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Abstract

Inductive biases are inherent in every machine001
learning system, shaping how models gener-002
alize from finite data. In the case of neural003
language models (LMs), debates persist as to004
whether these biases align with or diverge from005
human processing constraints. To address this006
issue, we propose a quantitative framework that007
allows for controlled investigations into the na-008
ture of these biases. Within our framework, we009
introduce m-local entropy—an information-010
theoretic measure derived from average lossy-011
context surprisal—that captures the local un-012
certainty of a language by quantifying how ef-013
fectively the m− 1 preceding symbols disam-014
biguate the next symbol. In experiments on015
both perturbed natural language corpora and016
languages defined by probabilistic finite-state017
automata (PFSA), we show that languages with018
higher m-local entropy are more difficult for019
Transformer and LSTM LMs to learn. These020
results suggest that neural LMs, much like hu-021
mans, are highly sensitive to the local statistical022
structure of a language.023

1 Introduction024

Every machine learning system has some form of025

inductive bias; given a finite sample of data with026

infinitely many plausible generalizations, a sys-027

tem inherently prefers certain generalizations over028

others (Mitchell, 1980; Rawski and Heinz, 2019).029

This concept is central to the growing discussion030

of whether the inductive biases of neural network031

language models align with the cognitive pressures032

that shape human language learning. In a 2023033

New York Times article, Chomsky et al. famously034

argued that neural language models possess induc-035

tive biases fundamentally different from human036

cognitive constraints, a claim that has motivated037

theoretical rebuttals (Piantadosi, 2024) as well as038

empirical research to test the extent of this diver-039

gence (Kallini et al., 2024; Ahuja et al., 2024). In040

particular, Kallini et al. (2024) demonstrated that041

Figure 1: KL divergence (Transformer LM) as a func-
tion of the 3-local entropy of the language generated
from a PFSA in Experiment 2. LMs perform better at
languages with lower local entropy.

perturbing natural language corpora to alter their 042

sequential structure—moving them along an in- 043

tuitive continuum of impossibility—makes these 044

languages harder for neural LMs to learn. While 045

their findings suggest that disrupting local structure 046

(e.g., through local shuffling transformations) im- 047

pacts learnability, they do not isolate the specific 048

linguistic properties responsible for this effect. To 049

rigorously assess whether a language model’s in- 050

ductive biases align with human constraints, we 051

must identify quantifiable properties of language 052

that affect human learning difficulty and systemati- 053

cally manipulate these properties in controlled ex- 054

periments with neural LMs. Information-theoretic 055

models of language processing, which view the 056

structure of languages as shaped by language users’ 057

joint optimization of informativity and complex- 058

ity, provide a promising framework for identifying 059

these properties. 060
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In this paper, we resort to the principles061

of information locality, which suggest that062

language is structured to minimize linear distance063

between linguistic elements with high mutual064

information (Gibson, 1998, 2001; Futrell, 2019;065

Futrell et al., 2020). Information locality is thought066

to arise from the memory limitations of human067

processors, which make it challenging to integrate068

long-range linguistic dependencies (Hahn et al.,069

2022). The influence of these cognitive constraints070

has been observed across multiple timescales, in071

both language comprehension and production, and072

across diverse languages of the world (Hahn et al.,073

2021; Futrell, 2023; Futrell and Hahn, 2024). If we074

could demonstrate that a neural language model’s075

learnability of a language is influenced by its local076

predictability, we would reveal an inductive bias077

that aligns with the functional pressures shaping078

human language processing.079

As a first step in this direction, we propose using080

m-local entropy, an information-theoretic measure081

designed to quantify a linear notion of local pre-082

dictability which can be derived from the principles083

of information locality (Futrell et al., 2020).1 We084

study how m-local entropy affects learnability in085

two sets of experiments: one where we perturb nat-086

ural language corpora, and another where we ran-087

domly generate PFSAs. We train LSTM and Trans-088

former language models on these languages and089

examine whether language models’ difficulty in090

learning a language is predicted by the language’s091

m-local entropy, to see if language models and092

humans share an inductive bias for information lo-093

cality. Our experiments demonstrate that m-local094

entropy negatively correlates with the ability of a095

language model to learn a language. Specifically,096

our experiment with an English natural language097

corpus—and its perturbed variants—reveals that098

both LSTM and Transformer architectures show099

systematic degradation in performance as m-local100

entropy increases, even when global entropy re-101

mains constant. Furthermore, in experiments using102

PFSAs, we manipulate the properties of languages103

more systematically and show that this trend is not104

an artifact of the corpora or particular perturbation105

functions used in our experiments.106

1More specifically, m-local entropy can be derived from
the lossy-context surprisal theory of language comprehension
(Futrell et al., 2020), a theory belonging to the expectation-
based family of theories of language processing (Hale, 2001;
Levy, 2008). See §2.2.2 for details.

2 Formal Background 107

2.1 Languages and Language Models 108

An alphabet Σ is a finite, non-empty set of sym- 109

bols. The Kleene closure Σ∗ is the set of all strings 110

with symbols from Σ. We use ε to denote the empty 111

string, and |y| to denote the length of y ∈ Σ∗. A 112

language L is a subset of Σ∗. 113

A language model p is a probability distribu- 114

tion over Σ∗. The prefix probability −→p (y) is the 115

probability that a string begins with y ∈ Σ∗: 116

−→p (y)
def
=

∑
y′∈Σ∗

p
(
yy′) (1) 117

Given prefix probabilities, the conditional probabil- 118

ity of the continuation y′ ∈ Σ∗ given a preceding 119

context y can be computed as 120

p
(
y′ | y

)
=
−→p (yy′)
−→p (y)

. (2) 121

With this, we can factorize a language model p as 122

p(y) = p(EOS | y)
|y|∏
t=1

p(yt | y<t) , (3) 123

where each p (yt | y<t) is a distribution over Σ def
= 124

Σ ∪ {EOS}, where EOS ̸∈ Σ is a distinguished 125

end-of-string symbol, and 126

p(EOS | y) def
=

p(y)
−→p (y)

