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ABSTRACT

Dataset distillation has demonstrated strong performance on simple datasets like
CIFAR, MNIST, and TinyImageNet but struggles to achieve similar results in more
complex scenarios. In this paper, we propose EDF (emphasizes the discriminative
features), a dataset distillation method that enhances key discriminative regions in
synthetic images using Grad-CAM activation maps. Our approach is inspired by a
key observation: in simple datasets, high-activation areas typically occupy most of
the image, whereas in complex scenarios, the size of these areas is much smaller.
Unlike previous methods that treat all pixels equally when synthesizing images,
EDF uses Grad-CAM activation maps to enhance high-activation areas. From a
supervision perspective, we downplay supervision signals that have lower losses,
as they contain common patterns. Additionally, to help the DD community better
explore complex scenarios, we build the Complex Dataset Distillation (Comp-DD)
benchmark by meticulously selecting sixteen subsets, eight easy and eight hard,
from ImageNet-1K. In particular, EDF consistently outperforms SOTA results in
complex scenarios, such as ImageNet-1K subsets. Hopefully, more researchers
will be inspired and encouraged to improve the practicality and efficacy of DD.
Our code and benchmark will be made public.
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(a) The performance of dataset distillation
drops remarkably in complex scenarios.
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(b) Images from IN1K-CIFAR-10 have much lower activation
means and smaller highly activated areas.

Figure 1: (a) DD recovery ratio (distilled data accuracy over full data accuracy) comparison between
CIFAR-10 and IN1K-CIFAR-10. We use trajectory matching for demonstration. (b) Comparison
between Grad-CAM activation map statistics of CIFAR-10 and IN1K-CIFAR-10. The ratio refers to
the percentage of pixels whose activation values are higher than 0.5.

1 INTRODUCTION

Dataset Distillation (DD) has been making remarkable progress since it was first proposed by Wang
et al. (2020). Currently, the mainstream of DD is matching-based methods (Zhao et al., 2021; Zhao &
Bilen, 2021b;a; Cazenavette et al., 2022), which first extract patterns from the real dataset, then define
different types of supervision to inject extracted patterns into the synthetic data. On several simple
benchmarks, such as CIFAR (Krizhevsky, 2009) and TinyImageNet (Le & Yang, 2015), existing
matching-based DD methods can achieve lossless performance (Guo et al., 2024; Li et al., 2024).
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However, there is still a long way to go before DD can be practically used in real-world applications,
i.e., images in complex scenarios are characterized by significant variations in object sizes and the
presence of a large amount of class-irrelevant information. To show that current DD methods fail to
achieve satisfying performance in complex scenarios, we apply trajectory matching (Guo et al., 2024)
on a 10-class subset from ImageNet-1K extracted by selecting similar classes of CIFAR-10, called
IN1K-CIFAR-10. As depicted in Figure 1a, under three compressing ratios, DD’s performances1 on
IN1K-CIFAR-10 are consistently worse than those on CIFAR-10.

To figure out the reason behind the above results, we take a closer look at the ImageNet-1K and
CIFAR-10 from the data perspective. One key observation is that the percentage of discriminative
features in the complex scenario, which can be visualized by Grad-CAM (Selvaraju et al., 2016),
is much lower. From Figure 1b, CIFAR-10 images are mostly sticker-like, and activation maps
have higher means and larger highly activated areas. By contrast, activation maps of the IN1K-
CIFAR-10 subset exhibit much lower activation means and smaller highly activated areas. Previous
methods (Du et al., 2022; Khaki et al., 2024) treat all pixels of synthetic images equally. Therefore,
when applying these methods to more complex scenarios, the large ratio of low-activation areas leads
to non-discriminative features dominating the learning process, resulting in a drop in performance.
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(a) High-loss supervision increases activation means and expands the
high-activation area, while low-loss supervision reduces the activation
mean and shifts to the wrong discriminative area.
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(b) Triangles and circles represent real and synthetic image features,
respectively. As the distillation with low-loss only proceeds, more
and more common patterns are introduced to synthetic images.

Figure 2: (a) Grad-CAM activation maps of the image with
initialization, high-loss supervision distillation, and low-loss
supervision distillation. (b) t-SNE visualization of image fea-
tures with only low-loss supervision. Different colors represent
different classes. The top right is inter-class distance computed
by the average of point-wise distances.

From the supervision perspective,
taking trajectory matching as an ex-
ample, we investigate the impact of
trajectories with different loss val-
ues on synthetic images. Specif-
ically, we compare the trajectory-
matching performance between i)
using trajectory parameters with
low losses only and ii) using tra-
jectory parameters with high losses
only. The effect on a single im-
age is shown in Figure 2a. Low-
loss supervision reduces the mean
of Grad-CAM activation maps and
shrinks the high-activation area
(also shifted). By contrast, high-
loss supervision increases the acti-
vation mean and expands the high-
activation region.

Additionally, we visualize the inter-
class feature distribution for a
broader view. In Figure 2b, we show
the t-SNE of features of synthetic
images distilled by only low-loss
trajectories. As the distillation pro-
ceeds, synthetic image features of
different classes continuously come
closer, and the confusion among
classes becomes more severe, which
is likely caused by common patterns.
The above two phenomenons con-
firm that low-loss supervision pri-
marily reduces the representation of discriminative features and embeds more common patterns into
synthetic images, harming DD’s performance.

Based on the above observations, we propose to Emphasize Discriminative Features (EDF), built
on trajectory matching. To synthesize more discriminative features in the distilled data, we enable
discriminative areas to receive more updates compared with non-discriminative ones. This is achieved
by guiding the optimization of synthetic images with gradient weights computed from Grad-CAM
activation maps. Highly activated pixels are assigned higher gradients for enhancement. To mitigate

1We compare recovery ratios because datasets are different.
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Figure 3: Workflow of Emphasize Discriminative Features (EDF). EDF comprises two mod-
ules: (1) Common Pattern Dropout, which filters out low-loss signals, and the (2) Discriminative
Area Enhancement, which amplifies gradients in critical regions.

the negative impact of common patterns, the EDF distinguishes between different supervision signals
by dropping those with a low trajectory matching loss according to a drop ratio.

To help the community explore DD in complex scenarios, we extract new subsets from ImageNet-1K
with various levels of complexity and build the Complex DD benchmark (Comp-DD). The complexity
levels of these new subsets are determined by the average ratios of high-activation areas (Grad-CAM
activation value > predefined threshold). We run EDF and several typical DD methods on partial
Comp-DD and will release the full benchmark for future studies to further improve performance.

In summary, EDF consistently achieves state-of-the-art (SOTA) performance across various datasets,
underscoring the effectiveness of emphasizing discriminative features. On several ImageNet-1K
subsets, EDF achieves lossless performance. To the best of our knowledge, we are the first to
achieve lossless performance on ImageNet-1K subsets. We build the Complex Dataset Distillation
benchmark based on complexity, providing convenience for future research to continue improving
DD’s performance in complex scenarios.

