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Abstract

Advancements in reinforcement learning have led to the development of sophisti-1

cated models capable of learning complex decision-making tasks. However, effi-2

ciently integrating world models with decision transformers remains a challenge.3

In this paper, we introduce a novel approach that combines the Dreamer algorithm’s4

ability to generate anticipatory trajectories with the adaptive learning strengths of5

the Online Decision Transformer. Our methodology enables parallel training where6

Dreamer-produced trajectories enhance the contextual decision-making of the trans-7

former, creating a bidirectional enhancement loop. We empirically demonstrate the8

efficacy of our approach on a suite of challenging benchmarks, achieving notable9

improvements in sample efficiency and reward maximization over existing methods.10

Our results indicate that the proposed integrated framework not only accelerates11

learning but also showcases robustness in diverse and dynamic scenarios, marking12

a significant step forward in model-based reinforcement learning.13

1 Introduction14

Given the recent success of transformer architectures [21], the general framework of the Decision15

Transformer (DT) is designed for rapid adaptation and enhanced computational rewards by leveraging16

pre-training data in an offline setting [4]. Building upon the Decision Transformer, the Online17

Decision Transformer (ODT) is tailored for online reinforcement learning (RL) settings where18

decisions must be made in real-time based on streaming data [29], while simultaneously learning19

from the dataset [7]. The key innovation of the ODT lies in its ability to continuously integrate new20

experiences and dynamically update the policy as new data arrives. This capability is crucial in21

non-stationary environments where the underlying dynamics may change over time, necessitating22

timely policy adaptations.23

At the core of the Decision Transformer architecture, the decision transformer maintains a replay24

buffer of recent experiences, utilizing trajectories of states, actions, and rewards [12]. This buffer is25

used to fine-tune the policy network at regular intervals, ensuring that the decision-making strategy26

remains aligned with the most recent data. This process provides the agent with the capacity to27

effectively respond to evolving situations [14]. By combining the transformer’s ability to process28

sequences with online learning, the ODT facilitates a more robust and adaptive approach to decision-29

making in dynamic environments [1].30

Similarly, the Dreamer algorithm [8], another popular reinforcement learning approach, utilizes31

world models to “dream” or simulate future states. This capability allows the agent to anticipate the32

outcomes of its actions without direct interaction with the actual environment, thereby enhancing the33

efficiency of the learning process by reducing the need for extensive real-world data [10]. Dreamer34
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operates by learning a latent dynamics model of the environment [9], which captures transition35

probabilities and reward functions. Once trained, this model can generate synthetic trajectories of36

states, actions, and rewards that the agent can use to improve its policy. The fundamental principle is37

that by learning in the space of latent representations, the algorithm can perform planning and credit38

assignment more effectively, even in high-dimensional state spaces [2]. By imagining outcomes and39

backpropagating the future rewards, Dreamer optimizes the policy to maximize expected returns.40

This not only conserves resources but also enables safer training, as the agent can explore various41

strategies in a simulated environment before executing them in the real world. Consequently, Dreamer42

is capable of developing sophisticated behaviors even in complex environments with sparse rewards43

[16].44

Building onto the success of Online Decision Transformer, we aim to find out whether combining45

the Online Decision Transformer with Dreamer will result in a higher reward learning.46

47

To this end, we proposed a novel algorithm: Dream-to-Control-for-Online-Decision-Transformer48

(DODT). This novel framework uses the base framework of Online Decision Transformer and through49

a paralleled trained dreamer, the transfer of enhanced trajectory from dreamer to ODT can benefit the50

overall model. Through numerous experiments, DODT can utilizes the success of ODT and Dreamer,51

achieving a higher reward.52

Contributions. We conclude our contributions from three perspectives.53

1. Parallel Training Architecture: We present the first and novel parallel training methodol-54

ogy that simultaneously leverages the Dreamer model’s trajectory generation and the Online55

Decision Transformer’s adaptive learning capabilities, providing a symbiotic framework for56

decision-making.57

2. Trajectory-Informed Decision Making: Our integration uniquely enables the Online58

Decision Transformer to be informed by high-fidelity trajectories from the Dreamer, thus59

enhancing its contextual understanding and response strategies in complex environments.60

