is conserved (always 1). Moreover, the unitary operator U(t) could be exponentiated,
and the Schrödinger equation states that U(t) = exp(−iHt), where H is called the Hamiltonian (a
Hermitian operator stands for the energy in a system).

The task of quantum computing is that one could use physical states like |ψ⟩ to encode the information,
and a quantum algorithm is a unitary operator U that is made by a sequence of some basic physical
operators. The sequence, which is called a quantum circuit, has to be running in polynomial time
with respect to the number of qubits n. At the end of a quantum algorithm U , we get U |ψ⟩ starting
from a state |ψ⟩, and if needed, we perform physical measurements on |ψ⟩ with respect to an operator
O to get the expectation value, ⟨ψ|U†OU |ψ⟩, according to the Born rule. In this case, the output of
the quantum algorithm is a classical number.

Quantum computing has some potential to perform better than its classical counterparts in certain
problems sinceN = 2n is very large and exponential in n. A typical example is Shor’s algorithm Shor
(1994), which factors large numbers exponentially faster than known classical algorithms. However,
quantum computing is very challenging to realize with the existing technologies since quantum states
are fragile. There are lots of noises that could happen to destroy the programmed unitary operator
U , like environmental affections that could decohere quantum states to some classical objects. In
general, quantum error corrections and error correction codes are needed to perform fault-tolerant
quantum computation. Moreover, there are measurement noises due to the probabilistic nature of
the Born rule. Thus, in general, quantum systems are hard to control, and we are still working in
progress, toward large-scale, fault-tolerant quantum computing.

2.2 QUANTUM MACHINE LEARNING

It is natural to think about how quantum computing could help solve important machine learning
tasks. Currently, one of the leading paradigms is so-called the variational quantum algorithms, that
is the closest to the classical machine learning paradigm with algorithms like backpropagation and
gradient descent dynamics Wittek (2014); Wiebe et al. (2014); Biamonte et al. (2017); Schuld &
Killoran (2019); Havlı́ček et al. (2019); Liu et al. (2021b); Liu (2021); Farhi & Neven (2018).

Fundamental gates are unitary operations defined in quantum computing. In the Hilbert space with
dimension N = 2n, a typical type of quantum gate is called the Pauli gate. We define,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (7)

They are fundamental gates that are physically implementable in quantum computing devices. There
are more fundamental gates like CNOT (see Nielsen & Chuang (2002) for details). For n qubits, one
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could define local Pauli gates as

σx ⊗ I2n−1 , I2 ⊗ σy ⊗ I2n−2 , I22 ⊗ σy ⊗ I2n−3 , . . . . (8)

They are made by the Kronecker products between the 2-dimensional Pauli gates σx,y,z and the
identity matrix. We denote d-dimensional identity matrix as Id. Thus, n-qubit local Pauli gates are
quantum operations in the whole n-qubit Hilbert space.

Moreover, one could define the variational quantum circuit as,

U(θ) =

(
L∏

ℓ=1

Wℓ exp (iθℓXℓ)

)
≡

(
L∏

ℓ=1

WℓUℓ

)
. (9)

Here, we have L-dimensional real training parameters (variational angles) θLℓ=1. Xℓ represents some
implementable quantum gates, like the local Pauli gates introduced before. They are Hermitian
operators with X2

ℓ = IN . Moreover, Wℓ represents some unitary operators that do not depend on the
variational angle, like the CNOT gate. Thus, U(θ) is a unitary operator parametrized by θ = θLℓ=1.

Based on the operator U(θ), we could define the loss function,

L(θ) = 1

2

(〈
Ψ0

∣∣U†(θ)OU(θ)
∣∣Ψ0

〉
−O0

)2
, (10)

similar to the mean square loss used in classical machine learning. Here, O0 is a constant, |Ψ0⟩ is a
quantum state that is prepared in a quantum computer, and O is an observable (a Hermitian operator
like energy). The above loss function is evaluated using quantum measurements in the quantum
computer, and it is parametrized by classical variational parameters θ. One could perform gradient
descent algorithms to minimize L(θ), which is,

δθℓ(t) ≡ θℓ(t+ 1)− θℓ(t) = −η ∂L
∂θℓ

(t) , (11)

with the number of iterations t, and the learning rate η. Note that here, the derivative of the loss
function is evaluated using quantum measurements, and we use the measurement result to update the
classical parameter θ that parametrize the quantum circuit. Thus, variational quantum algorithms are
called hybrid quantum-classical algorithms.

The process of optimizing the loss function L is similar to unsupervised learning in the classical
machine learning literature. It is easy to extend the task towards supervised learning, if we encode
classical or quantum data sets into the state |Ψ0⟩. Moreover, the construction of U(θ), also called
the quantum neural network, is analogous to classical neural networks. Mathematically, U(θ) could
be interpreted as a single-layer classical neural network where L is the width, but the possible
entanglement structure in U(θ) makes it different to the data structure in classical machine learning.

2.3 k-DESIGNS

Another background knowledge in this paper is the so-called k-design theory. See references Roberts
& Yoshida (2017) for a more detailed introduction.

Classical weights and biases can be initialized using Gaussian distributions, like Kaiming initialization
in classical machine learning. In quantum machine learning, one could randomly initialize variational
angle θ. An architecture-independent treatment is to study the uniform distribution of the unitary
group U(N). The uniform measure in U(N) is unique, and it is called the Haar measure.

k-designs are approximations towards the Haar measure in the unitary group, where ks are integers.
More precisely, k-designs are ensembles of unitary operators that could reproduce the matrix element
correlation functions up to 2k moments. Thus, a (k + 1)-design is always a k-design. The larger k is,
the closer the ensemble is to the Haar measure.