2 METHOD

Our approach, Emphasize Discriminative Features (EDF), enhances discriminative features in
synthetic images during distillation. As shown in Figure 3, EDF first trains trajectories on real images
T and synthetic images S and computes the trajectory matching loss. Then, Common Pattern Dropout
filters out low-loss supervision signals, retaining high-loss ones for backpropagation. After obtaining
gradients for the synthetic images, Discriminative Area Enhancement uses dynamically extracted
Grad-CAM activation maps to rescale pixel gradients, focusing updates on discriminative regions.

2.1 COMMON PATTERN DROPOUT

This module reduces common patterns in supervision by matching expert and student trajectories on
real and synthetic data, then removing low-loss elements. This ensures only meaningful supervision
enhances the model’s ability to capture discriminative features.

Trajectory Generation and Loss Computation. To generate expert and student trajectories, we first
train agent models on real data for E epochs, saving the resulting parameters as expert trajectories,
denoted by {θt}E0 . At each distillation iteration, we randomly select an initial point θt and a target
point θt+M from these expert trajectories. Similarly, student trajectories are produced by initializing
an agent model at θt and training it on the synthetic dataset, yielding the parameters {θ̂t}N0 . The
trajectory matching loss is then computed by comparing the final student parameters θ̂t+N with the
expert’s target parameters θt+M , normalized by the initial difference:

L =
||θ̂t+N − θt+M ||2

||θt+M − θt||2
. (1)

Instead of directly summing this loss, we decompose it into an array of individual losses between
corresponding parameters in the expert and student trajectories, represented as L = {l1, l2, . . . , lP },
where P is the number of parameters, and li is the loss associated with the i-th parameter.

3
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Low-loss Element Dropping. Our analyses of Figure 2a and 2b show that low-loss signals typically
correspond to common patterns, which hinder the learning of key discriminative features, particularly
in complex scenarios. To address this, we sort the array of losses computed from the previous step
in ascending order. Using a predefined dropout ratio α, we discard the smallest ⌊α · P ⌋ losses (⌊⌋
denotes the floor function), which are assumed to capture common, non-discriminative features. The
remaining losses are summed and normalized to form the final supervision:

L
sort−−→ L

′
= {l1, l2, · · · , l⌊α·P⌋︸ ︷︷ ︸

dropout

, l⌊α·P⌋+1, · · · , lP︸ ︷︷ ︸
sum&normalize

}, (2)

where L
′

represents the updated loss array after dropping the lowest ⌊α ·P ⌋ elements. The remaining
losses, l⌊α·P⌋+1, . . . , lP , are then summed and normalized to form the final supervision signal.

2.2 DISCRIMINATIVE AREA ENHANCEMENT

After the pruned loss from Common Pattern Dropout is backpropagated, this module amplifies the
importance of discriminative regions in synthetic images. Grad-CAM activation maps are dynamically
extracted from the synthetic data to highlight areas most relevant for classification. These activation
maps are then used to rescale the pixel gradients, applying a weighted update that prioritizes highly
activated regions, thereby focusing the learning process on key discriminative features.

Activation Map Extraction. Grad-CAM generates class-specific activation maps by leveraging the
gradients that flow into the final convolutional layer, highlighting key areas relevant for predicting
a target class. To compute these maps, we first train a convolutional model G on the real dataset.
Following the Grad-CAM formulation (Equation 3), we calculate the activation map for each class c:
M c ∈ RIPC×H×W on the synthetic images (IPC is the number of images per class). The activation
map M c is a gradient-weighted sum of feature maps across all convolutional layers:

αc =
1

Z

∑
h

∑
w

∂yc

∂Al
h,w

M c = ReLU(
∑
l

αc
lA

l), (3)

αc represents the weight of the activation of the l-th convolutional layer, Al, computed by gradients.
Finally, we concatenate M c of all images in class c and obtain M ∈ R|S|×H×W .

Discriminative Area Biased Update. A major limitation of previous DD algorithms (Cazenavette
et al., 2022; Du et al., 2022; Guo et al., 2024) on the complex scenario is that they treat each pixel
equally and provide no guidance for the distillation process on which area of synthetic images should
be emphasized. Therefore, we propose to update synthetic images in a biased manner. Instead
of treating each pixel equally, we enhance the significance of discriminative areas by guiding the
optimization with activation maps extracted in the previous step. We define the discriminative area of
a synthetic image as the percentage of pixels with activation values above the mean since synthetic
images are dynamically changing (see Section 4.3 for discussion). Specifically, we process activation
maps from the previous step with a function F(M,β) to create weights for pixel gradients as follows:

F(M i
h,w, β) =

{
1 if M i

h,w < M̄ i,

β +M i
h,w if M i

h,w ≥ M̄ i.
(4)

M i
h,w denotes the activation value of the i the image at coordinate (h,w), and M̄ i denotes the mean

activation of M i. β ≥ 1 is called the enhancement factor. Then, we rescale the gradient matrix of
synthetic images by multiplying it with the weight matrix element-wise:

(∇Dsyn)edf = ∇Dsyn ◦ F(M,β). (5)

We drag gradients of discriminative areas to a higher range so that they receive more updates.

Dynamic Update of Activation Maps. As synthetic images are optimized, high-activation regions
shift over time. To capture these changes, we recompute the activation maps every K iterations,
focusing updates on the most relevant areas. The frequency K is a tunable hyperparameter, adjusted
based on the learning rate of the synthetic images (see Section 4.3 for details). This ensures evolving
discriminative areas are accurately captured. The complete algorithm is provided in the appendix A.

4
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Figure 4: (a) Statistics of the training set in the Comp-DD benchmark. Each subset contains 500
images in the validation set. (b) Comparison of subset-level complexity between easy and hard
subsets across all categories. The complexity of hard subsets is higher than that of easy subsets.

3 COMPLEX DD BENCHMARK

We introduce the Complex Dataset Distillation (Comp-DD) benchmark, which is constructed by
selecting subsets from ImageNet-1K based on their complexity. This benchmark represents an
early and pioneering effort to address dataset distillation in complex scenarios. Although there are
numerous benchmarks (Krizhevsky, 2009; Le & Yang, 2015; Cui et al., 2022b) for simpler tasks,
there is a notable absence of benchmarks designed specifically for complex scenarios. This gap
presents a significant challenge to advancing research in this area and limits the practical application
of dataset distillation. To bridge this gap, we propose the first dataset distillation benchmark explicitly
built around scenario complexity, aiming to promote further exploration within the DD community.

Complexity Metrics. We evaluate the complexity of an image by measuring the average size of
high-activation regions of the Grad-CAM activation map. Using a pre-trained ResNet model, we first
generate Grad-CAM activation maps for all images, class by class. For each image, we calculate the
percentage of pixels with activation values above a predefined threshold (set to 0.5 in our case), with
higher percentages indicating lower complexity (more clarifications can be found in Appendix D.2).
Formally, the complexity of the i-th image is computed as

∑
h

∑
w 1[M

i
h,w ≥ 0.5] where 1 is the

indicator function. The complexity of each class is then determined by averaging the complexity
scores across all images within that class.

Subset Selection. To reduce the influence of class differences, we select subsets from each category,
where a category consists of classes representing visually similar objects or animals of the same
species. This approach allows us to focus on complexity while controlling for inter-class variability.