3. Cross-Model Feedback Mechanism: We introduce a feedback loop between the Dreamer61

and the Online Decision Transformer. Our integrated approach demonstrates superior62

performance across a variety of challenging benchmarks, surpassing traditional methods in63

terms of sample efficiency and reward maximization.64

1.1 Related Work65

Decision Transformer: Recent advancements in Decision Transformers have significantly expanded66

their capabilities and applications in reinforcement learning. A bootstrapping method was introduced67

to augment data generation for both online and offline Decision Transformers, enhancing training68

datasets significantly [24]. Additionally, innovative probabilistic learning objectives and max-entropy69

sequence modeling have been integrated to balance exploration and exploitation dynamically, ad-70

dressing the demands of online reinforcement learning environments for decision transformers [15].71

Further enhancements include a hierarchical decision-making structure, where high-level policies72

generate prompts that guide low-level action generation, improving decision granularity [16], and73

the combination of trajectory modeling with value-based methods, which aligns specified target74

returns with expected action returns to boost performance in stochastic settings [25]). Additionally,75

leveraging latent diffusion models for optimizing suboptimal trajectory portions from static datasets76

[22] and employing robust planning frameworks that treat planning as latent variable inference have77

further enhanced the long-term decision-making capabilities of Decision Transformers [13].78

Dreamer: At the same time, the Dreamer have been enhanced through various innovative approaches79

as well. The Dreamer model has been extensively advanced by integrating transformers to enhance the80

deterministic state prediction from observations [26]. Transitioning from recurrent neural networks81

to transformer networks within the world model has significantly improved the efficiency of state82

predictions [3, 6]. The adaptation of Dreamer for multi-task reinforcement learning uses diffusion83

models to optimize offline decision-making [11]. Extensions to the Dreamer framework allow84

handling of diverse tasks through world models that predict future states and rewards from abstract85

representations [10]. Furthermore, the use of prototypical representations instead of high-dimensional86

observation reconstructions [5], along with conditional diffusion models for long-horizon predictions87
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[28], and enhancement of exploration using latent state marginalization [27], collectively push the88

boundaries of model-based RL.89

Teacher to Student Model: The Student to Teacher model leverages the dynamics of guided learning90

to enhance the efficiency and scalability of reinforcement learning systems. The TGRL algorithm91

integrates the teacher-student learning framework with reinforcement learning, facilitating enriched92

policy learning experiences [19]. Curriculum learning approaches have also been significant, framing93

task sequencing within a meta Markov Decision Process to systematically improve sample efficiency94

[18]. The application of large language models as teachers to guide smaller, specialized student agents95

offers a novel approach to scaling down complex decision processes [30]. Furthermore, advancements96

in multi-agent systems, where experiences are shared between agents, enhance collective learning97

capabilities, demonstrating improved scalability and efficiency [23].98

2 Preliminaries99

2.1 Online Decision Transformer100

Algorithm 1 Online Decision Transformer (ODT)

1: Input: offline data Toffline, rounds R, exploration RTG Tonline, buffer size N , gradient iterations
I , pre-trained policy πθ.

2: Initialization: Replay buffer Treplay ← top N trajectories in Toffline.
3: for round = 1, . . . , R do
4: Trajectory τ ← Rollout using M and πθ(·|s, g(Tonline)).
5: Treplay ← (Treplay \ {oldest trajectory}) ∪ {τ}.
6: πθ ← Finetune ODT on Treplay for I iterations using Training Main Loop.
7: end for

Online Decision Transformer (ODT) represents a significant advance in the application of transformers101

to reinforcement learning (RL). It extends the Decision Transformer (DT) architecture to online102

settings, adapting the transformer architecture for dynamic environments and real-time decision-103

making tasks. This adaptation is crucial for RL applications where an agent must continuously learn104

and adapt based on new data while interacting with an environment. In traditional reinforcement105

learning, decision-making often relies on policies learned from historical data or through iterative106

interactions with an environment. These methods can be inefficient and slow to adapt to changes in107

dynamic scenarios. The ODT framework addresses these challenges by leveraging the sequential108

processing capabilities of transformers to model policies based on both past and current interactions,109