. (4) 127

We define p’s infix probability←→p as 128

←→p (y)
def
=

∑
y′∈Σ∗

∑
y′′∈Σ∗

p
(
y′yy′′) . (5) 129

Note that, despite denoting probabilities of events, 130
−→p and ←→p are not probability distributions. In 131

general, the sums
−→
Z

def
=

∑
y∈Σ∗

−→p (y) and
←→
Z

def
= 132∑

y∈Σ∗
←→p (y) may diverge. A sufficient condition 133

for the former to be finite is that the expected length 134

µ
def
= Ey∼p|y| under p is finite, which follows from 135

the relationship
−→
Z = µ + 1.2 In the following, 136

we assume that
−→
Z < ∞, which means that we 137

will be able to normalize the prefix probabilities 138

to arrive at a probability distribution over string 139

prefixes. We do not put this restriction on
←→
Z since 140

we will normalize←→p over a finite subset of Σ∗. 141

2The proof is similar to Borenstein et al. (2024, Lem. D.1).
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2.2 Global Entropy and M-local Entropy142

The concept of entropy, as introduced by Shan-143

non (1948), provides a foundational framework for144

quantifying uncertainty in language. Depending on145

how one defines the underlying probability distribu-146

tion over linguistic units, entropy can capture differ-147

ent aspects of language complexity. In this paper,148

we derive two versions of entropy—global entropy149

(i.e., the Shannon entropy) and m-local entropy—150

each capturing different facets of language com-151

plexity.152

2.2.1 Global Entropy153

The global entropy of p is defined as154

H(p)
def
= −

∑
y∈Σ∗

p(y) log p(y) . (6)155

This definition reflects the uncertainty in the dis-156

tribution over all possible strings y ∈ Σ∗: Higher157

global entropy indicates that p distributes probabil-158

ity mass more uniformly across strings. We further159

define the (global) next-symbol entropy for finite-160

mean-length language models. It is a weighted161

average of the entropy of all local next-symbol162

distributions, averaging over all possible contexts163

y ∈ Σ∗, and weighted by the normalized prefix164

probability of y.3 For that, define the Σ-valued165

random variable Yy distributed as166

p (Yy = y) = p(y | y) . (7)167

We have H(Yy)
def
= −

∑
y∈Σ p(y | y) log p(y | y).168

Then, we define the next-symbol entropy as169

HΣ(p)
def
=

∑
y∈Σ∗

−→p (y)
−→
Z

H(Yy) (8a)170

=
1

µ+ 1

∑
y∈Σ∗

−→p (y)H(Yy). (8b)171

The following fact is a special case of Malagutti172

et al. (2024, Thm. 2.2).173

Lemma 2.1. Let p be a language model with µ <174

∞. Then, we have175

HΣ(p) =
H(p)

µ+ 1
. (9)176

Invariance of global and next-symbol entropy.177

Global entropy is insensitive to bijective transfor-178

mations of Σ∗. This has important implications179

3The weighting cannot be uniform, as Σ∗ is infinite.

for using entropy as a predictor of language learn- 180

ing difficulty. For example, global entropy does 181

not change under string permutations and thus 182

does not account for local ambiguity or variations 183

in predictability within different segments of a 184

string. The same holds for next-symbol entropy 185

under bijective length-preserving transformations 186

due to Lemma 2.1. We investigate this further 187

in §3, but first we treat it more formally. Let p 188

be a language model and p′ be a perturbed lan- 189

gauge model where f : Σ∗ → Σ∗ is a bijection and 190

p′(y) = p
(
f−1(y)

)
for every y ∈ Σ∗. Crucially, 191

p and p′ have the same global entropy: The global 192

entropy of p′ is 193

H(p′) = −
∑

y′∈Σ∗

p
(
f−1(y′)

)
log p

(
f−1(y′)

)
.

(10) 194

Since f is a bijection, we can reindex the sum by 195

letting y = f−1(y′); as y′ ranges over all of Σ∗, 196

so does y. Hence, 197

H(p′) = −
∑
y∈Σ∗

p(y) log p(y) = H(p). (11) 198

Furthermore, if the bijection also preserves string 199

length, it follows from Lemma 2.1 and Eq. (11) 200

that next-symbol entropy is preserved as well. 201

2.2.2 M-local Entropy 202

Global next-symbol entropy measures uncertainty 203

over next-symbol predictions conditioned on the 204

full available context, averaged across all possible 205

contexts. This can be seen as the limit of a local 206

quantitification of uncertainty, which captures the 207

unpredictability of next-symbol predictions given 208

a fixed amount of preceding context. We term this 209

fixed-context uncertainty measure local entropy. 210

Let C be a Σm−1-valued random variable dis- 211

tributed according to←→p normalized over Σm−1: 212

p (C = c)
def
=

←→p (c)∑
c′∈Σm−1

←→p (c′)
. (12) 213

p (C = c) can be interpreted as observing c as a 214

length-(m− 1) substring of a string from p. Let Yc 215

be the Σ-valued random variable distributed as 216

p (Yc = yt) = p(yt | yt−m+1:t−1 = c) , (13) 217

i.e., as the next symbol given that the previous m−1 218

symbols were c. With slight abuse of notation, 219

we write p(yt | c) to mean p(yt | yt−m+1:t−1 = c). 220
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The use of c for (m−1)-length contexts will disam-221

biguate this from conditioning on a general prefix222

y ∈ Σ∗. Given any c ∈ Σm−1, we can compute223

H(Yc)
def
= −

∑
y∈Σ

p (y | c) log p (y | c) . (14)224

This captures the unpredictability of a symbol y225

after observing a given local context c. We can226

then define the m-local entropy of p as an expec-227

tation over possible contexts c ∈ Σm−1, with each228

context weighted by p (C = c):229

Hm (p)
def
= E

c∼p(C=c)

[
H(Yc)

]
(15)230

=
∑

c∈Σm−1

p (C = c) H(Yc).231

This yields a measure of local complexity that can232

differ from global entropy. Even when two lan-233

guages have identical global entropy, their m-local234

entropies can differ, reflecting differences in how235

reliably the recent context predicts the next symbol.236

Importantly, unlike global entropy, local entropy237

is not necessarily preserved under bijective trans-238

formations of Σ∗, which enables us to assess the239

impact of such transformations on learnability. As240

we show later, transformations that alter local struc-241

ture can significantly influence how well neural242

LMs learn a language.243

M-local entropy and lossy-context surprisal.244

As a generalization of the surprisal model of lan-245

guage processing difficulty (Hale, 2001; Levy,246

2008), Futrell et al. (2020) propose lossy-context247

surprisal. In this model, the predicted difficulty for248

processing an upcoming word yt is a function of the249

word’s expected log probability given a lossy mem-250

ory representation r of the preceding context c<t:251

Difficulty (yt; c<t) ∝ E
r∼M(c<t)

[
− log p (yt | r)