Specifically, we first manually identify representative categories in ImageNet-1K with sufficient
numbers of classes (≥ 20). For each category, we rank the classes by complexity in descending order.
Following established practice, we construct two ten-class subsets for each category: the easy subset,
comprising the ten least complex classes, and the hard subset, comprising the ten most complex
classes. The subset-level complexity is determined by averaging the complexity scores across all
classes in each subset.

Statistics. We carefully selected eight categories from ImageNet-1K: Bird, Car, Dog, Fish, Snake,
Insect, Round, and Music. Each category contains two ten-class subsets: one easy and one hard, with
difficulty determined by the complexity metrics outlined above. Figure 4a summarizes the number of
training images in each subset, while all subsets contain 500 images in the validation set. To illustrate
the difference between easy and hard subsets, Figure 4b compares the subset-level complexity for
each category. As expected, the hard subsets display significantly higher complexity than the easy
subsets. For a detailed breakdown of the classes in each subset, please refer to Appendix D.1.
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Dataset IPC
DD Eval. w/ Knowledge Distillation

Full
Random MTT FTD DATM EDF SRe2L RDED EDF

ImageNette
1 12.6±1.5 47.7± 0.9 52.2 ± 1.0 52.5±1.0 52.6±0.5 20.8±0.2 28.9±0.1 25.7±0.4

87.8±1.010 44.8±1.3 63.0±1.3 67.7±0.7 68.9±0.8 71.0±0.8 50.6±0.8 59.0±1.0 64.5±0.6
50 60.4±1.4 75.4±0.9 77.8±0.5 73.8±0.6 83.1±0.6 84.8±0.5

ImageWoof
1 11.4±1.3 28.6±0.8 30.1±1.0 30.4±0.7 30.8±1.0 15.8±0.8 18.0±0.3 19.2±0.2

66.5±1.310 20.2±1.2 35.8±1.8 38.8±1.4 40.5±0.6 41.8±0.2 38.4±0.4 40.1±0.2 42.3±0.3
50 28.2±0.9 47.1±1.1 48.4±0.5 49.2±0.4 60.8±0.5 61.6±0.8

ImageMeow
1 11.2±1.2 30.7±1.6 33.8±1.5 34.0±0.5 34.5±0.2 22.2±0.6 19.2±0.8 20.8±0.5

65.2±0.810 22.4±0.8 40.4±2.2 43.3±0.6 48.9±1.1 52.6±0.4 27.4±0.5 44.2±0.6 48.4±0.7
50 38.0±0.5 56.4±0.9 59.5±0.6 35.8±0.7 55.0±0.6 58.2±0.9

ImageYellow
1 14.8±1.0 45.2±0.8 47.7±1.1 48.5±0.4 49.4±0.5 31.8±0.7 30.6±0.2 33.5±0.6

83.2±0.910 41.8±1.1 60.0±1.5 62.8±1.4 65.1±0.7 68.2±0.4 48.2±0.5 59.2±0.5 60.8±0.5
50 54.6±0.5 70.5±0.8 73.6±0.8 57.6±0.9 75.8±0.7 76.2±0.3

ImageFruit
1 12.4±0.9 26.6±0.8 29.1±0.9 30.9±1.0 32.8±0.6 23.4±0.5 33.8±0.4 29.6±0.4

64.4±0.810 20.0±0.6 40.3±0.5 44.9±1.5 45.5±0.9 46.2±0.6 39.2±0.7 45.4±0.6 48.4±0.8
50 33.6±0.9 48.2±0.5 50.5±0.5 44.2±0.8 54.8±0.9 56.4±0.6

ImageSquawk
1 13.2±1.1 39.4±1.5 40.5±0.9 41.1±0.6 41.8±0.5 21.2±1.0 33.8±0.6 30.5±0.5

86.4±0.810 29.6±1.5 52.3±1.0 58.4±1.5 61.8±1.3 65.4±0.8 39.2±0.3 59.0±0.5 59.4±0.6
50 52.8±0.4 71.0±1.2 74.8±1.2 56.8±0.4 77.2±1.2 77.8±0.5

Table 1: Results of depth-5 ConvNet on ImageNet-1K subsets. indicates worse performance than
DATM. EDF achieves SOTAs on all settings compared with DD methods. Compared with SRe2L
and RDED, we achieve SOTAs on 14 out of 18 settings.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets and Architecture. We conduct a comprehensive evaluation of EDF on six well-known
subsets (Howard, 2019) of ImageNet-1K: ImageNette, ImageWoof, ImageMeow, ImageYellow,
ImageFruit, and ImageSquawk. Each subset contains ten classes, with approximately 13,000 images
in the training set and 500 images in the validation set. On the Comp-DD benchmark, we report
the results of the Bird, Car, and Dog categories. For all experiments, we use a 5-layer ConvNet
(ConvNetD5) as both the distillation and the evaluation architecture. For cross-architecture evaluation
(see results in Appendix C.1), we validate synthetic data accuracy on ResNet-18 (He et al., 2015),
VGG11 (Simonyan & Zisserman, 2014), and Alexnet (Krizhevsky et al., 2012).
Baselines. We compare two baselines: dataset distillation (DD) methods and methods utilizing
knowledge distillation (Eval. w/ Knowledge Distillation) (Hinton et al., 2015). For DD methods,
we include trajectory-matching-based methods such as MTT (Cazenavette et al., 2022), FTD (Du
et al., 2022), and DATM (Guo et al., 2024). In the knowledge distillation group, we compare against
SRe2L (Yin et al., 2023) and RDED (Sun et al., 2023). The results for subsets not covered in these
papers are obtained through replication using the official open-source codebases and hyperparameters.

4.2 MAIN RESULTS

ImageNet-1K Subsets. We mainly conduct extensive experiments on the ImageNet-1K

Table 2: Lossless performance under IPC300.

Subset ImageMeow ImageYellow
IPC 200 300 200 300

Random 52.8±0.4 55.3±0.3 70.5±0.5 72.8±0.8
EDF 62.5±0.7 65.9±0.6 81.0±0.9 84.2±0.7
Full 65.2±1.3 83.2±0.9

subsets to compare the performance of EDF with
other approaches. The detailed results are shown in
Table 1. EDF consistently achieves state-of-the-art
(SOTA) results across all settings when compared to
other dataset distillation methods. On larger IPCs,
i.e., 200 or 300, the performance of EDF significantly
outperforms that observed with smaller IPCs. We
achieve lossless performances on ImageMeow and
ImageYellow under IPC300, 23% of real data, as
shown in Table 2.
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When evaluated against Eval. w/ Knowledge Distillation methods, our distilled datasets outperform
SRe2L and RDED in 14 out of 18 settings. It is important to note that applying knowledge distillation
(KD) for evaluation tends to reduce EDF’s pure dataset distillation performance, particularly in low
IPC (images per class) settings such as IPC1 and IPC10. This occurs because smaller IPCs lack the
capacity to effectively incorporate the knowledge from a well-trained teacher model. We also provide
results without knowledge distillation in Appendix C.2.