integrating learning and decision-making in an online fashion.110

The core of ODT is a transformer architecture trained to optimize a sequence modeling objective that111

predicts the next action based on a history of states, actions, and rewards. Given a history encoded as112

sequences, the ODT models the conditional probability of actions given past experiences, formulated113

as:114

π(at|st, gt) ≈ P (at|context),
where gt represents the return-to-go, a sum of future rewards, and st denotes the current state. The115

context comprises past states, actions, and achieved rewards up to time t.116

The policy is refined using a replay buffer Treplay that stores trajectories:117

Treplay = {τ1, τ2, . . . , τN},
where each τi is a trajectory containing sequences of states, actions, and rewards. During training,118

this buffer is continuously updated by replacing the oldest trajectories with new ones obtained from119

recent environment interactions, ensuring that the policy adapates to the most recent data.120

The ODT utilizes the transformer’s capability to process sequences of data to dynamically update its121

policy based on the replay buffer. The policy πθ is optimized by fine-tuning the transformer model122

on sequences drawn from Treplay, using the objective:123

πθ ← argmax
π

E

[
T∑
t=0

γtrt

]
,
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where rt is the reward at time t and γ is the discount factor.124

During online interactions, the ODT first collect data from the environment using the current policy125

πθ then update the replay buffer Treplay by incorporating new trajectories and discarding the oldest.126

After that, it refines the policy πθ by training on a sampled batch from Treplay. This continuous loop127

of feedback and adaptation allows the ODT to maintain a policy that is responsive to the evolving128

dynamics of the environment. The integration of a transformer-based sequence model with an RL129

policy training framework enables the ODT to leverage the strengths of both sequence modeling and130

reinforcement learning techniques.131

2.2 Dreamer132

Algorithm 2 Dreamer

1: Initialize dataset D with S random seed episodes.
2: Initialize neural network parameters θ, ϕ, ψ randomly.
3: while not converged do
4: for update step c = 1 . . . C do
5: // Dynamics learning
6: Draw B data sequences {(at,ot, rt)}k+Lt=k ∼ D.
7: Compute model states st ∼ pθ(st|st−1, at−1, ot).
8: Update θ using representation learning.
9: // Behavior learning

10: Imagine trajectories {(sr, ar)}t+Hr=t from each st.
11: Predict rewards E(rt|st) and values V (st).
12: Compute value estimates Vψ(st).
13: Update ϕ← ϕ+ α∇ϕ

∑t+H
t=r Vψ(st).

14: Update ψ ← ψ − α∇ψ 1
2

∑t+H
t=r (ψ(st)− Vψ(st))2.

15: end for
16: // Environment interaction
17: o1 ← env.reset()
18: for time step t = 1 . . . T do
19: Compute st ∼ pθ(st|st−1, at−1, ot).
20: Compute at ∼ qϕ(at|st) with the action model.
21: Add exploration noise to at.
22: Execute action at and observe reward rt and new observation ot+1.
23: Add experience to dataset D ← D ∪ {(ot, at, rt)}Tt=1.
24: end for
25: end while

The Dreamer algorithm represents a significant step forward in latent dynamics learning for control133

by leveraging model based reinforcement learning, mostly for model based RL. By abstracting the134

observation space into a compact latent space, the dreamer can efficiently predicts future states and135

rewards, enabling it to plan and learn policies entirely through latent imagination.136

The world model in Dreamer consists of three key components:137

• Representation Model: p(st|st−1, at−1, ot), which encodes observations into a latent state,138

integrating past actions and states.139

• Transition Model: q(st|st−1, at−1), which predicts the next latent state given the cur-140

rent state and action, facilitating the generation of future trajectories without real-world141

interaction.142

• Reward Model: q(rt|st), which estimates the immediate reward from the current latent143

state, crucial for evaluating the desirability of states within imagined trajectories.144

Dreamer utilizes latent imagination to learn optimal behaviors by simulating trajectories in the latent145

space, derived from the learned world model. This approach allows Dreamer to perform efficient,146

farsighted planning by propagating value estimates backward through imagined trajectories. The key147
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mathematical formulations in this process include the Action Model: aτ ∼ qϕ(aτ |sτ ), which opti-148

mizes actions to maximize expected returns, and the Value Model: vψ(sτ ) ≈ E
[∑t+H

