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Abstract

Inductive biases are inherent in every machine
learning system, shaping how models gener-
alize from finite data. In the case of neural
language models (LMs), debates persist as to
whether these biases align with or diverge from
human processing constraints. To address this
issue, we propose a quantitative framework that
allows for controlled investigations into the na-
ture of these biases. Within our framework, we
introduce m-local entropy—an information-
theoretic measure derived from average lossy-
context surprisal—that captures the local un-
certainty of a language by quantifying how ef-
fectively the m — 1 preceding symbols disam-
biguate the next symbol. In experiments on
both perturbed natural language corpora and
languages defined by probabilistic finite-state
automata (PFSA), we show that languages with
higher m-local entropy are more difficult for
Transformer and LSTM LMs to learn. These
results suggest that neural LMs, much like hu-
mans, are highly sensitive to the local statistical
structure of a language.

1 Introduction

Every machine learning system has some form of
inductive bias; given a finite sample of data with
infinitely many plausible generalizations, a sys-
tem inherently prefers certain generalizations over
others (Mitchell, 1980; Rawski and Heinz, 2019).
This concept is central to the growing discussion
of whether the inductive biases of neural network
language models align with the cognitive pressures
that shape human language learning. In a 2023
New York Times article, Chomsky et al. famously
argued that neural language models possess induc-
tive biases fundamentally different from human
cognitive constraints, a claim that has motivated
theoretical rebuttals (Piantadosi, 2024) as well as
empirical research to test the extent of this diver-
gence (Kallini et al., 2024; Ahuja et al., 2024). In
particular, Kallini et al. (2024) demonstrated that
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Figure 1: KL divergence (Transformer LM) as a func-
tion of the 3-local entropy of the language generated
from a PFSA in Experiment 2. LMs perform better at
languages with lower local entropy.

perturbing natural language corpora to alter their
sequential structure—moving them along an in-
tuitive continuum of impossibility—makes these
languages harder for neural LMs to learn. While
their findings suggest that disrupting local structure
(e.g., through local shuffling transformations) im-
pacts learnability, they do not isolate the specific
linguistic properties responsible for this effect. To
rigorously assess whether a language model’s in-
ductive biases align with human constraints, we
must identify quantifiable properties of language
that affect human learning difficulty and systemati-
cally manipulate these properties in controlled ex-
periments with neural LMs. Information-theoretic
models of language processing, which view the
structure of languages as shaped by language users’
joint optimization of informativity and complex-
ity, provide a promising framework for identifying
these properties.



In this paper, we resort to the principles
of information locality, which suggest that
language is structured to minimize linear distance
between linguistic elements with high mutual
information (Gibson, 1998, 2001; Futrell, 2019;
Futrell et al., 2020). Information locality is thought
to arise from the memory limitations of human
processors, which make it challenging to integrate
long-range linguistic dependencies (Hahn et al.,
2022). The influence of these cognitive constraints
has been observed across multiple timescales, in
both language comprehension and production, and
across diverse languages of the world (Hahn et al.,
2021; Futrell, 2023; Futrell and Hahn, 2024). If we
could demonstrate that a neural language model’s
learnability of a language is influenced by its local
predictability, we would reveal an inductive bias
that aligns with the functional pressures shaping
human language processing.

As a first step in this direction, we propose using
m-local entropy, an information-theoretic measure
designed to quantify a linear notion of local pre-
dictability which can be derived from the principles
of information locality (Futrell et al., 2020).! We
study how m-local entropy affects learnability in
two sets of experiments: one where we perturb nat-
ural language corpora, and another where we ran-
domly generate PFSAs. We train LSTM and Trans-
former language models on these languages and
examine whether language models’ difficulty in
learning a language is predicted by the language’s
m-local entropy, to see if language models and
humans share an inductive bias for information lo-
cality. Our experiments demonstrate that m-local
entropy negatively correlates with the ability of a
language model to learn a language. Specifically,
our experiment with an English natural language
corpus—and its perturbed variants—reveals that
both LSTM and Transformer architectures show
systematic degradation in performance as m-local
entropy increases, even when global entropy re-
mains constant. Furthermore, in experiments using
PFSAs, we manipulate the properties of languages
more systematically and show that this trend is not
an artifact of the corpora or particular perturbation
functions used in our experiments.

"More specifically, m-local entropy can be derived from
the lossy-context surprisal theory of language comprehension
(Futrell et al., 2020), a theory belonging to the expectation-
based family of theories of language processing (Hale, 2001;
Levy, 2008). See §2.2.2 for details.

2 Formal Background

2.1 Languages and Language Models

An alphabet X is a finite, non-empty set of sym-
bols. The Kleene closure >* is the set of all strings
with symbols from >. We use ¢ to denote the empty
string, and |y| to denote the length of y € ¥*. A
language L is a subset of >*.

A language model p is a probability distribu-
tion over ¥*. The prefix probability ?(y) is the
probability that a string begins with y € >*:

TW=E D plvy) 8y
y'ex*

Given prefix probabilities, the conditional probabil-
ity of the continuation ¢y’ € ¥* given a preceding
context y can be computed as

p(v |y) = %(‘%) 2)

With this, we can factorize a language model p as

lyl

py) =p(Eos | y) [[pw: | y<t), B
t=1

where each p (y; | y<;) is a distribution over & =
¥ U {E0S}, where EOS ¢ ¥ is a distinguished
end-of-string symbol, and

def p(y)

T @

We define p’s infix probability ? as

TWED D pWwy). ®

ylez* y/lez*

p(EOS | y)

Note that, despite denoting probabilities of events,
? and ? are not probability distributions. In
general, the sums 7pd:ef D yes 7 (y) and 7
> yer ‘P’ (y) may diverge. A sufficient condition
for the former to be finite is that the expected length

n Ey~p|y| under p is finite, which follows from

the relationship Z = p + 1.2 In the following,
we assume that < 00, which means that we
will be able to normalize the prefix probabilities
to arrive at a probability distribution over string
prefixes. We do not put this restriction on ? since
we will normalize ? over a finite subset of 3*.