]
,

(16)252

where M is a memory encoding function which253

gives us the conditional distribution of a memory254

representation r given the previous context c<t.255

If we assume that M always retains only the256

m − 1 symbols immediately preceding yt, then257

r = M(c<t) = yt−m+1 · · · yt−1, and surprisal258

becomes − log p (yt | yt−m+1 · · · yt−1). The ex-259

pectation of this surprisal over all possible contexts260

and next symbols is a special case of the average261

(lossy-context) surprisal (Futrell, 2019; Hahn et al.,262

2021) of a language, which corresponds to our263

definition of m-local entropy in Eq. (15). To our 264

knowledge, no prior work has linked lossy-context 265

surprisal directly to language model learnability—a 266

connection that our work aims to explore. 267

2.3 Probabilistic Finite-state Automata 268

Definition 2.1. A probabilistic finite-state automa- 269

ton (PFSA) is a 5-tuple (Σ, Q, δ, λ, ρ) where 270

• Σ is an alphabet, 271

• Q is a finite set of states, 272

• δ ⊆ Q × Σ × [0, 1] × Q is a finite set of 273

weighted transitions rendered as q
y/w−−→ q′, 274

• λ, ρ : Q → [0, 1] are the initial and final 275

weighting functions, 276

• λ satisfies
∑

q∈Q λ (q) = 1, and 277

• for all q ∈ Q,
∑

q
y/w−−→q′∈δ

w + ρ (q) = 1. 278

A path π in a PFSA A is a sequence of con- 279

secutive transitions q0
y1/w1−−−−→· · · yN/wN−−−−→ qN . We 280

define its scan as s (π) def
= y1 · · · yN . Π(A,y) de- 281

notes the set of all paths in A that scan y ∈ Σ∗. 282

The inner path weight of π is w(π) =
∏N

n=1wn 283

and its path weight is w(π) = λ(q0)w(π)ρ(qN ). 284

A PFSA A induces a language model pA as 285

pA(y)
def
=

∑
π∈Π(A,y)

w(π). (17) 286

Studying PFSAs not only allows us to perform 287

controlled experiments but also enables us to com- 288

pute many quantities of interest exactly. App. A 289

contains a collection of closed-form solutions for 290

computing various quantities of interest, including 291

the string (prefix and infix) probabilities and the 292

m-local entropy of the induced language model. 293

3 Experiment 1: LM Performance along 294

the M-local Entropy Continuum 295

In the first experiment, we investigate the relation- 296

ship between local entropy and LM performance 297

using a natural language corpus. We hypothesize 298

that local entropy is a key factor determining how 299

easily an LM learns a language. To test this hy- 300

pothesis, we apply a bijective perturbation function 301

to a natural language corpus that alters its local 302

structure. This results in a counterfactual perturbed 303

corpus (cf. Kallini et al., 2024), which has different 304

local entropy from the original one but the same 305

global entropy. We then train LMs on the naturally 306

occurring corpus and the perturbed one and study 307

how local entropy affects the LMs’ performance. 308
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3.1 Constructing Languages with Different309

Local Complexity310

Here, we detail several specific transformations311

implemented in our experiments, refining the per-312

turbation functions of Kallini et al. (2024).313

DETERMINISTICSHUFFLE. A fixed random314

permutation σ of the string positions {1, . . . , T}315

is applied to any string of length T . This permu-316

tation is deterministic throughout the experiment,317

ensuring consistent shuffling whenever it is used.318

REVERSE. This function reverses the entire se-319

quence of symbols. Formally, given a string y =320

y1 y2 . . . yT , the REVERSE mapping produces321

yT yT−1 . . . y1. It is trivially invertible (by apply-322

ing the same operation again), making it a bijection.323

EVENODDSHUFFLE/ODDEVENSHUFFLE.324

Let y = y1y2 . . . yT be a string of length T .325

Define two subsequences O(y) = y1y3y5 . . . and326

E(y) = y2y4y6 . . . that collect all symbols in y at327

even positions and odd positions, respectively. We328

then define EVENODDSHUFFLE(y) = E(y)O(y)329

and ODDEVENSHUFFLE(y) = O(y)E(y).330

K-LOCALDETERMINISTICSHUFFLE. Let y =331

y1 y2 . . . yT be a string in Σ∗, which we parti-332

tion into consecutive windows of size k. For333

the i-th window, y(i−1)k+1, . . . , yik, we apply334

a fixed permutation πi determined by i and335

a global random seed.4 Formally, the K-336

LOCALDETERMINISTICSHUFFLE of y produces337 (
π1(y1, . . . , yk), π2(yk+1, . . . , y2k), . . .

)
.338

3.2 Estimating the M-local Entropy of a339

Language340

Unfortunately, the true m-local entropy is not341

directly accessible for these corpora since we don’t342

know the underlying probability distribution of343

natural language. In this experiment, we estimate344

it using an n-gram language model implemented345

with KenLM (Heafield, 2011). Given a corpus D,346

we train an n-gram model on D to get the estimated347

conditional probability distributionp̂(y | c) for348

c ∈ Σm−1. Plugging this estimated probability349

distribution into Eq. (14), we can compute350

Ĥ(Yc) = −
1

N(c)

∑
y∈D

log p̂ (y | c) , (18)351

4If the string length T is not a multiple of k, then the final
window, which contains fewer than k symbols, is permuted by
applying the fixed permutation to all the available symbols in
that window.

where N(c) is the number of times c appears in D. 352

The normalized infix probability is estimated as 353

p̂(C = c) =
N(c)