Method Bird-Easy Bird-Hard Dog-Easy Dog-Hard Car-Easy Car-Hard
IPC 10 50 10 50 10 50 10 50 10 50 10 50

Random 32.4±0.5 53.8±0.6 22.6±0.7 41.8±0.5 26.0±0.4 30.8±0.8 14.5±0.2 27.6±0.7 18.2±0.4 34.4±0.3 25.6±0.5 40.4±0.5
FTD 60.0±1.1 63.4±0.6 54.4±0.8 59.6±1.2 41.1±1.3 45.9±0.9 36.5±1.1 43.5±0.9 44.4±1.1 49.6±0.5 52.1±0.5 55.6±0.9

DATM 62.2±0.4 67.1±0.3 56.0±0.5 62.9±0.8 42.8±0.7 48.2±0.5 38.6±0.7 47.4±0.5 46.4±0.5 53.8±0.6 53.2±0.6 58.7±0.8
EDF 63.4±0.5 69.0±0.8 57.1±0.4 64.8±0.6 43.2±0.5 49.4±0.8 39.6±0.9 49.2±0.3 47.6±0.7 54.6±0.2 55.4±0.8 61.0±0.5

Full 81.6±1.0 82.4±0.8 57.3±0.3 58.4±0.5 63.5±0.2 72.8±1.1

(a) EDF achieves SOTAs on Bird, Dog, and Car categories of the Comp-DD benchmark

Category Bird Dog Car
IPC 10 50 10 50 10 50

Complexity Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard

Recovery ratio (%) 77.7 69.3 84.6 76.9 75.4 67.8 86.2 84.2 76.2 75.6 87.4 83.7

(b) Recovery ratios of easy subsets are higher than that of hard subsets, aligning with the complexity metrics.

Table 3: (a) Partial results on Bird, Dog, and Car categories of the Complex DD Benchmark under
IPC 10 and 50. (b) Recovery ratios (RR) of EDF on the partial Complex DD Benchmark.

Comp-DD Benchmark. The results for EDF on the Bird, Car, and Dog categories from the Comp-
DD Benchmark are shown in Table 3. EDF demonstrates superior test accuracies and recovery ratios
across both easy and hard subsets. As expected, the recovery ratios for easy subsets are consistently
higher than those for hard subsets, confirming that the hard subsets present a greater challenge
for dataset distillation methods. These results validate our complexity metrics, which effectively
distinguish the varying levels of difficulty between easy and hard subsets.

4.3 ABLATION STUDY

We conduct an ablation study to evaluate the impact of EDF’s key components, including the
supervision dropout ratio, strategies for discriminative area enhancement, and the frequency of
activation map updates. Unless otherwise specified, the following results are all based on ConvNetD5.

Effect of Modules. EDF introduces two key modules: Discriminative Area Enhancement (DAE)
and Common Pattern Dropout (CPD). We conduct an ablation study to assess the contribution of
each module independently. The results, presented in Table 4, demonstrate that both DAE and CPD
significantly improve the baseline performance. DAE’s biased updates toward high-activation areas
using activation-based gradient weights effectively enhance the discriminative features in synthetic
images. CPD, on the other hand, mitigates the negative influence of common patterns by filtering out
low-loss supervision, ensuring that the synthetic images retain their discriminative properties.

DAE CPD Accuracy(%)

39.2
✓ 40.3

✓ 41.1
✓ ✓ 41.8

(a) ImageWoof, IPC10

DAE CPD Accuracy(%)

48.9
✓ 49.5

✓ 51.2
✓ ✓ 52.6

(b) ImageMeow, IPC10

DAE CPD Accuracy(%)

65.1
✓ 66.2

✓ 67.5
✓ ✓ 68.2

(c) ImageYellow, IPC10

Table 4: Ablation results of two modules, DAE and CPD, on three ImageNet-1K subsets. Both
modules bring improvements to the performance, underscoring individual efficacy.

Supervision Dropout Ratio. The dropout ratio in CPD is critical for balancing the removal of
common patterns and dataset capacity (IPC). As shown in Table 5a, smaller IPCs benefit most
from moderate dropout ratios (12.5-25%), which filter low-loss signals while preserving important
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Ratio (%) 0 12.5 25 37.5 50 75

ImageFruit
1 32.8 32.4 32.3 31.8 30.6 29.1

10 45.4 45.9 46.5 46.2 45.8 44.3
50 49.5 50.1 50.7 50.9 50.6 49.2

ImageSquawk
1 41.8 41.3 41.2 41.0 39.6 38.1

10 64.8 65.0 65.4 65.2 64.9 63.2
50 73.9 74.2 74.6 74.8 74.5 72.8

(a) Within a reasonable range, the target supervision dropout
ratio increases as the IPC becomes larger. Dropping too much
supervision could result in losing too much information.

Frequency (iter.) 1 50 100 200

ImageNette
1 49.4 51.2 50.5 49.5
10 68.4 69.8 71.0 70.6
50 72.5 75.6 76.5 77.8

ImageYellow
1 47.8 49.4 49.2 48.2
10 66.4 67.8 68.2 67.2
50 70.4 72.2 73.1 73.6

(b) Within a reasonable range, a higher fre-
quency performs better on small IPCs, while
larger IPCs prefer a lower frequency.

Table 5: (a) Results of different supervision dropout ratios across various IPCs. (b) Results of
different activation map update frequencies across various IPCs.

IPC
Enhancement Factor (β)

0.5 1 2 5 10

1 33.4 34.5 34.3 33.2 31.8
10 50.1 52.6 52.1 49.4 49.0
50 57.8 59.5 59.2 58.1 57.6

IPC
Enhancement Factor (β)

0.5 1 2 5 10

1 29.1 30.8 30.5 30.2 28.8
10 40.9 41.2 41.8 41.0 40.4
50 47.5 48.2 48.4 48.1 47.2

(a) Results on ImageMeow (left) and ImageWoof (right). ImageWoof
has a higher complexity. Enhancement factor should be set within a
reasonable range (≥ 1 and ≤ 5 in general).

IPC
Activation Threshold

0.2 0.5 0.8 mean

1 34.2 34.0 33.8 34.5
10 51.2 52.3 51.5 52.6
50 58.0 59.0 58.4 59.5

(b) Using “mean” as a dynamic
threshold gives the best perfor-
mance on three IPCs.

Table 6: (a) Ablation of the enhancement factor on ImageMeow and ImageWoof, both IPC10. (b)
Ablation of the activation threshold on ImageMeow IPC10.

information. For larger IPCs, higher dropout ratios (37.5-50%) improve performance, as these
datasets can tolerate more aggressive filtering. However, an excessively high ratio (e.g., 75%) reduces
performance across all IPCs by discarding too much information, weakening the ability to learn.

Frequency of Activation Map Update. To accurately capture the evolving discriminative features in
synthetic images, EDF dynamically updates the Grad-CAM activation maps at a predefined frequency.
The choice of update frequency should be adjusted based on the IPC to achieve optimal performance.
As shown in Table 5b, larger IPCs benefit from a lower update frequency, as the pixel learning rate is
set lower for more stable distillation. In contrast, smaller IPCs require a higher update frequency to
effectively adapt to the faster changes in the synthetic images during training.