One of the equivalent definitions of k-designs is the following. An ensemble (collection of unitaries)
E is a k-design of the unitary group U(N), if and only if,∫

U∈Haar
dUU†⊗kρU⊗k =

∫
U∈E

dUU†⊗kρU⊗k , (12)
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for all ρ, where U⊗k is the k-fold Kronecker product of the same U , and ρ is an arbitrary density
matrix (a positive definite Hermitian matrix with trace 1 in the Hilbert space with the dimension Nk).
If E is a k-design, one could show that,∫

U∈E
dU
(
Ui1j1U

†
i2j2

. . . Ui2k−1j2k−1
U†
i2kj2k

)
= O

(
1

poly(N)

)
, (13)

where poly(N) is a fixed, computable polynomial with the degree k. This formula is very useful
when we study random averaging properties of variational quantum circuits, just like the Gaussian
process properties of classical large-width neural networks. Assuming 2-designs, one could obtain
the so-called barren plateau problem McClean et al. (2018). Moreover, k-designs are implementable
in practical quantum circuits. For instance, the Pauli group will form 1-design, and the Clifford
group will form 2-design Roberts & Yoshida (2017). One could allow some errors and define
approximate k-designs, and it is shown that for local random circuits, it will converge towards
k-designs approximately with polynomial time Brandao et al. (2016).

2.4 DEFINITIONS

In this section, we provide a list of definitions for readers.

Definitions Notations
Dimension of Hilbert space N

Number of qubits n = log2N
Variational angles θ

index of variational angles ℓ
Number of trainable angles L

Loss function L
Quantum observables O

Quantum states |· · ·⟩, ⟨· · ·|
Variational circuits U(θ)

The ℓ-th trainable gate Xℓ

The ℓ-th fixed gate Wℓ

Residual training error ε
Initial states |Ψ0⟩

Noise standard deviation σθ
QNTK K
dQNTK µ

Total training step T
Generic training step t

Change of a quantity o between t+ 1 and t δo
Learning rate η

Relative training error at the time T εr = ε(T )/ε(0)
Average of o E(o) or ō

Standard deviation of o ∆o

2.5 RELATED WORKS

In this section, we briefly summarize some related works and our contributions related to those works.

The study of barren plateaus starts McClean et al. (2018) by quantum physicists, where 2-design
assumptions are used for variational quantum algorithms. Our contribution provides an alternative
understanding of the barren plateau problem from the vision of the QNTK theory, and a more refined
definition, laziness, in order to clarify the relation from traditional barren plateaus. The papers Liu
et al. (2021a; 2022a) initialize the study of QNTK theory. Compared to those works, in this paper, we
clearly clarify the relationship between barren plateau and laziness, and technically we discuss how
precision and noises will affect the calculation of QNTK.

Anschuetz & Kiani (2022) proposes a related result from different theoretical backgrounds. The paper
claims that for shallow quantum circuits, there will be lots of traps in the loss function landscape:
there are only a small fraction of local minima that are good enough. On the other hand, our paper
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shows that when the model goes deeper and deeper (when we have larger and larger L), those local
minima become better and better, such that they are good enough to minimize the loss function. Abedi
et al. (2022) expresses some similar ideas to our work. The paper shows that for local variational
quantum circuits, one could obtain a lazy phase with exponentially converging training dynamics.
Note that geometric locality makes the system away from barren plateaus, and the laziness, defined
according to our paper, is polynomial instead of exponential. However, geometric locality makes
the variational circuits have lower expressibility, and the convergence of the loss function will have
different behaviors at the late time. Thus, Abedi et al. (2022) is not focusing on discussions about
relationships between laziness and barren plateaus. Both of the papers are complementary to our
results. Moreover, Chizat et al. (2019) introduces the term lazy training and discuss its relation to
the scale of neural networks. Our work, based on Chizat et al. (2019), discusses how it is related to
quantum machine learning, barren plateaus and noises.

3 THE LOSS FUNCTION LANDSCAPE AND THE QNTK THEORY

We begin by considering a variational quantum circuit ansatz, on a Hilbert space of size N with
log2N qubits, as follows,

U(θ) =

(
L∏

ℓ=1

Wℓ exp (iθℓXℓ)

)
≡

(
L∏

ℓ=1

WℓUℓ

)
, (14)

with some trainable angles θℓ, constant unitary operators Wℓ, and Pauli operators Xℓ. Following Liu
et al. (2021a), we consider the mean square loss function

L(θ) = 1

2

(〈
Ψ0

∣∣U†(θ)OU(θ)
∣∣Ψ0

〉
−O0

)2 ≡ 1

2
ε2 , (15)

and train the expectation value
〈
Ψ0

∣∣U†(θ)OU(θ)
∣∣Ψ0

〉
on an initial state |Ψ0⟩ towards a value O0.

We define the residual training error ε =
〈
Ψ0

∣∣U†(θ)OU(θ)
∣∣Ψ0

〉
−O0. We use the gradient descent

algorithm Equation 1 with the learning rate η and an initial variational angle θ(0). We look now at
the difference of the residual training error

δε ≡ ε(t+ 1)− ε(t) . (16)
When the learning rate of Equation 1 η is small, we can perform a Taylor expansion,

δε ≈
∑
ℓ

∂ε

∂θℓ
δθℓ = −η

∑
ℓ

∂ε

∂θℓ

∂ε

∂θℓ
ε = −ηKε . (17)

The quantity K here is called the Quantum Neural Tangent Kernel (QNTK) Liu et al. (2021a),
K =

∑
ℓ

∂ε
∂θℓ

∂ε
∂θℓ

. Note that in a general supervised learning setup where one has a labeled dataset

instead of just one expected value O0, K is a positive-semidefinite and symmetric matrix instead of a
non-negative number. Here we focus on the optimization problem Equation 15: this example will
demonstrate the validity of our theory, that can be readily generalized to a full supervised quantum
machine learning setup.

