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Abstract

We develop an analytical framework for understanding how the generated distribu-
tion evolves during diffusion model training. Leveraging a Gaussian-equivalence
principle, we solve the full-batch gradient-flow dynamics of linear and convolu-
tional denoisers and integrate the resulting probability-flow ODE, yielding ana-
lytic expressions for the generated distribution. The theory exposes a universal
inverse-variance spectral law: the time for an eigen- or Fourier mode to match
its target variance scales as τ ∝ λ−1, so high-variance (coarse) structure is mas-
tered orders of magnitude sooner than low-variance (fine) detail. Extending the
analysis to deep linear networks and circulant full-width convolutions shows that
weight sharing merely multiplies learning rates—accelerating but not eliminat-
ing the bias—whereas local convolution introduces a qualitatively different bias.
Experiments on Gaussian and natural-image datasets confirm the spectral law
persists in deep MLP-based UNet. Convolutional U-Nets, however, display rapid
near-simultaneous emergence of many modes, implicating local convolution in re-
shaping learning dynamics. These results underscore how data covariance governs
the order and speed with which diffusion models learn, and they call for deeper
investigation of the unique inductive biases introduced by local convolution.

1 Introduction

Figure 1: Spectral-bias schematic. Learning and sam-
pling together impose a variance-ordered bias along
covariance eigenmodes.

Diffusion models create rich data by
gradually transforming Gaussian noise
into signal, a paradigm that now drives
state-of-the-art generation in vision, audio,
and molecular design [1, 2, 3]. Yet two
basic questions remain open. (i) Which
parts of the data distribution do these
models learn first, and which linger un-
learned—risking artefacts under early stop-
ping? (ii) How does architectural inductive
bias shape this learning trajectory? Ad-
dressing both questions demands that we
track the evolution of the full generated dis-
tribution during training and relate it to the
network’s parameterization.

We tackle the learning puzzle through the
simplest tractable setting—linear denoisers—where datasets become equivalent to a Gaussian with
matched mean and covariance. In this regime we solve, in closed form, the nested dynamics of
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gradient-flow of the weights and the probability-flow ODE that carries noise into data, leading to an
analytical characterization of the evolution of the generated distribution. The analysis exposes an
inverse-variance spectral law: the time required for an eigen-mode to match target variance scales
like τk ∝ λ−α

k , so high-variance directions corresponding to global structure are mastered orders of
magnitude sooner than low-variance, fine-detail directions. Extending the analysis to deep linear and
linear convolutional nets, we show how convolutional architecture redirect this bias to Fourier or
patch space, and accelerate convergence via weight sharing.

Main contributions 1. Closed-form distribution dynamics. We derive exact weight and distribu-
tional trajectories for one-layer, two-layer linear, and convolutional denoisers under full-batch DSM
training. 2. Inverse-variance spectral bias. The theory reveals and quantifies a spectral-law ordering
of mode convergence, offering one mechanistic explanation for early-stop errors. 3. Empirical
validation in nonlinear neural nets. Experiments on Gaussian and natural-image datasets confirm
the spectral-law in deep MLP-based diffusion. 4. Convolutional architectural shape learning
dynamics. Experiments on convolutional UNet, showing rapid patch-first learning dynamics different
from fully-connected architectures.

2 Related Work and Motivation: Spectral Bias in Distribution Learning

Spectral structure of natural data Many natural signals have interesting spectral structures (e.g.
image [4], sound [5], video [6]). For natural images, their covariance eigenvalues decay as a power
law, and the corresponding eigenvectors can align with semantically meaningful patterns [4]. For
faces, for instance, leading eigenmodes capture coarse, low-frequency shape variations, whereas
tail modes encode fine-grained textures [7, 8]. Analyzing spectral effect on diffusion learning can
therefore show which type of features the model acquires first and which remain slow to learn.

Hidden Gaussian Structure in Diffusion Model Recent work has shown, for most diffusion
times, the learned neural score is closely approximated by the linear score of a Gaussian fit to the
data, which is usually the best linear approximation [9, 10]. Crucially, this Gaussian linear score
admits a closed-form solution to the probability-flow ODE, which can be exploited to accelerate
sampling and improve its quality [11]. Moreover, this same linear structure has been linked to
the generalization–memorization transition in diffusion models [10]. In sum, across many noise
levels, the Gaussian linear approximation is a predominant structure in the learned score. Thus, we
hypothesize it will have a significant effect on the learning dynamics of score approximator. From
this perspective, our contribution is to elucidate the learning process of this linear structure.

Learning theory for regression and deep linear networks Gradient dynamics in regression are
well-studied, with spectral bias and implicit regularisation emerging as central themes [12, 13, 14].
In Sec. 4.1, we show that the loss of a linear diffusion model reduces to ridge regression, letting us
import those results directly. Our analysis also builds on learning theory of deep linear networks
(including linear-convolutional and denoising autoencoders) [15, 16, 17, 18]. We extend these insights
to modern diffusion-based generative models, offering closed-form description of how the generated
distribution itself evolves during training.

Diffusion learning theory Several recent theory studies address diffusion models from a spectral
perspective but tackle different questions. [19, 20, 21, 22] document spectral bias in the sampling
process after training; our focus is on how that bias arises during training. [23] study stochastic
sampling assuming an optimal score, orthogonal to our analysis of training dynamics. Sharing our
interest in training, [24] analyze learning of mixtures of spherical Gaussians to recover component
means, whereas we tackle anisotropic covariances and track reconstruction of the full covariance.
[25] characterises optimal score and distribution under constraints; results from our convolutional
setup can be viewed through that lens.

3 Background
3.1 Score-based Diffusion Models

Let p0(x) be the data distribution of interest, and for each noise level σ > 0 define p(x;σ) =(
p0 ∗ N (0, σ2I)

)
(x) =

∫
p0(y)N (x | y, σ2I) dy. The associated score function is ∇x log p(x;σ),
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i.e. the gradient of the log–density at noise scale σ. In the EDM framework [26], one shows that the
“probability flow” ODE

dx

dσ
= −σ∇x log p(x;σ) (1)

exactly transports samples from p( · ;σT ) to p( · ;σ) as σ decreases. In particular, integrating from
σT down to σ = 0 recovers clean data samples from p0. We adopt the EDM parametrization for its
notational simplicity; other common diffusion formalisms are equivalent up to simple rescalings of
space and time [26]. To learn the score of a data distribution p0(x), we minimize the denoising score
matching (DSM) objective [27] with a function approximator. We reparametrize the score function
with the ‘denoiser’ sθ(x, σ) = (Dθ(x, σ)− x)/σ2, then at noise level σ the DSM objective reads

Lσ = Ex0∼p0, z∼N (0,I)

∥∥∥Dθ(x0 + σz;σ) − x0

∥∥∥2

2
. (2)

To balance the loss and importance of different noise scales, practical diffusion models all adopt
certain weighting functions in their overall loss L =

∫
σ
dσ w(σ)Lσ .

3.2 Gaussian Data and Optimal Denoiser

To motivate our linear score approximator set up, it is useful to consider the optimal score and
the denoiser of a Gaussian distribution. For Gaussian data x0 ∼ N (µ,Σ),x0 ∈ Rd and Σ is a
positive semi-definite matrix. When noising x0 by Gaussian noise at scale σ, the corrupted x satisfies
x ∼ N (µ, Σ+ σ2I), for which the Bayes-optimal denoiser is an affine function of x.

D∗(x;σ) = µ+ (Σ+ σ2I)−1Σ(x− µ) (3)

For Gaussian data, minimizing (2) yields D∗. This solution has an intuitive interpretation, i.e. the
difference of the state x and distribution mean was projected onto the eigenbasis and shrinked
mode-by-mode by λk/(λk + σ2). Thus, according to the variance λk along target axis, modes with
variance significantly higher than noise λk ≫ σ2 will be retained; modes with variance much smaller
than noise will be “shrinked” out. Effectively σ2 defines a threshold of signal and noise, and modes
below which will be removed. This intuition similar to Ridge regression is made exact in Sec. 4.1.

4 Learning in Diffusion Models with a Linear Denoiser

Problem set-up. Throughout the paper, we assume the denoiser at each noise scale is linear (affine)
and independent across scales:

D(x;σ) = Wσ x+ bσ. (4)

Since the parameters {Wσ,bσ} are decoupled across noise scales, each σ can be analysed indepen-
dently. Through further parametrization, this umbrella form captures linear residual nets, deep linear
nets, and linear convolutional nets (see Sec. 5).

We train on an arbitrary distribution p0 with mean µ and covariance Σ by gradient flow on the
full-batch DSM loss, i.e. the exact expectation over data and noise (2). (In practice, one cannot
sample all z values, but the full-batch limit yields clean closed-form dynamics.)

This setting lets us dissect analytically the role of data spectrum, model architecture (Wσ parametri-
sation), and loss variant in shaping diffusion learning.

4.1 Diffusion learning as ridge regression

Gaussian equivalence. For any joint distribution p(X,Y ) the quadratic loss

L(W,b) = Ep(X,Y )

∥∥WX + b− Y
∥∥2

depends on p only through the first two moments of (X,Y ); see App. C.1.1 for proof. Hence a linear
denoiser trained on arbitrary p0 interacts with the data solely via its mean µ and covariance Σ.

Instance for diffusion. Under EDM loss (2), the noisy input–target pair is X = x0 + σz, Y = x0,
giving ΣXX = Σ+ σ2I, ΣY X = Σ.
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Gradient and optimum. Differentiating and setting gradients to zero yields

∇Wσ
Lσ = −2Σ + 2Wσ(Σ + σ2I) +∇bσLσ µ

⊤, ∇bσLσ =2
(
bσ − (I−Wσ)µ

)
, (5)

W∗
σ = Σ(Σ + σ2I)−1, b∗

σ =(I−W∗
σ)µ, (6)

minLσ = σ2 Tr
[
Σ(Σ + σ2I)−1

]
.

Thus the optimal linear denoiser reproduces the denoiser for the Gaussian approximation of data (3) ,
and its best achievable loss is set purely by the data spectrum.

Other objectives. While the main text focuses on the EDM loss (2), we have worked out the gradients,
optima, and learning dynamics for several popular variants used in diffusion and flow-matching [28]
literature; these results are summarised in Tab. C.4 (derivations in App. C.4).

Ridge viewpoint. Because

Lσ = Ex∼p0

∥∥Wx+ b− x
∥∥2 + σ2∥W∥2F ,

full-batch diffusion at noise scale σ is simply auto-encoding with ridge regularisation of strength
σ2 (App. C.2.1; cf. [29]). We will exploit classic ridge-regression results when analyzing learning
dynamics in the following sections.

4.2 Weight Learning Dynamics of a Linear Denoiser

With the gradient structure in hand, we solve the full-batch gradient–flow ODE,
dWσ

dτ
= −η∇Wσ

Lσ,
dbσ

dτ
= −η∇bσLσ, (GF)

where τ is training time and η the learning-rate.

Zero-mean data (µ = 0): Exponential convergence mode-by-mode Because the gradients to
W,b decouple (5), the dynamics is simplified on the eigenbasis of the covariance. We diagonalize the
covariance, Σ =

∑d
k=1 λkuku

⊤
k , with orthonormal principal components (PC) uk and eigenvalues

λk ≥ 0 (the mode variances). Projecting (GF) onto this basis yields the closed-form solution
(derivation in App. D.1):

bσ(τ) = bσ(0) e
−2ητ , Wσ(τ) = W∗

σ +

d∑
k=1

[
Wσ(0)−W∗

σ

]
uku

⊤
k e

−2ητ(σ2+λk). (7)

Figure 2: Learning dynamics per eigenmode. Top:
one-layer linear denoiser. Bottom: two-layer symmetric
denoiser. (A,D) Weight trajectories u⊤kWσ(τ)uk (σ=

1). (B,E) Generated-variance λ̃k versus target variance
λk. (C,F) Power-law relation between emergence time
τ∗k and λk.

Interpretation. Each eigenmode projec-
tion of the weight Wσuk converges to the
optimal value W∗

σuk exponentially with
rate (σ2 + λk); hence (i) the weights at
larger noise σ generally converge faster;
(ii) at a fixed σ, high-variance λk modes
converge first, while modes buried beneath
the noise floor (λk ≪ σ2) share the same
slower timescale. Fig. 2A illustrates
this spectrum-ordered convergence, with
high-variance modes reaching their optima
before the low-variance ones (see also 5A).

Non-centred data (µ ̸= 0): Interaction
of mean and covariance learning. A
non-zero mean introduces a rank-one cou-
pling between W and b (matrix M in
Prop D.1). Eigenmodes of weights over-
lapping with the mean (u⊤

k µ ̸= 0) now
interact with b, producing transient over-
shoots and other non-monotonic effects;
orthogonal modes retain the exponential
convergnece above. App. D.2 gives the full linear-system analysis and two-dimensional visualisations
(Fig. 27).
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4.3 Sampling Dynamics during Training

For diffusion models, our goal is the generated distribution, obtained by integrating the probabil-
ity–flow ODE (PF-ODE) backwards from a large σT to a σmin ≈ 0,

dx

dσ
= −σ−1

[
(Wσ − I)x+ bσ

]
, (PF)

initialized with Gaussian noise xT ∼N (0, σ2
T I). For linear denoiser, the PF-ODE is an inhomoge-

neous affine system, so its solution xσ is necessarily an affine function of the initial state xT [30],
x(σ0) = A(σ0;σT )x(σT ) + c(σ0;σT ). Since the map is affine, the distribution of x(σ0) remains
Gaussian, with covariance σ2

TA(σ0;σT )A
⊤(σ0;σT ).

However, in general, the state-transition matrix A(σ0;σT ) is hard to evaluate, as it involves
time-ordered matrix exponential, and the weight matrices at different noise scales Wσ may not com-
mute. The analysis below—and our closed-form results—hinges on situations where commutativity
is maintained by gradient flow or architectural bias, thus removing the time-ordering operator.
Lemma 4.1 (PF-ODE solution for commuting weights). If the linear denoiser D(x;σ) = Wσx+bσ

satisfies [Wσ,Wσ′ ] = 0 for all σ, σ′, then for any 0 < σ0 < σT ,

x(σ0) = A(σ0, σT )x(σT ) + c(σ0, σT ), A(σ0, σT ) = exp
[
−
∫ σT

σ0

Ws − I

s
ds

]
.

Interpretation. For each common eigenvector uk, the term (u⊤
k Wσuk − 1)/σ is the instantaneous

expansion (or contraction) rate of the sample variance along uk; the final variance is obtained by
integrating this rate over noise scales σ (see App. C.5).

When does commutativity hold? This arises in three common settings. (i) At convergence, this
is satisfied by the optimal weights W∗

σ (6), which jointly diagonalize on eigenbasis of Σ. In such
case, we recover the the closed-form solution to PF-ODE for Gaussian data, as found by [9, 31]. (ii)
During training of linear denoisers, if weights are initialized to be aligned with eigenbasis of Σ, then
gradient flow keeps them aligned, preserving commutativity (iii) For linear convolutional denoisers,
circulant weights share the Fourier basis and commute by construction (see Sec. 5.2). In these cases,
the sampling process can be understood mode-by-mode. Here we show the explicit solution for one
layer linear denoiser.
Proposition 4.2 (Dynamics of generated distribution in one layer case). Assume (i) zero-mean data,
(ii) aligned initialization Wσ(0) =

∑
kQk uku

⊤
k , and (iii) gradient flow, full-batch training with

learning rate η. Then, while training the one-layer linear denoiser, the generated distribution at time
τ is N (µ̃, Σ̃) with Σ̃ =

∑
k λ̃k(τ)uku

⊤
k and

λ̃k(τ) = σ2
T

Φ2
k(σ0, τ)

Φ2
k(σT , τ)

, Φk(σ, τ) =
√

λk + σ2 exp
[
1−Qk

2
Ei
(
−2ητσ2)e−2ητλk− 1

2
Ei
(
−2ητ(σ2+λk)

)]
where Ei is the exponential-integral function. (derivation in App. D.3)

Spectral bias. Figure 2B traces the variance trajectory λ̃k(τ) for each eigen-mode. All modes
begin with the same initialization-induced level, then follow sigmoidal curves to their targets, but
in descending order of λk We define the first-passage time τ∗k as the training time at which λ̃k(τ)
reaches the geometric (or harmonic) mean of its initial and target values. We find the first-passage
time obeys an inverse law τ∗k ∝ λ−α

k , α ≈ 1, (Fig. 2C), which implies that learning a mode with
variance 1/10 smaller takes roughly 10 times longer to converge. With larger weight initialization
(larger Qk), the initial variance is closer to the target variance of some modes, then the inverse law
splits into separate branches for modes with rising vs. decaying variance (Fig. 5B, Fig. 6).

Practical implication. This suggests when training stops earlier, the distribution in higher variance
PC spaces have already converged, while low-variance ones—often the perceptual finer points such
as letter strokes or finger joints—are under-trained. This could be an explanation for the familiar
“wrong detail” artefacts in diffusion samples.

5 Deep and Convolutional Extensions

After analyzing the simplest linear denoiser, we set out to examine the effect of architectures via
different parametrizations of the weights, specifically deeper linear models and linear convolutional
networks. In the following, we will assume µ = 0 and focus on learning of covariance.
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5.1 Deeper linear network

Consider a depth-L linear denoiser D(x, σ) = WL· · ·W1x , where—for notational clarity—we
suppress the explicit σ-dependence of weights. We assume aligned initialization, where for singular
decomposition of each matrix, Wℓ(0) = Uℓ Λℓ V

⊤
ℓ , the right basis of each layer matching the left

basis of the next, Vℓ+1 = Uℓ,∀ℓ = 1, . . . , L− 1, and with UL = V1 = U where U diagonalizes data
covariance Σ. Then the total weight at initialization is Wtot(0) =

∏L
ℓ=1 Wℓ(0) = U(

∏L
ℓ=1 Λℓ)U

⊤,
With aligned initialization, every eigenmode learns independently—mirroring classical results [15,
32]. In our case, this also implies that the total weight

∏
l Wl shares the eigenbasis U across training

and noise scales, thus commute, making sampling tractable.

One especially illuminating case is the two-layer symmetric network, where D(x, σ) = PσP
⊤
σ x.