τ=t γ
τ−trτ |sτ

]
,149

which estimates the value of latent states over a finite horizon H .150

The optimization objectives are:151

• Action Optimization:152

max
ϕ

Eqθ,qϕ

[
t+H∑
τ=t

Vλ(sτ )

]
,

aiming to find the policy parameters ϕ that maximize the sum of discounted future values153

estimated by the value model.154

• Value Regression:155

min
ψ

Eqθ,qϕ

[
1

2

t+H∑
τ=t

∥vψ(sτ )− Vλ(sτ )∥2
]
,

minimizing the prediction error of the value model, aligning it with the computed value156

estimates to ensure consistency and stability in policy evaluation.157

Dreamer’s integration of deep learning with latent variable models for reinforcement learning show-158

cases several advantages over both traditional model-based and model-free methods. By optimizing159

behavior in a compact, learned representation of the world, Dreamer achieves remarkable data effi-160

ciency and scalability, effectively handling environments with complex, high-dimensional sensory161

inputs. This makes it a powerful tool for a wide range of applications, from robotics to virtual162

simulations, where sample efficiency and rapid adaptation to new scenarios are critical.163

3 Algorithm: Dreamer Online Decision Transformer for RL164

Algorithm 3 DODT: Parallel ODT Training with Dreamer Trajectories

1: Input: offline data Toffline, exploration RTG Tonline, buffer sizesN ,D, training roundsR, gradient
iterations I .

2: Initialization: Initialize replay buffers Treplay and D as per Algorithms 1 and 2.
3: Initialize policies πθ (ODT) and ϕ, ψ (Dreamer) with pre-training or random weights.
4: Load environment and set up necessary configurations.
5: for round = 1, . . . , R do
6: // Dreamer Interaction Phase (Algorithm 2)
7: o1 ← env.reset()
8: for time step t = 1 . . . T do
9: Use Dreamer to compute at ∼ qϕ(at|st) for the current state.

10: Execute at in the environment, observe new state ot+1, reward rt.
11: Update Dreamer’s dataset D ← D ∪ {(ot, at, rt)}.
12: Use Dreamer’s model to perform learning updates.
13: end for
14: // ODT Interaction Phase (Algorithm 1)
15: τ ← Generate trajectory using Dreamer’s πθ for exploration with RTG Tonline.
16: Update ODT’s replay buffer Treplay ← (Treplay \ {lowest reward trajectory}) ∪ {τ}.
17: Finetune πθ using ODT on Treplay for I gradient iterations.
18: // Evaluate Performance
19: Evaluate the combined performance of Dreamer and ODT.
20: Log performance metrics.
21: end for

Our new algorithm (DODTS, Algorithm 3) integrates the Online Decision Transformer (ODT,165

Algorithm 1) and Dreamer (Algorithm 2) into a cohesive framework to enhance learning in complex166

environments. This integration exploits the generative model capabilities of Dreamer and the167
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decision-making prowess of ODT, providing a robust solution to decision-making tasks in dynamic168

environments.169

The algorithm begins with initializing the respective replay buffers: Treplay for ODT and D for170

Dreamer. Model parameters πθ for ODT and ϕ, ψ for Dreamer are initialized either from pre-trained171

states or randomly. During each round of training, Dreamer engages with the environment to generate172

new trajectories, enhancing its generative and predictive capabilities. Concurrently, ODT generates173

trajectories using its policy πθ, optimized towards a specific reward-to-go. These trajectories are added174

to the ODT’s replay buffer Treplay, and the policy πθ is fine-tuned based on these new experiences.175

In this integrated framework, the models continuously exchange information, where the trajectories176

generated by Dreamer enhance the contextual dataset for ODT, enabling it to refine its decision-177

making process with richer environmental feedback. This interaction is further optimized through a178

series of gradient iterations and buffer updates, ensuring both models evolve towards maximizing their179

performance in predicting and making effective decisions. The strength of our approach lies in its180

ability to maintain a continuous loop of feedback and learning between the two models. This not only181

accelerates the learning process but also enhances the quality of the decision-making and predictive182

accuracy, leveraging the strengths of both models to address the complexities of the tasks at hand.183