Ntotal
, (19) 354

where Ntotal =
∑

c′∈Σm−1 N(c′). 355

Given these and Eq. (15), we can compute esti- 356

mated m-local entropy as 357

Ĥm(p) =
∑

c∈Σm−1

p̂(C = c) Ĥ(Yc) (20a) 358

= − 1

Ntotal

∑
cy∈D

log p̂(y | c) (20b) 359

This estimator is a practical proxy for the quantity 360

in Eq. (15). The m-local entropy of each corpus is 361

estimated by an n-gram model with order m − 1 362

trained on the concatenation of the training, valida- 363

tion, and test set of the corpus. 364

3.3 Experimental Setup 365

3.3.1 Neural Language Models 366

We investigate how varying local entropy in a lan- 367

guage impacts the performance of two widely used 368

neural LM architectures: the LSTM (Gers and 369

Schmidhuber, 2001) and a causally-masked Trans- 370

former encoder (Vaswani et al., 2017). We use 371

a single-layer LSTM with 512-dimensional hid- 372

den units and a 4-layer causally-masked Trans- 373

former with 768-dimensional embeddings, 3072- 374

dimensional feedforward layers, and 12 attention 375

heads. Both are implemented in PyTorch (Paszke 376

et al., 2019). Both architectures are trained on the 377

training set via the standard language modeling 378

objective across 5 random training seeds. See Ap- 379

pendices C and D for more details. 380

3.3.2 Dataset 381

We conduct our experiments on a subset of the 382

Brown Laboratory for Linguistic Information Pro- 383

cessing 1987–89 Corpus Release 1 (BLLIP; Char- 384

niak et al., 2000).5 Specifically, we adopt the 385

same training, development, and test splits as 386

BLLIP-SM in Hu et al. (2020), which comprise 387

roughly 200K sentences, totaling around 5M to- 388

kens. Starting from this original corpus, we apply 389

the perturbation functions in §3.1 to produce per- 390

turbed corpora. For both DETERMINISTICSHUF- 391

FLE and K-LOCALDETERMINISTICSHUFFLE, we 392

5We also conduct the same set of experiments using the
BabyLM corpus (Choshen et al., 2024); results in App. E.2.
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2-local entropy 3-local entropy 4-local entropy 5-local entropy

BASE 6.67 4.27 2.92 2.45

REVERSE 6.98 4.39 2.98 2.51
EVENODDSHUFFLE 7.91 5.10 3.76 3.43
ODDEVENSHUFFLE 7.87 5.07 3.74 3.41

LOCALSHUFFLE (K=3) 8.12 ± 0.08 5.05 ± 0.06 3.68 ± 0.07 3.39 ± 0.07
LOCALSHUFFLE (K=4) 8.25 ± 0.07 5.17 ± 0.04 3.80 ± 0.04 3.56 ± 0.05
LOCALSHUFFLE (K=5) 8.33 ± 0.07 5.25 ± 0.04 3.88 ± 0.04 3.64 ± 0.05
LOCALSHUFFLE (K=6) 8.43 ± 0.07 5.31 ± 0.05 3.97 ± 0.06 3.72 ± 0.06
LOCALSHUFFLE (K=7) 8.47 ± 0.07 5.36 ± 0.05 4.03 ± 0.06 3.78 ± 0.07

DETERMINISTICSHUFFLE 8.77 5.73 4.60 4.41

Table 1: M-local entropy values for the BASE (original) corpus and the different perturbed corpora. LOCAL
SHUFFLE refers to the K-LOCALDETERMINISTICSHUFFLE. Values are shown as mean ± standard deviation
(averaged over different random seeds).

use 20 random seeds. In the case of K-393

LOCALDETERMINISTICSHUFFLE, we vary the pa-394

rameters k over the set {3, 4, 5, 6, 7}, yielding 20395

perturbed corpora for each k. This produces a total396

of 124 distinct “languages,” including other per-397

turbed corpora and the BASE (original) corpus.398

3.3.3 Evaluating Learning Difficulty399

In this experiment, we rely on next-symbol cross-400

entropy as a measure of how well a trained lan-401

guage model q approximates the target distribution.402

If p is the ground-truth language model, and q is403

any learned neural LM, we can estimate the next-404

symbol cross-entropy as:405

ĤΣ(p, q) = (21)406

− 1

S

∑
y∈D

[
log q

(
EOS

∣∣y)+ |y|∑
t=1

log q
(
yt
∣∣y<t

)]
,407

where D = {y(n)}Nn=1 is a set of i.i.d. draws from408

p and S =
∑

y∈D |y|+ 1. In this experiment, we409

evaluate each LM using the estimated next-symbol410

cross-entropy on the test set. When comparing411

the “learnability” of two languages, it’s important412

to take into account their inherent entropy since413

learning a language means learning its distribu-414

tion, i.e., getting close to its lower bound entropy.415

Comparing absolute perplexity/cross-entropy can416

be misleading and could lead to different results.417

In fact, it is wrong to discuss the learnability of two418

languages with different inherent entropy using419

cross-entropy (e.g., NONDETERMINISTICSHUF-420

FLE in Kallini et al., 2024). In this experiment, we421

can safely compare cross-entropy since all the cor-422

pora are assured to have the same inherent (global) 423

entropy (see §3.1). 424

3.4 Results 425

How do different perturbations affect m-local 426

entropy? Table 1 reports the m-local entropy 427

values (m ∈ {2, 3, 4, 5}) for the BASE corpus 428

and the various perturbed corpora. REVERSE 429

barely changes the m-local entropy, whereas 430

EVENODDSHUFFLE and ODDEVENSHUF- 431

FLE increase it somewhat more. In contrast, 432

K-LOCALDETERMINISTICSHUFFLE yields 433

progressively higher entropy as the window size 434

k grows, indicating a greater disruption of local 435

ordering. Finally, DETERMINISTICSHUFFLE 436

produces the highest m-local entropies among all 437

transformations. 438

These results confirm that the bijective trans- 439

formations we defined in §3.1 effectively generate 440

new languages with different m-local entropy 441

than the original one, while preserving the global 442

entropy by design. This yields a continuum of 443

languages along a specific measurable axis of 444

complexity rather than a qualitative notion of 445

possibility as in Kallini et al. (2024). 446

How does m-local entropy affect LM perfor- 447

mance? Figure 2 shows the relationship between 448

the m-local entropy (estimated by m-gram models; 449

§3.2) and the next-symbol cross-entropy of each 450

neural LM on the test set. We observe a strong 451

positive correlation between m-local entropy and 452

next-symbol cross-entropy for both neural architec- 453

tures. For example, with m = 4, the coefficient of 454

determination R2 reaches 0.922 for the LSTM LM 455
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Figure 2: Scatter plots of next-symbol cross-entropy (y-axis) versus m-local entropy (x-axis) for m ∈ {2, 3, 4, 5},
for both LSTM (top row) and Transformer LM (bottom row). Each marker type/color corresponds to a different
perturbation (e.g., Reverse, DeterministicShuffle, K-LOCALDETERMINISTICSHUFFLE with various window
sizes, etc.). The red star indicates the unperturbed Base condition (original corpus). The dashed line in each panel is
a linear fit, with R2 indicating the coefficient of determination.