This trend is influenced by the pixel learning rate: larger IPCs can use lower rates to ensure smooth
convergence, making frequent updates unnecessary. Smaller IPCs, with limited data capacity, require
higher learning rates and more frequent updates to quickly adapt to changes in discriminative areas.
Thus, selecting the appropriate update frequency is essential for balancing stability and adaptability
in the distillation process, depending on dataset size and complexity.

Strategies for Discriminative Area Enhancement. The Discriminative Area Enhancement (DAE)
component involves two key factors: the enhancement factor β and the threshold for activation maps.
Ablation studies (Table 6a) show that the best performance is achieved when β is between 1 and
2. When β < 1, some discriminative areas are diminished rather than enhanced, as their gradient
weights become < 1. Conversely, excessively large β values (≥ 10) lead to overemphasis on certain
areas, distorting the overall learning process (see Appendix C.3 for examples of this distortion).
Therefore, β should be reasonably controlled to balance the emphasis on discriminative regions.

Regarding the threshold for activation maps, using the mean activation value as a dynamic threshold
results in better performance compared to using a fixed threshold. This is because the mean adapts
to the evolving activation maps during training, whereas a fixed threshold risks either emphasizing
low-activation areas if set too low or omitting key discriminative features if set too high.

5 ANALYSIS AND DISCUSSION

Disitlled Images of Different Supervision. As pointed out earlier, low-loss supervision tends to
introduce common patterns, such as backgrounds and general colors, while high-loss supervision
contains discriminative, class-specific features. To visualize this effect, we select two images with
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High loss Low lossReal images

discriminative 
features

common 
patterns

(a) Low-loss supervision mainly
embeds common patterns (back-
ground, colors).

Initialized 
images

EDF
distilled 
images

32.6%

57.1%

32.6%

46.9%

38.1%

44.8%

41.3%

46.9%

38.7%

46.9%

40.8%

48.9%

45.3% 40.8% 38.4% 46.2% 44.2%40.6%

DATM
distilled 
images

40.8%36.5%

41.5%32.9%

38.4% 42.9%
24.5% 8.2% 14.3% 8.1% 1.9% 2.1% 5.6%6.7%

(b) EDF largely increases the percentage of discriminative areas (bottom left
figure of each image) with an average of 9%, achieving the highest. Our
distilled images contain more discriminative features.

Figure 5: (a) Comparison of discriminative areas in images produced by initialization, DATM, and
EDF. Figures at the bottom are increments made by EDF over the initial image. (b) Comparison
between high-loss and low-loss supervision distilled images.

similar backgrounds and colors, but distinct objects. Two images are then distilled by high-loss and
low-loss supervision, respectively. As shown in Figure 5a, common patterns are indeed widely present
in low-loss supervision distilled images, making two images hard to distinguish. In contrast, high-loss
supervision preserves more discriminative details, enabling the model to distinguish between two
classes. This further confirms the validity of dropping low-loss supervision and underscores the
effectiveness of the Common Pattern Dropout (CPD) module in mitigating the negative impact of
common features.

Enhancement of Discriminative Areas. Our Discriminative Area Enhancement (DAE) module
aims to amplify updates in high-activation areas of synthetic images, as identified by Grad-CAM.
To show how DAE enhances discriminative areas, we visualize the same group of images under
initialization, DATM distillation, and EDF distillation in Figure 5b We also report discriminative area
statistics, computed by the percentage of pixels whose activation values are higher than the mean, on
each image at the bottom left. As can be discovered, DATM is capable of increasing discriminative
regions, while EDF can achieve a more significant enhancement. Visually, the enhancement manifests
through an increased number of core objects and enlarged areas of class-specific features. Moreover,
EDF’s enhancement is more pronounced especially when the image has smaller discriminative areas
initially, e.g. discriminative features of the first column image increase by 24.5%. These phenomena
demonstrate the effectiveness of EDF in capturing and emphasizing discriminative features.

Layer1 2 3 4 5 6 7 8 9 10 11

Trajectory-matching loss per 
layer in ConvNetD5 

Strategy Random Uniform First Middle Last EDF

Param. to layer 1, 2, 5, 8, 9 1 - 11 1, 2, 3 5,6 9, 10, 11 2, 4, 5, 6
Acc. (%) 71.3 68.7 71.9 73.1 65.4 74.8

Table 7: EDF’s loss-wise dropout performs the best. The
dropping ratio of all criteria is fixed at 25%. “Param. to layer”
refers to layers that contain dropped trajectory parameters.

Supervision Dropout Criteria. To
assess the effectiveness of supervision
dropout strategies, we compare sev-
eral dropout approaches. These strate-
gies are classified into two categories:
(i) dynamic dropout, which includes
random selection from all layers, and
(ii) static dropout, which includes uni-
form selection across layers and fixed
selection from the first, middle, or
last layers. As shown in Table 7,
all strategies except EDF’s loss-based
dropout lead to performance degrada-
tion, with uniform selection and last-
layer dropout causing the most significant performance loss.

The reasons for this are twofold. First, low-loss trajectory parameters—primarily located in the
shallow layers of the model—are the main source of common patterns. Discarding supervision
from deep layers, where loss values are higher (random selection, uniform selection, or last-layer
dropout), reduces the presence of discriminative features. Second, static dropout fails to account for
the dynamic nature of low-loss supervision, as trajectory-matching losses vary across layers as the

9
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distillation process evolves. By addressing these issues, EDF’s loss-based dropout in CPD mitigates
the effects of common patterns and yields superior performance.

6 RELATED WORK

Approaches. Dataset Distillation (DD) aims to create compact datasets that maintain performance
levels comparable to full-scale datasets. It can be applied in practical fields such as continual learning
(Masarczyk & Tautkute, 2020; Rosasco et al., 2021), privacy preservation (Dong et al., 2022; Yu et al.,
2023), and neural architecture search (Jin et al., 2018; Pasunuru & Bansal, 2019). Approaches in DD
can be categorized into two primary approaches: matching-based and knowledge-distillation-based.

1) Matching-based approaches are foundational in DD research, focusing on aligning synthetic
data with real datasets by capturing essential patterns. Landmark works like gradient matching
(DC) (Zhao et al., 2021), distribution matching (DM) (Zhao & Bilen, 2021a), and trajectory matching
(MTT) (Cazenavette et al., 2022) extract critical metrics from real datasets, then replicate these
metrics in synthetic data. Subsequent research has refined these methods, improving the fidelity
of distilled datasets (Zhao & Bilen, 2021b; Wang et al., 2022; Zhao et al., 2023; Lee et al., 2022b;
Liu et al., 2023a;b; Cazenavette et al., 2023; Sajedi et al., 2023; Khaki et al., 2024). Data selection
techniques have been integrated to synthesize more representative samples (Xu et al., 2023; Sundar
et al., 2023; Lee & Chung, 2024). Recent advancements optimize distillation for different image-per-
class (IPC) settings, balancing dataset size and information retention (Du et al., 2023; Chen et al.,
2023; Guo et al., 2024; Li et al., 2024; Lee & Chung, 2024). Moreover, soft labels have been widely
applied to improve the performance (Sucholutsky & Schonlau, 2021; Cui et al., 2022a; Qin et al.,
2024; Yu et al., 2024). Despite these improvements, most matching-based approaches treat all pixels
uniformly, failing to emphasize discriminative regions and often overlooking distinctions between
supervision signals, limiting their effectiveness on complex datasets like ImageNet-1K.