Our contributions underscore the novelty and impact of this integrated approach, as outlined at the184

beginning of the document. The parallel training architecture, trajectory-informed decision-making,185

and cross-model feedback mechanism collectively push the boundaries of what is achievable in186

autonomous learning systems, setting new benchmarks for efficiency and effectiveness in complex187

environments.188

4 Experiment189

Dataset ODT DODT
Hopper - medium 97.94 ± 2.10 96.84 ± 2.19

Hopper - medium -replay 88.89 ± 6.33 90.31 ± 3.57
Walker2d - medium 76.79 ± 2.30 75.49 ± 1.82

Walker2d - medium -replay 76.86 ± 4.04 74.98 ± 1.45
Half-cheetah - medium 42.16 ± 1.48 60.93 ± 6.83

Half-cheetah - medium -replay 40.42 ± 1.61 57.82 ± 5.79
Ant - medium 90.79 ± 5.80 92.01 ± 4.91

Ant - medium -replay 91.57 ± 2.73 93.54 ± 6.31
Sum 605.02 641.89

We conducted the experiments within the MuJoCo simulation environment [20], and a detailed190

comparative analysis was performed between the Online Decision Transformer (ODT) and the191

Dreamer Online Decision Transformer (DODT). Both of these models were evaluated across a suite192

of tasks designed to probe their efficacy under varying conditions reflective of real-world complexity.193

We analyzed the performance of the Online Decision Transformer (ODT) and the Dreamer Online194

Decision Transformer (DODT) across various tasks. Results indicate that ODT excels in environments195

with less complexity, such as "Hopper - medium" and "Walker2d - medium," suggesting better196

suitability for stable, predictable contexts. In contrast, DODT showcases superior performance197

in more complex scenarios, including "Half-cheetah - medium" and "Ant - medium," particularly198

when historical replay is incorporated. This improvement highlights DODT’s effective integration199

of Dreamer’s generative modeling with ODT’s adaptive decision-making, enhancing its ability to200

handle environmental variability and uncertainty.201

Overall, DODT outperforms ODT with a total score of 641.89 compared to 605.02, demonstrating202

robust adaptability across varied tasks. This suggests that combining generative trajectory modeling203

with adaptive decision frameworks may significantly advance reinforcement learning applications204

requiring high generalization and responsiveness to dynamic conditions.205
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5 Conclusion and Future Work206

In this paper, we introduced the Dreamer Online Decision Transformer (DODT), a novel algorithm207

that integrates the Dreamer model’s trajectory generation into the Online Decision Transformer,208

enhancing the model’s capability to make informed, sequential decisions. Tested within the MuJoCo209

simulation environment, DODT not only surpasses the Online Decision Transformer (ODT) in terms210

of total reward achievement but also demonstrates improved sample efficiency and robustness across211

a variety of dynamic tasks. This integration allows for a deeper understanding of and responsiveness212

to changing environmental conditions, as DODT leverages Dreamer’s ability to simulate and evaluate213

future states to optimize decision-making strategies in real-time, significantly boosting the system’s214

adaptiveness and overall performance.215

Limitations: Despite its effectiveness, the DODT framework has certain limitations that need to be216

addressed in future work. The computational overhead associated with running two complex models217

in parallel can be substantial, potentially limiting its applicability in resource-constrained scenarios.218

Furthermore, while the integration allows for enhanced performance in complex environments, it219

might introduce additional complexity in tuning and convergence, requiring more sophisticated220

techniques to manage the interplay between the two models effectively.221

Future Directions: For future research, we aim to explore methods to reduce the computational222

demands of the DODT, potentially through model simplification or more efficient training algorithms.223

Additionally, we plan to eliminate the reliance on a pre-trained dataset from D4RL. Another promising224

direction is the exploration of the transfer learning capabilities of DODT, where the model could be225

pre-trained in a simulated environment and fine-tuned in real-world applications, thereby enhancing226

its practical utility. Moreover, investigating the scalability of DODT to multi-agent systems and its227

performance in non-MuJoCo environments would provide deeper insights into the versatility and228

robustness of the integrated model approach.229
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