and 0.915 for the Transformer LM, indicating that456

higher local ambiguity (as measured by m-local457

entropy) generally leads to decreased performance458

(i.e., higher next-symbol cross-entropy) under both459

models. Furthermore, since our transformations460

are designed to preserve global entropy and global461

next-symbol entropy, these results highlight the462

crucial role of local entropy in the learnability of a463

language by neural LMs. This suggests that neural464

LMs inherently possess an inductive bias toward465

languages with lower local entropy.466

4 Experiment 2: Controlled Learnability467

Tests with PFSAs468

Experiment 1 only focused on a specific English469

corpus and a specific set of perturbation functions.470

To confirm that the results are not just an artifact of471

this experimental design, but a fundamental prop-472

erty of neural LMs, we conduct a controlled experi-473

ment using PFSAs. This also enables us to compute474

quantities of interest exactly, especially the m-local475

entropy of the induced language model.476

4.1 Experimental Setup477

We use the same LMs and training configurations478

as in §3, but we generate datasets using PFSAs479

(§4.1.1) and evaluate LMs while controlling for480

global entropy (§4.1.2).6 481

4.1.1 Generating Datasets using PFSAs 482

We construct random PFSAs with alphabet sizes 483

|Σ| ∈ {32, 48, 64} and numbers of states |Q| ∈ 484

{16, 24, 32}. For each of the nine configurations, 485

we randomly generate 25 automata. We control the 486

randomness with five random seeds determining 487

the PFSA topology (the underlying multi-graph) 488

and five random seeds determining the transition 489

weights. See Algorithm 1 in App. B for details 490

of the generation. We sample 20K strings for the 491

training set, 5K for the validation set, and 5K for 492

the test set from pA for each PFSA A. 493

4.1.2 Evaluating Learning Difficulty 494

Using PFSAs allows us to compute a range of 495

entropy-related values, including the inherent next- 496

symbol entropy (§2.3), which enables us to eval- 497

uate LMs based on KL divergence DKL. Specif- 498

ically, the estimated D̂KL is given by subtracting 499

the next-symbol entropy of the PFSA (Lemma 2.1) 500

from the estimated next-symbol cross-entropy of 501

the LM (Eq. (21)): D̂KL = ĤΣ(p, q)− ĤΣ(p). In 502

this second experiment, we evaluate each LM using 503

D̂KL on the test set. 504

6Recall that in Experiment 1 it was unnecessary to con-
trol for global entropy since it is preserved by design by the
bijective transformations.

7



Figure 3: Scatter plots of symbol-level KL divergence (y-axis) versus m-local entropy (x-axis) for m ∈ {2, 3, 4, 5},
for both LSTM (top row) and causally-masked Transformer encoder (Transformer; bottom row) models. Each
marker type/color corresponds to a different combination of number of states (|Q|) and symbols (|Σ|). The dashed
line is a linear fit for each cluster.

4.2 Results: How Does M-local Entropy505

Affect LM Performance?506

Figure 3 shows the relationship between the507

m-local entropy of PFSAs (calculated analytically;508

App. A) and the KL divergence of each neural LM509

on the test set; see Table 2 for Pearson correlation510

coefficients. The experimental results reveal511

a clear positive correlation between m-local512

entropy and D̂KL across both architectures and513

all values of m = 2, 3, 4, 5, indicating that neural514

language models find it more challenging to model515

distributions with higher local uncertainty. The516

Transformer LM consistently shows higher D̂KL517

compared to the LSTM within each topological518

cluster, suggesting that LSTMs are more effective519

at modeling these particular probability distribu-520

tions (Weiss et al., 2018; Borenstein et al., 2024).521

Additionally, when |Σ| is constant, D̂KL is higher522

for PFSAs with larger |Q|, which is consistent523

with the results of Borenstein et al. (2024).524

5 Discussion and Conclusion525

By proposing local m-local entropy as a predictor526

of learning difficulty grounded in lossy-context527

surprisal theory and information locality principles,528

we provide a formal information-theoretic perspec-529

tive that connects the inductive biases of LMs and530

the statistical properties of language thought to be531

shaped by functional pressures in humans (Gibson,532

2001; Futrell et al., 2020). Through two sets of 533

experiments—one on perturbations of a natural 534

language corpus and another using PFSAs for 535

the controlled generation of test languages—we 536

consistently find that both LSTM and Transformer 537

architectures model languages with lower m-local 538

entropy more effectively. The shared sensitivity to 539

information locality between artificial and human 540

learners suggests a common inductive bias shaping 541

both systems, possibly because both systems 542

process language incrementally. 543

Our findings open several promising directions 544

for future research. One avenue is to explore induc- 545

tive biases beyond information locality, such as sen- 546

sitivity to hierarchical structure or structure depen- 547

dence (Chomsky, 1957; Everaert et al., 2015), in 548

order to better understand the full range of factors 549

influencing language learnability in both humans 550

and machines. Additionally, incorporating local en- 551

tropy into model evaluation or as a regularization 552

signal during training could lead to more robust and 553

cognitively plausible language models (Timkey and 554

Linzen, 2023; De Varda and Marelli, 2024). 555

In summary, our study presents new evidence 556

of the strong sensitivity of neural language models 557

to a language’s local statistical structure, advanc- 558

ing our understanding of their inductive biases and 559

establishing a foundation for future research on 560

assessing and improving the alignment between 561

artificial and human language processors. 562
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Limitations563

While our study reveals a strong correlation be-564

tween m-local entropy and LM performance, it is565

important to note that our analysis remains corre-566

lational. We have not yet pinpointed the precise567

mechanisms by which variations in local uncer-568

tainty impact the learning dynamics of neural lan-569

guage models.570

Additionally, our controlled experiments relied571

on PFSAs (PFSA) to generate languages with var-572

ied m-local entropy. Although PFSAs provide a573

tractable framework for such investigations, they574

capture only a limited set of the possible languages.575

It is plausible that employing more expressive for-576

malisms—such as pushdown automata or even577

higher-level models—might reveal different rela-578

tionships between local entropy and model perfor-579

mance. In fact, there are not a few empirical results580

that some types of neural language models don’t581

necessarily seem to have similar inductive biases as582

humans (McCoy et al., 2020; Yedetore et al., 2023,583

inter alia).584

Furthermore, our focus on information locality,585

as measured by m-local entropy, does not preclude586

the influence of other inductive biases that may also587

play significant roles in learning. Future work will588

need to disentangle these factors to fully understand589

their individual and combined effects on neural590

language models.591

Ethical considerations592

We employed AI-based tools (ChatGPT and593

GitHub Copilot) for writing and coding assistance.594

These tools were used in compliance with the ACL595

Policy on the Use of AI Writing Assistance.596
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A Probabilistic Finite-state Automata768