’The proof is similar to Borenstein et al. (2024, Lem. D.1).



2.2 Global Entropy and M-local Entropy

The concept of entropy, as introduced by Shan-
non (1948), provides a foundational framework for
quantifying uncertainty in language. Depending on
how one defines the underlying probability distribu-
tion over linguistic units, entropy can capture differ-
ent aspects of language complexity. In this paper,
we derive two versions of entropy—global entropy
(i.e., the Shannon entropy) and m-local entropy—
each capturing different facets of language com-
plexity.

2.2.1 Global Entropy
The global entropy of p is defined as

H(p) = - ) p(y)logp(y) . (6)

yex*

This definition reflects the uncertainty in the dis-
tribution over all possible strings y € ¥*: Higher
global entropy indicates that p distributes probabil-
ity mass more uniformly across strings. We further
define the (global) next-symbol entropy for finite-
mean-length language models. It is a weighted
average of the entropy of all local next-symbol
distributions, averaging over all possible contexts
y € ¥*, and weighted by the normalized prefix
probability of y.> For that, define the X-valued
random variable Y, distributed as

p(Yy=y)=pyly). @)

def

We have H(Yy) = =3 sp(y | y)logp(y | y).
Then, we define the next-symbol entropy as

def ?(y)
Hx(p) = H(Yy) (82)
=2 T
1
= m ygz:* ?(?J)H(Yy)' (8b)

The following fact is a special case of Malagutti
et al. (2024, Thm. 2.2).

Lemma 2.1. Let p be a language model with p <
00. Then, we have

H(p)

= P (©)]

Hs(p)

Invariance of global and next-symbol entropy.
Global entropy is insensitive to bijective transfor-
mations of ¥*. This has important implications

3The weighting cannot be uniform, as 3* is infinite.

for using entropy as a predictor of language learn-
ing difficulty. For example, global entropy does
not change under string permutations and thus
does not account for local ambiguity or variations
in predictability within different segments of a
string. The same holds for next-symbol entropy
under bijective length-preserving transformations
due to Lemma 2.1. We investigate this further
in §3, but first we treat it more formally. Let p
be a language model and p’ be a perturbed lan-
gauge model where f: ¥* — X* is a bijection and
P (y) = p(f_l(y)) for every y € 3*. Crucially,
p and p’ have the same global entropy: The global
entropy of p’ is

Hp)=— > p(f7'@)) logp(f ("))
y'exr*
(10)
Since f is a bijection, we can reindex the sum by
letting y = f~'(3'); as y' ranges over all of ¥*,
so does y. Hence,

H(p') == Y pl(y)logp(y) = H(p).

yer*

(11)

Furthermore, if the bijection also preserves string
length, it follows from Lemma 2.1 and Eq. (11)
that next-symbol entropy is preserved as well.

2.2.2 M-local Entropy

Global next-symbol entropy measures uncertainty
over next-symbol predictions conditioned on the
full available context, averaged across all possible
contexts. This can be seen as the limit of a local
quantitification of uncertainty, which captures the
unpredictability of next-symbol predictions given
a fixed amount of preceding context. We term this
fixed-context uncertainty measure local entropy.
Let C be a ™ !-valued random variable dis-
tributed according to ? normalized over X1

()
D wesmr P (€)

p (C = ¢) can be interpreted as observing c as a

length-(m — 1) substring of a string from p. Let Y.
be the Y-valued random variable distributed as

p(C=¢c)= (12)

p(Ye=y) =Wt | Yt—mt1:0-1 =¢), (13)

i.e., as the next symbol given that the previous m—1
symbols were c¢. With slight abuse of notation,

we write p(y; | €) tomean p(y¢ | Ye—mi14-1 = ).



The use of ¢ for (m —1)-length contexts will disam-

biguate this from conditioning on a general prefix

y € ¥*. Given any ¢ € ¥, we can compute
H(Y) Z =Y p(ylc)logpyle). (14)

yeED

This captures the unpredictability of a symbol y

after observing a given local context c. We can

then define the m-local entropy of p as an expec-

tation over possible contexts ¢ € X!, with each
context weighted by p (C = ¢):

Ho() B [HY) (1)
= Y p(C=0) HY)
cexm-1

This yields a measure of local complexity that can
differ from global entropy. Even when two lan-
guages have identical global entropy, their m-local
entropies can differ, reflecting differences in how
reliably the recent context predicts the next symbol.
Importantly, unlike global entropy, local entropy
is not necessarily preserved under bijective trans-
formations of ¥*, which enables us to assess the
impact of such transformations on learnability. As
we show later, transformations that alter local struc-
ture can significantly influence how well neural
LMs learn a language.