2) Knowledge-distillation-based approaches take an alternative route by aligning teacher-student
model outputs when evaluating distilled datasets. Notable examples include SRe2L (Yin et al., 2023)
and RDED (Sun et al., 2023), where the student model is trained by aligning outputs with outputs of
a teacher model on the same batch of synthetic data, specifically by minimizing the Kullback-Leibler
(KL) divergence between the student’s predictions and the teacher’s output. In our work, we adopt
knowledge distillation as a validation strategy for fair comparisons.

Benchmarks. DD research has mainly focused on simpler datasets such as CIFAR (Krizhevsky,
2009), TinyImageNet (Le & Yang, 2015), and DC-BENCH (Cui et al., 2022b). These datasets contain
a high proportion of class-specific information, enabling DD methods to extract and synthesize dis-
criminative features more easily. However, research in more complex scenarios has been limited. To
address this, we propose the Comp-DD benchmark, which systematically explores dataset distillation
complexity by curating subsets from ImageNet-1K with varying degrees of difficulty. This benchmark
provides a more rigorous evaluation framework, facilitating deeper exploration of DD in complex,
real-world settings and encouraging further advances in the field.

7 CONCLUSION

We introduced Emphasize Discriminative Features (EDF), a dataset distillation method that enhances
class-specific regions in synthetic images. EDF addresses two key limitations of prior methods:
i) enhancing discriminative regions in synthetic images using Grad-CAM activation maps, and ii)
filtering out low-loss signals that embed common patterns through Common Pattern Dropout (CPD)
and Discriminative Area Enhancement (DAE). EDF achieves state-of-the-art results across ImageNet-
1K subsets, including lossless performance on several of them. We also proposed the Comp-DD
benchmark, designed to evaluate dataset distillation in both simple and complex settings.

Limitations and Future Work. EDF dynamically updates Grad-CAM activation maps of synthetic
images according to an update frequency. This may introduce extra computation, especially when the
IPC is large. Also, we only use Grad-CAM to evaluate discriminative areas of an image in this work.
In the future, other indicators that can identify discriminative features of an image can be used jointly
to include more perspectives.
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APPENDIX

We organize our appendix as follows.

Algorithm of EDF:

• Appendix A: Pseudo code of EDF with detailed explanation.

Experimental Settings:

• Appendix B.1: Training recipe.

• Appendix B.2: Evaluation recipe.

• Appendix B.3: Computing resources required for different settings.

Additional Experimental Results and Findings:

• Appendix C.1: Cross-architecture evaluation.

• Appendix C.2: Results of distilled datasets without knowledge-distillation-based evaluation.

• Appendix C.3: Distorted synthetic images under excessive enhancement factors.

Comp-DD Benchmark

• Appendix D.1: Subset details of the Comp-DD benchmark.

• Appendix D.3: Hyper-parameters of the Comp-DD benchmark.

• Appendix D.2: More clarifications on the complexity metrics.

Visualization

• Appendix E: Visualization of EDF distilled images.

Related Work

• Appendix F: More related work of dataset distillation.

A ALGORITHM OF EDF

Algorithm 1 provides a pseudo-code of EDF. Lines 1-7 specify inputs of the EDF, including a
trajectory-matching algorithmA, the model for Grad-CAM G, the frequency of activation map update
K, the supervision dropout ratio α, the enhancement factor β, the activation map processing function
F , and the number of distillation iterations T .

Lines 12-14 describe the Common Pattern Dropout module. After we obtain the trajectory matching
losses from A, we sort them in ascending order to get ordered losses. Then, the smallest α|L|
elements are dropped as they introduce non-discriminative common patterns.

Lines 15-19 describe the Discriminative Area Enhancement module. For every K iterations, we
update activation maps of synthetic images. The gradients of synthetic images are then processed by
the function F (see Equation 4 for the computation). Finally, synthetic images are updated biasedly
towards discriminative areas.

B EXPERIMENTAL SETTINGS

B.1 TRAINING DETAILS

We follow previous trajectory matching works (Du et al., 2022; Guo et al., 2024; Li et al., 2024)
to train expert trajectories for one hundred epochs. Hyper-parameters are directly adopted without
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Algorithm 1 Emphasizing Discriminative Features

1: Input: Dreal: The real dataset
2: Input: Dsyn: The synthetic dataset
3: Input: A: A trajectory-matching based algorithm
4: Input: G: Grad-CAM model
5: Input: K: Activation maps update frequency
6: Input: α: Threshold of supervision dropout
7: Input: T : Total distillation steps
8: Input: β: Enhancement factor
9: Input: F : Activation map processing function

10: Input: r: Learning rate of synthetic dataset
11: for t in 0 . . . T − 1 do
12: L← A(Dsyn, Dreal) ▷ Compute the array of trajectory matching losses
13: L′ ← Sort(L) ▷ Sort L to get ordered losses
14: Ledf ←

∑|L|
i=α|L| L

′
i ▷ Dropout low-loss supervision

15: if t mod K = 0 then
16: M ← G(Dsyn) ▷ Update activation maps of current S
17: end if
18: (∇Dsyn)EDF ← ∇Dsyn ◦ F(M,β) ▷ Process synthetic image gradients
19: Dsyn ← Dsyn − r · (∇Dsyn)EDF ▷ Biased update towards discriminative areas
20: end for
21: Return Dsyn

modification. For distillation, we implement EDF based on DATM (Guo et al., 2024) and PAD (Li
et al., 2024), which simultaneously distills soft labels along with images.

We use torch-cam (Fernandez, 2020) for Grad-CAM implementation. Hyper-parameters are listed in
Table 8.

B.2 EVALUATION DETAILS

To achieve a fair comparison, when comparing EDF with DD methods, we only adopt the set of
differentiable augmentations commonly used in previous studies (Zhao & Bilen, 2021b;a; Cazenavette
et al., 2022) to train a surrogate model on distilled data and labels.

When comparing EDF with DD+KD methods, we follow their evaluation methods, which we detail
the steps as follows:

1. Train a teacher model on the real dataset and freeze it afterward.

2. Train a student model on the distilled dataset by minimizing the KL-Divergence loss
between the output of the student model and the output of the teacher model on the same
batch from distilled data.

3. Validate the student model on the test set and obtain test accuracy.

For implementation, please refer to the official repo of SRe2L1 and RDED2.