Before listing a number of useful results for com-769

puting quantities of interest in PFSAs, we list a few770

relevant definitions.771

Definition A.1. LetA = (Σ, Q, δ, λ, ρ) be a PFSA.772

We define the transition matrix M ∈ R|Q|×|Q|773

of A as the matrix containing the probabilities of774

transitioning from state qi ∈ Q to state qj ∈ Q in775

A with any y ∈ Σ:776

Mi,j
def
=

∑
y∈Σ

∑
qi

y/w−−→qj ∈ δ

w, (22)777

where we fix some arbitrary enumeration of states778

(q1, . . . , q|Q|). We also define the symbol-specific779

transition matrix M (y) where M
(y)
i,j is the prob-780

ability of transitioning from state qi ∈ Q to state781

qj ∈ Q in A with a y-labeled transition:782

M (y)
i,j

def
=

∑
qi

y/w−−→qj ∈ δ

w. (23)783

We naturally extend this definition to strings and784

define for y = y1 · · · yT :785

M (y) def
= M (y1) · · ·M (yT ). (24)786

Remark 1. It is a standard exercise to show787

that M (y)
i,j equals the sum of the weights of y-788

scanning strings from qi to qj .789

Definition A.2. LetA = (Σ, Q, δ, λ, ρ) be a PFSA.790

The emission matrix E ∈ R|Q|×|Σ| is defined by791

Ei,k
def
=

∑
qi

yk/w−−−→q′∈δ

w. (25)792

For a PFSA A and a path π =793

q0
y1/w1−−−−→· · · yN/wN−−−−→ qN ∈ Π(A), we write794

ι(π)
def
= q0 for the initial state of the path and795

φ(π)
def
= qN for its final state. We define the path796

prefix random variable
−→
Π distributed as797

p
(−→
Π = π

)
∝ λ(ι(π))w(π). (26)798

This is analogous to prefix string probabilities and799

the distribution is normalizable exactly when prefix800

probabilities are. Similarly, we define
←→
Π , which is801

distributed as802

p
(←→
Π = π

)
∝

∑
π′∈Π(A)
φ(π′)=ι(π)

λ
(
ι
(
π′))w(π′)w(π),

(27)803

which is analogous to string infix probabilities. 804

PFSAs are particularly attractive to study since 805

they allow us to exactly compute many interesting 806

quantities efficiently. In the following section, we 807

describe how one can compute the m-local entropy 808

of the language model defined by a PFSA. 809
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A.1 Useful Properties of Probabilistic Finite-State Automata810

The following lemmata hold for a general PFSA A = (Σ, Q, δ, λ, ρ) and the language model pA induced811

by it. None of the results are novel, but we include full proofs for completeness.812

Lemma A.1 (Computing the probability of a string with a PFSA). The probability of y ∈ Σ∗ is:813

pA(y) = λ⊤M (y)ρ. (28)814

Proof. We know from Remark 1 that M (y)
i,j corresponds to the sum of the path weights from qi to qj .815

Multiplying each entry with the source state’s initial weight and the target state’s final weight, we arrive at816

the result.817

Lemma A.2 (Computing the prefix probability of a string). The prefix probability of y ∈ Σ∗ is:818

−→p A(y) = λ⊤M (y)M∗ρ. (29)819

Proof.

−→p A(y) =
∑

y′∈Σ∗

pA

(
yy′) (30a)820

=
∑

y′∈Σ∗

λ⊤M (yy′)ρ (Lemma A.1, 30b)821

=
∑

y′∈Σ∗

λ⊤M (y)M (y′)ρ (30c)822

= λ⊤M (y)

 ∑
y′∈Σ∗

M (y′)

ρ (30d)823

= λ⊤M (y)M∗ρ (30e)824

825

Lemma A.3 (Computing the next-symbol distribution). Let y ∈ Σ∗. The distribution over the next826

symbols after observing y is827

pA

(
yk | s

(−→
Π
)
= y

)
=

(
λ⊤M (y)E

)
k−→p A(y)
. (31)828
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Proof.

pA

(
yk | s

(−→
Π
)
= y

)
=

p
(
yk, s

(−→
Π
)
= y

)
p
(

s
(−→
Π
)
= y

) (32a) 829

=
1

−→p A(y)

∑
π∈Π(A,y)

λ(ι(π)) w(π) p (yk | φ(π))

(Summing over all y-yielding paths, 32b)

830

=
1

−→p A(y)

|Q|∑
j=1

p (yk | qj)
∑

π∈Π(A,y)
φ(π)=qj

λ(ι(π)) w(π) (32c) 831

=
1

−→p A(y)

|Q|∑
j=1

p (yk | qj)
|Q|∑
i=1

λ(qi)
∑

π∈Π(A,y)
ι(π)=qi,φ(π)=qj

w(π) (32d) 832

=
1

−→p A(y)

|Q|∑
j=1

p (yk | qj)
|Q|∑
i=1

λ(qi)M
(y)

i,j (32e) 833

=
1

−→p A(y)

|Q|∑
j=1

p (yk | qj)
(
λ⊤M (y)

)
j

(32f) 834

=
1

−→p A(y)

|Q|∑
j=1

(
λ⊤M (y)

)
j
w (qi

yk/w−−−→ q′ ∈ δ, 32g) 835

=
1

−→p A(y)

(
λ⊤M (y)E

)
k

(Eq. (25), 32h) 836

837

Lemma A.4 (Computing the infix probability of a string). The infix probability of y ∈ Σ∗ is: 838

←→p A(y) = λ⊤M∗M (y)M∗ρ. (33) 839

Proof.