Proposition 5.1 (Dynamics of weight and distribution in two layer linear model). Assume (i) centered
data µ = 0; (ii) the weight matrix is initialized aligned, i.e. Pσ(0)Pσ(0)

⊤ =
∑

kQkuku
⊤
k , then the

gradient flow ODE admits a closed-form solution (derivation in App. E.1)

Wσ(τ) = Pσ(τ)Pσ(τ)
⊺ =

∑
k

λk

σ2 + λk
uku

⊺
k

(
Qk

( λk
σ2+λk

−Qk)e−8ηλkτ +Qk

)
(8)

The generated distribution at time τ is N (µ̃, Σ̃) with Σ̃ =
∑

k λ̃k(τ)uku
⊤
k and λ̃k(τ) = σ2

T
Φ2
k(σ0)

Φ2
k(σT )

Φk(σ) = (σ)
(1−Qk)e−8ητλk

Qk+(1−Qk)e−8ητλk

[
λke

−8ητλk +Qk

(
1− e−8ητλk

) (
λk + σ2) ] Qk

2Qk+2(1−Qk)e−8ητλk

Interpretation. The learning dynamics of weights and variance along different principal components
are visualized in Fig.2 D-F. Compared to one-layer case, here, the weight converges along the PCs
via sigmoidal dynamics, with the emergence time (reaching harmonic mean of initial and final value)
τ∗k = ln 2/(8η λk). As for generated distribution, we find similar relationship between the target
variance and emergence time τ∗k ∝ λ−α

k , α ≈ 1. For the more general non-aligned initialization, we
show the non-aligned parts of weight will follow non-monotonic rise-and-fall dynamics (App. E.1.2).
Extensions to non-symmetric two layer model and deeper model were studied in App. F, which have
similar bias but lack clean expressions.

5.2 Linear convolutional network

We consider a linear denoiser with convolutional architecture, D(x, σ) = wσ ∗ x where samples
x ∈ RN have 1d spatial structure, and a width K convolution filter wσ operates on it. The analysis
could be easily generalized to 2d convolution. With circular boundary condition, wσ defines a
circulant weight matrix Wσ ∈ RN×N , where wσ ∗ x = Wσx. One favorable property of circulant
matrices is that they are diagonalized by discrete Fourier transform F [33].

Wσ = FΓσF
∗ Fmk :=

1√
N

exp

(
−2πi

mk

N

)
(9)

Thus all weights Wσ commutes, which allows us to leverage Lemma 4.1, and solve the sampling
dynamics mode-by-mode on the Fourier basis, leading to following result.
Proposition 5.2. Linear convolutional denoisers with circular boundary can only model stationary
Gaussian processes (GP), with independent Fourier modes, proof in App.G.2.

Learning dynamics of full-width filter K = N When convolution filter wσ is as large as the
signal, the gradient flow is diagonal and unconstrained in the Fourier domain. Thus, the analyses in
Sec. 4 re-emerge with variance of Fourier mode Σ̃kk taking the place of λk.
Proposition 5.3 (Full-width circular convolution learning dynamics). Let D(x, σ) = wσ ∗ x, with
full-width filter K = N , and train wσ by full-batch gradient flow at rate η. Then the weights at noise
σ and its spectral representation γ evolves as

wσ(τ) =
1√
N

F ∗γ(τ, σ) ; γk(τ, σ) = γ∗
k(σ) +

(
γk(τ, σ)− γ∗

k(σ)
)
e−2Nη(σ2+Σ̃kk)τ (10)

where γ∗k(σ) = Σ̃kk/(σ
2 + Σ̃kk) and Σ̃kk = [F ∗ΣF ]kk is the variance of Fourier mode.

The generated distribution has diagonal covariance in the Fourier basis and follows exactly Prop. 4.2
after the replacement λk → Σ̃kk, η → Nη,U → F . (derivation in App. G.3)
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Table 1: Summary of theory. exp. and sigm. denotes exponential and sigmoidal convergence. xN denotes the
N time speed up due to weight sharing.

One layer Sym. two layer Full-width linear conv Patch linear conv
Param. W PPT W = Circ(w) W = Circ(w), K < N

Weight dyn. PC, exp. (7) PC, sigm. 5.1 Fourier mode, exp. xN 5.3 PC of patches, exp. xN 5.4
Learned distr. Gaussian Gaussian Stationary GP 5.2 Stationary GP

Distr. dyn. PC, sigm., power law 4.2 PC, sigm., power law 5.1 Fourier, sigm., xN, power law 5.3 Fourier, N.S.

Interpretation. The weight and distribution dynamics mirror the fully-connected case, with spectral
bias towards higher variance Fourier modes; convolutional weight sharing simply multiplies every
rate by N , accelerating convergence without altering the inverse-variance law.

Notably, the learned distribution is asymptotically equivalent to the Gaussian approximation to the
original training data with all possible spatial shifts as augmentations (proof in App. G.3.2). This
is one case where equivariant architectural constraints facilitates creativity as discussed in [25].
Similarly, two-layer linear conv net with full-width filter can be treated as in Sec.5.1.

Learning dynamics of local filter K < N When the convolution filter has a limited bandwidth
K ̸= N , the Fourier domain dynamics get constrained, so it is easier to work with the filter weights.
Let r be the half-width of the kernel (K = 2r + 1). Define the circular patch extractor Pr(x) =[
x i−r: i+r

]N
i=1

∈ RK×N , and the patch covariance Σpatch = 1
N Ex

[
Pr(x)Pr(x)

⊤] ∈ RK×K .

Proposition 5.4 (Patch-convolution learning dynamics). For the circular convolutional denoiser,
D(x, σ) = wσ ∗ x trained by full-batch gradient flow with step size η. Let e0 ∈ RK be the one-hot
vector with a single 1 at the center position r + 1 (1-indexed). (derivation in App. G.4)

wσ(τ) = w∗
σ + exp

[
−2Nητ(σ2I +Σpatch)

] (
wσ(0)−w∗

σ

)
, w∗

σ = (σ2I +Σpatch)
−1Σpatche0.

Interpretation. Training with a narrow convolutional filter reduces to ridge regression in patch
space. Under gradient flow, filter converges along eigenmodes of patch Σpatch: modes with larger
variance converges sooner, those with smaller variance later, preserving the inverse-variance law. It
also enjoys the N times speed up given by weight sharing, accelerating progress without altering
the ordering. The sampling ODE remains diagonal in Fourier space, so the generated distribution
will be a stationary Gaussian process with local covariance structure shaped by the learned patch
denoiser, though its exact form needs numerical integration to spell out. This setting is similar to the
equivariant and local score machine described in [25], but with the additional linear constraint.

Simulation. We numerically simulated the dynamics of the sample distribution for linear patch-
convolution denoisers using FFHQ dataset (details in App. B.1.2). The spectral scaling exponents
depend systematically on the convolutional patch size P : smaller kernels produced shallower, and in
some cases even inverted, scaling relations (Tab. 2), potentially due to stronger coupling between
more Fourier modes.

6 Empirical Validation of the Theory in Practical Diffusion Model Training

General Approach To test our theoretical predictions about the evolution of generated distribution
(esp. covariance), we resort to the following method: 1) we fix a training dataset {xi} and compute
its empirical mean µ and covariance Σ. We then perform an eigen-decomposition of Σ, obtaining
eigenvalues λk and eigenvectors uk. 2) Next, we train a diffusion model on this dataset by optimizing
the DSM objective with a neural network denoiser Dθ(x, σ). 3) During training, at certain steps τ ,
we generate samples {xτ

i } from the diffusion model by integrating the PF-ODE (1). We then estimate
the sample mean µ̃τ and sample covariance Σ̃τ . Finally, we compute the variance of the generated
samples along the eigenbasis of training data, λ̃τk = u⊺

kΣ̃
τuk. To stress test our theory and maximize

its relevance, we’d keep most of the training hyperparameters as practical ones.

6.1 Multi-Layer Perceptron (MLP)

To test our theory about linear and deep linear network (Prop.4.2,5.1), we used a Multi-Layer
Perceptron (MLP) inspired by the SongUnet in EDM [26, 34] (details in App. I.2). We found
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Figure 3: Spectral Learning Dynamics of MLP-UNet (FFHQ32). A. Generated samples during
training. B. Evolution of sample variance λ̃k(τ) across eigenmodes during training. C. Heatmap of
variance trajectories along all eigenmodes, with dots marking mode emergence times τ∗ (first-passage
time at the geometric mean of initial and final variances). The gray zone (0.5–2× target variance)
indicates modes starting too close to their target, causing unreliable τ∗ estimates. D. Power-law
scaling of τ∗ versus target variance λk. A separate law was fit for modes with increasing and
decreasing variance, excluding the middle gray-zone eigenmodes for stability.

this architecture effective in learning distribution like point cloud data (Fig. 29). We kept the
preconditioning, loss weighting and initialization the same as in [26].

Experiment 1: Zero-mean Gaussian Data x MLP We first consider a zero mean Gaussian
N (0,Σ) in d dimension as training distribution, with covariance defined as a randomly rotated
diagonal matrix with log normal spectrum (details in App. I.4). During training, the generated
variance of each eigenmode follows a sigmoidal trajectory toward its target value λk; modes with
larger λk cross the plateau sooner (Fig.10A). We mark the emergence time τ∗ as the step at which
the variance reaches the geometric mean of its initial and asymptotic values (Fig. 10B). Across both
high- and low-variance modes, τ∗ obeys an inverse power-law, τ∗ ∝ λ−α

k . With higher-dimensional
Gaussians the exponent is estimated more precisely and remains close to 1: for d = 256, α = 1.08;
for d = 512, αincr = 1.05 and αdecr = 1.13 (Fig. 10C). The scaling breaks down only for modes
whose initial variance is already near λk; in that regime the trajectory is less sigmoidal and τ∗
becomes ill-defined. This result shows that despite many non-idealistic conditions e.g. deeper
network, nonlinear activation function, residual connections, normal weights initialization, shared
parametrization of denoisers at different noise level, the prediction from the linear network theory is
still quantitatively correct.

Figure 4: Learning dynamics of UNet differs | FFHQ32.
A. Sample trajectory from CNN-UNet. B. Variance evolution
along covariance eigenmodes. (c.f. Fig. 3A.C.)

Experiment 2: Natural Image
Datasets x MLP Next, we validated
our theory on natural image datasets.
We flattened the images as a vectors,
and trained a deeper and wider MLP-
UNet to learn the distribution. Using
FFHQ as our running example, moni-
toring the generated samples through-
out training (Fig. 3A), despite heavy
noise early on, the coarse facial con-
tours—corresponding to the mean and
top principal components of human
face distribution [7]—emerge quickly,
whereas high-frequency details (lower
PCs) only appear later. We note that
this spectral ordering effect of training
dynamics is reminiscent and similar to that in the sampling dynamics after training [19, 22].

Quantitatively, the sample covariance Σ̃τ rapidly aligns with and becomes close to diagonal in the
data eigenbasis U (Fig. 11). The top eigenmodes’ variances, λ̃k(τ), follow sigmoidal trajectories
converging to their targets, and their “emergence times” τ∗k increase down the spectrum (Fig. 3B,C).
We exclude a central band of modes whose initial variances lie within 0.5–2× the target, since their
undulating learning dynamics make first-passage time estimates unreliable. After this exclusion,
modes with increasing and decreasing variance each exhibit a clear power-law scaling between
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emergence step τ∗ and target variance λk, with exponents −0.48 (R2 = 0.97, N = 57) and −0.35
(R2 = 0.92, N = 2, 914), respectively (Fig. 3D). Although the observed spectral bias is slightly
attenuated relative to the Gaussian case and linear theory prediction, it remains robust and consistent
across datasets (MNIST, CIFAR-10, FFHQ32 and AFHQ32) (App. B.2.2). This shows that even with
natural image data, the distributional learning dynamics of MLP-based diffusion still suffers from
slower convergence speed for lower eigenmodes.

6.2 Convolutional Neural Networks (CNNs)

Next we turn to the convolutional U-Net—the work-horse of image-diffusion models [34, 35]. For a
full-width linear convolutional network our analysis predicts an inverse-variance law in Fourier space
(Prop. 5.3). The patch-convolution variant lacks a clear forecast on distribution, so the following
experiments probe empirically whether—and how—its learning dynamics is affected by spectral bias.

Experiment 3: Natural Image Datasets x CNN UNet Training on the same FFHQ dataset,
the distributional learning trajectory of CNN-UNet is markedly different from the MLPs: early in
training, we do not see contour of face, but locally coherent patches, reminiscent of Ising models
(Fig. 4A.). Visually and variance-wise, the CNN-based UNet converge much faster and better than
the MLP-based UNet, matching the N-fold speed-up from weight sharing (Prop. 5.4; Fig. 4B). When
projecting onto the data eigenbasis, all eigenmodes with increasing variance rise simultaneously,
while eigenmodes with decreasing variance co-decay at a later time, giving an effective power-law
exponent α ≈ 0; Thus, spectral bias is essentially absent (Fig. 13C.D.).

Why is spectral bias absent? On the theory side, the likely cause is locality: local convolutional filters
couple neighbouring pixels, binding many Fourier modes into one learning unit. Because sampling
remains diagonal in Fourier space, a broad band of modes is amplified simultaneously, attenuating
the spectral ordering, as we observed numerically in App. B.1.2. In line with this, early in training,
the CNN denoiser is indeed well-approximated by a local linear filter (Fig. 15).

On the empirical side, the key factor appears to be network width. We systematically varied the
channel number and depth of deep convolutional denoisers (App. B.2.4), and found that—regardless
of depth—narrower networks (e.g. ch = 4) exhibit slower convergence and a stronger spectral
ordering, consistent with the patch-convolution theory (Fig. 22,23). In contrast, wide networks with
many channels (ch = 128) learn spectral modes almost instantaneously, similar to our observations
in practical UNet. In hindsight, the analytic theory effectively assumes a convolution with the same
number of channels as the input (e.g., RGB = 3), so the ratio between the network’s channel and the
input channel likely governs the deviation from theoretical predictions.

A complete analytic treatment of convolutional U-Net training dynamics is left for future work.

7 Discussion

In summary, we presented closed-form solutions for training denoisers with linear, deep linear or
linear convolutional architecture, under the DSM objective on arbitrary data. This setup allows for a
precise mode-wise understanding of the gradient flow dynamics of the denoiser and the evolution
of the learned distribution: covariance eigenmode for deep linear network and Fourier mode for
convolutional networks. For both the weights and the distribution, we showed analytical evidence
of spectral bias, i.e. weights converge faster along the eigenmodes or Fourier modes with high
variance, and the learned distribution recovers the true variance first along the top eigenmodes. These
theoretical results are summarized in Tab. 1.

We hope these results can serve as a solvable model for spectral bias in the diffusion models through
the nested training and sampling dynamics. Furthermore, our analysis is not limited to the diffusion
and the DSM loss, in App. H, we showed a similar derivation for the spectral bias in flow matching
models [28, 36].

Relevance of our theoretical assumptions We found, for the purpose of analytical tractability, we
made many idealistic assumptions about neural network training, 1) linear neural network, 2) small
or orthogonal weight initialization, 3) “full-batch” gradient flow, 4) independent evolution of weights
at each noise scale. In our MLP experiments, we found even when all of these assumptions were
somewhat violated, the general theoretical prediction is correct, with modified power coefficients.
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This shows most of these assumptions could be relaxed in real life, and the spectrum of data indeed
have a large effect on the learning dynamics, esp. for fully connected networks.

Inductive bias of the local convolution In our CNN experiments, however, the theoretical pre-
dictions from linear models deviate: the spectral bias in learning speed does not directly apply to
the distribution of full images. Although our theory predicts that filter-weight learning dynamics
are governed by the patch covariance, the ultimate image distribution is shaped by the convolution
of those filters. To date, many learning-theory analyses for diffusion models assume MLP-like
architectures [24]. For future theoretical work on the learning dynamics of practical diffusion models,
a rigorous treatment of the local convolutional structure—and its frequency-coupling effects—will
likely be essential, rather than relying on full-width convolution analyses [37].

Implications for high channel inputs Our ablation suggests that the ratio between network
width and input channel count may underlie the observed deviations from theoretical predic-
tions—specifically, the absent of spectral bias and the near-simultaneous convergence of eigenmodes.
While most image and latent representations traditionally have few channels (e.g., 3 for RGB, 4 for
latent diffusion [38]), recent architectures employ much higher channel counts—such as DC-AEs
with 64–128 channels [39] or encoder-based diffusion models with ch = 768 [40]. In these regimes,
where input channel becomes comparable to that of the UNet or DiT, the theory’s predictions may
become increasingly relevant for understanding, regularizing, and stabilizing training dynamics in
high–channel-dimensional diffusion models.

Broader Impact Although our work is primarily theoretical, the inverse scaling law could offer
valuable insights into how to improve the training of large-scale diffusion or flow generative models.
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Justification: For quantification of spectral law in experiments, we quantify the statistical
power of law with linear regression line fitting and reported the R2 as goodness of fit Fig. 3,
13.
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Question: For each experiment, does the paper provide sufficient information on the com-
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Justification: No LLMs were used beyond standard proofreading assistance and math
checking, which does not affect the scientific content.
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A Extended Related works

Beyond the closely related works reviewed in the main text, here we are some spiritually related lines
of works that inspired ours.

Spectral effect in the sampling process of diffusion models Many works have observed that
during the sampling process of diffusion models [22, 41]: low spatial frequency aspects of the sample
(e.g. layout) were specified first in the denoiser, before the higher frequency ones (e.g. textures).
This phenomenon has been understood through the natural statistics of images (e.g. power-law
spectrum) [19] and theory of diffusion [11], and recently through the lens of stochastic localization
[42]. Basically, low frequency aspects usually have higher variance, thus were later to be corrupted
by noise, so earlier to be generated during sampling process.

In our current work, we extend this line of thought to consider the spectral effects on the training
dynamics of diffusion models.

Inductive bias of deep networks There as been a rich history of studying the inductive bias or
implicit regularization effect of deep neural network and gradient descent. Deep neural networks
have been reported to tend to find low-rank solutions of the task [43], and deeper networks could
find it difficult to learn higher-rank target functions. This finding has also been leveraged to facilitate
low-rank solutions by over-parameterizing linear operations in a deep networks (e.g. linear [44] or
convolution [45] layers).