A frozen QNTK will remain constant during a gradient descent flow will lead to gradient flow equa-
tions which can be solved exactly Liu et al. (2021a), showing that the error will decay exponentially
at the gradient descent iteration t as

ε(t) = (1− ηK)tε(0) . (18)
For sufficient random variational ansätze, we could compute the value of K based on the same
assumption of the barren plateau problem McClean et al. (2018). After computing 2-design random
average E (see Liu et al. (2022a) for more details)

E(O) =

∫
U∈2-design

dUO(U) , (19)

More precisely, we define

U−,ℓ ≡
ℓ−1∏
ℓ′=1

Wℓ′Uℓ′ , U+,ℓ ≡
L∏

ℓ′=ℓ+1

Wℓ′Uℓ′ ,

V−,ℓ = U−,ℓWℓUℓ, V+,ℓ = U+,ℓ . (20)
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And we assume that V−,ℓ and V+,ℓ form 2-designs independently in all ℓs. We get the following
expression of the averaged QNTK,

K̄ = E(K) = L
(
NTr

(
O2
)
− Tr2(O)

) 2

N + 1

(
1

N2 − 1

)
≈

2LTr
(
O2
)

N2
. (21)

This simple equation combined with Equation 18 reveals how, on average, the residual training
error of a gradient descent dynamics will decay exponentially. Moreover, one should also check the
standard deviation ∆K. If ∆K ≪ K̄, we get a distribution of K which is concentrated at K̄. In fact,
one could show that from k-design assumptions,

∆K ≈
√
L

N2

√
(8Tr2 (O2) + 12Tr (O4)) . (22)

Thus, we have ∆K/K̄ = O(1/
√
L). In the limit where L ≫ 1, the neural tangent kernel is

concentrated around a fixed value K̄. A more precise constraint will also include a time-dependent
statement including the perturbations of higher-order Taylor expansion of the residual training error,
which is characterized by the so-called quantum meta-kernel or dQNTK. See Appendix B for more
details.

4 PRECISION AND NOISE

Now we give some physical interpretations about Equation 21. We see in Section 3 that the theory
should work in the regime where L≫ 1, and also the overparametrization regime where ηK ≈ O(1).
From Equation 18, we know that K̄ would serve as an exponent of exponential decay: the larger K̄
is, the faster the algorithm will converge. This qualitative description has been formulated in Liu et al.
(2021a), with numerical evidence in Shirai et al. (2021) around the same time.

Moreover, a statement about precision could be made by combining Equation 18 and Equation 21.
We have

log
1

εr
≈ −T log

(
1− ηK̄

)
≈ ηK̄T . (23)

Here, T is the total training steps, and εr is the relative residual training error around the end of
training εr = ε(T )/ε(0). The relative error εr could be as small as the precision of the quantum
device. Using Equation 21, we get

log
1

εr
≈

2ηLTr
(
O2
)
T

N2
. (24)

Equation 24 makes the barren plateau problem manifestly as a precision problem. If we want to
see the convergence within T ≈ O(1), we want ηK̄ ≈ 1. The smaller K̄ is, the smaller decaying
exponent we have, and more likely we will experience a barren plateau in practice. Otherwise, there
will be good enough local optima around the small random fluctuations of variational angles. The
more overparametrized the quantum neural networks are, the faster convergence they could have. In
this case, we do not have a barren plateau if we assume that we do not have the measurement noise
and the quantum hardware noise, although we have laziness.

Originally, a relation between the barren plateau problem and the precision has also been stated
in McClean et al. (2018), while we make it more clear by showing that the barren plateau is not
algorithmic. In fact, in Appendix A, we show that classical overparametrized neural networks have
laziness as well. Many useful, practical machine learning algorithms have to be in this case Roberts
et al. (2021). Thus, variational quantum algorithms here have no algorithmic issue, and the origin of
the problem comes from measurement and control (see also Wang et al. (2021)).

Let us take a look at Equation 1 again. To implement variational algorithms, we need to perform
measurements to evaluate the loss function or its derivatives (involving quantum measurements), and
update the trainable angles through Equation 1 (involving quantum control). On the measurement
side, classical computations could handle the precision-ϵ computation with the resource scaling as
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log 1/ϵ, while measurement errors will be produced in the quantum setup, making the scaling 1/ϵα

for positive α McClean et al. (2018). There is no known way to date to avoid it because of limitations
of metrology Knill et al. (2007). On the control side, it is also challenging to update the variational
angles with exponential precision. In a sense, our theory makes the statement from McClean et al.
(2018) more precise.

The discussion naturally motivates us to introduce the noise model. In Figure 2, we show an example
about how quantum noise models could affect the training dynamics in the overparametrized regime.

Figure 2: Noise-resilience in the overparametrized quantum machine learning models from the time
dependence of the residual training error. We set the number of qubits n = 2 with L = 64 trainable
parameters, where the variational circuits are chosen from a randomized hardware-efficient ansatz
introduced in Liu et al. (2021a; 2022a). We set the learning rate as η = 10−3. Moreover, we set the
standard deviation as σθ = 10−3 in the Gaussian random noise model (see discussions in this section
and the paper Liu et al. (2022b) for more details). The noisy model has the training dynamics with
the red line, while the noiseless model has the exponential converging training dynamics with the
blue line. This figure shows our statement from noisy quantum neural network models: in such a
simple noise model, overparametrized quantum neural networks are resilient against noise. They
are still exponentially converging towards a plateau induced by noise, and the convergence will take
exponentially long time.

Heuristically, we will expect that during the gradient descent process, the effective noise term will
also be exponentially decaying because of the original recurrence relation and its solution. To
verify this, we could add a random fluctuation term ∆θℓ to model the uncertainty of measuring the
expectation value. One could also assume that the random variable ∆θℓ is Markovian. Namely, it
is independent for the time step t. Moreover, we assume that ∆θℓs are distributed with Gaussian
distributions N (0, σ2

θ). Note that σθ could come from the measurement noise during estimations of
quantum observables used for the gradient descent, which scales as 1/

√
n, where n is the number of

measurements. And the Gaussian assumptions come from the central limit theorem in the large-n
limit. Furthermore, σθ could also come from the hardware noises. On the other hand, the physical
implementation of rotation angle will also have limited precision. One could note that robust quantum
control techniques can suppress errors of rotation angles to higher orders, see Vandersypen & Chuang
(2005).