M-local entropy and lossy-context surprisal.
As a generalization of the surprisal model of lan-
guage processing difficulty (Hale, 2001; Levy,
2008), Futrell et al. (2020) propose lossy-context
surprisal. In this model, the predicted difficulty for
processing an upcoming word ¥, is a function of the
word’s expected log probability given a lossy mem-
ory representation 7 of the preceding context c¢:

Difficulty (y4;c<¢) x E

re~M(e<t)

[—logp (y: | )],

(16)
where M is a memory encoding function which
gives us the conditional distribution of a memory
representation r given the previous context c;.
If we assume that M always retains only the
m — 1 symbols immediately preceding y;, then
r = M(c<t) = Yt—m+1---Ys—1, and surprisal
becomes —1ogp (Yt | Yt—m+1---ye—1). The ex-
pectation of this surprisal over all possible contexts
and next symbols is a special case of the average
(lossy-context) surprisal (Futrell, 2019; Hahn et al.,
2021) of a language, which corresponds to our

definition of m-local entropy in Eq. (15). To our
knowledge, no prior work has linked lossy-context
surprisal directly to language model learnability—a
connection that our work aims to explore.

2.3 Probabilistic Finite-state Automata

Definition 2.1. A probabilistic finite-state automa-
ton (PFSA) is a 5-tuple (3, Q, 0, \, p) where

* X is an alphabet,

* () is a finite set of states,

* 0 C QxXxI[0,1 x Q is a finite set of

weighted transitions rendered as q y/—w> q,

* \,p: Q@ — [0,1] are the initial and final
weighting functions,

* Asatisfies Y oA (q) =1, and

. Ilq € Q, w + =1
forallg € Q% ., w+p ()

A path 7 in a PFSA A is a sequence of con-

secutive transitions qg VN AL qN. We

define its scan as s () = y; - - - yy. II(A, y) de-

notes the set of all paths in A that scan y € ¥*.

The inner path weight of 7 is w(w) = Hﬁle Wy,

and its path weight is w(7) = A\(qo)w(7)p(qn).
A PFSA A induces a language model p, as

pay) s Y w(m).

well(Ay)

(17)

Studying PFSAs not only allows us to perform
controlled experiments but also enables us to com-
pute many quantities of interest exactly. App. A
contains a collection of closed-form solutions for
computing various quantities of interest, including
the string (prefix and infix) probabilities and the
m-local entropy of the induced language model.

3 Experiment 1: LM Performance along
the M-local Entropy Continuum

In the first experiment, we investigate the relation-
ship between local entropy and LM performance
using a natural language corpus. We hypothesize
that local entropy is a key factor determining how
easily an LM learns a language. To test this hy-
pothesis, we apply a bijective perturbation function
to a natural language corpus that alters its local
structure. This results in a counterfactual perturbed
corpus (cf. Kallini et al., 2024), which has different
local entropy from the original one but the same
global entropy. We then train LMs on the naturally
occurring corpus and the perturbed one and study
how local entropy affects the LMs’ performance.



3.1 Constructing Languages with Different
Local Complexity

Here, we detail several specific transformations
implemented in our experiments, refining the per-
turbation functions of Kallini et al. (2024).

DETERMINISTICSHUFFLE. A fixed random
permutation o of the string positions {1,...,7}
is applied to any string of length 7T'. This permu-
tation is deterministic throughout the experiment,
ensuring consistent shuffling whenever it is used.

REVERSE. This function reverses the entire se-
quence of symbols. Formally, given a string y =
Y1Y2 ... yr, the REVERSE mapping produces
Yyr yr—1 - .. y1. ltis trivially invertible (by apply-
ing the same operation again), making it a bijection.

EVENODDSHUFFLE/ODDEVENSHUFFLE.

Let y = y1y2 ... yr be a string of length 7'
Define two subsequences O(y) = y1y3ys . . . and
E(y) = y2yays - . . that collect all symbols in y at
even positions and odd positions, respectively. We
then define EVENODDSHUFFLE(y) = E(y)O(y)
and ODDEVENSHUFFLE(y) = O(y)E(y).

K-LOCALDETERMINISTICSHUFFLE. Lety =
Yy1Y2 ... yr be a string in X*, which we parti-
tion into consecutive windows of size k. For
the i-th window, y¢_1)g41,---,Yik, We apply
a fixed permutation 7; determined by 7 and
a global random seed.*  Formally, the K-
LOCALDETERMINISTICSHUFFLE of y produces

(’/Tl(ylv" . 7yk)7 7T2(yk+17" . 7y2k)7 )

3.2 Estimating the M-local Entropy of a
Language

Unfortunately, the true m-local entropy is not
directly accessible for these corpora since we don’t
know the underlying probability distribution of
natural language. In this experiment, we estimate
it using an n-gram language model implemented
with KenLLM (Heafield, 2011). Given a corpus D,
we train an n-gram model on D to get the estimated
conditional probability distributionp(y | ¢) for
c € Y™ 1. Plugging this estimated probability
distribution into Eq. (14), we can compute

~

H(Yo) =~ L leen(vle). (9
yeD

*If the string length T is not a multiple of k, then the final
window, which contains fewer than & symbols, is permuted by
applying the fixed permutation to all the available symbols in
that window.

where N (c¢) is the number of times ¢ appears in D.
The normalized infix probability is estimated as

N(c)

p(C = c) = ,
p( ) Ntotal

(19)

where Ntotal = Zc’eEm—l N(C/).
Given these and Eq. (15), we can compute esti-
mated m-local entropy as

Hn(p)= > H(C=c)H(Ye)  (20a)
ceym—1
1

-y ) logp(y|e)  (20b)

cyeD

This estimator is a practical proxy for the quantity
in Eq. (15). The m-local entropy of each corpus is
estimated by an n-gram model with order m — 1
trained on the concatenation of the training, valida-
tion, and test set of the corpus.