←→p A(y) =
∑

y′∈Σ∗

−→p A

(
y′y

)
(34a) 840

=
∑

y′∈Σ∗

λ⊤M (y′y)M∗ρ (Lemma A.2, 34b) 841

= λ⊤

 ∑
y′∈Σ∗

M (y′)

M (y)M∗ρ (34c) 842

= λ⊤M∗M (y)M∗ρ (34d) 843

844

Lemma A.5 (Computing the infix next-symbol distribution). Let c ∈ Σm−1. The distribution over the 845

next symbols after observing c as the last m− 1 symbols is 846

pA

(
yk | s

(←→
Π
)
= c

)
=

(
λ⊤M∗M (c)E

)
k←→p A(c)
. (35) 847
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Proof.

pA

(
yk | s

(←→
Π
)
= c

)
=

p
(
yk, s

(←→
Π
)
= c

)
p
(

s
(←→
Π
)
= c

) (36a)848

=
1

←→p A(c)

∑
y′∈Σ∗

∑
π∈Π(A,y′c)

λ(ι(π)) w(π) p (yk | φ(π))

(Summing over all c-ending paths, 36b)

849

=
1

←→p A(c)

|Q|∑
j=1

p (yk | qj)
∑

y′∈Σ∗

∑
π∈Π(A,y′c)
φ(π)=qj

λ(ι(π)) w(π) (36c)850

=
1

←→p A(c)

|Q|∑
j=1

p (yk | qj)
|Q|∑
i=1

∑
y′∈Σ∗

λ(qi)
∑

π∈Π(A,y′c)
ι(π)=qi,φ(π)=qj

w(π) (36d)851

=
1

←→p A(c)

|Q|∑
j=1

p (yk | qj)
|Q|∑
i=1

∑
y′∈Σ∗

λ(qi)
(
M (y′)M (c)

)
i,j

(36e)852

=
1

←→p A(c)

|Q|∑
j=1

p (yk | qj)
|Q|∑
i=1

λ(qi)
∑

y′∈Σ∗

(
M (y′)M (c)

)
i,j

(36f)853

=
1

←→p A(c)

|Q|∑
j=1

p (yk | qj)
|Q|∑
i=1

λ(qi)
(
M∗M (c)

)
i,j

(36g)854

=
1

←→p A(c)

|Q|∑
j=1

p (yk | qj)
(
λ⊤M∗M (y)

)
j

(36h)855

=
1

←→p A(c)

|Q|∑
j=1

(
λ⊤M∗M (y)

)
j
w (qi

yk/w−−−→ q′ ∈ δ, 36i)856

=
1

←→p A(c)

(
λ⊤M∗M (y)E

)
k

(Eq. (25), 36j)857

858

Lemma A.6 (Computing the m-local entropy of a DPFSA). The m-local entropy of pA can be computed859

in time O
(
m|Q|3|Σ|m−1

)
.860

Proof. M-local entropy of pA can be computed as861

Hm (pA) = E
c∼p(C=c)

[
H(pA(Yc))

]
(37a)862

=
1
←→
Z

∑
c∈Σm−1

←→p A(c)H(pA(Yc)) (37b)863

The terms←→p A(c) and pA(Yc) can be computed in time O
(
m|Q|3

)
as per Lemmata A.4 and A.5 for each864

c ∈ Σm−1. Computing this for each c individually, we arrive at the claimed complexity.865
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B Generating Random PFSAs 866

Algorithm 1 and the subprocedure in Algorithm 2 describe our PFSA generation procedure. 867

Algorithm 1 Generate a Random DPFSA.
Input: |Q| (number of states), |Σ| (number of symbols), µ (target mean string length), RT (topology
random generator), and RW (weight random generator).
Output: A PFSA A with randomly assigned transitions and normalized weights with |Q| states and |Σ|
symbols.
Note: CHOICE(R,S, 1) denotes selecting one element uniformly at random from the set S using the
random generator R.
unused is initialized as Q, and out-arcs is a mapping that assigns to each state a subset of Σ (the allowed
outgoing symbols).
For exponential sampling, we write w ∼ Exp(0.1) to denote that w is drawn from an exponential
distribution with rate 0.1, i.e., with density f(w) = 0.1 e−0.1w for w ≥ 0.

1: function RANDOMDPFSA(|Q|, |Σ|, µ, RT , RW )
2: qι ← CHOICE(RT , Q, 1)
3: Initialize A ← (Σ, Q, δ, λ, ρ)
4: Initialize λ← 0|Q| and set λ(qι)← 1

5: Initialize M (y) to a |Q| × |Q| matrix of zeros for y ∈ Σ
6: unused← Q
7: state-outgoing-symbols← GETOUTGOINGSYMBOLS(Q, Σ, RT )
8: for q ∈ Q do
9: for y ∈ Σ do

10: if unused ̸= ∅ then
11: q′ ← CHOICE(RT , unused, 1)
12: Remove q′ from unused
13: else
14: q′ ← CHOICE(RT , Q, 1)

15: Let w ∼ Exp(0.1)
16: M (y)

q,q′ ← w · 1 {y ∈ state-outgoing-symbols[q]}+ 0.001

17: for q ∈ Q do ▷ Set final weights and normalize outgoing weights for each state.
18: t←

∑|Σ|−1
y=0 sum(M (y)

q,:)
19: ρ(q)← t/µ
20: s← t+ ρ(q)
21: for y ∈ {0, . . . , |Σ| − 1} do
22: M (y)

q,: ←M (y)
q,:/s

23: ρ(q)← ρ(q)/s

24: return A
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Algorithm 2 Generate Outgoing Symbols for Each State.
Input: |Q| (number of states), |Σ| (number of symbols), R (random generator), and smin (min. unique
symbols per state; default: 2).
Output: A list S of |Q| sets, each containing outgoing symbols.
Note: CHOICE(R,X, k) selects k distinct elements uniformly at random from X using R, and
INTEGERS(R, a, b) returns a random integer in [a, b).

1: function GETOUTGOINGSYMBOLS(Q,Σ, R, smin)
2: Initialize state-outgoing-symbols← an array of |Q| empty sets
3: for q ∈ Q do
4: s← CHOICE(R,N ,min(smin, |Σ|)) ▷ Assign each state at least smin symbols.
5: state-outgoing-symbols[q]← state-outgoing-symbols[q] ∪ s

6: for y ∈ Σ do ▷ Ensure each symbol appears in at least one set.
7: q ← CHOICE(R,Q, 1)
8: Add y to state-outgoing-symbols[q]

9: M←
|Q|−1∑
q=0

INTEGERS(R, 0,max(1, ⌊|Σ|/2⌋ − smin))

10: for j ← 1 to M do ▷ Add random transitions.
11: y ← CHOICE(R,Σ, 1)
12: q ← CHOICE(R,Q, 1)
13: Add y to state-outgoing-symbols[q]
14: return state-outgoing-symbols
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C Details of Neural Language Models868