Implicit bias of convolutional neural networks When the neural network has convolutional
structures in it, what kind of inductive bias or regularization effect does it bring to the function
approximator?

People have attacked this by analyzing (deep) linear networks. [37] analyzed the inductive bias of
gradient learning of the linear convolution network. In their case, the kernel is as wide as the signal
and with circular boundary condition, thus convolution is equivalent to pointwise multiplication in
Fourier space, which simplified the problem a lot. Then they can derive the learning dynamics of
each Fourier mode. This result can be unified with other linear network approaches [18].

[46] further analyzed the inductive bias of the linear convolutional network with non-trivial local ker-
nel size (neither pointwise nor full image) and multiple channels, and provided analytical statements
about the inductive bias. However, they also found less success for closed form solutions for even
two-layer convolutional networks with finite kernel width.

From an algebraic and geometric perspective, [47, 48] have analyzed the geometry of the function
space of the deep linear convolutional network, which is equivalent to the space of polynomials that
can be factorized into shorter polynomials.

Deep image prior and spectral bias in CNN On the empirical side, one intriguing result comes
from the famous Deep Image Prior (DIP) experiment of Ulyanov et al. [49]. They showed that if a
deep convolutional network (e.g. UNet) is used to regress a noisy image as target with pure noise
as input, then when we employ early stopping in the optimization, the neural network will produce
a cleaner image, thus performing denoising. To understand this method, [50] showed empirical
evidence that deep convolutional networks tend to fit the low spatial frequency aspect of the data
first. Thus, given the different spectral signature of natural images and noise, networks will fit the
natural image before the noise. As a corollary, they showed that if the noise has more low frequency
components, then neural network will fail to denoise those low frequency corruptions from image.

People have also looked at the inductive bias of untrained convolutional neural networks. Theoreti-
cally, [51] showed that infinite-width convolutional network at initialization is equivalent to spatial
Gaussian process (random field), and the authors used this Bayesian perspective to understand the
Deep image prior.

We noticed that this line of works in deep image prior has intriguing conceptual connection to our
current work, i.e. the spectral bias of learning a function with convolutional architecture tend to learn
lower frequency aspect first. Comparing diffusion models to DIP, diffusion models regress clean
images from many randomly sampled noisy images; on the contrary DIP regress the clean images on
a single noise pattern.

21



Neural Tangent Kernel A widely recognized technique for analyzing the learning dynamics of
deep neural network is the neural tangent kernel. For example, an infinitely wide network would be
similar to a kernel machine, where the learning dynamics will be linearized and reduce to exponential
convergence along different eigenmode of the tangent kernel.

Using neural tangent kernel (NTK) techniques, by inspecting the eigenvalues of the NTK associated
with functions of different frequency, [52] has been able to show that given uniform data on sphere
assumption, and simple neural network architectures (two-layer fully connected network with ReLU
nonlinearity), neural networks learn lower-frequency functions faster, with learning speed quadrati-
cally related to the frequency. Later they lifted the spatial uniformity assumption [53], and derived
how convergence speed and eigenvalues depend on the local data density.

These insights have been leveraged in classification problems to show that early stopping can lead
neural networks to learn smoother functions, thus being robust to labeling noise [54] .

What about convolutional architecture? With some similar NTK techniques, using a simplified
architecture, [55] proved that the learning dynamics of the convolutional network will preferably
learn the lower spatial frequency aspect of target image first. Their proof technique is also based
on the relationship between over-parametrized neural network and the tangent kernel. The proof
is based on a simpler generator architecture: one convolutional layer with ReLU nonlinearity and
fixed readout vector. They numerically showed the same effect for deeper architectures. This result
provided further theoretical foundation for the Deep Image Prior.
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B Extended Results

B.1 Extended Visualization of Theoretical Results

B.1.1 Scaling curves of diffusion training (EDM) - fully connected

Figure 5: Learning dynamics of the weight and variance of the generated distribution per
eigenmode (continued) Top Single layer linear denoiser. Bottom Symmetric two-layer denoiser.
A.C. Learning dynamics of u⊺

kW(τ)uk. B.D. Learning dynamics of the variance of the generated
distribution λ̃k, as a function of the variance of the target eigenmode λk. This case with larger
amplitude weight initialization Qk = 0.5.
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Figure 6: Power law relationship between mode emergence time and target mode vari-
ance for one-layer and two-layer linear denoisers. Panels (A) and (B) respectively plot the
Mode variance against the Emergence Step for different values of weight initialization Qk ∈
{0.0, 0.1, 0.5, 0.6, 1.0} (columns), for one layer and two layer linear denoser (rows). We used
σ0 = 0.002 and σT = 80. The emergence steps were quantified via different criterions, via harmonic
mean in A, and geometric mean in B. Within each panel, red markers and lines denote the modes
where their variance increases; blue markers and lines denote modes that “decrease” their variance.
The solid lines show least-squares fits on log-log scale, giving rise to the y = a xb type relation.
Comparisons reveal a systematic power-law decay of variance with respect to the Emergence Step
under both the harmonic-mean and geometric-mean definitions. Note, the Qk = 0 and two layer case
was empty since zero initialization is an (unstable) fixed point, thus it will not converge.
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B.1.2 Scaling curves of diffusion training (EDM) - linear convolution

Method We performed numerical simulations to study the learning dynamics of patch-based
convolutional filters. Using the FFHQ32 dataset as an example, we first extracted local patch statistics
to compute the optimal linear filter at each noise scale w∗

σ. Then, applying Proposition 5.4, we
obtained the learned filter at different training times and solved the corresponding PF-ODE in
the spatial domain to generate samples. From these samples, we computed their variance along
eigenmodes and analyzed the resulting scaling laws.

Key factors influencing scaling behavior. Our simulations revealed two critical factors affecting
the observed power-law relationship between image eigenvalues and convergence time: the filter
patch size P and the initialization of filter weights.

When the filter weights were initialized as an identity matrix (without scaling), the initial sample
variance became excessively large, and the resulting power-law exponent was around −0.4—already
weaker than that predicted by the linear-case solution. A more practical alternative is to initialize the
filter weights as a scaled identity:

W0 =
σ2
data

σ2 + σ2
data

I,

inspired by the skip-connection coefficient cskip in the EDM preconditioning scheme. Under this
initialization, we observed both increasing and decreasing variance modes during training.

Effect of patch size. The specific scaling relations depend strongly on the patch size P . When P
decreases, the scaling exponent for the decreasing modes approaches zero—from about −0.4 for
P = 15 to about −0.21 for P = 3 (3× 3 convolution). The overall convergence time also increases
for smaller patch sizes. For the modes with increasing variance, smaller patches further attenuate the
scaling exponent toward 0.0 (P = 7) or even flip the trend (0.48 for P = 3). Intuitively, a small 3×3
convolution couples many frequency components in Fourier space, so multiple modes are learned
simultaneously during generation.

Summary. Although we no longer have an analytical expression for the scaling coefficients, the
numerical simulations allow us to predict the scaling relations empirically. These results indicate that
the patch size in convolutional architectures significantly modulates the scaling law. We hypothesize
that the attenuated or flat scaling behavior observed in practical UNet architectures trained on natural
images may, in part, stem from their reliance on small (3× 3) convolutional filters.

Table 2: Spectral convergence time computed for patch linear convolutional networks on
FFHQ32 at varying patch size.

Patch size P Increasing scaling Decreasing scaling

3 0.06λ0.48 11.88λ−0.21

5 0.05λ0.24 3.66λ−0.36

7 0.05λ0.01 3.24λ−0.37

11 0.07λ−0.22 2.61λ−0.40

15 0.08λ−0.28 2.57λ−0.40

25 0.09λ−0.30 2.54λ−0.40
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Figure 7: Numerical simulation of spectral learning curve for linear convolutional network with
local patch filter with patch size P = 3, 5, 7, 11, 15, 25, using FFHQ32 dataset. Top same format
as Fig.3C. Bottom same format as Fig.3D.
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B.1.3 Scaling curves of flow matching

Figure 8: Learning dynamics of the weight and variance of the generated distribution per
eigenmode, for one layer linear flow matching model Similar plotting format as Fig. 2. A.
Learning dynamics of weights u⊺

kW(τ ; t)uk for various time point t ∈ {0.1, 0.5, 0.9, 0.99}. B.
Learning dynamics of the variance of the generated distribution λ̃k, as a function of the variance
of the target eigenmode λk ∈ {10, 3, 1, 0.3, 0.1, 0.03, 0.01, 0.001}. Weight initialization is set at
Qk = 0.1 for every mode.

Figure 9: Power law relationship between mode emergence time and target mode variance for
one-layer linear flow matching. Panels (A) and (B) respectively plot the Mode variance against
the Emergence Step for different values of weight initialization Qk ∈ {0.0, 0.1, 0.5, 0.6, 1.0}
(columns), for one layer linear flow model. The emergence steps were quantified via different
criterions, via harmonic mean in A, and geometric mean in B. We used the same plotting format as in
Fig. 6. Comparisons reveal a systematic power-law decay of variance with respect to the Emergence
Step under both the harmonic-mean and geometric-mean definitions.
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B.2 Extended Empirical Results

B.2.1 MLP-UNet Gaussian training experiments

Figure 10: Spectral Learning Dynamics of MLP-UNet (Gaussian-rotated). (same layout and
analysis procedure as main Fig. 3) Top, middle, bottom show cases for 128d, 256d and 512d Gaussian.
A. Evolution of sample variance λ̃k(τ) across eigenmodes during training. B. Heatmap of variance
trajectories along all eigenmodes, with dots marking mode emergence times τ∗ (first-passage time at
the geometric mean of initial and final variances). The gray zone (0.5–2× target variance) indicates
modes starting too close to their target, causing unreliable τ∗ estimates. C. Power-law scaling of τ∗
versus target variance λk, excluding gray-zone eigenmodes for stability.
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B.2.2 MLP-UNet natural image training experiments

Figure 11: Dynamical alignment onto the covariance eigenframe of data (MLP-UNet, FFHQ32,
AFHQ32). Alignment score χ as function of training step. Alignment score defined as the sum of
square of diagonal entries of the rotated sample covariance on the training data eigenframe UT Σ̃τU ,
divided by the sum of square of all entries. This quantifies how well the training data eigenframe
diagonalizes the generated sample covariance. It will be χ = 1 if U is the eigenbasis of Σ̃τ .
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Figure 12: Spectral Learning Dynamics of MLP-UNet (MNIST, CIFAR10, AFHQ32, FFHQ32-
fixword, random word). A. Generated samples during training. B. Evolution of sample variance
λ̃k(τ) across eigenmodes during training. C. Heatmap of variance trajectories along all eigenmodes,
with dots marking mode emergence times τ∗ (first-passage time at the geometric mean of initial
and final variances). The gray zone (0.5–2× target variance) indicates modes starting too close to
their target, causing unreliable τ∗ estimates. D. Power-law scaling of τ∗ versus target variance λk.
A separate law was fit for modes with increasing and decreasing variance, excluding the middle
gray-zone eigenmodes for stability.
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B.2.3 CNN-UNet training experiment

1 324 1268
2404

4548
14096

32016
50000

Training 
Step

0

500

1000

1500

2000

2500

3000

Ei
ge

nv
ec

to
r i

nd
ex

Evolution of eigen projected variance

−10

−8

−6

−4

−2

0

2

4

lo
g(

Va
ria

nc
e)

101 102

Emergence Step

10−4

10−3

10−2

10−1

100

101

102

Va
ria

nc
e

R2: 0.02 (N=113)

R2: 0.02 (N=2777)

Target variance vs emergence step

increase
decrease
Increase fit: τ= 5.67λ−0.02

Decrease fit: τ= 130.24λ0.01

Var. within 0.5-2x of init.

100 101 102 103 104

Training step

100

101

Va
ria

nc
e

Eig5 = 29.38
Eig15 = 6.81
Eig25 = 3.68
Eig35 = 2.41
Eig45 = 1.74
Eig55 = 1.35
Eig65 = 1.07
Eig75 = 0.85
Eig85 = 0.74
Eig95 = 0.63

C.A. D.B. Variance along data cov eigenbasis

step 5E4

step 1 

Tr
ai

ni
ng

 p
ro

gr
es

s

Figure 13: Spectral Learning Dynamics of CNN-UNet (FFHQ32). (same layout and analysis
procedure as main Fig. 3) A. Generated samples during training. B. Evolution of sample variance
λ̃k(τ) across eigenmodes during training. C. Heatmap of variance trajectories along all eigenmodes,
with dots marking mode emergence times τ∗ (first-passage time at the geometric mean of initial
and final variances). The gray zone (0.5–2× target variance) indicates modes starting too close to
their target, causing unreliable τ∗ estimates. D. Power-law scaling of τ∗ versus target variance λk,
excluding gray-zone eigenmodes for stability.
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Figure 14: Dynamical alignment onto the covariance eigenframe of data (CNN-UNet, FFHQ32).
Alignment score r as function of training step. Same analysis as Fig.11.
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Figure 15: UNet denoiser can be approximated by linear convolution early in training (CNN-
UNet, FFHQ32). A. Early in training, the UNet denoiser output can be well approximated by a linear
convolutional layer, with a patch size P . B. The approximation error as a function of patch size P ,
training time τ and noise scale σ. Generally, early in training, the denoiser is very local and linear,
well approximated by a linear convolutional layer.
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Figure 16: Visualizing the denoiser training dynamics with a fixed image and noise seed (CNN-
UNet, FFHQ32). D(x+ σz, σ) as a function of training time τ and noise scale σ.

Figure 17: Spectral Bias in Whole Image of CNN learning | MNIST Training dynamics of sample
(whole image) variance along eigenbasis of training set, normalized by target variance. Upper 0-100
eigen modes, Lower 0-500 eigenmodes.

33



Figure 18: Spectral Bias in CNN-Based Diffusion Learning: Variance Dynamics in Image
Patches | MNIST (32 pixel resolution). Left, Raw variance of generated patches along true
eigenbases during training. Right, Scaling relationship between the target variance of eigenmode
versus mode emergence time (harmonic mean criterion). Each row corresponds to a different patch
size and stride used for extracting patches from images.
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Figure 19: Spectral Bias in CNN-Based Diffusion Learning: Variance Dynamics in Image
Patches | CIFAR10 (32 pixel resolution). Left, Raw variance of generated patches along true
eigenbases during training. Right, Scaling relationship between the target variance of eigenmode
versus mode emergence time (harmonic mean criterion). Each row corresponds to a different patch
size and stride used for extracting patches from images.
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Figure 20: Spectral Bias in CNN-Based Diffusion Learning: Variance Dynamics in Image
Patches | FFHQ (64 pixel resolution). Left, Raw variance of generated patches along true eigenbases
during training. Right, Scaling relationship between the target variance of eigenmode versus mode
emergence time (harmonic mean criterion). Each row corresponds to a different patch size and stride
used for extracting patches from images.
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Figure 21: Spectral Bias in CNN-Based Diffusion Learning: Variance Dynamics in Image
Patches | AFHQv2 (64 pixel resolution). Left, Raw variance of generated patches along true
eigenbases during training. Right, Scaling relationship between the target variance of eigenmode
versus mode emergence time (harmonic mean criterion). Each row corresponds to a different patch
size and stride used for extracting patches from images.
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B.2.4 CNN architecture ablation experiments

Figure 22: Spectral Learning Dynamics of CNN-ResNet (FFHQ32) with architectural variation
- 1 layer, channel numebr variation, ch = 4, 8, 16, 32, 128, 256. (same analysis procedure and
format as main Fig. 3C.) Each panel describes one architecture, Top Sample final images Bottom
Heatmap of variance trajectories along all eigenmodes, with dots marking mode emergence times τ∗
(first-passage time at the geometric mean of initial and final variances). The gray zone (0.5–2× target
variance) indicates modes starting too close to their target, causing unreliable τ∗ estimates.
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Figure 23: Spectral Learning Dynamics of CNN-ResNet (FFHQ32) with architectural variation
- 1 layer, channel numebr variation, ch = 4, 8, 16, 32, 128, 256. (same analysis procedure and
format as main Fig. 3D.) Each panel describes one architecture. Power-law scaling of τ∗ versus
target variance λk, excluding gray-zone eigenmodes for stability.

Figure 24: Spectral Learning Dynamics of CNN-ResNet (FFHQ32) with architectural variation
- 2 layer, channel numebr variation ch = 6, 128. (same analysis procedure and format as Fig. 22)
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Figure 25: Spectral Learning Dynamics of CNN-ResNet (FFHQ32) with architectural variation
- 3 layer, channel numebr variation ch = 6, 128, 256. (same analysis procedure and format as Fig.
22)

Figure 26: Spectral Learning Dynamics of CNN-ResNet (FFHQ32) with architectural variation
- 5 layer, channel numebr variation ch = 6. (same analysis procedure and format as Fig. 22)
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C Detailed Derivation: General analysis

C.1 General Property of Linear Regression

C.1.1 Gaussian equivalence

Lemma C.1. For a general linear regression problem, where x,y come from an arbitrary joint
distribution p(x,y) with finite moments,

L = Ex,y∥Wx+ b− y∥2

then its optimal solution and gradient only depend on the first two moments of x,y.

Proof. Let the error be e = Wx+ b− y, then

∇WL =
∂

∂W
Ex,y
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]
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= 2
(
WE

[
xx⊤]+ bE

[
x⊤]− E

[
yx⊤])

= 2
(
W(Σxx + µxµ

T
x ) + bµT

x − (Σyx + µyµ
⊤
x )

)
= 2

(
W(Σxx + µxµ

T
x ) + (b− µy)µ

T
x − Σyx

)
= 2(WΣxx − Σyx) + 2(Wµx + b− µy)µ

T
x

= 2(WΣxx − Σyx) +∇bLµT
x

∇bL =
∂

∂b
E
[
e⊤e

]
= 2E

[
e
]

= 2E
[
Wx+ b− y

]
= 2(Wµx + b− µy)

We used the fact that

E
[
x
]
= µx

E
[
y
]
= µy

E
[
yx⊤] = Σyx + µyµ

⊤
x

E
[
xx⊤] = Σxx + µxµ

⊤
x

Setting the gradient to zero, we get optimal values

W∗ = ΣyxΣ
−1
xx (11)

b∗ = µy −W∗µx (12)

The gradient flow dynamics read

d

dτ
W = −2η(WΣxx − Σyx)− 2η∇bLµT

x (13)

d

dτ
b = −2η(Wµx + b− µy) (14)

The Σxx determines the gradient flow dynamics and convergence rate of W, while Σ−1
xxΣyx deter-

mines the target level or optimal solution of the regression.
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Remark C.2. For all the loss variants with linear denoiser, the loss is of this class. We can write down
the gradient structure and optimal values of W and b by plugging in the mean and covariance of
input x and predicting target y.