3.3 Experimental Setup
3.3.1 Neural Language Models

We investigate how varying local entropy in a lan-
guage impacts the performance of two widely used
neural LM architectures: the LSTM (Gers and
Schmidhuber, 2001) and a causally-masked Trans-
former encoder (Vaswani et al., 2017). We use
a single-layer LSTM with 512-dimensional hid-
den units and a 4-layer causally-masked Trans-
former with 768-dimensional embeddings, 3072-
dimensional feedforward layers, and 12 attention
heads. Both are implemented in PyTorch (Paszke
et al., 2019). Both architectures are trained on the
training set via the standard language modeling
objective across 5 random training seeds. See Ap-
pendices C and D for more details.

3.3.2 Dataset

We conduct our experiments on a subset of the
Brown Laboratory for Linguistic Information Pro-
cessing 1987-89 Corpus Release 1 (BLLIP; Char-
niak et al., 2000).> Specifically, we adopt the
same training, development, and test splits as
BLLIP-sM in Hu et al. (2020), which comprise
roughly 200K sentences, totaling around 5M to-
kens. Starting from this original corpus, we apply
the perturbation functions in §3.1 to produce per-
turbed corpora. For both DETERMINISTICSHUF-
FLE and K-LOCALDETERMINISTICSHUFFLE, we

SWe also conduct the same set of experiments using the
BabyLM corpus (Choshen et al., 2024); results in App. E.2.



2-local entropy  3-local entropy  4-local entropy  5-local entropy

BASE 6.67 4.27 2.92 2.45
REVERSE 6.98 4.39 2.98 2.51
EVENODDSHUFFLE 7.91 5.10 3.76 3.43
ODDEVENSHUFFLE 7.87 5.07 3.74 341
LOCALSHUFFLE (K=3) 8.12 £0.08 5.05 £ 0.06 3.68 £ 0.07 3.39 £ 0.07
LOCALSHUFFLE (K=4) 8.25 £0.07 5.17 £0.04 3.80 £ 0.04 3.56 £0.05
LOCALSHUFFLE (K=5) 8.33 £ 0.07 5.25+0.04 3.88 +£0.04 3.64 £0.05
LOCALSHUFFLE (K=6) 8.43 £0.07 5.31£0.05 3.97 £0.06 3.72 £0.06
LOCALSHUFFLE (K=7) 8.47 £ 0.07 5.36 £ 0.05 4.03 £0.06 3.78 £0.07
DETERMINISTICSHUFFLE 8.77 5.73 4.60 441

Table 1: M-local entropy values for the BASE (original) corpus and the different perturbed corpora. LOCAL
SHUFFLE refers to the K-LOCALDETERMINISTICSHUFFLE. Values are shown as mean + standard deviation

(averaged over different random seeds).

use 20 random seeds. In the case of K-
LOCALDETERMINISTICSHUFFLE, we vary the pa-
rameters k over the set {3,4,5,6, 7}, yielding 20
perturbed corpora for each k. This produces a total
of 124 distinct “languages,” including other per-
turbed corpora and the BASE (original) corpus.

3.3.3 Evaluating Learning Difficulty

In this experiment, we rely on next-symbol cross-
entropy as a measure of how well a trained lan-
guage model g approximates the target distribution.
If p is the ground-truth language model, and ¢ is
any learned neural LM, we can estimate the next-
symbol cross-entropy as:

Hy(p,q) = @
ly]
1
-5 > [ log ¢(EOS | y) + ) logq(u | y<t)} :
yeD t=1

where D = {y(™}N_, is a set of i.i.d. draws from
pand S =3, p|y|+ 1. In this experiment, we
evaluate each LM using the estimated next-symbol
cross-entropy on the test set. When comparing
the “learnability” of two languages, it’s important
to take into account their inherent entropy since
learning a language means learning its distribu-
tion, i.e., getting close to its lower bound entropy.
Comparing absolute perplexity/cross-entropy can
be misleading and could lead to different results.
In fact, it is wrong to discuss the learnability of two
languages with different inherent entropy using
cross-entropy (e.g., NONDETERMINISTICSHUF-
FLE in Kallini et al., 2024). In this experiment, we
can safely compare cross-entropy since all the cor-

pora are assured to have the same inherent (global)
entropy (see §3.1).

3.4 Results

How do different perturbations affect m-local
entropy? Table 1 reports the m-local entropy
values (m € {2,3,4,5}) for the BASE corpus
and the various perturbed corpora. REVERSE
barely changes the m-local entropy, whereas
EVENODDSHUFFLE and ODDEVENSHUF-
FLE increase it somewhat more. In contrast,
K-LOCALDETERMINISTICSHUFFLE yields
progressively higher entropy as the window size
k grows, indicating a greater disruption of local
ordering.  Finally, DETERMINISTICSHUFFLE
produces the highest m-local entropies among all
transformations.

These results confirm that the bijective trans-
formations we defined in §3.1 effectively generate
new languages with different m-local entropy
than the original one, while preserving the global
entropy by design. This yields a continuum of
languages along a specific measurable axis of
complexity rather than a qualitative notion of
possibility as in Kallini et al. (2024).