Thus, one could show that the residual training error has the recursion relation in the linear order of
the Taylor expansion,

δε = −ηεK +
∑
ℓ

∂ε

∂θℓ
∆θℓ . (25)
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Now, let us assume that K is still a constant, K ≈ K̄. Since ∆θℓ ∼ N (0, σ2
θ), we get∑

ℓ

∂ε

∂θℓ
∆θℓ ∼ N (0,Kσ2

θ) . (26)

Including the noise term into the recursion relation, one could show that averaging over the random
distribution of the noise, we have

ε2(t) = (1− ηK)2t
(
ε2(0)− σ2

θ

η(2− ηK)

)
+

σ2
θ

η(2− ηK)
. (27)

Note that the first term is decaying when the time t is increasing. At the late time, we have

ε2(∞) =
σ2
θ

η(2− ηK)
≈ O(

σ2
θ

η
) , (28)

where we assume the overparametrization ηK ≈ O(1) . Thus, at the late time, the loss function
will arrive at a constant plateau at O(σ2

θ/η). One could improve σθ to make the constant plateau
controllable and do not increase significantly with N , indicating that our algorithm could be noise-
resilient. See Appendix D for a more detailed discussion, and see Figure 1 for an illustration. Some
numerical results are also obtained in Figure 3 and Figure 4.

5 CONCLUSION AND OUTLOOK

In this paper, we point out that for variational circuits with sufficiently large numbers of trainable
angles, the gradient descent dynamics could still be efficiently performed, despite the existence of
the exponential suppression of the variational angle updates (laziness). We point out that laziness
is not uniquely happening in quantum machine learning, but also for overparametrized classical
neural networks with large widths. The efficiency of large-width neural networks is justified by
the neural tangent kernel theory, so do their quantum counterparts. A solid and simple theory has
been established based on the above ideas, and the relation between the number of training steps,
the quantum device error, the trainable depth, the dimension of the Hilbert space, and the norm of
operators appearing in the loss function has been explicitly derived. Moreover, we have justified that
for simple and natural noise models, we could make the variational quantum circuits noise-resilient
in the overparametrized regime, with solid theoretical and numerical evidence.

Our results also indicate a more well-defined path to designing quantum neural networks from the
first principle. If we are sampling unitary operators uniformly in the whole unitary group, it is hard
to avoid polynomial factors of N , the dimension of the Hilbert space, into the expression of the
number of iterations in order to obtain the visible laziness (see parallel efforts in Abedi et al. (2022);
You et al. (2022)). One idea is to reduce the space of searching, and reduce the space of variational
circuits to some subspaces, where people observe some evidence for setups in quantum convolutional
neural networks Cong et al. (2019); Pesah et al. (2021) and local loss function Cerezo et al. (2021b),
and the barren plateau phenomena are less drastic in those cases. However, since the subspace we
are searching is reduced, the decreased expressibility will lead to a lower performance for the final
convergence of the loss function on the training set Abedi et al. (2022): around the end of the training,
drastic corrections towards fixed neural tangent kernels will stop the exponential decay, and we get a
local minimum which may not be good enough. The design of variational circuits will be a trade-off
between barren plateaus and performance Larocca et al. (2021), which could be manifest in the
presence of laziness. Despite generalizations to full learning setups with multiple output dimensions,
other interesting directions include detailed discussions about the quantum noise in the real machines
during quantum representation learning to understand how the noise will affect laziness and the
barren plateau, a justification of our theory with large-scale classical and quantum simulation, and
possible theoretical understandings beyond the limit L ≫ 1. Finally, it will be useful to explore
how our QNTK theory is able to make practical guidance to improve the performance of variational
algorithms. For instance, since we know that higher QNTKs will lead to faster convergences, one can
make plots at initialization about the value of the QNTK eigenvalues for different variational angles.
Thus, one could choose larger QNTK initializations at the beginning of training, and in practice, it
might lead to better convergence. Moreover, there are relationships between the NTK eigenvalues,
generalization error, and alignments Canatar et al. (2021), where our results might be helpful in
improving the generalization properties of quantum machine learning models. We look forward to
further analysis and research along our path.
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A COMMENTS ON THE BARREN PLATEAU IN THE classical MACHINE
LEARNING

Now we consider a classical neural network, the MLP model (see Roberts et al. (2021)). The
definition is

z
(1)
i (xα) ≡ b

(1)
i +

n0∑
j=1

W
(1)
ij xj;α,

for i = 1, . . . , n1,

z
(ℓ+1)
i (xα) ≡ b

(ℓ+1)
i +

nℓ∑
j=1

W
(ℓ+1)
ij σ

(
z
(ℓ)
j (xα)

)
,

for i = 1, . . . , nℓ+1; ℓ = 1, . . . , L− 1. (29)

Here, σ is a non-linear activation function, and we have widths n1,2,··· ,L in layers ℓ = 1, 2, · · ·L.
The input dimension is n0 and the output dimension is nL. Weights and biases at layer ℓ are denoted
as W (ℓ) and b(ℓ). z(ℓ) is called the preactivation. xj,α will denote the data where j is the vector
index, and α is the data sample index. At the beginning, we initialize the neural network by

E
[
b
(ℓ)
i1
b
(ℓ)
i2

]
= δi1i2C

(ℓ)
b ,

E
[
W

(ℓ)
i1j1

W
(ℓ)
i2j2

]
= δi1i2δj1j2

C
(ℓ)
W

nℓ−1
. (30)

Here, Cb and CW will set the variance of biases and weights (we use the notation CW = σ2
W in the

main text). And we train the neural networks by gradient descent algorithms. We could consider the
simplest version of the gradient descent algorithm,