Lemma C.3. For two independent random variables X,Y ∈ Rd, we have

Cov(aX + bY, cX + dY ) = acΣX + bdΣY (15)

Proof. This can be proved using bilinearity of covariance and independence which entails ΣXY = 0.

Cov(aX + bY, cX + dY ) = aCov(X, cX + dY ) + bCov(Y, cX + dY )

= acCov(X,X) + adCov(X,Y ) + bcCov(Y,X) + bdCov(Y, Y )

= ac ΣX + bd ΣY

Remark C.4. For diffusion training loss, the clean image samples and the noise patterns are designed
to be sampled independently. Thus we can use (15) to calculate the covariance of input and outputs.

Using these two lemmas, the gradient structure and learning dynamics of various loss functions can
be easily read off.

C.2 General analysis of the gradient learning of linear predictor

C.2.1 Denoising as Ridge Regression

Lemma C.5 (Diffusion learning as Ridge regression). For linear denoisers D(x, σ) = Wx + b,
at the full batch limit, the denoising score matching loss (2) is equivalent to the following Ridge
regression loss.

Lσ = Ex∥Wx+ b− x∥2 + σ2∥W∥2 (16)

Proof.

Lσ = Ex∼p0,z∼N (0,I)∥Dθ(x+ σz;σ)− x∥2

= Ex∼p0,z∼N (0,I)∥W(x+ σz) + b− x∥2

= Ex∼p0,z∼N (0,I)Tr
[(
W(x+ σz) + b− x

)(
W(x+ σz) + b− x

)⊤]
= Ex∼p0,z∼N (0,I)Tr

[(
W(x+ σz) + b− x

)(
(x+ σz)⊤W⊤ + b⊤ − x⊤)]

= Ex∼p0,z∼N (0,I)Tr
[(
Wx+ b− x+ σWz

)(
x⊤W⊤ + b⊤ − x⊤ + σz⊤W⊤)]

= Ex∼p0,z∼N (0,I)Tr
[(
Wx+ b− x

) (
Wx+ b− x

)⊤
+ 2σWz

(
Wx+ b− x

)⊤
+ σ2Wzz⊤W⊤]

= Ex∼p0∥Wx+ b− x∥2 + Ex∼p0,z∼N (0,I)Tr
[
2σWz

(
Wx+ b− x

)⊤
+ σ2Wzz⊤W⊤]

= Ex∼p0
∥Wx+ b− x∥2 + σ2∥W∥2

This derivation depends on the linearity of the denoiser and the white Gaussian nature of noise
z ∼ N (0, I).

Remark C.6. This equivalence reveals that for diffusion models the additive white noise can be
viewed as L2 regularization on the weights of the auto-encoding regression problem, where σ2

functions as regularization strength λ. Thus per classic analysis of Ridge regression, we can see that
at higher noise scales, fewer modes of the data will be “resolved”.

Further, if the noise is zero-mean but not white, the final term Tr
[
σ2Wzz⊤W⊤] will impose other

types of weighted regularization on the weights.
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C.3 General Analysis of the Denoising Score Matching Objective

To simplify, we first consider a fixed σ, ignoring the nonlinear dependency on it. Consider our score,
denoiser function approximators as a linear function D(x;σ) = b+Wx. Expanding the per-sample
DSM loss, we get

∥D(x0 + σz;σ)− x0∥2

= ∥b+W(x0 + σz)− x0∥2

= ∥b+Wσz+ (W − I)x0∥2

= (b+Wσz)T (b+Wσz) + xT
0 (W − I)T (W − I)x0 + 2(b+Wσz)T (W − I)x0

= bTb+ 2σbTWz+ σ2zTWTWz+ xT
0 (W − I)T (W − I)x0

+ 2bT (W − I)x0 + 2σzTWT (W − I)x0

= bTb+ 2σbTWz+ σ2Tr[WTWzzT ] + Tr[(W − I)T (W − I)x0x
T
0 ]

+ 2bT (W − I)x0 + 2σTr[WT (W − I)x0z
T ]

= ∥b− x0∥2 + ∥W(x0 + σz)∥2 + 2W(x0 + σz)(b− x0)
T

Full batch limit Here we take the full-batch expectation over z,x0, where z ∼ N (0, I),x0 ∼
p(x0). Their moments are the following.

E[z] = 0

E[zzT ] = I

E[x0] = µ

E[x0x
T
0 ] = µµT +Σ

E[x0z
T ] = 0

Note that the data do not need to be Gaussian, as long as the expectations or the first two moments
are as computed above, the results should be the same. In a sense, if our function approximator is
linear, then we just care about the Gaussian part of data.

L =Ex0∼p(x0), z∼N (0,I)∥D(x0 + σz;σ)− x0∥2

=bTb+ σ2Tr[WTW] + Tr[(W − I)T (W − I)(µµT +Σ)] + 2bT (W − I)µ (17)

We can simplify the objective by completing the square,

L =Ex0∼p(x0), z∼N (0,I)∥D(x0 + σz;σ)− x0∥2

=∥b+ (W − I)µ∥22 − µT (W − I)T (W − I)µ+ σ2Tr[WTW] + Tr[(W − I)T (W − I)(µµT +Σ)]

=∥b− (I−W)µ∥22 + σ2Tr[WTW] + Tr[(W − I)T (W − I)Σ] (18)

=∥b− (I−W)µ∥22 + Tr[WTW(σ2I+Σ)]− 2Tr[WTΣ] + Tr[Σ] (19)

Gradient The gradients from loss to the weight and bias read

∇bL = 2(b− (I−W)µ) (20)

∇WL = −2Σ+ 2W(σ2I+Σ) + [2WµµT + 2(b− µ)µT ] (21)

Global optimum Examining the quadratic loss, and setting the gradient to zero, we can see the
optimal parameters are the following,

b∗ = (I−W∗)µ (22)

W∗ = Σ(σ2I+Σ)−1 (23)

which recovers the Gaussian denoiser.
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Gradient flow dynamics Next, let’s examine the learning dynamics by gradient descent. We
consider the continuous-time limit, i.e. gradient flow. Denoting the learning rate η and continuous
training time τ , their gradient flow dynamics are

d

dτ
b = −η∇bL (24)

d

dτ
W = −η∇WL (25)
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C.4 Gradient Structure of Other Variants of Loss

Here we generalize our analysis to many popular training losses of diffusion models, including flow
matching. We provide a detailed table for different variants and the learning dynamics of the linear
denoiser.

Table 3: Variants of the diffusion training loss and their linear solution and gradient structure.
Here Σxx denotes the covariance of the input to the linear predictor; Σyx is the covariance between
target and input, not to be confused with the covariance of training sample x0. w∗

k denotes the optimal
weight projected onto principal component uk, w∗

k := uT
kW

∗uk; 1/τ∗ represents the convergence
speed of a target mode. We abbreviated away the expectation over data and noise in our loss

EDM X-pred EPS-pred V-pred Flow matching
Loss ∥Dθ(x+ σϵ;σ)− x∥2 ∥Fθ(αtx+ σtϵ; t)− x∥2 ∥Fθ(αtx+ σtϵ; t)− ϵ∥2 ∥Fθ(αtx+ σtϵ; t)− (αtϵ− σtx)∥2 ∥uθ

(
(1− t)x0 + tx1, t

)
− (x1 − x0)∥2

Σxx Σ+ σ2I α2
tΣ+ σ2

t I α2
tΣ+ σ2

t I α2
tΣ+ σ2

t I t2Σ+ (1− t)2I
Σyx Σ αtΣ σtI αtσt(I − Σ) tΣ− (1− t)I
W∗ (Σ + σ2I)−1Σ αt(α

2
tΣ+ σ2

t I)
−1Σ σt(α

2
tΣ+ σ2

t I)
−1 αtσt(α

2
tΣ+ σ2

t I)
−1(I − Σ) (t2Σ+ (1− t)2I)−1(tΣ− (1− t)I)

b∗ σ2(Σ + σ2I)−1µ σ2
t (α

2
tΣ+ σ2

t I)
−1µ −αtσt(α

2
tΣ+ σ2

t I)
−1µ −σt(α2

t + σ2
t )(α

2
tΣ+ σ2

t I)
−1µ (1− t)(t2Σ+ (1− t)2I)−1µ

w∗
k

λk
λk+σ2

αtλk
α2
tλk+σ2

t

σt
α2
tλk+σ2

t

αtσt(1−λk)
α2
tλk+σ2

t

tλk−(1−t)
t2λk+(1−t)2

1/τ∗ λk + σ2 α2
tλk + σ2

t α2
tλk + σ2

t α2
tλk + σ2

t t2λk + (1− t)2

Denoiser / clean image / x0 prediction (EDM) loss
∥Dθ(x+ σϵ;σ)− x∥2

Moments of input-output

µx = µ, µy = µ

Σxx = Cov(x+ σϵ,x+ σϵ) = Σ + σ2I

Σyx = Cov(x,x+ σϵ) = Σ

Optimum

W∗ = Σ−1
xxΣyx = (Σ + σ2I)−1Σ

b∗ = µy −W∗µx

= (I −W∗)µ

= σ2(Σ + σ2I)−1µ

Noise / eps prediction (EDM) loss
∥Fθ(x+ σϵ;σ)− ϵ∥2

Moments of input-output

µx = µ, µy = 0

Σxx = Cov(x+ σϵ,x+ σϵ) = Σ + σ2I

Σyx = Cov(ϵ,x+ σϵ) = σI

Optimum

W∗ = Σ−1
xxΣyx = σ(Σ + σ2I)−1

b∗ = µy −W∗µx

= −W∗µ

= −σ(Σ + σ2I)−1µ

Denoiser / clean image / x0 prediction loss (variance preserving)
∥Dθ(αtx+ σtϵ;σ)− x∥2

Moments of input-output

µx = αtµ, µy = µ

Σxx = Cov(αtx+ σtϵ, αtx+ σtϵ) = α2
tΣ+ σ2

t I

Σyx = Cov(x, αtx+ σtϵ) = αtΣ
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Optimum

W∗ = Σ−1
xxΣyx = αt(α

2
tΣ+ σ2

t I)
−1Σ

b∗ = µy −W∗µx

= µ− αtW
∗µ

= (I − αtW
∗)µ

= (I − α2
tΣ(α

2
tΣ+ σ2

t I)
−1)µ

= σ2
t (α

2
tΣ+ σ2

t I)
−1µ

Noise / eps prediction loss (variance preserving)

∥Fθ(αtx+ σtϵ; t)− ϵ∥2

Moments of input-output

µx = αtµ, µy = 0

Σxx = Cov(αtx+ σtϵ, αtx+ σtϵ) = α2
tΣ+ σ2

t I

Σyx = Cov(ϵ, αtx+ σtϵ) = σtI

Optimum

W∗ = Σ−1
xxΣyx = σt(α

2
tΣ+ σ2

t I)
−1

b∗ = µy −W∗µx

= −αtW
∗µ

= −αtσt(α
2
tΣ+ σ2

t I)
−1µ

Velocity / V-prediction loss (variance preserving)

∥Fθ(αtx+ σtϵ; t)− (αtϵ− σtx)∥2

Moments of input-output

µx = αtµ, µy = −σtµ
Σxx = Cov(αtx+ σtϵ, αtx+ σtϵ) = α2

tΣ+ σ2
t I

Σyx = Cov(αtϵ− σtx, αtx+ σtϵ) = −αtσtΣ+ αtσtI = αtσt(I − Σ)

Optimum

W∗ = Σ−1
xxΣyx

= αtσt(α
2
tΣ+ σ2

t I)
−1(I − Σ)

b∗ = µy −W∗µx

= −σtµ− αtW
∗µ

= −(σtI + αtW
∗)µ

= −
(
σtI + α2

tσt(α
2
tΣ+ σ2

t I)
−1(I − Σ)

)
µ

= −σt
(
I + α2

t (α
2
tΣ+ σ2

t I)
−1(I − Σ)

)
µ

= −σt
(
α2
tΣ+ σ2

t I + α2
t (I − Σ)

)
(α2

tΣ+ σ2
t I)

−1µ

= −σt(α2
t + σ2

t )(α
2
tΣ+ σ2

t I)
−1µ

Flow matching loss

L = Ex0∼N (0,I), x1∼p1
∥uθ

(
(1− t)x0 + tx1, t

)
− (x1 − x0)∥2
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Moments of input-output

µx = tµ, µy = µ

Σxx = Cov((1− t)x0 + tx1, (1− t)x0 + tx1) = t2Σ+ (1− t)2I

Σyx = Cov(x1 − x0, (1− t)x0 + tx1) = tΣ− (1− t)I

Optimum

W∗ = Σ−1
xxΣyx

= (t2Σ+ (1− t)2I)−1(tΣ− (1− t)I)

b∗ = µy −W∗µx

= µ−W∗tµ

= (I − tW∗)µ

=
(
I − t(t2Σ+ (1− t)2I)−1(tΣ− (1− t)I)

)
µ

=
(
t2Σ+ (1− t)2I − t(tΣ− (1− t)I)

)
(t2Σ+ (1− t)2I)−1µ

=
(
(1− t)2I + t(1− t)I

)
(t2Σ+ (1− t)2I)−1µ

= (1− t)(t2Σ+ (1− t)2I)−1µ
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C.5 General Analysis of the Sampling ODE

The diffusion sampling process per probability flow ODE is the following

dx

dσ
=− σs(x, σ) (26)

=− D(x, σ)− x

σ

given the relation between score and denoiser (Tweedie’s formula).

s(x, σ) =
D(x, σ)− x

σ2

Intuitively, when the denoiser is a linear function of x, then the sampling ODE is also a linear
(time-varying) dynamic system with respect to x.

When all Wσ are jointly diagonalizable by a shared set of orthonormal bases {uk} (e.g., the PC
basis of data, or Fourier basis), i.e., commute, we can solve the sampling dynamics mode by mode by
projecting onto such basis.

d

dσ
x = −Wσx+ bσ − x

σ
(27)

d

dσ
uT
k x = − 1

σ
(uT

kWσx+ uT
k bσ − uT

k x) (28)

Representing Wσ,bσ,x(σ) on the shared eigenbasis,

Wσ =
∑
k

ψk(σ)uku
T
k (29)

bσ =
∑
k

bk(σ)uk (30)

x(σ) =
∑
k

ck(σ)uk (31)

We can project the sampling ODE onto eigenbasis, i.e.

d

dσ
uT
k x = − 1

σ

(
(ψk(σ)− 1)uT

k x+ bk(σ)
)

d

dσ
ck(σ) = − 1

σ

(
(ψk(σ)− 1)ck(σ) + bk(σ)

)
d

dσ
ck(σ) + (

ψk(σ)− 1

σ
)ck(σ) = − 1

σ
bk(σ)

This can be solved via the general solution of a first-order linear ODE: given

dy

dx
+ P (x)y = Q(x)

the general solution reads

y = e−
∫ x P (λ) dλ

[∫ x

e
∫ λ P (ε) dεQ(λ) dλ+ C

]
In our case,

ck(σ) = e−
∫ σ ψk(λ)−1

λ dλ

[∫ σ

−bk(λ)
λ

e
∫ λ ψk(ε)−1

ε dε dλ+ C

]
= e

−
∫ σ
σT

ψk(λ)−1

λ dλ
[
ck(σT ) +

∫ σ

σT

−bk(λ)
λ

e
∫ λ ψk(ε)−1

ε dε dλ

]
= e

−
∫ σ
σT

ψk(λ)−1

λ dλ
ck(σT ) +

∫ σ

σT

−bk(λ)
λ

e−
∫ σ
λ

ψk(ε)−1

ε dε dλ
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Rewriting the solution to expose the linear dependency on initial values, the solution reads,

ck(σ) = Ak(σ;σT )ck(σT ) +Bk(σ;σT ) (32)

Ak(σ;σT ) = e
−

∫ σ
σT

ψk(λ)−1

λ dλ (33)

Bk(σ;σT ) =

∫ σ

σT

−bk(λ)
λ

e−
∫ σ
λ

ψk(ε)−1

ε dε dλ (34)

Consider the function

Φk(σ) := exp

(
−
∫ σ

0

ψk(λ)− 1

λ
dλ

)
(35)

Then the integration functions can be expressed as

Ak(σ;σT ) = Φk(σ)/Φk(σT ) (36)

Bk(σ;σT ) =

∫ σ

σT

−bk(λ)
λ

Φk(σ)/Φk(λ) dλ (37)

By initial noise distribution, ck(σT ) ∼ N (0, σ2
T ), the variance of ck(σ) at any sampling time σ can

be written down

Var[ck(σ)] = σ2
T exp

(
− 2

∫ σ

σT

ψk(λ)− 1

λ

)
(38)

= σ2
T

( Φk(σ)

Φk(σT )

)2

(39)

Since E[ck(σT )] = 0,

E[ck(σ)] = e
−

∫ σ
σT

ψk(λ)−1

λ dλ
[∫ σ

σT

−bk(λ)
λ

e
∫ λ
σT

ψk(ε)−1

ε dε
dλ

]
(40)

= −
∫ σ

σT

bk(λ)

λ
e−

∫ σ
λ

ψk(ε)−1

ε dε dλ (41)

= −
∫ σ

σT

bk(λ)

λ

Φk(σ)

Φk(λ)
dλ (42)

= Bk(σ;σT ) (43)

Since xσ is a linear transformation of a Gaussian random variable, the distribution of xσ at any
sampling time σ is also Gaussian xσ ∼ N (µ̃, Σ̃) with the following mean and covariance.