How does m-local entropy affect LM perfor-
mance? Figure 2 shows the relationship between
the m-local entropy (estimated by m-gram models;
§3.2) and the next-symbol cross-entropy of each
neural LM on the test set. We observe a strong
positive correlation between m-local entropy and
next-symbol cross-entropy for both neural architec-
tures. For example, with m = 4, the coefficient of
determination R? reaches 0.922 for the LSTM LM
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Figure 2: Scatter plots of next-symbol cross-entropy (y-axis) versus m-local entropy (z-axis) for m € {2, 3,4, 5},
for both LSTM (top row) and Transformer LM (bottom row). Each marker type/color corresponds to a different
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a linear fit, with R? indicating the coefficient of determination.

and 0.915 for the Transformer LM, indicating that
higher local ambiguity (as measured by m-local
entropy) generally leads to decreased performance
(i.e., higher next-symbol cross-entropy) under both
models. Furthermore, since our transformations
are designed to preserve global entropy and global
next-symbol entropy, these results highlight the
crucial role of local entropy in the learnability of a
language by neural LMs. This suggests that neural
LMs inherently possess an inductive bias toward
languages with lower local entropy.

4 Experiment 2: Controlled Learnability
Tests with PFSAs

Experiment 1 only focused on a specific English
corpus and a specific set of perturbation functions.
To confirm that the results are not just an artifact of
this experimental design, but a fundamental prop-
erty of neural LMs, we conduct a controlled experi-
ment using PFSAs. This also enables us to compute
quantities of interest exactly, especially the m-local
entropy of the induced language model.

4.1 Experimental Setup

We use the same LMs and training configurations
as in §3, but we generate datasets using PFSAs
(§4.1.1) and evaluate LMs while controlling for

global entropy (§4.1.2).

4.1.1 Generating Datasets using PFSAs

We construct random PFSAs with alphabet sizes
|X| € {32,48,64} and numbers of states |Q| €
{16, 24, 32}. For each of the nine configurations,
we randomly generate 25 automata. We control the
randomness with five random seeds determining
the PFSA topology (the underlying multi-graph)
and five random seeds determining the transition
weights. See Algorithm 1 in App. B for details
of the generation. We sample 20K strings for the
training set, SK for the validation set, and 5K for
the test set from p, for each PFSA A.

4.1.2 Evaluating Learning Difficulty

Using PFSAs allows us to compute a range of
entropy-related values, including the inherent next-
symbol entropy (§2.3), which enables us to eval-
uate LMs based on KL divergence Dgr,. Specif-
ically, the estimated Dy, is given by subtracting
the next-symbol entropy of the PFSA (Lemma 2.1)
from the estimated next-symbol cross-entropy of
the LM (Eq. (21)): Dx1, = Hx(p,¢) — Hx(p). In
this second experiment, we evaluate each LM using
DKL on the test set.

®Recall that in Experiment 1 it was unnecessary to con-
trol for global entropy since it is preserved by design by the
bijective transformations.
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Figure 3: Scatter plots of symbol-level KL divergence (y-axis) versus m-local entropy (x-axis) for m € {2,3,4,5},
for both LSTM (top row) and causally-masked Transformer encoder (Transformer; bottom row) models. Each
marker type/color corresponds to a different combination of number of states (|@|) and symbols (|X|). The dashed

line is a linear fit for each cluster.

4.2 Results: How Does M-local Entropy
Affect LM Performance?

Figure 3 shows the relationship between the
m-local entropy of PFSAs (calculated analytically;
App. A) and the KL divergence of each neural LM
on the test set; see Table 2 for Pearson correlation
coefficients. The experimental results reveal
a clear positive correlation between m-local
entropy and Dy, across both architectures and
all values of m = 2, 3,4, 5, indicating that neural
language models find it more challenging to model
distributions with higher local uncertainty. The
Transformer LM consistently shows higher Dy,
compared to the LSTM within each topological
cluster, suggesting that LSTMs are more effective
at modeling these particular probability distribu-
tions (Weiss et al., 2018; Borenstein et al., 2024).
Additionally, when |X| is constant, Dy is higher
for PFSAs with larger |@Q|, which is consistent
with the results of Borenstein et al. (2024).

5 Discussion and Conclusion

By proposing local m-local entropy as a predictor
of learning difficulty grounded in lossy-context
surprisal theory and information locality principles,
we provide a formal information-theoretic perspec-
tive that connects the inductive biases of LMs and
the statistical properties of language thought to be
shaped by functional pressures in humans (Gibson,

2001; Futrell et al., 2020). Through two sets of
experiments—one on perturbations of a natural
language corpus and another using PFSAs for
the controlled generation of test languages—we
consistently find that both LSTM and Transformer
architectures model languages with lower m-local
entropy more effectively. The shared sensitivity to
information locality between artificial and human
learners suggests a common inductive bias shaping
both systems, possibly because both systems
process language incrementally.

Our findings open several promising directions
for future research. One avenue is to explore induc-
tive biases beyond information locality, such as sen-
sitivity to hierarchical structure or structure depen-
dence (Chomsky, 1957; Everaert et al., 2015), in
order to better understand the full range of factors
influencing language learnability in both humans
and machines. Additionally, incorporating local en-
tropy into model evaluation or as a regularization
signal during training could lead to more robust and
cognitively plausible language models (Timkey and
Linzen, 2023; De Varda and Marelli, 2024).

In summary, our study presents new evidence
of the strong sensitivity of neural language models
to a language’s local statistical structure, advanc-
ing our understanding of their inductive biases and
establishing a foundation for future research on
assessing and improving the alignment between
artificial and human language processors.



Limitations

While our study reveals a strong correlation be-
tween m-local entropy and LM performance, it is
important to note that our analysis remains corre-
lational. We have not yet pinpointed the precise
mechanisms by which variations in local uncer-
tainty impact the learning dynamics of neural lan-
guage models.