θµ(t+ 1) = θµ(t)− η
dLA

dθµ

∣∣∣∣
θ(t)

. (31)
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The loss function is

LA ≡ 1

2

∑
i,α̃∈A

(zi (xα̃; θ)− yi,α̃)
2
=

1

2

∑
i,α̃∈A

ε2i,α̃ , (32)

where α̃ ∈ A form a training set A, and we have a supervised learning task with the data label y. zi
is the final prediction from the MLP model, z(L)

i , η is the training rate. θµ is a vector combining all
W s and bs. ε here is the residual training error,

εi,α̃ = zi (xα̃)− yi,α̃ . (33)

A.1 THE FUNDAMENTAL DIFFERENCE BETWEEN BARREN PLATEAU AND VANISHING
GRADIENT

Firstly, we wish to comment on the fact that there is a fundamental difference between the barren
plateau problem and the vanishing gradient problem.

The vanishing gradient problem is claimed to be a challenge of machine learning algorithms, where
the gradient is vanishing for some neural network constructions, and it will be challenging to train
the network Hochreiter (1998); Hochreiter et al. (2001). A standard and traditional explanation of
the vanishing gradient problem is due to multiplicatively large number of layers in a deep neural
network. The loss will have exponential behavior against some multiplicative factors during gradient
descent, which will cause either exploding or vanishing of the loss function if there is no fine tuning.
A resolution of the vanishing gradient problem is associated with the idea of He initialization or
Kaiming initialization, which fine-tunes the neural network towards its critical point He et al. (2015)
(see also Roberts et al. (2021)).

The barren plateau problem is a term invented from the quantum community since McClean et al.
(2018). As far as we know, there is no such term in classical machine learning instead of geography.
The theoretical argument from the barren plateau problem is the following, where we define the
argument as laziness. If we consider the gradient descent process of the variational angles,

θµ(t+ 1) = θµ(t)− η
dLA

dθµ

∣∣∣∣
θ(t)

. (34)

and if we make a sufficiently random variational ansatz, the factor poly(dimH) where dimH is the
dimension of the Hilbert space, will appear in the formula of dLA/dθµ. Thus, the change of the
variational angle will always suppressed by the dimension of the Hilbert space. A simple example of
the Haar random factor poly(dimH) will be the integration formula over a 2-design,∫

dUUijU
†
kl =

δilδjk
dimH

, (35)

where the matrix U forms a 2-design. The higher k is in a k-design, the higher factor of dimH will
appear if we consider higher moments of U . Thus, one claim that the variational angles almost cannot
run in the randomized variational quantum architectures.

We could notice that the argument of the barren plateau problem using laziness is fundamentally
different from the vanishing gradient problem: the vanishing gradient problem is dynamical when
going to deeper and deeper neural networks, while the laziness is static and appears everywhere. Thus
they are two intrinsically different problems. Moreover, from the similarity between the 2-design
integral formula 35 and the LeCun parametrization 30, we could expect that the large-width neural
networks will have similar behaviors: their weights and biases will also almost not run. Considering
that classical overparametrized neural networks are proven to be practically useful (see, for instance, a
comparison Golubeva et al. (2020)), and large-scale neural networks could be implemented commonly
nowadays, laziness may not always be bad in the actual machine learning tasks.
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A.2 CLASSICAL LARGE-WIDTH NEURAL NETWORK HAS LAZINESS AS WELL

Now we prove that in the above setup, the large-width classical neural network will also have laziness.
We have

dLA

dθµ
=
∑
i,α̃

εi,α̃
dεi,α̃
dθµ

=
∑
i,α̃

εi,α̃
dzi,α̃
dθµ

=
∑
i,α̃

yi,α̃
dzi,α̃
dθµ

+
∑
i,α̃

zi,α̃
dzi,α̃
dθµ

. (36)

We wish to represent the derivatives over W and b by the derivatives of early-layer preactivation z(ℓ),
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dz
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σ
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Here, σ(ℓ) is a short-hand notation of σ(z(ℓ)), and we introduce σ(ℓ)
j;α as σ(z(ℓ)j;α). Finally, we have,

dz
(L)
i;α

dz
(ℓ)
j;α

=

nℓ+1∑
k=1

dz
(L)
i;α

dz
(ℓ+1)
k;α

dz
(ℓ+1)
k;α

dz
(ℓ)
j;α

=

nℓ+1∑
k=1

dz
(L)
i;α

dz
(ℓ+1)
k;α

W
(ℓ+1)
kj σ

(ℓ)
j;α

′

for ℓ < L ,

dz
(L)
i;α

dz
(L)
j;α

= δij . (38)

This is a back-propagation iterative formula, giving the recurrence relation from the end of the neural
networks to the beginning. Moreover, we use σ′ to denote derivatives of σ. So we get

dz
(L)
i;α

dz
(ℓ)
j;α

=

nℓ+1∑
k=1

dz
(L)
i;α

dz
(ℓ+1)
k;α

dz
(ℓ+1)
k;α

dz
(ℓ)
j;α

=

nℓ+1∑
k=1

dz
(L)
i;α

dz
(ℓ+1)
k;α

W
(ℓ+1)
kj σ

(ℓ)
j;α

′

=

nℓ+1,nℓ+2∑
kℓ+1,kℓ+2

dz
(L)
i;α

dz
(ℓ+2)
kℓ+2;α

W
(ℓ+2)
kℓ+2j

W
(ℓ+1)
kℓ+1j

σ
(ℓ+1)
j;α

′σ
(L−2)
j;α

′

=

nℓ+1,nℓ+2,...,nL∑
kℓ+1,kℓ+2,...,kL

dz
(L)
i;α

dz
(L)
kL;α

W
(L)
kLjW

(L−1)
kL−1j

. . .W
(ℓ+2)
kℓ+2j

W
(ℓ+1)
kℓ+1j

× σ
(L−1)
j;α

′σ
(L−2)
j;α

′ . . . σ
(ℓ+1)
j;α

′σ
(L−2)
j;α

′

=

nℓ+1,nℓ+2,...,nL−1∑
kℓ+1,kℓ+2,...,kL−1

W
(L)
i,j W

(L−1)
kL−1j

. . .W
(ℓ+2)
kℓ+2j

W
(ℓ+1)
kℓ+1j

σ
(L−1)
j;α

′σ
(L−2)
j;α

′ . . . σ
(ℓ+1)
j;α

′σ
(L−2)
j;α

′ . (39)
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We find the expectation value will vanish directly (which is exactly similar to the quantum case).
Thus, we could estimate the norm by computing the variance of the gradients from,