µ̃ =
∑
k

Bk(σ;σT )uk (44)

Σ̃ =
∑
k

σ2
T (

Φk(σ)

Φk(σT )
)2uk (45)
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C.6 KL Divergence Computation

KL divergence between two multivariate Gaussian distributions is,

KL(N (µ1,Σ1) || N (µ2,Σ2))

=

∫ [
1

2
log

|Σ2|
|Σ1|

− 1

2
(x− µ1)

TΣ−1
1 (x− µ1) +

1

2
(x− µ2)

TΣ−1
2 (x− µ2)

]
× p(x)dx

=
1

2
log

|Σ2|
|Σ1|

− 1

2
tr

{
E[(x− µ1)(x− µ1)

T ] Σ−1
1

}
+

1

2
E[(x− µ2)

TΣ−1
2 (x− µ2)]

=
1

2
log

|Σ2|
|Σ1|

− 1

2
tr {Id}+

1

2
(µ1 − µ2)

TΣ−1
2 (µ1 − µ2) +

1

2
tr{Σ−1

2 Σ1}

=
1

2

[
log

|Σ2|
|Σ1|

− d+ tr{Σ−1
2 Σ1}+ (µ2 − µ1)

TΣ−1
2 (µ2 − µ1)

]
. (46)

This formula further simplifies when Σ2 and Σ1 share the same eigenbasis. We can write their
eigendecomposition as Σ2 = UΛ2U

T , Σ1 = UΛ1U
T ,

KL(N (µ1,Σ1) || N (µ2,Σ2)) =
1

2

[
log

|Λ2|
|Λ1|

− d+ tr{Λ−1
2 Λ1}+ (µ2 − µ1)

TUΛ−1
2 UT (µ2 − µ1)

]
=

1

2

[
log

∏
k λ2,k∏
k λ1,k

− d+
∑
k

λ1,k
λ2,k

+ (µ2 − µ1)
TUΛ−1

2 UT (µ2 − µ1)

]

=
1

2

[∑
k

log
λ2,k
λ1,k

− d+
∑
k

λ1,k
λ2,k

+ (µ2 − µ1)
TUΛ−1

2 UT (µ2 − µ1)

]
In more explicit form

KL(N (µ1,Σ1) || N (µ2,Σ2)) =
1

2

[∑
k

log
λ2,k
λ1,k

− d+
∑
k

λ1,k
λ2,k

+ (µ2 − µ1)
T
∑
k

uku
T
k

λ2,k
(µ2 − µ1)

]

=
1

2

∑
k

[
log

λ2,k
λ1,k

+
λ1,k
λ2,k

− 1 +

(
uT
k (µ2 − µ1)

)2
λ2,k

]
(47)

If they share the same mean µ1 = µ2 it simplifies even further

KL =
1

2

[∑
k

λ1,k
λ2,k

−
∑
k

log
λ1,k
λ2,k

− d

]
(48)

which has unique minimizer when λ1,k

λ2,k
= 1.

Thus, we can compute the contribution to KL mode by mode. We denote the contribution from mode
k as

KLk =
1

2
(
λ1,k
λ2,k

− log
λ1,k
λ2,k

− 1) (49)

Thus for Gaussian data that share the same mean, the KL divergence can be reduced to the ratio of
generated and true variance along each principal axis of data.
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D Detailed Derivations for the One-Layer Linear Model

D.1 Zero-mean data: Exponential converging training dynamics

If µ = 0, then the problem reduces to learning the covariance of data. The gradient to weights and
bias decouples 1

∇bL = 2b (50)

∇WL = −2Σ+ 2W(σ2I+Σ) (51)
The solution of b is an exponential decay

d

dτ
b = −2ηb (52)

b(τ) = b0 exp(−2ητ) (53)
The solution of W can be obtained by projecting onto eigenbasis of Σ

∇WL · uk = −2Σuk + 2W(σ2I+Σ)uk (54)

= −2λkuk + 2(σ2 + λk)Wuk (55)
Thus,

d

dτ
(Wuk) = −η[−2λkuk + 2(σ2 + λk)(Wuk)]

Define variable vk = Wuk

d

dτ
vk = 2ηλkuk − 2η(σ2 + λk)vk

= 2η(σ2 + λk)

(
λk

(σ2 + λk)
uk − vk

)
vk(τ) =

λk
(σ2 + λk)

uk +
(
v0
k − λk

(σ2 + λk)
uk

)
exp

(
− 2η(σ2 + λk)τ

)
Since

[vk..] = W[uk...]

V UT = W

W =
∑
k

vku
T
k

The full solution of W reads
W(τ) =

∑
k

vk(τ)u
T
k

=
∑
k

λk
(σ2 + λk)

uku
T
k +

∑
k

(
v0
k − λk

(σ2 + λk)
uk

)
uT
k e

−2η(σ2+λk)τ

=
∑
k

λk
(σ2 + λk)

uku
T
k (1− e−2η(σ2+λk)τ ) +

∑
k

v0
ku

T
k e

−2η(σ2+λk)τ

=
∑
k

λk
(σ2 + λk)

uku
T
k (1− e−2η(σ2+λk)τ ) +W(0)

∑
k

uku
T
k e

−2η(σ2+λk)τ

= W∗ +
∑
k

(
v0
k − λk

(σ2 + λk)
uk

)
uT
k e

−2η(σ2+λk)τ

= W∗ +
∑
k

(
W(0)uk − λk

(σ2 + λk)
uk

)
uT
k e

−2η(σ2+λk)τ (56)

= W∗ +
∑
k

(
W(0)−W∗)uku

T
k e

−2η(σ2+λk)τ (57)

where v0
k := W(0)uk.

1For notational clarity, we derive the gradient flow at a fixed noise scale σ, and omit the subscript and/or
argument σ from W, b, and L.
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Remarks

• The weight matrix W converges to the final target mode by mode.
• The deviation along each eigen dimension decays at different rates depending on the

eigenvalue.
• The deviation on eigen mode uk has the time constant (2η(σ2 + λk))

−1 i.e. the larger eigen
dimensions will be learned faster.

• While the “non-resolved” dimensions will learn at the same speed ∼ (2ησ2)−1

• Comparing across noise scale σ, the larger noise scales will be learned faster.

Score estimation error dynamics Consider a target quantity of interest, i.e. difference of the score
approximator from the true score.

First, under the µ = 0 assumption, we have

Es = Ex∥s(x)− s∗(x)∥2 =
1

σ4

[
∥b− b∗∥2 + Tr[(W −W∗)T (W −W∗)(Σ+ σ2I)]

]
(58)

The deviations can be expressed as

b− b∗ = b0 exp(−2ητ)

W −W∗ =
∑
k

(
v0
k − λk

(σ2 + λk)
uk

)
uT
k e

−2η(σ2+λk)τ

with the initial projection v0
k := W(0)uk

Es =
1

σ4

[
∥b0∥2 exp(−4ητ) +

∑
k

(σ2 + λk)∥v0
k − λk

(σ2 + λk)
uk∥2e−4η(σ2+λk)τ

]
(59)

=
1

σ4

[
∥δb∥2 exp(−4ητ) +

∑
k

(σ2 + λk)∥δk∥2e−4η(σ2+λk)τ

]
(60)

δk := W(0)uk − λk
(σ2 + λk)

uk

δb := b0

This provides us with the exact formula for error decay during training.

Denoiser estimation error dynamics

ED = Ex∥D(x)−D∗(x)∥2

= σ4Es

= (δb)
2 exp(−4ητ) +

∑
k

(σ2 + λk)∥δk∥2e−4η(σ2+λk)τ (61)

Training loss dynamics Under µ = 0 assumption, the training loss is basically the true denoiser
estimation error plus a constant term σ2Tr[Σ(σ2I+Σ)−1] determined by data covariance (trace of
resolvent).

Lµ=0 =∥b− (I−W)µ∥22 + Tr[(W −W∗)(σ2I+Σ)(W −W∗)T ] + σ2Tr[Σ(σ2I+Σ)−1]

(µ = 0) =∥b∥22 + Tr[(W −W∗)T (W −W∗)(σ2I+Σ)] + σ2Tr[Σ(σ2I+Σ)−1] (62)

=ED + σ2Tr[Σ(σ2I+Σ)−1] (63)

D.1.1 Discrete time Gradient descent dynamics

When the dynamics is discrete-time gradient descent instead of gradient flow, we have,

∇bL = 2b (64)

∇WL = −2Σ+ 2W(σ2I+Σ) (65)
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The GD update equation reads, with η the learning rate

bt+1 − bt = −η∇btL (66)
Wt+1 −Wt = −η∇Wt

L (67)

bt+1 = (1− 2η)bt (68)

Wt+1 = Wt − 2η(−Σ+Wt(σ
2I+Σ)) (69)

= 2ηΣ+Wt(I− 2ησ2I− 2ηΣ) (70)

= 2ηΣ+Wt

(
(1− 2ησ2)I− 2ηΣ

)
(71)

For the weight dynamics, we have

Wt+1uk = 2ηΣuk +Wt

(
(1− 2ησ2)I− 2ηΣ

)
uk (72)

= 2ηλkuk +Wtuk

(
1− 2ησ2 − 2ηλk

)
(73)

This iteration is exponentially converging to the fixed point λk
σ2+λk

.

Wt+1uk − λk
σ2 + λk

uk = (2ηλk − λk
σ2 + λk

)uk +Wtuk

(
1− 2ησ2 − 2ηλk

)
(74)

= (2η(σ2 + λk)− 1)
λk

σ2 + λk
uk +Wtuk

(
1− 2ησ2 − 2ηλk

)
(75)

= (Wtuk − λk
σ2 + λk

uk)
(
1− 2ησ2 − 2ηλk

)
(76)

Thus

Wtuk =
λk

σ2 + λk
uk + (W0uk − λk

σ2 + λk
uk)

(
1− 2ησ2 − 2ηλk

)t
(77)

bt = b0(1− 2η)t (78)

Wt =
∑
k

λk
σ2 + λk

uku
T
k + (W0 −

λk
σ2 + λk

uk)u
T
k

(
1− 2ησ2 − 2ηλk

)t
(79)

So, there is no significant change from the continuous-time version.

D.1.2 Special parametrization: residual connection

Consider a special parametrization of weights

W = cskipI+ coutW
′ (80)

It’s easy to derive the dynamics of the new variables via chain rule,

∂W

∂W′ = cout, (81)

∂L
∂W′ = cout

∂L
∂W

. (82)

With the original gradient

∇bL = 2(b− (I−W)µ) (83)

∇WL = −2Σ+ 2W(σ2I+Σ) + [2WµµT + 2(b− µ)µT ] (84)

and zero mean case

∇bL = 2b (85)

∇WL = −2Σ+ 2W(σ2I+Σ) (86)
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the gradient to new parameters

∇W′L = cout∇WL = 2cout(−Σ+ (cskipI+ coutW
′)(σ2I+Σ)) (87)

= 2cout(−Σ+ cskip(σ
2I+Σ) + coutW

′(σ2I+Σ)) (88)

= 2cout(cskip(σ
2I+Σ)−Σ+ coutW

′(σ2I+Σ)) (89)

dW′

dτ
= −η∇W′L (90)

1

2ηcout

dW′

dτ
= −(cskip(σ

2I+Σ)−Σ+ coutW
′(σ2I+Σ)) (91)

W′∗ =
1

cout
(Σ− cskip(σ

2I+Σ))(σ2I+Σ)−1 (92)

=
1

cout
(Σ(σ2I+Σ)−1 − cskipI) (93)

W′(τ)uk = W′(0)uk exp(−2ητc2out(σ
2 + λk))+ (94)

uk
λk − cskip(σ

2 + λk)

cout(σ2 + λk)
(1− exp(−2ητc2out(σ

2 + λk)))

The solution to the new weights reads

W′(τ) = (W′(0)−W′∗)
∑
k

uku
T
k exp(−2ητc2out(σ

2 + λk)) +W′∗ (95)

W(τ) = cskipI+ coutW
′(τ) (96)

= cskipI+ cout(W
′(0)−W′∗)

∑
k

uku
T
k exp(−2ητc2out(σ

2 + λk)) + coutW
′∗ (97)

= Σ(σ2I+Σ)−1 + cout(W
′(0)−W′∗)

∑
k

uku
T
k exp(−2ητc2out(σ

2 + λk)) (98)

= W∗ + cout(W
′(0)−W′∗)

∑
k

uku
T
k exp(−2ητc2out(σ

2 + λk)) (99)

= W∗ + (W(0)−W∗)
∑
k

uku
T
k exp(−2ητc2out(σ

2 + λk)) (100)

The only difference is scaling the learning rate by a factor of c2out. Also potentially depending on
whether we choose to initialize W(0) or W′(0) from a fixed distribution, we would get different
initial values for the dynamics.

D.2 General non-centered distribution: Interaction of mean and covariance learning

Summary of results for non-centered case When µ ̸= 0, the gradients to W and b become
entangled (see Eq. 5), resulting in a coupled linear dynamic system as follows.

Proposition D.1 (Learning dynamics of linear denoiser, non centered case). Gradient flow (Eq. GF)
is equivalent to the following ODE, with redefined dynamic variables, vk(τ) = W(τ)uk, b̄(τ) =
b(τ)− µ. Denote overlap mk := u⊺

kµ,

1

2η

d

dτ

[ v1

v2

.
b̄

]
= −M

[ v1

v2

.
b̄

]
+

[ λ1u1

λ2u2

.
0

]
(101)
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Figure 27: Interaction of mean and covariance learning. Top solution to the w, b dynamics under
different noise level σ ∈ {0.1, 1.5, 4}. Bottom Phase portraits corresponding to the two-d system.
(m = 1, λk = 1)

with a fixed dynamic matrix M defined by ⊗ Kronecker product.

M :=

σ
2 + λ1 +m2

1 m1m2 . m1

m1m2 σ2 + λ2 +m2
2 . m2

... ... ... .
m1 m2 . 1

⊗ Id

:= M̃ ⊗ Id (102)

Remark D.2. The dynamics matrix M̃ has a rank-one plus diagonal structure, specifically, it is
the diagonal dynamics matrix in Eq. 7, perturbed by the outer product of the overlap vector mk.
The eigenvalues of such matrix can be efficiently solved by numerical algebra, with eigenvectors
expressed by Bunch–Nielsen–Sorensen formula [56, 57]. Without a closed-form formula, we have to
resort to numerical simulation and low-dimensional examples to gain further insights. We can see the
coupling of W and b dynamics comes from the overlap of mean and principal componentmk = u⊺

kµ.
When certain eigenmode has no overlap, mk = 0, the corresponding weight projection vk(τ) will
follow the same dynamics as the zero-mean case, i.e. exponentially converge to the optimal solution
λk/(λk + σ2)uk. When the overlap is non-zero mk ̸= 0, it will induce interaction between vk(τ)
and b(τ) and non-monotonic dynamics.

Two dimensional example Here, we show a low-dimensional example illustrating the interaction
between the bias and one eigenmode in the weight. Consider the case where distribution mean µ lies
on the direction of a PC uk. Then only the uk mode of weights interacts with the distribution mean,
resulting in a two-dimensional linear system, parametrized by noise scale σ, variance of mode λ and
amount of alignment m. Let the dynamic variable be scalars w, b, vk = w(τ)uk,b = b(τ)uk.

1

2η

d

dτ

[
w
b

]
= −

[
m2 + σ2 + λ m

m 1

] [
w
b

]
+

[
λ+m2

m

]
(103)

The phase diagram and dynamics depending on the noise scale are shown (Fig. 27): At larger σ
values, the dynamics of weights w will be much faster than b, basically, w gets dynamically captured
by b, while b slowly relaxes to the optimal value. At small σ values, the dynamics timescale of w and
b will be closer to each other, and b will usually have non-monotonic transient dynamics. When σ2

and λ are comparable, w will have non-monotonic dynamics.
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D.2.1 Derivation of non-centered case

In this full case, the dynamics of b,W are coupled

∇bL = 2(b− µ+Wµ) (104)

∇WL = −2Σ+ 2W(σ2I+Σ) + 2(b− µ+Wµ)µT (105)

= −2Σ+ 2W(σ2I+Σ) +∇bL · µT (106)

= ∇WL̄+∇bL · µT (107)

∇WL̄ := −2Σ+ 2W(σ2I+Σ) (108)

The nonlinear gradient learning dynamics reads

ḃ = −η∇bL (109)

Ẇ = −η(∇WL̄+∇bL · µT ) (110)

Ẇ − ḃ · µT = −η∇WL̄ (111)

= 2η
[
Σ−W(σ2I+Σ)

]
(112)

ḃ = −η∇bL (113)
= −2η(b− µ+Wµ) (114)

Consider the projection

(Ẇ − ḃ · µT )uk = 2η
[
Σ−W(σ2I+Σ)

]
uk (115)

Ẇuk − (µTuk)ḃ = 2η[λkuk − (σ2 + λk)Wuk] (116)

ḃ = −2η(b− µ+
∑
k

Wuku
T
k µ)

Consider the variables vk(τ) = W(τ)uk, let b̄(τ) = b(τ) − µ so now the dynamic variables are
{vk, ..., b̄}

v̇k − (µTuk)
˙̄b = 2η[λkuk − (σ2 + λk)vk] (117)
˙̄b = −2η(b̄+

∑
k

(µTuk)vk) (118)

v̇k = 2η[λkuk − (σ2 + λk)vk]− 2η(µTuk)[b̄+
∑
l

(µTul)vl] (119)

= 2η[λkuk − (σ2 + λk)vk − (µTuk)b̄−
∑
l

(µTuk)(µ
Tul)vl] (120)

˙̄b = −2η(b̄+
∑
k

(µTuk)vk) (121)

The whole dynamics is linear and solvable, but now the dynamics in each component vk becomes
entangled with other components vl.

d

dτ

[ v1

v2

.
b̄

]
= −2ηM

[ v1

v2

.
b̄

]
+ 2η

[ λ1u1

λ2u2

.
0

]
(122)

with the blocks in M matrix defined as follows

Mkk = (σ2 + λk + (µTuk)
2)I

Mkl = (µTuk)(µ
Tul)I

Mkb = (µTuk)I

Mbk = (µTuk)I

Mbb = I
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We denote the overlap between the mean and principal components as mk = µTuk,

Then we can represent the dynamic matrix M as a tensor product of a dense symmetric matrix Q
with identity IN . More specifically, the dense matrix Q is a diagonal matrix plus the outer product of
a vector. So it’s real symmetric and diagonalizable.