B.3 COMPUTING RESOURCES

Experiments on IPC 1/10 can be run with 4x Nvidia-A100 80GB GPUs, and experiments on IPC 50
can be run with 8x Nvidia-A100 80GB GPUs. The GPU memory demand is primarily dictated by the
volume of synthetic data per batch and the total training iterations the augmentation model undergoes
with that data. When IPC becomes large, GPU usage can be optimized by either adopting techniques
like TESLA (Cui et al., 2022a) or by scaling down the number of training iterations (”syn steps”) or
shrinking the synthetic data batch size (”batch syn”).

1https://github.com/VILA-Lab/SRe2L/tree/main/SRe2L
2https://github.com/LINs-lab/RDED
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Modules CPD DAE TM
Hyper-parameters α β K T batch syn lr pixel lr label syn steps

ImageNette
1 0 1 50

10000
1000 10000 2.0

4010 0.25 1 100 400 1000 2.0
50 0.375 2 200 200 100 5.0

ImageWoof
1 0 1 50

10000
1000 10000 2.0

4010 0.25 2 100 400 1000 2.0
50 0.375 1 200 200 100 5.0

ImageMeow
1 0 1 50

10000
1000 10000 3.0

4010 0.25 1 100 400 1000 2.0
50 0.375 2 200 200 100 5.0

ImageYellow
1 0 1 50

10000
1000 10000 3.0

4010 0.25 1 100 400 1000 3.0
50 0.375 2 200 200 100 5.0

ImageFruit
1 0 1 50

10000
1000 10000 3.0

4010 0.25 1 100 400 1000 2.0
50 0.375 2 200 200 100 5.0

ImageSquawk
1 0 1 50

10000
1000 10000 3.0

4010 0.25 1 100 400 1000 3.0
50 0.375 2 200 200 100 5.0

Table 8: Hyper-parameters of experiments on ImageNet-1K and nette, woof, meow, fruit, yellow,
squawk subsets.

Method ConvNetD5 ResNet18 VGG11 AlexNet

Random 41.8 40.9 43.2 35.7
FTD 62.8 49.8 50.5 47.6

DATM 65.1 52.4 51.2 49.6
EDF 68.2 50.8 53.2 48.2

(a) ImageYellow, IPC10

Method ConvNetD5 ResNet18 VGG11 AlexNet

Random 29.6 31.4 30.8 25.7
FTD 58.4 55.6 57.6 52.3

DATM 61.8 62.8 65.6 63.5
EDF 65.4 63.6 64.8 69.2

(b) ImageSquawk, IPC50

Table 9: Cross-architecture evaluation on ResNet18, VGG11, and AlexNet. ConvNetD5 is the
distillation architecture. Distilled datasets under IPC10 and IPC50 outperform random selection,
FTD, and DATM, showing good generalizability.

C ADDITIONAL EXPERIMENT RESULTS AND FINDINGS

C.1 CROSS-ARCHITECTURE EVALUATION

Generalizability on different model architectures is one key property of a well-distilled dataset. To
show that EDF can generalize well on different models, we evaluate synthetic images under IPC 10
and 50 of the ImageSquawk subset, on three other standard models, AlexNet (Krizhevsky et al., 2012),
VGG11 (Simonyan & Zisserman, 2014), and ResNet18 (He et al., 2015). As shown in Table 11,
our distilled datasets outperform random selection and two baseline methods on both IPC10 and
IPC50. Compared with IPC10, distilled images under IPC50 can achieve better performance on
unseen neural networks. This suggests that EDF’s distillation results have decent generalizability
across different architectures, especially when the compressing ratio is smaller which allows distilled
datasets to accommodate more discriminative information.

C.2 EVAL. WITHOUT KNOWLEDGE DISTILLATION

Starting from Wang et al. (2020), representative dataset distillation (DD) methods (Zhao et al., 2021;
Zhao & Bilen, 2021b; Cazenavette et al., 2022; Wang et al., 2022) establish a general workflow as
follows: 1) Distillation: At this stage, information from the real dataset is fully accessible to the DD
algorithm to train synthetic data. 2) Evaluation: After the distilled dataset is obtained, the evaluation
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Dataset ImageNette ImageWoof ImageSquawk

IPC 1 10 50 1 10 50 1 10 50
SRe2L 18.4±0.8 41.0±0.3 55.6±0.2 16.0±0.2 32.2±0.3 35.8±0.2 22.5±0.5 35.6±0.4 42.2±0.3
RDED 28.0±0.5 53.6±0.8 72.8±0.3 19.0±0.3 32.6±0.5 52.6±0.6 33.8±0.5 52.2±0.5 71.6±0.8
EDF 52.6±0.5 71.0±0.8 77.8±0.5 30.8±1.0 41.8±0.2 48.4±0.5 41.8±0.5 65.4±0.8 74.8±1.2

Table 10: Performances of SRe2L and RDED without using knowledge distillation during evaluation.
EDF outperforms the other two methods in most of settings, and our advantage is more pronounced
as IPC gets smaller.

is performed by training a randomly initialized model on the distilled data. Specifically, in the context
of classification, the objective is to minimize cross-entropy loss. Recently, some new methods (Yin
et al., 2023; Sun et al., 2023) introduced teacher knowledge into the student model by applying
knowledge distillation. Although it helps improve performances to a large extent, it may not be able
to reflect the effectiveness of dataset distillation accurately.

To this end, we remove the knowledge distillation from Eval. w/ Knowledge Distillation (SRe2L and
RDED) methods but keep soft labels to ensure a fair comparison, Specifically, we train a classification
model on the synthetic images by only minimizing the cross-entropy loss between student output
and soft labels. As shown in Table 10, without knowledge distillation, EDF outperforms SRe2L and
RDED in 8 out of 9 settings. Our advantage is more pronounced, especially when IPC is smaller,
underscoring the superior efficacy of EDF on smaller compressing ratios.

C.3 DISTORTED IMAGES OF LARGE ENHANCEMENT FACTOR

In Figure 6, we show results of using excessively large enhancement factors as mentioned in Sec-
tion 4.3. The distributions of these distilled images are distorted, with many pixels containing only
blurred information. This occurs because excessively increasing the gradients in discriminative areas
can lead to large updates between iterations, resulting in the divergence of the pixel distribution.
Therefore, the enhancement of discrimination areas is not the stronger the better. It is important to
maintain the enhancement factor within a reasonable range.

𝛽 = 1

𝛽 = 5

𝛽 = 10

Figure 6: Distorted image distributions due to excessively large enhancement factors (= 10)

D COMP-DD BENCHMARK

D.1 SUBSET DETAILS

The corresponding class labels for each subset are listed as follows:
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(a) In general, discriminative areas show a trend of increase as the
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Figure 7: (a) The trend of discriminative area change across various distillation iterations. (b)
Distribution of the activation map of a random image from ImageNet-1K.