E

(dz(L)
i;α

dz
(ℓ)
j;α

)2


=

nℓ+1,nℓ+2,...,nL−1,nℓ+1,nℓ+2,...,nL−1∑
kℓ+1,kℓ+2,...,kL−1,k̄ℓ+1,k̄ℓ+2,...,k̄L−1

E

(
W

(L)
i,j W

(L)
i,j W

(L−1)
kL−1j

W
(L−1)

k̄L−1j
. . .

W
(ℓ+2)
kℓ+2j

W
(ℓ+2)

k̄ℓ+2j
W

(ℓ+1)
kℓ+1j

W
(ℓ+1)

k̄ℓ+1j

)
E
((

Σ
(ℓ);(L−1)
j;α

)2)

=

nℓ+1,nℓ+2,...,nL−1,nℓ+1,nℓ+2,...,nL−1∑
kℓ+1,kℓ+2,...,kL−1,k̄ℓ+1,k̄ℓ+2,...,k̄L−1

E

(
W

(L)
i,j W

(L)
i,j W

(L−1)
kL−1j

W
(L−1)

k̄L−1j
. . .

W
(ℓ+2)
kℓ+2j

W
(ℓ+2)

k̄ℓ+2j
W

(ℓ+1)
kℓ+1j

W
(ℓ+1)

k̄ℓ+1j

)
E
((

Σ
(ℓ);(L−1)
j;α

)2)

=
1

nL
C

(L)
W C

(L−1)
W . . . C

(ℓ+1)
W E

((
Σ

(ℓ);(L−1)
j;α

)2)
, (40)

where
Σ

(ℓ);(L−1)
j;α = σ

(L−1)
j;α

′σ
(L−2)
j;α

′ . . . σ
(ℓ+2)
j;α

′σ
(ℓ+1)
j;α

′ . (41)
We have used the Wick contraction rule and the LeCun parametrization 30 according to Roberts et al.
(2021). Plug Equation 40 back to Equation 37, we see that this 1/nL factor appears. This is the
classical barren plateau in the large-width classical neural networks.

A.3 CLASSICAL LARGE-WIDTH NEURAL NETWORK COULD STILL LEARN EFFICIENTLY

Here we show that the classical neural tangent kernel (NTK) will not vanish in classical MLPs,
despite its laziness. This indicates that there are many good enough local minima around the point of
initialization, so even the variational angles run slowly (the barren plateau problem), it will not matter
for our practical purpose. On the other hand, more variational parameters will make us converge
faster.

This part is a review of existing results, presented in the language of Roberts et al. (2021). In classical
MLPs, similar to the quantum cases we have discussed in the whole paper, the residual training error
ε will decay exponentially at large width. We define the NTK as

Hi1i2;α1α2 ≡
∑
µ

dzi1;α1

dθµ

dzi2;α2

dθµ
. (42)

The gradient descent rule will imply,

δεi;δ = −η
∑

i1,α̃∈A
Hii1;δα̃εi1,α̃ . (43)

One could compute the average of the NTK. One could define the frozen NTK and the fluctuating
NTK as

Hi1i2;α1α2
= H̄i1i2;α1α2

+∆Hi1i2;α1α2
, (44)

and we have

E (∆Hi1i2;α1α2
∆Hi3i4;α3α4

) =
1

nL−1

[
δi1i2δi3i4A(α1α2)(α3α4) + δi1i3δi2i4Bα1α3α2α4

+ δi1i4δi2i3Bα1α4α2α3

]
.

(45)

The full expressions of A,B are given in Chapter 8 of Roberts et al. (2021). Similarly, in the statistics
language, one could check Jacot et al. (2018). The suppression of ∆H in the large width indicates
that the large-width neural networks will learn efficiently through non-trivial H̄i1i2;α1α2

, which
is guaranteed to converge exponentially. In the large-width limit, the gradient descent algorithm
is theoretically equivalent to the kernel method, where the kernel is defined effectively by NTKs.
In Chapter 11 of Roberts et al. (2021), it is shown that dNTK, the higher-order corrections to the
exponential decay, will vanish on its own, averaging over the Gaussian distribution of weights and
bias. Moreover, the correlations between dNTK and other operators, which cause even numbers
of W s in total, will be suppressed by the large width polynomially. Those theoretical results are
classical analogs of random unitary calculations done in our work.
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B SOME FURTHER DETAILS ABOUT CONCENTRATION CONDITIONS

For concentration conditions including the quantum meta-kernel, one could see Liu et al. (2022a) for
further details. Here we provide a simple review.