M =

[ σ2 + λ1 +m2
1 m1m2 . m1

m1m2 σ2 + λ2 +m2
2 . m2

... ... ... .
m1 m2 . 1

]
⊗ IN (123)

= Q⊗ IN (124)

Q :=

[ σ2 + λ1 +m2
1 m1m2 . m1

m1m2 σ2 + λ2 +m2
2 . m2

... ... ... .
m1 m2 . 1

]
(125)

= D + qqT (126)

q := [m1,m2, ...1]
T (127)

D := diag(σ2 + λ1, σ
2 + λ2, σ

2 + λ3, ...σ
2 + λN , 0) (128)

Note the inverse of Q is analytical, but the general eigendecomposition of it is not. Since the dynamic
matrix M is real symmetric, the dynamics will still be separable along each eigenmode of M and
converge w.r.t. its own eigenvalue. The eigen decomposition of M can be obtained by numerical
analysis and eigenvectors from Bunch–Nielsen–Sorensen formula [56, 58]. Generally speaking, since
the mean of dataset µ usually lies in the directions of higher eigenvalues, the dynamics of b and vk

in the top eigenspace will be entangled with each other.

As a take home message, the overlap of µ and spectrum of Gaussian will induce some complex
dynamics of bias and weight matrix along these modes. The full dynamics of W,b is still linear and
solvable, but since the dynamic matrix is a tensor product of a Diagonal + low rank with identity, a
closed form solution is generally harder, we can still obtain numerical solution of the dynamics easily.

D.2.2 Derivation of low-dimensional interaction of mean and variance learning

To gain intuition into how the mean and variance learning happens, consider the 1d distribution case,
which shares the same math as the multi dimensional case where the mean overlaps with only one
eigenmode

∇bL = 2(b− µ+Wµ)

= 2b− 2(1− w)µ

= 2µw + 2b− 2µ (129)

∇WL = −2Σ+ 2W(σ2I+Σ) + 2(b− µ+Wµ)µT

= −2λ− 2(1− w)µ2 + 2w(σ2 + λ) + 2µb

= 2(µ2 + σ2 + λ)w + 2µb− 2(λ+ µ2) (130)

Write down the dynamic equation as matrix equation

d

dτ

[ w
b

]
= −2η

([ µ2 + σ2 + λ µ
µ 1

] [ w
b

]
−

[ λ+ µ2

µ

])
Eigen equation reads

det(A− γI) = (1− γ)(µ2 + σ2 + λ− γ)− µ2 (131)

= γ2 −
(
λ+ µ2 + σ2 + 1

)
γ + λ+ σ2 (132)

Generally for 2x2 matrices, [ a b
b c

]
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their eigenvalues are

λ1,2 =
1

2

(
±
√
(a− c)2 + 4b2 + a+ c

)
u12 =

[
±
√

(a−c)2+4b2+a−c

2b
1

]
In our case, a = µ2 + σ2 + λ, b = µ, c = 1.

u12 =

[ ±
√

(µ2+σ2+λ−1)2+4µ2+µ2+σ2+λ−1

2µ

1

]
The faster learning dimension will be λ1,u1, where w and b will move in the same direction.

Key observation is that the w and b’s dynamics depend on σ,

• for larger σ, w will converge faster, while b will slowly meander, w moving with b, following
entrainment.

w∗(b) =
λ+ µ2 − µb

λ+ µ2 + σ2

• for smaller σ, b will converge faster, comparable or entrained by w

b∗(w) = (1− w)µ

D.3 Sampling ODE and Generated Distribution

For simplicity consider the zero-mean case, where

W(τ ;σ) = W∗ +
∑
k

(
W(0;σ)uk − λk

(σ2 + λk)
uk

)
uT
k e

−2η(σ2+λk)τ (133)

=
∑
k

λk
(σ2 + λk)

uku
T
k (1− e−2η(σ2+λk)τ ) +W(0;σ)

∑
k

uku
T
k e

−2η(σ2+λk)τ (134)

b(τ ;σ) = b(0) exp(−2ητ) (135)

To let it decompose mode by mode in the sampling ODE, we assume aligned initialization
uT
kW(0;σ)um = 0 when k ̸= m.

Then

d

dσ
uT
k x = − 1

σ

((
− σ2

(σ2 + λk)
+(uT

kW(0;σ)uk−
λk

(σ2 + λk)
)e−2η(σ2+λk)τ

)
uT
k x+uT

k b(0;σ)e
−2ητ

)
Let the initialization along uk be uT

kW(0;σ)uk = qk, then

d

dσ
uT
k x = − 1

σ

((
− σ2

(σ2 + λk)
+ (qk − λk

(σ2 + λk)
)e−2η(σ2+λk)τ

)
uT
k x+ uT

k b(0;σ)e
−2ητ

)
Using the following integration results∫

dσ
1

σ(σ2 + λk)
σ2 =

1

2
log

(
λk + σ2

)
+ C

∫
dσ

1

σ
e−2η(σ2+λk)τ = −1

2
e−2ηλkτEi

(
−2ητσ2

)
+ C

∫
dσ

λk
σ(σ2 + λk)

e−2η(σ2+λk)τ =
1

2

(
Ei

(
−2ητσ2

)
e−2ητλk − Ei

(
−2ητ

(
σ2 + λk

)))
+ C
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Integrating this ODE, we get

ck(σ) = C exp

(
1

2
log

(
λk + σ2

)
+

1

2

(
Ei

(
−2ητσ2

)
e−2ητλk − Ei

(
−2ητ

(
σ2 + λk

)))
+ (136)

− qk
1

2
Ei

(
−2ητσ2

)
e−2ηλkτ

)
(137)

= C
√
λk + σ2 exp

(
1

2

(
(1− qk) Ei

(
−2ητσ2

)
e−2ητλk − Ei

(
−2ητ

(
σ2 + λk

))))
(138)

Solution of sampling dynamics ODE

x(σ0) =
∑
k

uk
ck(σ0)

ck(σT )
(uT

k x(σT )) (139)

=
∑
k

ck(σ0)

ck(σT )
uku

T
k x(σT ) (140)

The variance of generated distribution reads

Σ̃τ = σ2
T

∑
k

(
ck(σ0)

ck(σT )
)2uku

T
k (141)

where the variance along eigenvector uk reads

λ̃τk = σ2
T (
ck(σ0)

ck(σT )
)2 (142)

= σ2
T

λk + σ2
0

λk + σ2
T

exp

(
(1− qk) Ei

(
−2ητσ2

0

)
e−2ητλk − Ei

(
−2ητ

(
σ2
0 + λk

)))
exp

(
(1− qk) Ei (−2ητσ2

T ) e
−2ητλk − Ei (−2ητ (σ2

T + λk))

) (143)
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E Detailed Derivations for Two-Layer Symmetric Parameterization

Here we outline the main derivation steps for the two-layer symmetric case:
D(x) = P PT x + b. (144)

E.1 Symmetric parametrization zero mean gradient dynamics

Note that if the weight matrix W has internal structure, i.e., parametrized by θ, we can easily derive
the gradient flow of those parameters using the chain rule.

Let W = W(θ),

∇θL =
∑
ij

(
∂L
∂W

)ij
∂Wij

∂θ

Here, when W = PPT , via the chain rule, we can derive its gradient, which depends on the
symmetrized gradient of W

∇PL = (∇WL)P + (∇WL)TP (145)

=

[
∇WL+ (∇WL)T

]
P (146)

where
∇bL = 2(b− (I−W)µ) (147)

∇WL = −2Σ+ 2W(σ2I+Σ) + [2WµµT + 2(b− µ)µT ] (148)

Expanding the full gradient (non-zero mean case), we have

∇PL =

[
− 4Σ+ 2W(σ2I+Σ) + [2WµµT + 2(b− µ)µT ]

+ 2(σ2I+Σ)WT + [2µµTWT + 2µ(b− µ)T ]

]
P (149)

= −4ΣP + 2PPT (σ2I+Σ)P + 2(σ2I+Σ)PPTP

+ [2PPTµµT + 2(b− µ)µT ]P + [2µµTPPT + 2µ(b− µ)T ]P (150)
In the zero-mean case this simplifies to

∇PLµ=0 = −4ΣP + 2PPT (σ2I+Σ)P + 2(σ2I+Σ)PPTP (151)

Consider representing the gradient on eigenbases, let uT
k P = qTk .

uT
k∇PLµ=0 = −4uT

kΣP + 2uT
k PP

T (σ2I+Σ)P + 2uT
k (σ

2I+Σ)PPTP (152)

= −4λku
T
k P + 2uT

k P
∑
m

(σ2 + λm)PTumuT
mP + 2(σ2 + λk)u

T
k PP

TP (153)

= −4λkq
T
k + 2qTk

∑
m

(σ2 + λm)qmq
T
m + 2(σ2 + λk)q

T
k

∑
m

qmq
T
m (154)

= −4λkq
T
k + 2

∑
m

(
2σ2 + λm + λk

)
(qTk qm)qTm (155)

∇qTk
Lµ=0 = −4λkq

T
k + 2

∑
m

(
2σ2 + λm + λk

)
(qTk qm)qTm (156)

∇qkLµ=0 = −4λkqk + 2
∑
m

(
2σ2 + λm + λk

)
(qTk qm)qm (157)

Fixed points analysis A stationary solution at which the gradient vanishes is

qTk qm =


0, if k ̸= m,

λk
λk + σ2

or 0, if k = m.
(158)

Note, this is different from the one-layer case where there are no saddle points; here we get a bunch
of zero solutions as saddle points.
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Dynamics of the overlap Note the dynamics of the overlap

d

dτ
(qTk qm) = qTk

d

dτ
qm + qTm

d

dτ
qk

= −η[qTk ∇qmLµ=0 + qTm∇qkLµ=0]

= −η[−4λk(q
T
mqk) + 2

∑
n

(
2σ2 + λn + λk

)
(qTk qn)q

T
mqn

− 4λm(qTk qm) + 2
∑
n

(
2σ2 + λn + λm

)
(qTmqn)q

T
k qn]

= −η[−4(λk + λm)(qTmqk) + 2
∑
n

(
4σ2 + 2λn + λm + λk

)
(qTk qn)(q

T
mqn)]

= 4η[(λk + λm)(qTmqk)−
∑
n

(
2σ2 + λn +

λm + λk
2

)
(qTk qn)(q

T
mqn)] (159)

This shows that when all the overlaps are initialized as zero, they will stay at zero, i.e., when weights
are initialized to be aligned to the eigenbasis, they will stay aligned. We will first solve the aligned
case analytically in Sec. E.1.1, and then analyze the dynamics of overlap qualitatively in Sec. E.1.2.

E.1.1 Simplifying assumption: orthogonal initialization qTk qm = 0

Consider the simple case where each qTk qm = 0, ∀k ̸= m at network initialization, i.e., each q are
orthogonal to each other. Then, it’s easy to show that d

dτ (q
T
k qm) = 0 at the start and throughout

training. Thus, we know orthogonally initialized modes will evolve independently.

Note this assumption can also be written as

qTk qm = uT
k PP

Tum = uT
kWum = 0 ∀k ̸= m

which means the eigenvectors of Σ are still orthogonal w.r.t. matrix W, i.e., the matrix W shares
eigenbases with the data covariance Σ.

In such case, the gradient reads

∇qkLµ=0 =− 4λkqk + 2
∑
m

(
2σ2 + λm + λk

)
(qTk qm)qm (160)

(ortho) =− 4λkqk + 2
(
2σ2 + 2λk

)
(qTk qk)qk (161)

=− 4λkqk + 4
(
σ2 + λk

)
(qTk qk)qk (162)

The dynamics read

dqk
dτ

= −η∇qkLµ=0 (163)

= −η(−4λkqk + 4
(
σ2 + λk

)
(qTk qk)qk) (164)

= 4η(λk −
(
σ2 + λk

)
(qTk qk))qk (165)

Since the right hand side is aligned with qk, it can only move by scaling the initial value.

The fixed-point solution is qk = 0 or when qTk qk = λk
σ2+λk

. Given the arbitrariness of qk itself, we
track the dynamics of its squared norm. The learning dynamics of qTk qk read

qTk
dqk
dτ

= 4η(λk −
(
σ2 + λk

)
(qTk qk))(q

T
k qk) (166)

1

2

d(qTk qk)

dτ
= 4η(λk −

(
σ2 + λk

)
(qTk qk))(q

T
k qk) (167)

d(f)

dτ
= 8η(λk −

(
σ2 + λk

)
f)f (168)
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Fortunately, this ODE has a closed-form solution.

(qTk qk)(τ) = ∥qk(τ)∥2 =
a

1/Ke−at + b
(169)

=
8ηλk

1/Ke−8ηλkτ + 8η
(
σ2 + λk

) (170)

=
8ηλk

( 8ηλk
∥qk(0)∥2 − 8η

(
σ2 + λk

)
)e−8ηλkτ + 8η

(
σ2 + λk

) (171)

=
λk

( λk
∥qk(0)∥2 −

(
σ2 + λk

)
)e−8ηλkτ +

(
σ2 + λk

) (172)

=
λk

σ2 + λk

(
1

( 1
∥qk(0)∥2

λk
σ2+λk

− 1)e−8ηλkτ + 1

)
(173)

(qTk qm)(τ) = 0 if k ̸= m (174)

This gives rise to the full vector solution

qk(τ) =
√
∥qk(τ)∥2

qk(0)

∥qk(0)∥
(175)

=

√
λk

σ2 + λk

(
1√

( 1
∥qk(0)∥2

λk
σ2+λk

− 1)e−8ηλkτ + 1

)
qk(0)

∥qk(0)∥
(176)

=

√
λk

σ2 + λk

(
1√

( λk
σ2+λk

− ∥qk(0)∥2)e−8ηλkτ + ∥qk(0)∥2

)
qk(0) (177)

=

√
λk

σ2 + λk

(
1√

λk
σ2+λk

e−8ηλkτ + (1− e−8ηλkτ )∥qk(0)∥2

)
qk(0) (178)

Learning Dynamics of score estimator Now, reconstruct the whole estimator, W = PPT . Recall
uT
k P = qTk

P =
∑
k

uku
T
k P

=
∑
k

ukq
T
k

PPT = (
∑
k

ukq
T
k )(

∑
m

qmuT
m)

=
∑
k

∑
m

uk(q
T
k qm)uT

m

Note that under our assumption, (qTk qm)(τ) = 0 if k ̸= m, qTk qm is diagonal. So

PPT =
∑
k

uk(q
T
k qk)u

T
k

=
∑
k

∥qk(τ)∥2uku
T
k

Then we can rewrite

∥qk(τ)∥2 = (qTk qk)(τ) =
λk

σ2 + λk

(
1

( 1
∥qk(0)∥2

λk
σ2+λk

− 1)e−8ηλkτ + 1

)
(179)

W(τ) = PPT (τ) =
∑
k

∥qk(τ)∥2uku
T
k

=
∑
k

λk
σ2 + λk

uku
T
k

(
1

( 1
∥qk(0)∥2

λk
σ2+λk

− 1)e−8ηλkτ + 1

)
(180)
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Score estimation error dynamics

Es = Ex∥s(x)− s∗(x)∥2 =
1

σ4

[
∥b− b∗∥2 + 2(b− b∗)T (W −W∗)µ (181)

+ Tr[(W −W∗)T (W −W∗)(µµT +Σ+ σ2I)]

]
E(µ=0)

s =
1

σ4

[
∥b− b∗∥2 + Tr[(W −W∗)T (W −W∗)(Σ+ σ2I)]

]
(182)

=
1

σ4

[
∥b− b∗∥2 + Tr[(W −W∗)T (W −W∗)

∑
k

(λk + σ2)uku
T
k ]

]
(183)

Thus
E(µ=0, cov term)

s = Tr[(W −W∗)T (W −W∗)
∑
k

(λk + σ2)uku
T
k ] (184)

= Tr[
∑
k

(λk + σ2)(W −W∗)uku
T
k (W −W∗)T ] (185)

= Tr
[∑

k

(λk + σ2)
(
Pqk − λk

λk + σ2
uk

)(
Pqk − λk

λk + σ2
uk

)T]
(186)

= Tr
[∑

k

(λk + σ2)
(
Pqk − λk

λk + σ2
uk

)T (
Pqk − λk

λk + σ2
uk

)]
(187)

=
∑
k

(λk + σ2)
(
qTk P

TPqk − 2
λk

λk + σ2
uT
k Pqk + (

λk
λk + σ2

)2uT
k uk

)
(188)

=
∑
k

(λk + σ2)
(
(qTk qk)

2 − 2
λk

λk + σ2
qTk qk + (

λk
λk + σ2

)2
)

(189)

=
∑
k

(λk + σ2)
(
(qTk qk)−

λk
λk + σ2

)2
(190)

E(µ=0, bias term)
s = (b0)2 exp(−4ητ)

The dynamics can be applied

(qTk qk)(τ) =
λk

σ2 + λk

(
1

( 1
∥qk(0)∥2

λk
σ2+λk

− 1)e−8ηλkτ + 1

)

E(µ=0, cov term)
s =

∑
k

(λk + σ2)
( λk
σ2 + λk

(
1

( 1
∥qk(0)∥2

λk
σ2+λk

− 1)e−8ηλkτ + 1

)
− λk
λk + σ2

)2
(191)

=
∑
k

(λk + σ2)(
λk

σ2 + λk
)2
(( 1

( 1
∥qk(0)∥2

λk
σ2+λk

− 1)e−8ηλkτ + 1

)
− 1

)2
(192)

=
∑
k

λ2k
λk + σ2

(
( 1
∥qk(0)∥2

λk
σ2+λk

− 1)e−8ηλkτ

( 1
∥qk(0)∥2

λk
σ2+λk

− 1)e−8ηλkτ + 1

)2

(193)

=
∑
k

λ2k
λk + σ2

(
( λk
σ2+λk

− ∥qk(0)∥2)e−8ηλkτ

( λk
σ2+λk

− ∥qk(0)∥2)e−8ηλkτ + ∥qk(0)∥2

)2

(194)

The full score estimation loss is
E(µ=0)

s = (b0)2 exp(−4ητ)+ (195)∑
k

λ2k
λk + σ2

(
( λk
σ2+λk

− ∥qk(0)∥2)e−8ηλkτ

( λk
σ2+λk

− ∥qk(0)∥2)e−8ηλkτ + ∥qk(0)∥2

)2
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E.1.2 Beyond Aligned Initialization: qualitative analysis of off diagonal dynamics

Next we can write down the dynamics of the non-diagonal part of the weight, i.e., overlaps between
qk and qm

d

dτ
(qTk qm) (196)

= qTk
d

dτ
qm + qTm

d

dτ
qk (197)

= −η[−4(λk + λm)(qTmqk) + 2
∑
n

(
4σ2 + 2λn + λm + λk

)
(qTk qn)(q

T
mqn)] (198)

= 4η[(λk + λm)(qTmqk)−
∑
n

(
2σ2 + λn +

λm + λk
2

)
(qTk qn)(q

T
mqn)] (199)

= 4η

[
(λk + λm)(qTmqk)−

(
2σ2 + λk +

λm + λk
2

)
(qTk qk)(q

T
mqk) (200)

−
(
2σ2 + λm +

λm + λk
2

)
(qTk qm)(qTmqm)

−
∑

n̸=k,m

(
2σ2 + λn +

λm + λk
2

)
(qTk qn)(q

T
mqn)

]

= 4η

[(
λk + λm −

(
2σ2 +

λm + 3λk
2

)
∥qk∥2 −

(
2σ2 +

3λm + λk
2

)
∥qm∥2

)
(qTmqk) (201)

−
∑

n̸=k,m

(
2σ2 + λn +

λm + λk
2

)
(qTk qn)(q

T
mqn)

]

= 4η

[(
λk(1− ∥qk∥2) + λm(1− ∥qm∥2)−

(
2σ2 +

λm + λk
2

)
(∥qk∥2 + ∥qm∥2)

)
(qTmqk)

(202)

−
∑

n̸=k,m

(
2σ2 + λn +

λm + λk
2

)
(qTk qn)(q

T
mqn)

]

As a reference, recall the dynamics of diagonal term,

d(qTk qk)

dτ
= 8η(λk −

(
σ2 + λk

)
(qTk qk))(q

T
k qk)

Assume the diagonal term is not stuck at zero qTk qk ̸= 0, then we know it will asymptotically go to
∥qk(∞)∥2 ≈ λk

σ2+λk
following sigmoidal dynamics.