Additionally, our controlled experiments relied
on PFSAs (PFSA) to generate languages with var-
ied m-local entropy. Although PFSAs provide a
tractable framework for such investigations, they
capture only a limited set of the possible languages.
It is plausible that employing more expressive for-
malisms—such as pushdown automata or even
higher-level models—might reveal different rela-
tionships between local entropy and model perfor-
mance. In fact, there are not a few empirical results
that some types of neural language models don’t
necessarily seem to have similar inductive biases as
humans (McCoy et al., 2020; Yedetore et al., 2023,
inter alia).

Furthermore, our focus on information locality,
as measured by m-local entropy, does not preclude
the influence of other inductive biases that may also
play significant roles in learning. Future work will
need to disentangle these factors to fully understand
their individual and combined effects on neural
language models.

Ethical considerations

We employed Al-based tools (ChatGPT and
GitHub Copilot) for writing and coding assistance.
These tools were used in compliance with the ACL
Policy on the Use of Al Writing Assistance.
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A Probabilistic Finite-state Automata

Before listing a number of useful results for com-
puting quantities of interest in PFSAs, we list a few
relevant definitions.

Definition A.1. Ler A = (3, Q, 6, \, p) be a PFSA.
We define the transition matrix M € RIQI<IC
of A as the matrix containing the probabilities of
transitioning from state q; € () to state q; € Q in
A with any y € ..

def
M;; = E E w, 22)
X w
Y %’L>Qj €0

where we fix some arbitrary enumeration of states
(q1,---,q|)- We also define the symbol-specific

transition matrix MY where Mi(?;) is the prob-
ability of transitioning from state q; € () to state

q; € Q in Awith a y-labeled transition:

>

Jw
qz‘y—hb' €4

def
17] -

MW (23)

w.

We naturally extend this definition to strings and
define fory =y ---yr:

M® < arw) . pglur) (24)

Remark 1. It is a standard exercise to show
that M(y)m- equals the sum of the weights of y-
scanning strings from q; to q;.

Definition A.2. Let A = (X, Q, 0, A, p) be a PFSA.
The emission matrix E € RICXIZl is defined by

Ep= ) w (25)

qiMq’eé
For a PFSA A and a path w =
qo i, | /e € II(A), we write
() £ g for the initial state of the path and
o(m) = gy for its final state. We define the path

prefix random variable H distributed as

P (ﬁ = 77) x A(e(m))w(). (26)

This is analogous to prefix string probabilities and
the distribution is normalizable exactly when prefix
probabilities are. Similarly, we define II, which is

distributed as

P <ﬁ = 71') x Z AMe(w"))w(n")w(w),
7/ €II(A)
Adm') =)
(27
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which is analogous to string infix probabilities.

PFSAs are particularly attractive to study since
they allow us to exactly compute many interesting
quantities efficiently. In the following section, we
describe how one can compute the m-local entropy
of the language model defined by a PFSA.



A.1 Useful Properties of Probabilistic Finite-State Automata

The following lemmata hold for a general PFSA A = (X, Q, d, A, p) and the language model p, induced
by it. None of the results are novel, but we include full proofs for completeness.

Lemma A.1 (Computing the probability of a string with a PESA). The probability of y € ¥* is:

pa(y) =ATMWp. (28)

Proof. We know from Remark 1 that M (y)i,j corresponds to the sum of the path weights from ¢; to g;.
Multiplying each entry with the source state’s initial weight and the target state’s final weight, we arrive at
the result. O

Lemma A.2 (Computing the prefix probability of a string). The prefix probability of y € 3* is:

Taly) =2 MY Mp. (29
Proof.
Taw)= ) palwy) 500
y/ez*
— Z )\TM(yy’)p (Lemma A.1, 30b)
y/ez*
= S ATMW M), (30¢)
y'ex*
ATMW [ 3 MW |, (30d)
y/ez*
=A"TMYWnrp (30e)
]

Lemma A.3 (Computing the next-symbol distribution). Let y € X*. The distribution over the next
symbols after observing y is

pa(n () =) = X2L0E o



Proof.

Pa (yk | S(ﬁ) = y) 7 <ykvs<ﬁ)) - ) (32a)

= f Alu(m)) w(m) p (yx | p(7))
2;4 K

(Summing over all y-yielding paths, 32b)

Q]
:pr (wwlay) Y Au(w)) w(w) (320)
mell(A, y)
“m)=q
Q] 1Q
= ;7 Zp vk | 4 ZA D) 32d)
well(Ay)
4”):qia¢(77):Ch
Q] 1Q
:TZP Yk | 45) Z)\ a)M z, (32e)
[@]
= T Zp (v | 45) (A M(y)) (32f)
1 IQI
B ?7 Z ()\T )>j w (g0 225 ' 5, 32¢)
A
! TaAr@) ;
== (A M E)k (Eq. (25). 32h)
O
Lemma A.4 (Computing the infix probability of a string). The infix probability of y € ¥* is:
Proof.
Paw)= > Tav'y) (342)
ylez*
= Z }\TM(y/y)M*p (Lemma A.2, 34b)
ylez*
ylez*
=AM MY M*p (34d)
O

Lemma A.5 (Computing the infix next-symbol distribution). Let ¢ € ™!, The distribution over the
next symbols after observing c as the last m — 1 symbols is

o 15() =) = LMD
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pa(e|s(T) =¢) = p(ues(TT) =) (36a)

1 _
=0 Yoo D> Aum) w(m) p(yk | ()
Pa y'eX* nell(Ay'c)
(Summing over all c-ending paths, 36b)

QI
Yy er* well(A,y c)
Hm)=q
Q] 1Q
- ;ﬁzp wl )Y S Ma) Y. wm) (36d)
i=1 y'e>x* ﬂEH(A,y’c)
(m)=qi, Am™)=q;
QI a]
— ﬁzp Uk | ¢ Z Z g (M(y M(C)>lj (36¢)
i=1y'ex* >
IQI QI /
:@*ZP (k| 45) Z)\ qi) Z <M(y)M(C)>ij (366)
T ’
1 IQI |Q\
= e Pl ) Z)‘% ) (Mrnate ))ij (362)
Jj=1 )
1 Q| . w
@ 2P ) ),
1 QI )
B W Z (ATM* (y))j w ((// RLTAEN q €9, 36i)
7j=1
1 T ‘
= M MY E s,
W <>‘ )k (Eq. (25). 36j)

O]

Lemma A.6 (Computing the m-local entropy of a DPFSA). The m-local entropy of p, can be computed
in time O(m\Q|3\E|m_1).