Now, we would like to ask when the QNTK approximation is valid. When the learning rate is small,
the error of the prediction in Equation 21 could possibly come from two sources: the fluctuation
of K about K̄ during the gradient descent, and the higher-order corrections comparing the leading
order Taylor expansion in Equation 17. The fluctuation ∆K could come from higher-order statistical
calculations over the k-design assumption, similar to the analysis of higher-order effects in the barren
plateau setup Cerezo & Coles (2021),

∆K =

√
E
(
(K − K̄)

2
)
≈

√
L

N2

√(
8Tr2 (O2) + 12Tr (O4)

)
, (46)

in the large-N limit, and we present a detailed calculation in Liu et al. (2022a) with formulas up
to 4-design. Moreover, we could look at higher order corrections to the Taylor expansion by the
quantum meta-kernel (dQNTK) Liu et al. (2021a),

δε = −η
∑
ℓ

dε

dθℓ

dε

dθℓ
ε+

1

2
η2ε2

∑
ℓ1,ℓ2

d2ε

dθℓ1dθℓ2

dε

dθℓ1

dε

dθℓ2

≡ −ηKε+ 1

2
η2ε2µ . (47)

Here µ =
∑

ℓ1,ℓ2
d2ε

dθℓ1dθℓ2

dε
dθℓ1

dε
dθℓ2

could be computed statistically using k-design formulas again.
One can show that E(µ) = 0 (which is the same as its classical counterpart Roberts et al. (2021)),
and we have

∆µ =
√
E (µ2) ≈

√
32L

N3
Tr3/2

(
O2
)
, (48)

in the large-N limit. The condition where the QNTK estimation in Equation 21 is valid when

∆K ≪ K ⇔ L≫ 1 , (49)

1

2
η2ε2∆µ≪ ηK̄ε⇔ ηε(0)

L

N3
Tr3/2

(
O2
)
≪

LTr
(
O2
)

N2

⇔ ηΩO

N
ε(0) ≪ 1 . (50)

We call the conditions 49 and 50 as the concentration conditions. Here, we denote ε(0) = ε(t = 0),
and we assume that Tr(O2) ≡ Ω2

O > Tr2(O). This is correct, for instance, if O is a Pauli operator,
where we have Tr(O2) = N but Tr2(O) = 0.

Note that the condition Equation 50 is a weak condition. It only tells that how small η is needed to
make sure the nearly expansion is valid. In practice, we often assume that η < O(1) and ΩO ≥ O(N),
so Equation 50 is automatically satisfied. The condition that usually matters is Equation 49, which is
the definition of overparametrization here L≫ 1. Thus, if L is large, the prediction will be correct,
no matter how large N is. But if N is large, the decay rate itself K̄ will be small. So this is exactly
the definition of the barren plateau!

Furthermore, we wish to mention that if we only count for powers of N and L, we have

∆K

K̄
= O

(
1√
L

)
,
∆µ

K̄
= O

(
1

N

)
. (51)

If we demand K̄ = O(1) and ignore η, we get L = O(N), so we get ∆K
K̄

= O
(

1
N

)
as well. The

1/N or 1/width expansion is exactly observed in the classical neural networks Roberts et al. (2021).
The origin of this equivalence comes from the similarity between Equation 2 and Equation 52, while
a higher level (but heuristic) understanding comes from a connection between quantum field theory
and the large-width expansion Dyer & Gur-Ari (2019); Halverson et al. (2021); Roberts et al. (2021)
and a similarity between Feynman rules in quantum field theory and matrix models Witten (1995),
which we will briefly explain in Appendix C for readers who are interested in how observations about
this paper might be discovered from another perspective.
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C A PHYSICAL INTERPRETATION

Here we make some comments about possible, heuristic, physical interpretations of the agreement
between classical and quantum neural networks. There is a duality, pointed out in Dyer & Gur-Ari
(2019); Halverson et al. (2021); Roberts (2021); Roberts et al. (2021) where the large-width classical
neural networks could be understood in the quantum field theory language. In the large-width limit,
the output of neural networks will follow a Gaussian process, averaging with respect to Gaussian
distribution over weights and bias according to the LeCun parametrization,

E (WijWkl) =
σ2
W

width
δikδjl , (52)

or more generally,

E
(
Wi1j1Wi2j2 . . .Wi2k−1j2k−1

Wi2kj2k

)
= O(

1

poly(width)
) , (53)

for all positive integer k. Here, we are considering the multilayer perceptron (MLP) model with
weights W , and the width is defined as the number of neurons in each layer. The limit is mathemati-
cally similar to the large-N limit of gauge theories, which becomes almost generalized free theories.
We could understand the ratio between the depth, the number of layers, and the width, the number of
neurons, as perturbative corrections against the Gaussian process, which is similar to what we have
done in the large-N expansion of gauge theories.

This physical interpretation will be helpful also when we consider its quantum generalization. If
classical MLPs are similar to quantum field theories, quantum neural networks will be similar to
matrix models Banks et al. (1997); Berenstein et al. (2002). Matrix models have been studied for
a long time, around and after the second string theory revolution Witten (1995), and they have
deep connections to the holographic principle Susskind (1995) and the AdS/CFT correspondence
Maldacena (1998); Witten (1998). Haar ensembles are toy versions of matrix models, which have
been widely studied as toy models of chaotic quantum black holes Hayden & Preskill (2007); Roberts
& Yoshida (2017). The similarity between the LeCun parametrization 52 and the 1-design Haar
integral formula

E(UijU
†
kl) =

1

dimH
δilδjk , (54)

or more generally,

E
(
Ui1j1U

†
i2j2

. . . Ui2k−1j2k−1
U†
i2kj2k

)
= O(

1

poly(dimH)
) , (55)

where dimH is the dimension of the Hilbert space, might be potentially related to the similarity of
Feynman rules between matrix models and quantum field theories. Thus, the similarity between
quantum and classical neural networks might have a physical interpretation between matrix models
and their effective field theory descriptions.

The above analogy is heuristic. We should point out that machine learning and physical systems are
very different. Some mathematical similarities could provide guidance towards new discoveries and
better insights, but we have to be careful that they are intrinsically different phenomena.

D NOISES

Now let us add the affection of the noise. From the original gradient descent equation,

θℓ(t+ 1)− θℓ(t) ≡ δθµ = −η ∂L
∂θℓ

= iη
〈
Ψ0

∣∣∣V †
+,ℓ

[
Xℓ, V

†
−,ℓOV−,ℓ

]
V+,ℓ

∣∣∣Ψ0

〉
, (56)

we add a random fluctuation term ∆θℓ to model the uncertainty of measuring the expectation value.
We assume that the random variable ∆θℓ is Markovian. Namely, it is independent for the time step t.
Moreover, we assume that ∆θℓs are distributed with Gaussian distributions N (0, σ2

θ).