For overlap between qTk qm, without loss of generality, assume λk > λm. Then we have three dynamic
phases: 1) neither mode has emerged; 2) mode k has emerged, while m has not; 3) both modes have
emerged.

Phase 1: neither mode has emerged When neither mode has emerged, assume ∥qk(τ)∥2 ≈ 0,
then the overlap will grow exponentially.

d

dτ
(qTk qm) ≈ 4η

(
λk + λm

)
(qTmqk)

Note given λk > λm, the diagonal term has a higher increasing speed than the non-diagonal overlap
term 8η(λk −

(
σ2 + λk

)
(qTk qk)) > 4η

(
λk + λm

)
.
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Phase 2: one mode has emerged, the other has not When one mode has converged ∥qk(τ)∥2 ≈
λk

σ2+λk
, but the other has not (λk > λm)

d

dτ
(qTk qm) ≈ 4η

(
λk + λm −

(
2σ2 +

λm + 3λk
2

) λk
σ2 + λk

)
(qTmqk) (203)

= 4η

(
λk + λm −

(
2σ2 + 2λk +

λm − λk
2

) λk
σ2 + λk

)
(qTmqk) (204)

= 4η

(
λk + λm − 2λk −

(λm − λk
2

) λk
σ2 + λk

)
(qTmqk) (205)

= 4η

(
λm − λk −

(λm − λk
2

) λk
σ2 + λk

)
(qTmqk) (206)

= 4η(λm − λk)

(
1− 1

2

λk
σ2 + λk

)
(qTmqk) (207)

Since λk
σ2+λk

< 1, we know 1 − 1
2

λk
σ2+λk

> 0. Thus, the dynamic coefficient (λm − λk)
(
1 −

1
2

λk
σ2+λk

)
< 0, so the overlap will follow an exponential decay dynamics. Further, given the same λk,

the decay speed of qTk qm is proportional to the difference of the eigenvalues λm − λk. So, the larger
the difference, the faster the decay.

Phase 3: both modes have emerged When both modes have emerged ∥qk(τ)∥2 ≈ λk
σ2+λk

,
∥qm(τ)∥2 ≈ λm

σ2+λm
,

d

dτ
(qTk qm) ≈ 4η

(
λk + λm −

(
2σ2 +

λm + 3λk
2

) λk
σ2 + λk

−
(
2σ2 +

3λm + λk
2

) λm
σ2 + λm

)
(qTmqk)

(208)

= 4η

(
− λk − λm +

(σ2

2

)
(

(λm − λk)
2

(σ2 + λm)(σ2 + λk)
)

)
(qTmqk) (209)

= −4η

(
λk + λm + 2σ2

) (
2λmλk + σ2 (λk + λm)

)
2 (λk + σ2) (λm + σ2)

(qTmqk) (210)

The dynamic coefficient is negative, so the overlap decays even more rapidly.

Summary: qualitative description of off diagonal elements qTk qm dynamics

• The off-diagonal term will exponentially rise after the rise of the larger variance dimension,
and before the rise of smaller variance dimension;

• after one has risen it will decay to zero;
• after both have risen it will decay faster.

Thus, it will follow non-monotonic rise and fall dynamics.

E.2 Sampling ODE and Generated Distribution

Here, for tractability purposes, we will focus on the zero-mean and aligned initialization case.

Recall the weight learning solutions above (180),

W(τ ;σ) = PPT (τ) =
∑
k

∥qk(τ)∥2uku
T
k

=
∑
k

λk
σ2 + λk

uku
T
k

(
(

1

∥qk(0;σ)∥2
λk

σ2 + λk
− 1)e−8ητλk + 1

)−1

(211)

with the weight initialization

W(0;σ) =
∑
k

∥qk(0;σ)∥2uku
T
k (212)
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Note here we assume the initialization ∥qk(0;σ)∥2 is the same for all σ levels, with no σ dependency.
∥qk(0;σ)∥2 = ∥qk(0)∥2 = Qk

Per our general analysis (Sec. C.5), the key factors are

ψk(σ; τ) =
λk

σ2 + λk

1

( 1
Qk

λk
σ2+λk

− 1)e−8ητλk + 1
(213)

and its integration

Φk(σ) = exp
(
−
∫ σ ψk(σ

′; τ)− 1

σ′ dσ′)
d

dσ
uT
k x = − 1

σ

(
ψk(σ; τ)− 1

)
uT
k x (214)

= − 1

σ

(
λk

σ2 + λk

1

( 1
∥qk(0)∥2

λk
σ2+λk

− 1)e−8ητλk + 1
− 1

)
uT
k x (215)

Note that the integrand is just a fractional function of σ2 which can be integrated analytically.∫
dσ − 1

σ

(
λk

σ2 + λk

1

( 1
Qk

λk
σ2+λk

− 1)e−8ητλk + 1
− 1

)

=
Qke

8ητλk log
(
λk +Qk

(
e8ητλk − 1

) (
λk + σ2

))
− 2Qk log(σ) + 2 log(σ)

2 (e8ητλk − 1)Qk + 2

=
Qke

8ητλk log
(
λk +Qk

(
e8ητλk − 1

) (
λk + σ2

))
+ 2(1−Qk) log(σ)

2 (e8ητλk − 1)Qk + 2

=
Qk log

(
λk +Qk

(
e8ητλk − 1

) (
λk + σ2

))
+ 2(1−Qk) log(σ)e

−8ητλk

2 (1− e−8ητλk)Qk + 2e−8ητλk

=
Qk log[e

8ητλk
(
λke

−8ητλk +Qk

(
1− e−8ητλk

) (
λk + σ2

))
] + 2(1−Qk) log(σ)e

−8ητλk

2Qk + 2(1−Qk)e−8ητλk

=
Qk log

(
λke

−8ητλk +Qk

(
1− e−8ητλk

) (
λk + σ2

))
+ 8ητλkQk + 2(1−Qk) log(σ)e

−8ητλk

2Qk + 2(1−Qk)e−8ητλk

Thus, the general solution to the sampling ODE is

ck(σ) = C exp(
Qk log

(
λke

−8ητλk +Qk

(
1− e−8ητλk

) (
λk + σ2

))
+ 8ητλkQk + 2(1−Qk) log(σ)e

−8ητλk

2Qk + 2(1−Qk)e−8ητλk
)

= C

[
λke

−8ητλk +Qk

(
1− e−8ητλk

) (
λk + σ2

) ] Qk

2Qk+2(1−Qk)e−8ητλk

×

exp
( 8ητλkQk

2Qk + 2(1−Qk)e−8ητλk

)
exp

( (1−Qk)e
−8ητλk log(σ)

Qk + (1−Qk)e−8ητλk

)
(216)

The scaling ratio is

ck(σ0)

ck(σT )
=

[
λke

−8ητλk +Qk

(
1− e−8ητλk

) (
λk + σ2

0

)
λke−8ητλk +Qk (1− e−8ητλk) (λk + σ2

T )

] Qk

2Qk+2(1−Qk)e−8ητλk

(217)

exp
( (1−Qk)e

−8ητλk(log(σ0)− log(σT ))

Qk + (1−Qk)e−8ητλk

)
=

[
λke

−8ητλk +Qk

(
1− e−8ητλk

) (
λk + σ2

0

)
λke−8ητλk +Qk (1− e−8ητλk) (λk + σ2

T )

] Qk

2Qk+2(1−Qk)e−8ητλk ( σ0
σT

) (1−Qk)e−8ητλk

Qk+(1−Qk)e−8ητλk

(218)

66



Φk(σ) =

[
λke

−8ητλk +Qk

(
1− e−8ητλk

) (
λk + σ2

) ] Qk

2Qk+2(1−Qk)e−8ητλk (
σ
) (1−Qk)e−8ητλk

Qk+(1−Qk)e−8ητλk

(219)

Evolution of distribution Following the derivation above,

Σ[x(σ0)] =
∑
k

(
σT

ck(σ0)

ck(σT )

)2

uku
T
k

The generated variance along eigenvector uk is

λ̃k(τ) =

(
σT

ck(σ0)

ck(σT )

)2

=σ2
T

[
λke

−8ητλk +Qk

(
1− e−8ητλk

) (
λk + σ2

0

)
λke−8ητλk +Qk (1− e−8ητλk) (λk + σ2

T )

] Qk

Qk+(1−Qk)e−8ητλk ( σ0
σT

) 2(1−Qk)e−8ητλk

Qk+(1−Qk)e−8ητλk

(220)

Asymptotics of Learning: early and late training At late training stage ητ → ∞,

lim
ητ→∞

ck(σ0)

ck(σT )
=

[
Qk

(
λk + σ2

0

)
Qk (λk + σ2

T )

] Qk
2Qk

exp
( 0

Qk

)
=

√
λk + σ2

0

λk + σ2
T

(221)

lim
ητ→∞

λ̃k(τ) = σ2
T

λk + σ2
0

λk + σ2
T

(222)

which approximately recovers the correct scaling factor to generate correct variance λk, if we take
σT → ∞, σ0 → 0.

At early training stage ητ → 0,

lim
ητ→0

ck(σ0)

ck(σT )
=

[
λk1 +Qk (1− 1)

(
λk + σ2

0

)
λk1 +Qk (1− 1) (λk + σ2

T )

] Qk
2Qk+2(1−Qk) ( σ0

σT

) (1−Qk)

Qk+(1−Qk)

=

[
1

] Qk
2Qk+2(1−Qk)

(
σ0
σT

)1−Qk

= (
σ0
σT

)1−Qk (223)

which shows the initial generated variance is determined by weight initialization scale and integration
limits (σ0, σT ).
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F Detailed Derivations for Deep Linear Network

Consider a general deep linear network. W =
∏

i Wi = WLWL−1...W1

Gradient structure Using the chain rule

∇yL = (
∂L
∂W

)ij
∂Wij

∂y

we have the gradient with respect to matrix Wl

∂Wmn

∂Wl,ij
= (WL...Wl+1)mi(Wl−1...W1)jn

In vector notation,

[∇Wl
L]ij = (

∂L
∂W

)mn
∂Wmn

∂Wl,ij

= (WL...Wl+1)mi(
∂L
∂W

)mn(Wl−1...W1)jn

∇Wl
L = (WL...Wl+1)

T (
∂L
∂W

)(Wl−1...W1)
T

where ∇WL can be found in (5)
∇bL = 2(b− (I −W)µ)

∇WL = −2Σ + 2W(σ2I +Σ) + [2WµµT + 2(b− µ)µT ]

F.1 Aligned assumption

This gradient structure can be substantially simplified if the weight matrices are aligned at initializa-
tion.

Consider the singular value decomposition of each weight matrix Wl

Wl = UlΛlV
T
l

and for each pair of neighboring layers, the singular modes are aligned.

V T
l Ul−1 = I

or equivalently Ul−1 = Vl, ∀l ∈ [2, L]

Gradient structure under aligned assumption Then the product of weight matrices is

WL...Wl+1 = UL

L∏
k=l+1

ΛkV
T
l+1

Wl−1...W1 = Ul−1

l−1∏
k=1

ΛkV
T
1

WL...W1 = UL

L∏
k=1

ΛkV
T
1

Then the evolution of hidden weights reads

∇Wl
L = (UL

L∏
k=l+1

ΛkV
T
l+1)

T∇WL(Ul−1

l−1∏
k=1

ΛkV
T
1 )T

= Vl+1

L∏
k=l+1

ΛkU
T
L∇WLV1

l−1∏
k=1

ΛkU
T
l−1

= Ul

[ L∏
k=l+1

ΛkU
T
L∇WLV1

l−1∏
k=1

Λk

]
V T
l
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Substituting the gradient of the loss (5), assuming centered data µ = 0,

∇WLµ=0 = −2Σ + 2W(σ2I +Σ)

Then

∇Wl
L = Ul

[ L∏
k=l+1

ΛkU
T
L

(
− 2Σ + 2W(σ2I +Σ)

)
V1

l−1∏
k=1

Λk

]
V T
l

= Ul

[ L∏
k=l+1

ΛkU
T
L

(
− 2Σ + 2UL

L∏
k=1

ΛkV
T
1 (σ2I +Σ)

)
V1

l−1∏
k=1

Λk

]
V T
l

= −2Ul

L∏
k=l+1

ΛkU
T
LΣV1

l−1∏
k=1

ΛkV
T
l + 2σ2Ul

L∏
k=l+1

Λk

L∏
k=1

Λk

l−1∏
k=1

ΛkV
T
l

+ 2Ul

L∏
k=l+1

Λk

L∏
k=1

ΛkV
T
1 ΣV1

l−1∏
k=1

ΛkV
T
l

Under the simplifying assumption that UL = V1 and they exactly match the eigenbasis of Σ, denoted
as U , then

V T
1 ΣV1 = Λ, UT

LΣV1 = Λ

∇Wl
L = −2UlΛ

L∏
k=l+1

Λk

l−1∏
k=1

ΛkV
T
l + 2σ2Ul

L∏
k=l+1

Λk

L∏
k=1

Λk

l−1∏
k=1

ΛkV
T
l + 2Ul

L∏
k=l+1

Λk

L∏
k=1

ΛkΛ

l−1∏
k=1

ΛkV
T
l

= 2Ul[−Λ + σ2
L∏

k=1

Λk + Λ

L∏
k=1

Λk]

L∏
k=1,k ̸=l

ΛkV
T
l

= 2Ul[−Λ + (σ2 + Λ)Λl

L∏
k=1,k ̸=l

Λk]

L∏
k=1,k ̸=l

ΛkV
T
l

Consider the singular values of each weight matrix

∇ΛlL = UT
l ∇Wl

LVl

= 2[−Λ + (σ2 + Λ)Λl

L∏
k=1,k ̸=l

Λk]

L∏
k=1,k ̸=l

Λk

The weight dynamics have a surprisingly simple mode-by-mode form. For the m-th mode, the
gradient is

∇Λl,mL = 2[−λm + (σ2 + λm)Λl,m

L∏
k=1,k ̸=l

Λk,m]

L∏
k=1,k ̸=l

Λk,m

To simplify notation, we define Ξl,m :=
∏L

k=1,k ̸=l Λk,m. Then the gradient flow dynamics reads

d

dτ
Λl,m = −η[−λm + (σ2 + λm)Λl,m

L∏
k=1,k ̸=l

Λk,m]

L∏
k=1,k ̸=l

Λk,m

= −η[−λm + (σ2 + λm)Λl,mΞl,m]Ξl,m

At first glance, this is a linear system for Λl,m, with fixed point at λm/(σ2 + λm)/Ξl,m. But the
effect of other layers Ξl,m is also dynamic, forming a coupled nonlinear system. Ξl,m affects both
the time constant and convergence level.
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F.2 Two layer linear network

We start by considering the two-layer case of this equation. Under the aligned initialization assump-
tion,

W1 = U1Λ1V
T
1 , W2 = U2Λ2V

T
2 (224)

U1 = V2, U2 = V1 = U (225)

So the main degrees of freedom come from Λ1,Λ2, and we discuss the two cases depending on
whether they are equal to each other.

F.2.1 Special case: homogeneous initialization Λ1 = Λ2 (symmetric two layer case)

If Λ1 = Λ2, then
W1 = U1Λ1V

T
1 = V2Λ2U

T
2 = WT

2

We are reduced to the symmetric two-layer case W = WT
1 W1 as we discussed above in E. Due to

weight sharing, the gradients to each layer are accumulated.

∇Λ1L = 2[−Λ + (σ2 + Λ)Λ1Λ2]Λ2

= 2[−Λ + (σ2 + Λ)Λ2
1]Λ1

d

dτ
Λ1 = −2η[−Λ + (σ2 + Λ)Λ2

1]Λ1

d

dτ
(Λ1)

2 = −4η[−Λ + (σ2 + Λ)Λ2
1]Λ

2
1

This recovers the dynamics we obtained in the previous section 5.1.

F.2.2 General Case: general initialization (general two layer W = PQ)

Generally, if the initialization is not homogeneous, Λ1 ̸= Λ2, the matrices are not the same W = PQ,
and we have the general two-layer parametrization.