Proof. M-local entropy of p, can be computed as

Hy, (PA) = ch(Hg ¢ [H(pA(Yc))} (37a)
Z D A(Q)H(pa(Ye)) (37b)
0627” 1

The terms “p”,(c) and p,(Y.) can be computed in time O (m]Q|3) as per Lemmata A.4 and A.5 for each

c € ¥~ !. Computing this for each c individually, we arrive at the claimed complexity. O
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B Generating Random PFSAs

Algorithm 1 and the subprocedure in Algorithm 2 describe our PESA generation procedure.

Algorithm 1 Generate a Random DPFSA.

Input: |Q| (number of states), |%| (number of symbols), u (target mean string length), Ry (topology
random generator), and Ry, (weight random generator).
Output: A PFSA A with randomly assigned transitions and normalized weights with |Q)| states and |X|
symbols.
Note: CHOICE(R, S, 1) denotes selecting one element uniformly at random from the set S using the
random generator R.
unused is initialized as @), and out-arcs is a mapping that assigns to each state a subset of X (the allowed
outgoing symbols).
For exponential sampling, we write w ~ Exp(0.1) to denote that w is drawn from an exponential
distribution with rate 0.1, i.e., with density f(w) = 0.1 e~ 01w for w > 0.

I: function RANDOMDPFSA(|Q|, ||, u, Rr, Rw)

2: ¢, < CHOICE(Rr,Q,1)

3 Initialize A + (2, Q, 4, \, p)

4 Initialize A < 0| and set \(g,) < 1
5: Initialize M %) to a |Q| x |Q| matrix of zeros for y € ¥
6
7
8
9

unused < @
state-outgoing-symbols - GETOUTGOINGSYMBOLS(Q®, ¥, Rr)
for g € ) do
for y € ¥ do
10: if unused # () then
11: q' + CHOICE(Ry,unused, 1)
12: Remove ¢’ from unused
13: else
14: ¢’ < CHOICE(R,Q,1)
15: Let w ~ Exp(0.1)
16: MW, < w-1{y € state-outgoing-symbols[q]} + 0.001
17: for ¢ € Q do > Set final weights and normalize outgoing weights for each state.
18: t ZIyZ:'al sum(M®), )
19: p(q) < t/p
20 s t+p(q)
21: fory € {0,...,|X|—1} do
22: MW, MW, /s
23: plq) < p(q)/s
24: return A
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Algorithm 2 Generate Outgoing Symbols for Each State.

Input: |Q| (number of states), || (number of symbols), R (random generator), and s,,;, (min. unique
symbols per state; default: 2).

Output: A list S of |Q] sets, each containing outgoing symbols.

Note: CHOICE(R, X, k) selects k distinct elements uniformly at random from X using R, and
INTEGERS(R, a, b) returns a random integer in [a, b).

1: function GETOUTGOINGSYMBOLS(Q), X, R, Sinin)
2 Initialize state-outgoing-symbols <— an array of |(Q)| empty sets
3 for g € () do
4 s < CHOICE(R, N, min(Smin, |X)) > Assign each state at least s,,,;, symbols.
5: state-outgoing-symbols[q] < state-outgoing-symbols[q] Us
6 for y € X do > Ensure each symbol appears in at least one set.
7 q + CHOICE(R, Q, 1)
8 Add y to state-outgoing-symbols[q]

Q|1
9 M« > INTEGERS(R,0,max(L, [|S/2] = smin))

=0

10 for j <q— 1toMdo > Add random transitions.
11: y < CHOICE(R, X, 1)
12: q < CHOICE(R, @, 1)
13: Add y to state-outgoing-symbols[q]

14: return state-outgoing-symbols
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C Details of Neural Language Models

C.1 Transformer

We use a 4-layer causally-masked transformer with
768-dimensional embeddings, 3,072-dimensional
feedforward layers, and 12 attention heads, im-
plemented in PyTorch. Following Vaswani et al.
(2017), we map input symbols to vectors of size
768 with a scaled embedding layer and add sinu-
soidal positional encodings. We use pre-norm in-
stead of post-norm and apply layer norm to the
output of the last layer. We use the same dropout
rate throughout the transformer. We apply it in the
same places as Vaswani et al. (2017), and, as imple-
mented by PyTorch, we also apply it to the hidden
units of feedforward sublayers and to the attention
probabilities of scaled dot-product attention opera-
tions. We always use BOS as the first input symbol
to the transformer.