• Bird-Hard: n01537544, n01592084, n01824575, n01558993, n01534433, n01843065,
n01530575, n01560419, n01601694, n01532829

• Bird-Easy: n02007558, n02027492, n01798484, n02033041, n02012849, n02025239,
n01818515, n01820546, n02051845, n01608432

• Dog-Hard: n02107683, n02107574, n02109525, n02096585, n02085620, n02113712,
n02086910, n02093647, n02086079, n02102040

• Dog-Easy: n02096294, n02093428, n02105412, n02089973, n02109047, n02109961,
n02105056, n02092002, n02114367, n02110627

• Car-Hard: n04252077, n03776460, n04335435, n03670208, n03594945, n03445924,
n03444034, n04467665, n03977966, n02704792

• Car-Easy: n03459775, n03208938, n03930630, n04285008, n03100240, n02814533,
n03770679, n04065272, n03777568, n04037443

• Snake-Hard: n01693334, n01687978, n01685808, n01682714, n01688243, n01737021,
n01751748, n01739381, n01728920, n01728572

• Snake-Easy: n01749939, n01735189, n01729977, n01734418, n01742172, n01744401,
n01756291, n01755581, n01729322, n01740131

• Insect-Hard: n02165456, n02281787, n02280649, n02172182, n02281406, n02165105,
n02264363, n02268853, n01770081, n02277742

• Insect-Easy: n02279972, n02233338, n02219486, n02206856, n02174001, n02190166,
n02167151, n02231487, n02168699, n02236044

• Fish-Hard: n01440764, n02536864, n02514041, n02641379, n01494475, n02643566,
n01484850, n02640242, n01698640, n01873310

• Fish-Easy: n01496331, n01443537, n01498041, n02655020, n02526121, n01491361,
n02606052, n02607072, n02071294, n02066245

• Round-Hard: n04409515, n04254680, n03982430, n04548280, n02799071, n03445777,
n03942813, n03134739, n04039381, n09229709

• Round-Easy: n02782093, n03379051, n07753275, n04328186, n02794156, n09835506,
n02802426, n04540053, n04019541, n04118538

• Music-Hard: n02787622, n03495258, n02787622, n03452741, n02676566, n04141076,
n02992211, n02672831, n03272010, n03372029

• Music-Easy: n03250847, n03854065, n03017168, n03394916, n03721384, n03110669,
n04487394, n03838899, n04536866, n04515003
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std: 3.2%

Figure 8: Complexity distribution of all classes from ImageNet-1K under threshold being 0.1.

std: 2.1%

Figure 9: Complexity distribution of all classes from ImageNet-1K under threshold being 0.9.

D.2 COMPLEXITY METRICS

We use the percentage of pixels whose Grad-CAM activation values exceed a predefined fixed
threshold to evaluate the complexity of an image. In our settings, the fixed threshold is 0.5. The
reasons for fixing the threshold at 0.5 are twofold. Firstly, when selecting subsets, images are static
and won’t be updated in any form (this is different from EDF’s DAE module, which updates synthetic
images). Thus, using a fixed threshold is sufficient for determining the high-activation areas.

Secondly, values of a Grad-CAM activation map range from 0 to 1, with higher values corresponding
to higher activation. We present the distribution of the activation map of a random image from
ImageNet-1K in Figure 13b, where the majority of pixels have activation values between 0.25 and
0.75. Subsequently, if the threshold is too small or too large, the complexity scores of all classes
will be close (standard deviation is small), as shown in Figure 12 and 13. This results in no clear
distinguishment between easy and hard subsets. Finally, we set 0.5 as the threshold, which is the
middle point of the range. Complexity distribution under this threshold is shown in Figure 10.

Our complexity metrics are an early effort to define how complex an image is in the context of
dataset distillation. We acknowledge potential biases or disadvantages and encourage future studies
to continue the refinement of complex metrics.

D.3 BENCHMARK HYPER-PARAMETERS

For the trajectory training, experiment settings are the same as those used for ImageNet-1K and its
subsets. For distillation, we provide hyper-parameters of EDF on the Complex DD Benchmark in
Table 11. These hyper-parameters can serve as a reference for future works to extend to other subsets
of the benchmark.

E VISUALIZATION OF DISTILLED IMAGES ON IMAGENET-1K

In Figure 11 to 13, we present a visualization of distilled images of all ImageNet-1K subsets in
Table 1.
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std: 9.6%

Figure 10: Complexity distribution of all classes from ImageNet-1K under threshold being 0.5.

Modules CPD DAE TM
Hyper-parameters α β K T batch syn lr pixel lr label syn steps

CDD-Bird-Easy
1 0 1 50

10000
1000 10000 2.0

4010 0.25 1 100 400 1000 3.0
50 0.375 2 200 200 100 5.0

CDD-Bird-Hard
1 0 1 50

10000
1000 10000 2.0

4010 0.25 1 100 400 1000 3.0
50 0.375 2 200 200 100 5.0

CDD-Dog-Easy
1 0 1 50

10000
1000 10000 2.0

4010 0.25 1 100 400 1000 5.0
50 0.375 2 200 200 100 5.0

CDD-Dog-Hard
1 0 1 50

10000
1000 10000 2.0

4010 0.25 1 100 400 1000 2.0
50 0.375 2 200 200 100 5.0

CDD-Car-Easy
1 0 1 50

10000
1000 10000 3.0

4010 0.25 1 100 400 1000 3.0
50 0.375 2 200 200 100 5.0

CDD-Car-Hard
1 0 1 50

10000
1000 10000 3.0

4010 0.25 1 100 400 1000 3.0
50 0.375 2 200 200 100 5.0

Table 11: Hyper-parameters of EDF on the Complex DD Benchmark.

F MORE RELATED WORK

In Table 12, we present a comprehensive summary of previous dataset distillation methods, cate-
gorized by different approaches. There are four main categories of dataset distillation: gradient
matching, trajectory matching, distribution matching, and generative model-based methods. Recently,
some works (Yin et al., 2023; Sun et al., 2023; Yu et al., 2024) add knowledge distillation during the
evaluation stage of dataset distillation.
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(a) ImageNette (b) ImageWoof

Figure 11

(a) ImageMeow (b) ImageFruit

Figure 12
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(a) ImageYellow (b) ImageSquawk

Figure 13

Category Method

Gradient-matching

DC (Zhao et al., 2021)
DSA (Zhao & Bilen, 2021b)

DCC (Lee et al., 2022a)
LCMat (Shin et al., 2023)

Trajectory-matching

MTT (Cazenavette et al., 2022)
Tesla (Cui et al., 2022a)
FTD (Du et al., 2022)

SeqMatch (Du et al., 2023)
DATM (Guo et al., 2024)

ATT (Liu et al., 2024)
NSD (Yang et al., 2024)

PAD (Li et al., 2024)
SelMatch (Lee & Chung, 2024)

Distribution-matching

DM (Zhao & Bilen, 2021a)
CAFE (Wang et al., 2022)
IDM (Zhao et al., 2023)

DREAM (Liu et al., 2023b)
M3D (Zhang et al., 2023)

Generative model

DiM Wang et al. (2023)
GLaD (Cazenavette et al., 2023)

H-GLaD (Zhong et al., 2024)
LD3M (Moser et al., 2024)

IT-GAN (Zhao & Bilen, 2022)
D4M Su et al. (2024)

Minimax Diffusion Gu et al. (2023)

+ Knowledge distillation for evaluation
SRe2L (Yin et al., 2023)
RDED (Sun et al., 2023)
HeLIO (Yu et al., 2024)

Table 12: Summary of previous works on dataset distillation
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