Thus, the residual training error has the recursion relation in the linear order of the Taylor expansion,

δε = −ηεK +
∑
ℓ

∂ε

∂θℓ
∆θℓ . (57)
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Now, let us assume that K is still a constant. Since ∆θℓ ∼ N (0, σ2
θ), we get∑

ℓ

∂ε

∂θℓ
∆θℓ ∼ N (0,Kσ2

θ) . (58)

Thus, we could write the recursion relation as

δε = −ηεK +
√
K∆θ . (59)

Here, ∆θ ≈ N (0, σ2
θ). One can solve the difference equation iteratively. The answer is

ε(t) = (1− ηK)tε(0) +
√
K

t−1∑
i=0

(1− ηK)
i
∆θ(t− 1− i) . (60)

Now, we have

√
K

t−1∑
i=0

(1− ηK)
i
∆θ(t− 1− i) ∼ N (0,Kσ2

θ

t−1∑
i=0

(1− ηK)
2i
)

= N (0, σ2
θ

1− (1− ηK)
2t

η(2− ηK)
) . (61)

At the initial time t = 0, there is no effect of noise. The relative size of the error will grow during
time compared to the exponential decay term without noises. Based on the distribution, we could
compute the average ε2 against the noises, ε2, as

ε2(t) = (1− ηK)2t
(
ε2(0)− σ2

θ

η(2− ηK)

)
+

σ2
θ

η(2− ηK)
. (62)

Note that the first term is decaying when the time t is increasing. At the late time, we have

ε2(∞) =
σ2
θ

η(2− ηK)
≈ O(

σ2
θ

η
) , (63)

where we assume the overparametrization ηK ≈ O(1) . Thus, at the late time, the loss function
will arrive at a constant plateau at O(σ2

θ/η). One could improve σθ to make the constant plateau
controllable and do not increase significantly with N , indicating that our algorithm could be noise-
resilient.

One could also estimate the time scale where the contribution of the noise could emerge. We could
define the time scale, Tnoise, as,

(1− ηK)Tnoiseε(0) ≈ σθ

√
1− (1− ηK)

2Tnoise

η(2− ηK)
. (64)

It means that at Tnoise, the noise contribution is comparable to the noiseless part in the residual training
error. We have,

Tnoise ≈
log

(
σθ√

2ε2(0)η−ε2(0)η2K+σ2
θ

)
log(1− ηK)

,

ε(Tnoise) = 2(1− ηK)Tnoiseε(0) =
2σ2

θ√
ε(0)2(2η − η2K) + σ2

θ

ε(0) . (65)

We find that choosing η ≈ O(1/K) will minimize ε(Tnoise). It is exactly the overparametrization
condition we use in this paper.

To be self-consistent, we need to check if the choice η ≈ O(1/K) is consistent with the concentration
condition about dQNTK. In fact, we find that η ≈ O(1/K) will naturally satisfy the dQNTK
concentration condition if ε(0) < O(L

√
N). This is naturally satisfied in generic situations in

variational quantum algorithms since we will usually not have an exponential amount of residual
training error initially.
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Figure 3: Noise standard deviation σθ as a function of standard deviation of final residual error σε
after training long enough time, with both numerical result (black dots) and theoretical prediction
(red line). In this figure, η = 0.005, K ≈ 25, ε(0) ≈ 1.

E NUMERICAL RESULTS

In this part, we show some simple numerical evidences based on the analysis done in Liu et al.
(2022a). We will use the randomized version of the hardware-efficient variational ansatz defined in
Liu et al. (2022a). In Figure 3, for each σθ value, we run 10 experiments of 100 steps using the same
setup of the ansatz U(θ), the operator O and the input state θ0 as in Liu et al. (2022a). After that, we
get the residual error of the last step and take the average value over 10 experiments to get the mean ε
value, shown with black dots in the figure. The red line in the figure is the theoretical prediction. In
these experiments, L = 64, and we have 4 qubits. We can further get the analytic result of the mean
value of ε after a long time as

ε =

√
2

π
· σθ√

2η − η2K
, (66)

where the K value is taken from the value of the last step, as it fluctuates a lot in the early time.

We run multiple experiments to approach the theoretical value as much as possible, where 10
experiments are done for each σθ value. To verify that the numerical result lies in a reasonable regime,
we calculated the 90% confidence interval of ε theoretically.

To compensate for the effect of large K on our numerical simulations, since in every experiment
setup, due to randomness, the training will lead the parameters to different regimes of different Ks,
we choose those experiments which fulfill our theoretical restrictions for small K. The numerical
results above are with K ≈ O(10), which still shows great agreement with our theoretical formalism.

More precisely, in Figure 3, we get the relationship between residual error fluctuation and noise. For
each σθ value, we calculated the standard deviation with final residual error data from 10 experiments,
shown as black dots. The final residual error that we get from the numerical experiments is taken
absolute value for the benefit of the log scale. We find the numerical results follow the theoretical
prediction in a reasonable confidence interval. Moreover, we verify the extent of our final residual
error that can achieve as a function of noise σθ with numerical evidence.

In Figure 4, we verify the prediction of standard deviation of ε(∞), σε, in the small η regime. In
these numerical experiments, the inaccuracy comes mainly from a limited number of experiments and
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Figure 4: Standard deviation of final residual error σε as a function of learning rate η after training
long enough time, with both numerical result (black dots) and theoretical prediction (red line). In this
figure, σθ = 0.005, K ≈ 35, ε(0) ≈ 1, t = 100.

a limited time scale (t = 100). Especially for experiments with a small learning rate η with random
initial states, Tnoise may be large for 100 steps to cover.
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