C.2 LSTM

We use a single-layer LSTM (Gers and Schmid-
huber, 2001) with 512-dimensional hidden units,
implemented in PyTorch with some modifications
as in Butoi et al. (2025). Figure 4 shows our def-
inition of the LSTM architecture. Here, E is an
embedding matrix to map each symbol w; of the
input string to an embedding x; = E,,,. The size
of the embeddings is always d, the size of the hid-
den vectors, and we denote the number of layers
in the model as L. Also, ® denotes elementwise
multiplication, and DROPOUT(-) indicates the ap-

plication of dropout. Here, 'w((f) € R% is a learned

parameter, making the initial hidden state hég) of
each layer learned. A modification is made from
the original PyTorch implementation: each pair of
bi; and bp;, b;r and by s, big and by,g, and b;, and b,
is replaced with a single bias parameter per layer.

D Hyperparameters for Neural Language
Model Training

Wherever dropout is applicable, we use a dropout
rate of 0.1. For layer norm, we initialize weights to
1 and biases to 0. We initialize all other parameters
by sampling uniformly from [—0.1, 0.1].

For each epoch, we randomly shuffle the train-
ing set and group strings of similar lengths into
the same minibatch, enforcing an upper limit of
2,048 symbols per batch, including padding, BOS,
and EOS symbols. We train each model by mini-
mizing cross-entropy on validation set using Adam
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(Kingma and Ba, 2015). We clip gradients with a
threshold of 5 using L? norm rescaling. We take a
checkpoint every 10k examples, at which point we
evaluate the model on the validation set and update
the learning rate and early stopping schedules. We
multiply the learning rate by 0.5 after 5 checkpoints
of no decrease in cross-entropy on the validation
set, and we stop early after 10 checkpoints of no
decrease. We select the checkpoint with the lowest
cross-entropy on the validation set when reporting
results. We train for a maximum of 1k epochs.

E Additional Experimental Results for
Experiment 1

E.1 How Does M-local Entropy Affect LM
Performance?

Table 2 reports the Pearson correlation coefficients
between the m-local entropy of PFSA and the
estimated KL divergence (Dk1,; §4.1.2).

E.2 Experiments with BabyLM Corpus

We also conducted the same set of experiments
using the BabyLLM corpus (Choshen et al., 2024).
Table 3 and Figure 5 show the experimental results.
They show the same trends as in our main experi-
ment (§3), but with slightly different tendencies for
the REVERSE language.

F Computational Resources

Across all experiments, we used a total of ap-
proximately 717.5 GPU hours. Training was con-
ducted on NVIDIA GeForce RTX 4090 24GB and
NVIDIA Quadro RTX 6000 24GB GPUs.

G License of the Data

The BLLIP corpus (Charniak et al., 2000) is used
under the terms of the BLLIP 1987-89 WSJ Corpus
Release 1 License Agreement.
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Figure 4: Definition of the LSTM architecture employed in this work, following the formulation in ?.
Q| 16 24 32
1% 32 48 64 32 48 64 32 48 64
ARCHITECTURE M
2 0.433 0.501 0.137 | 0.291 0.583 0.121 | 0.423 0.311 0.623
LSTM 3 0.396 0.532 0.230 | 0.291 0488 0.119 | 0.460 0.274 0.702
4 0412 0.546 0.236 | 0.311 0477 0.122 | 0474 0.283 0.702
5 0415 0.554 0.234 | 0338 0472 0.120 | 0.466 0.283 0.686
2 0.740 0.679 0.455 ] 0.290 0.658 0.844 | 0.551 0.622 0.709
TRANSFORMER 3 0.743 0.728 0.569 | 0.374 0.735 0.859 | 0.693 0.832 0.820
4 0.737 0.674 0.549 | 0.389 0.727 0.844 | 0.668 0.848 0.799
5 0.717 0.614 0.516 | 0.333 0.705 0.830 | 0.625 0.833 0.770

Table 2: Pearson correlation coefficients between m-local entropy and KL divergence for different architectures,
number of states |@Q|, and alphabet sizes |X|.
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2-local entropy  3-local entropy  4-local entropy

5-local entropy

BASE 5.78 3.72 2.69 2.32
REVERSE 6.50 3.87 2.78 2.43
EVENODDSHUFFLE 6.82 4.47 3.36 3.14
ODDEVENSHUFFLE 6.94 4.45 3.39 3.14
LOCALSHUFFLE (K=3) 6.99 +£0.16 427 +0.08 3.21£0.07 2.97 £0.08
LOCALSHUFFLE (K=4) 7.09 +£0.15 4.35+0.06 3.25+0.03 3.06 £ 0.04
LOCALSHUFFLE (K=5) 7.15+0.13 4.42 +0.06 3.29 £ 0.04 3.08 £0.03
LOCALSHUFFLE (K=6) 7.25+0.11 4.47 +£0.07 3.35+0.06 3.14 +0.05
LOCALSHUFFLE (K=7) 7.28 £0.12 4.50 £ 0.08 3.39£0.07 3.19 £0.08
DETERMINISTICSHUFFLE 7.41 4.69 3.59 3.40

Table 3: M-local entropy values for BASE (original) corpus and different transformed corpora. “Local shuffle” refers
to the K-LOCALDETERMINISTICSHUFFLE. Values are shown as mean * standard deviation (averaged over different

random seeds).
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Figure 5: Scatter plots of next-symbol cross-entropy (y-axis) versus m-local entropy (x-axis) for m € {2,3,4,5},
for both LSTM (top row) and causally-masked Transformer encoder (Transformer; bottom row) models.
Each marker type/color corresponds to a different perturbation (e.g., Reverse, DeterministicShuffle, K-
LOCALDETERMINISTICSHUFFLE with various window sizes, etc.). The red star indicates the unperturbed BASE
condition (original corpus). The dashed line in each panel is a linear fit, with R? indicating the coefficient of
determination.
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