C.1 Transformer869

We use a 4-layer causally-masked transformer with870

768-dimensional embeddings, 3,072-dimensional871

feedforward layers, and 12 attention heads, im-872

plemented in PyTorch. Following Vaswani et al.873

(2017), we map input symbols to vectors of size874

768 with a scaled embedding layer and add sinu-875

soidal positional encodings. We use pre-norm in-876

stead of post-norm and apply layer norm to the877

output of the last layer. We use the same dropout878

rate throughout the transformer. We apply it in the879

same places as Vaswani et al. (2017), and, as imple-880

mented by PyTorch, we also apply it to the hidden881

units of feedforward sublayers and to the attention882

probabilities of scaled dot-product attention opera-883

tions. We always use BOS as the first input symbol884

to the transformer.885

C.2 LSTM886

We use a single-layer LSTM (Gers and Schmid-887

huber, 2001) with 512-dimensional hidden units,888

implemented in PyTorch with some modifications889

as in Butoi et al. (2025). Figure 4 shows our def-890

inition of the LSTM architecture. Here, E is an891

embedding matrix to map each symbol wt of the892

input string to an embedding xt = Ewt . The size893

of the embeddings is always d, the size of the hid-894

den vectors, and we denote the number of layers895

in the model as L. Also, ⊙ denotes elementwise896

multiplication, and DROPOUT(·) indicates the ap-897

plication of dropout. Here, w(ℓ)
0 ∈ Rd is a learned898

parameter, making the initial hidden state h
(ℓ)
0 of899

each layer learned. A modification is made from900

the original PyTorch implementation: each pair of901

bii and bhi, bif and bhf , big and bhg, and bio and bho902

is replaced with a single bias parameter per layer.903

D Hyperparameters for Neural Language904

Model Training905

Wherever dropout is applicable, we use a dropout906

rate of 0.1. For layer norm, we initialize weights to907

1 and biases to 0. We initialize all other parameters908

by sampling uniformly from [−0.1, 0.1].909

For each epoch, we randomly shuffle the train-910

ing set and group strings of similar lengths into911

the same minibatch, enforcing an upper limit of912

2,048 symbols per batch, including padding, BOS,913

and EOS symbols. We train each model by mini-914

mizing cross-entropy on validation set using Adam915

(Kingma and Ba, 2015). We clip gradients with a 916

threshold of 5 using L2 norm rescaling. We take a 917

checkpoint every 10k examples, at which point we 918

evaluate the model on the validation set and update 919

the learning rate and early stopping schedules. We 920

multiply the learning rate by 0.5 after 5 checkpoints 921

of no decrease in cross-entropy on the validation 922

set, and we stop early after 10 checkpoints of no 923

decrease. We select the checkpoint with the lowest 924

cross-entropy on the validation set when reporting 925

results. We train for a maximum of 1k epochs. 926

E Additional Experimental Results for 927

Experiment 1 928

E.1 How Does M-local Entropy Affect LM 929

Performance? 930

Table 2 reports the Pearson correlation coefficients 931

between the m-local entropy of PFSA and the 932

estimated KL divergence (D̂KL; §4.1.2). 933

E.2 Experiments with BabyLM Corpus 934

We also conducted the same set of experiments 935

using the BabyLM corpus (Choshen et al., 2024). 936

Table 3 and Figure 5 show the experimental results. 937

They show the same trends as in our main experi- 938

ment (§3), but with slightly different tendencies for 939

the REVERSE language. 940

F Computational Resources 941

Across all experiments, we used a total of ap- 942

proximately 717.5 GPU hours. Training was con- 943

ducted on NVIDIA GeForce RTX 4090 24GB and 944

NVIDIA Quadro RTX 6000 24GB GPUs. 945

G License of the Data 946

The BLLIP corpus (Charniak et al., 2000) is used 947

under the terms of the BLLIP 1987-89 WSJ Corpus 948

Release 1 License Agreement. 949
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Figure 4: Definition of the LSTM architecture employed in this work, following the formulation in ?.

|Q| 16 24 32
|Σ| 32 48 64 32 48 64 32 48 64

ARCHITECTURE M

LSTM

2 0.433 0.501 0.137 0.291 0.583 0.121 0.423 0.311 0.623
3 0.396 0.532 0.230 0.291 0.488 0.119 0.460 0.274 0.702
4 0.412 0.546 0.236 0.311 0.477 0.122 0.474 0.283 0.702
5 0.415 0.554 0.234 0.338 0.472 0.120 0.466 0.283 0.686

TRANSFORMER

2 0.740 0.679 0.455 0.290 0.658 0.844 0.551 0.622 0.709
3 0.743 0.728 0.569 0.374 0.735 0.859 0.693 0.832 0.820
4 0.737 0.674 0.549 0.389 0.727 0.844 0.668 0.848 0.799
5 0.717 0.614 0.516 0.333 0.705 0.830 0.625 0.833 0.770

Table 2: Pearson correlation coefficients between m-local entropy and KL divergence for different architectures,
number of states |Q|, and alphabet sizes |Σ|.
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2-local entropy 3-local entropy 4-local entropy 5-local entropy

BASE 5.78 3.72 2.69 2.32

REVERSE 6.50 3.87 2.78 2.43
EVENODDSHUFFLE 6.82 4.47 3.36 3.14
ODDEVENSHUFFLE 6.94 4.45 3.39 3.14

LOCALSHUFFLE (K=3) 6.99 ± 0.16 4.27 ± 0.08 3.21 ± 0.07 2.97 ± 0.08
LOCALSHUFFLE (K=4) 7.09 ± 0.15 4.35 ± 0.06 3.25 ± 0.03 3.06 ± 0.04
LOCALSHUFFLE (K=5) 7.15 ± 0.13 4.42 ± 0.06 3.29 ± 0.04 3.08 ± 0.03
LOCALSHUFFLE (K=6) 7.25 ± 0.11 4.47 ± 0.07 3.35 ± 0.06 3.14 ± 0.05
LOCALSHUFFLE (K=7) 7.28 ± 0.12 4.50 ± 0.08 3.39 ± 0.07 3.19 ± 0.08

DETERMINISTICSHUFFLE 7.41 4.69 3.59 3.40

Table 3: M-local entropy values for BASE (original) corpus and different transformed corpora. “Local shuffle” refers
to the K-LOCALDETERMINISTICSHUFFLE. Values are shown as mean ± standard deviation (averaged over different
random seeds).

Figure 5: Scatter plots of next-symbol cross-entropy (y-axis) versus m-local entropy (x-axis) for m ∈ {2, 3, 4, 5},
for both LSTM (top row) and causally-masked Transformer encoder (Transformer; bottom row) models.
Each marker type/color corresponds to a different perturbation (e.g., Reverse, DeterministicShuffle, K-
LOCALDETERMINISTICSHUFFLE with various window sizes, etc.). The red star indicates the unperturbed BASE
condition (original corpus). The dashed line in each panel is a linear fit, with R2 indicating the coefficient of
determination.
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