Under the aligned assumption F.1, the weight learning dynamics are reduced to those of Λ1,Λ2. For
simplicity of notation, let fk = Λ1,k, gk = Λ2,k. We have

∇fkL = −λkgk + (σ2 + λk)g
2
kfk

∇gkL = −λkfk + (σ2 + λk)f
2
kgk

which is a two-dimensional coupled system. Let us focus on the dynamics along one eigenmode k
and drop the subscript k from fk, gk. Let the constants A = ηλk, B = η(σ2 + λk), we have

d

dτ
f = Ag −Bg2f (226)

d

dτ
g = Af −Bf2g (227)

There are three important variables: fkgk, f2k + g2k, and f2 − g2. This system can be represented in
the following way, which exposes its conserved quantity:

d

dτ
(fg) = f

d

dτ
g + g

d

dτ
f

= Af2 −Bf3g +Ag2 −Bg3f

= (f2 + g2) (A−Bfg)

d

dτ
(f2 + g2) = 2f

d

dτ
f + 2g

d

dτ
g

= 2(Afg −Bg2f2) + 2(Afg −Bf2g2)

= 2 fg (A−Bfg)

d

dτ
(f2 − g2) = 0
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Figure 28: Phase diagram for the simplified 2D dynamic system. Above: d
dτ f = Ag −

Bg2f, d
dτ g = Af − Bf2g for A = 1, B = 2. We can see the manifold of stable attractors in

the 1st and 3rd quadrants: fg = A/B, and the conserved quantity along the hyperbolic lines.

Thus the (f, g) pair can only flow along hyperbolic lines or diagonal lines where f2 − g2 = const.
We can leverage this fact to write down the overall solution.

Notice that
(f2 + g2)2 − (f2 − g2)2 = 4f2g2

So we can represent

f2 + g2 =
√
4f2g2 + (f2 − g2)2

=
√
4f2g2 + C2

Now the equation for fg becomes closed:

d

dτ
(fg) =

√
4f2g2 + C2(A−Bfg)

Let h = fg

d

dτ
h =

√
4h2 + C2(A−Bh)

Note that for this self-contained equation, unless C = 0, it shall have only one attractive fixed point
which is h∗ = A/B. Thus asymptotically, it will always converge to the correct value.

When we face the weight tying case where C = 0, the equation becomes
d

dτ
h = 2|h|(A−Bh)

It will have another fixed point at h = 0, which makes it impossible to converge to the fixed point
A/B if the initialization h(0) has the opposite sign.

F.3 General deep linear network

Weight tying assumption / initialization The weight tying deep network can be regarded as a
special case. The key gradient equation is

∇ΛlL = [−Λ + (σ2 + Λ)Λl

L∏
k=1,k ̸=l

Λk]

L∏
k=1,k ̸=l

Λk
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Let us assume all Λl are equal at initialization2. Then

∇ΛlL = [−Λ + (σ2 + Λ)ΛL
l ]Λ

L−1
l (228)

Consider a single element of the diagonal at mode k, a(l)k := Λl,k, then we have

∂L
∂a

(l)
k

= [−λk + (σ2 + λk)
(
a
(l)
k

)L
]
(
a
(l)
k

)L−1
(229)

Further consider the aggregated effect ck =
∏

l a
(l)
k . Assuming weight tying, the gradient flow of this

variable reads

∂ck
∂τ

= L
(
a
(l)
k

)L−1 ∂a
(l)
k

∂τ

= −ηL
(
a
(l)
k

)L−1 ∂L
∂a

(l)
k

= −ηL [−λk + (σ2 + λk)
(
a
(l)
k

)L
]
(
a
(l)
k

)2L−2

= −ηL [−λk + (σ2 + λk)ck] c
2L−2
L

k

= −ηL [−λk + (σ2 + λk)ck] c
2− 2

L

k

We arrive at the dynamics of the weights along eigenmode:

∂ck
∂τ

= ηL[λk − (σ2 + λk)ck]c
2− 2

L

k (230)

Depth one and two cases Note this form also encompasses the solution of one-layer and two-layer
symmetric linear models by setting L = 1, 2, as in (??) and (??).

General depth case For general L, there is no closed-form solution; one only has an implicit
solution to ck involving the hypergeometric function 2F1:(Ac(τ)

B

)2/L

2F1

(
1,

2

L
; 1 +

2

L
;
Ac(τ)

B

)
=

(Ac(0)
B

)2/L

2F1

(
1,

2

L
; 1 +

2

L
;
Ac(0)

B

)
e−ηLBτ .

(231)
with substitution A = (σ2 + λk), B = λk.

Infinite depth limit The limiting case is L→ ∞, then the dynamics read

∂ck
∂τ

= −ηL [−λk + (σ2 + λk)ck] c
2− 2

L

k

(L→ ∞) = ηL [λk − (σ2 + λk)ck] c
2
k (232)

Then we have
dck

[λk − (σ2 + λk)ck]c2k
= ηL dτ

σ2 + λk
λ2k

ln
ck

λk − (σ2 + λk)ck
− 1

λkck
= ηLτ + C.

Setting the initial values as c(0)k , we have the implicit solution of ck:

σ2 + λk
λ2k

ln
ck

λk − (σ2 + λk)ck
− 1

λkck
= ηLτ +

σ2 + λk
λ2k

ln
c
(0)
k

λk − (σ2 + λk)c
(0)
k

− 1

λkc
(0)
k

where training time τ can be expressed as a function of ck:

τ =
1

ηL

[σ2 + λk
λ2k

ln
ck
(
λk − (σ2 + λk)c

(0)
k

)
c
(0)
k

(
λk − (σ2 + λk)ck

) − 1

λkck
+

1

λkc
(0)
k

]
(233)

2Λl is not to be confused with Λ, which is the spectrum of data
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F.3.1 Deep Residual network

If the network is parametrized with a residual connection at each layer, i.e., W =
∏

i(I+Wi) =
(I + WL)(I + WL−1)...(I + W1), then it is a linear shift in parametrization. Using the same
derivation and notation, assuming aligned initialization and homogeneous initialization, we can see

∂L
∂a

(l)
k

=
[
− λk + (σ2 + λk)

(
1 + a

(l)
k

)L] (
1 + a

(l)
k

)L−1
(234)

Let the overall effective weight be ck =
(
1 + a

(l)
k

)L
, we have the Jacobian:

∂ck

∂a
(l)
k

= L
(
1 + a

(l)
k

)L−1

Thus the dynamics of the effective weight is

∂ck
∂τ

= L
(
1 + a

(l)
k

)L−1 ∂a
(l)
k

∂τ

= −ηL
(
1 + a

(l)
k

)L−1∇
a
(l)
k

L

= −ηL
(
1 + a

(l)
k

)L−1
[
− λk + (σ2 + λk)

(
1 + a

(l)
k

)L] (
1 + a

(l)
k

)L−1

= −ηL
[
− λk + (σ2 + λk)

(
1 + a

(l)
k

)L] (
1 + a

(l)
k

)2L−2

= −ηL
[
− λk + (σ2 + λk) ck

]
c
2− 2

L

k (235)

We recover the same dynamics as the normal deep linear network:

∂ck
∂τ

= ηL[λk − (σ2 + λk)ck]c
2− 2

L

k (236)

Here the initialization is ck(0) =
(
1 + a

(l)
k

)L
.

Thus in linear networks, residual connections do not change the learning dynamics, but just change
(shift) the initialization of weights.

73



G Detailed Derivations for Linear Convolutional Network

In this section, we study a linear convolutional denoiser. For simplicity, let’s consider the space is
1d, with a 1d convolutional filter w. For simplicity, we ignore the bias term and assume zero-mean
µ = 0. The convolutional denoiser is defined as

D(x;σ) = wσ ∗ x (237)

This convolution ∗ can be equivalently represented as matrix multiplication, where the weight matrix
Wσ is a Toeplitz or circulant (when circular boundary condition).

D(x;σ) = Wσx

In this case, the score learning problem becomes a circulant or Toeplitz regression problem, which
has been studied before [59, 60, 61]. This problem is similar to finding the best convolutional or
deconvolutional kernel to a 1d sequence.

G.1 General set up

Cyclic weight matrix and spectral representation Let’s consider the circular convolution case,
where we ignore the boundary effect, and assume the matrix W(σ) is cyclic at any noise scale. Since
it’s cyclic, they can be diagonalized by discrete Fourier transform (DFT).

Let’s diagonalize the weight matrix with the DFT matrix,

W(σ) = FΓ(σ)F ∗

specifically the DFT matrix is defined as

Fmk =
1√
N

exp

(
−2πi

mk

N

)
, m, k = 0, 1, 2, . . . , N − 1

G.2 General analysis of sampling dynamics

Note that, if we assume weight matrix at every noise scale is circulant, then we always can solve
the sampling dynamics on the Fourier basis, mode by mode. At its core, this is because all circulant
matrices commute.

d

dσ
x = −FΓ(σ)F

∗x− x

σ

F ∗ d

dσ
x = −Γ(σ)F ∗x− F ∗x

σ

= −Γ(σ)− I

σ
F ∗x

We can perform integration mode by mode. Let ck = (F ∗x)k, x = Fc

d

dσ
ck = −γk(σ)− 1

σ
ck

Thus, if we know the Fourier parametrization of weights Γ(σ), we can integrate the sampling of
x in closed form. We will need to solve these Fourier modes Γ(σ) of the weights during training
dynamics. Integrating the ODE, we get

Φk(σ) = exp
(∫

−γk(λ)− 1

λ
dλ

)
ck(σ0) =

Φk(σ0)

Φk(σT )
ck(σT ) (238)

Then the generated variance will be

λ̃k = σ2
T

(
Φk(σ0)

Φk(σT )

)2

(239)

Σ̃ = F diag(λ̃k) F ∗ (240)

Because of this we can easily prove Proposition 5.2
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Proof. Generated distributions from linear denoisers are Gaussian distributions, with covariance Σ̃.
Since the generated covariance is diagonalized by discrete Fourier transform F , Σ̃ is circulant i.e.
translation invariant. Given that the generated x is Gaussian distributed, x conforms to a stationary
Gaussian process. While the integration function Φk(σ) determines the covariance kernel of this
Gaussian process.

G.3 Full width linear convolutional network

G.3.1 Training dynamics of full width linear convolutional network

Gradient structure in spectral basis Using the Fourier representation of the circulant weight

W(σ) = FΓ(σ)F ∗

we can derive the gradient to the Fourier parameters Γ(σ) which is a diagonal matrix.

Recall that

∇bL = 2b

∇WL = −2Σ + 2W(σ2I +Σ)

Then the gradient to the Fourier parametrization reads

⟨∇WL, dW⟩
=⟨∇WL, FdΓ(σ)F ∗⟩
=⟨F−1∇WLF−1∗, dΓ(σ)⟩
=⟨F ∗∇WLF, dΓ(σ)⟩

Thus

∇ΓL = F ∗∇WLF
= −2F ∗ΣF + 2F ∗W(σ2I +Σ)F

= −2F ∗ΣF + 2F ∗FΓF ∗(σ2I +Σ)F

= −2F ∗ΣF + 2Γ(σ2I + F ∗ΣF )

Under circular convolution assumption, Γ is a diagonal matrix, Γij = δijγi then

∂L
∂γi

= [∇ΓL]ii

= −2[F ∗ΣF ]ii + 2
[
Γ(σ2I + F ∗ΣF )

]
ii

= −2[F ∗ΣF ]ii + 2
[
δijγi(σ

2I + F ∗ΣF )
]
ii

= −2[F ∗ΣF ]ii + 2γi
(
σ2 + [F ∗ΣF ]ii

)
The key entity is the F ∗ΣF matrix, let’s define it as Σ̃

Interpretation of F ∗ΣF

• We can regard it as covariance matrix in the spectral basis, i.e. covariance matrix of the
complex variable F ∗x̄ ∈ CN .

Σ = cov(x) = E[x̄x̄T ]

F ∗ΣF = F ∗E[x̄x̄T ]F

= E[F ∗x̄x̄TF ]

= E[F ∗x̄x̄TFT ]

= E[(F ∗x̄)(F ∗x̄)†]

= cov(F ∗x)
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• Diagonal values tell us about the power spectrum of the data.

[F ∗ΣF ]ii = Var([F ∗x̄]i)

Fjk =
1√
N
e−2πi jk/N

[F ∗ΣF ]jk =
∑
mn

F ∗
jmΣmnFnk

=
1

N

∑
mn

Σmne
+2πi jm/Ne−2πi nk/N

=
1

N

∑
mn

Σmne
2πi jm−kn

N

[F ∗ΣF ]jj =
1

N

∑
mn

Σmne
2πi

j(m−n)
N

Gradient flow on spectral parameter Given the gradient structure,

∂L
∂γk

= −2[F ∗ΣF ]kk + 2γk
(
σ2 + [F ∗ΣF ]kk

)
= −2Σ̃kk + 2γk

(
σ2 + Σ̃kk

)
if we directly perform gradient descent on the γk variable, we have

d

dτ
γk = −η ∂L

∂γk

d

dτ
γk = −η

[
− 2Σ̃kk + 2γk

(
σ2 + Σ̃kk

)]
= 2η

[
Σ̃kk − γk

(
σ2 + Σ̃kk

)]
Fixed point Fixed point of the gradient flow is

γ∗k =
Σ̃kk

σ2 + Σ̃kk

(241)

Learning dynamics of Fourier modes This is basically a first order dynamics ODE

γk(τ) =
Σ̃kk

σ2 + Σ̃kk

+
(
γk(0)−

Σ̃kk

σ2 + Σ̃kk

)
e−2η(σ2+Σ̃kk)τ

= γ∗k +
(
γk(0)− γ∗k

)
e−2η(σ2+Σ̃kk)τ (242)

Remarks

• This is exactly the same story as the one layer linear case, where σ2 + Σ̃kk determines the
convergence speed per mode.

• Spectral modes Σ̃kk with higher power will converge faster, which usually corresponds to
the lower spatial frequency modes.

• Higher noise level will converge faster

Learning dynamics of weight entry as rotated Fourier mode dynamics
Lemma G.1 (Convolution Spectrum-entry relation). The relationship between spectral and entry
parametrization of filter weights is

wℓ =
1

N

N−1∑
k=0

e2πi
kℓ
N γk, ℓ = 0, . . . , N − 1 (243)
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Proof. Derivation Using our previous convention

Wij = wj−i

Let the vector of the first row in W be
W0k = wk

Let the vector parameter be

w = [w0, w1, ..., wN−1]
T

= (W0k)
T

Then the connection between γk and weights wℓ are the following

W = FΓF ∗

Wjk =
∑
m,n

FjmΓmnF
∗
nk

=
∑
m

γmFjmF
∗
mk

=
∑
m

γmFjmF
∗
mk

=
1

N

∑
m

γme
−2πi jm/Ne+2πimk/N

=
1

N

∑
m

γme
2πi

(k−j)m
N

Thus

wk = Wj,j+k

=
1

N

∑
m

e+2πi kmN γm

=
1√
N

∑
m

F ∗
kmγm

In vector notation, we have

w =
1√
N
F ∗γ

γ =
√
NFw

Thus, they are related by a
√
N scaling and a unitary transform.

Similarly, the gradient to γ and that of w has following relation

∇wL =
√
NF−T∇γL

=
√
NF ∗∇γL

Proof. Derivation

⟨∇γL, dγ⟩
=⟨∇γL,

√
NFdw⟩

=⟨
√
NF−T∇γL, dw⟩

=⟨∇wL, dw⟩
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If we let the optimization parameter be the filters w, then we have gradient flow in w space

d

dτ
w = −η∇wL

The corresponding gradient flow of γ is

d

dτ
w = −η∇wL

d

dτ

1√
N
F ∗γ = −η

√
NF ∗∇γL

d

dτ
γ = −ηN∇γL

So gradient flow in w space is equivalent to gradient flow in γ, but scaling learning rate by η → Nη!

Conversely if we treat γ as optimization parameter and use gradient flow, then it’s equivalent to scale
learning rate η → η/N

d

dτ
γ = −η∇γL

d

dτ

√
NFw = −η 1√

N
F∇wL

d

dτ
w = − η

N
∇wL

Remark G.2. • Thus we can solve gradient flow in any representation, but translating to
solution of the other variable just by rescaling the learning rate.

• This trick only works when the kernel width is N , or the spectral parameter will be con-
strained in a subspace, which will alter its dynamics.

• Direct spectral parametrization without any constraint is basically equivalent to the entry
wise parametrization. It does not provide extra inductive bias.

Corollary G.3. For linear circular convolutional denoiser, D(x, σ) = w∗x, the solution to gradient
flow on filter weight w is w(τ, σ) = 1√

N
F ∗γ(τ, σ), where the spectral parameter of k-th Fourier

mode evolves as

γk(τ, σ) =
Σ̃kk

σ2 + Σ̃kk

+
(
γk(0, σ)−

Σ̃kk

σ2 + Σ̃kk

)
e−2Nη(σ2+Σ̃kk)τ

= γ∗k(σ) +
(
γk(0, σ)− γ∗k(σ)

)
e−2Nη(σ2+Σ̃kk)τ (244)

where γ∗k(σ) =
Σ̃kk

σ2+Σ̃kk
, and Σ̃kk is the variance of Fourier mode.

G.3.2 Sampling dynamics of full width linear convolutional network

Let’s project the sampling equation on Fourier modes,

F ∗ d

dσ
x = −Γ(σ)− I

σ
F ∗x

Let ck = (F ∗x)k, x = Fc,
d

dσ
ck = −γk(σ)− 1

σ
ck

The variance amplification factor is expressed through the integral,

Φk(σ) = exp
(∫

−γk(λ)− 1

λ
dλ

)
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Generated distribution after convergence For the converged denoiser we have γ∗k = Σ̃kk
σ2+Σ̃kk

Φk(σ) = exp
(∫ σ

ϵ

−γk(λ)− 1

λ
dλ

)
=exp

(∫ σ

ϵ

−
Σ̃kk

λ2+Σ̃kk
− 1

λ
dλ

)
=exp

(∫ σ

ϵ

λ

λ2 + Σ̃kk

dλ
)

=exp
(1
2
ln(λ2 + Σ̃kk)|λ=σ

λ=ϵ

)
=

√
σ2 + Σ̃kk

ϵ2 + Σ̃kk

Variance of the learned distribution

λ̃k = σ2
T

(Φk(σ0)

Φk(σT )

)2

= σ2
T

σ2
0 + Σ̃kk

σ2
T + Σ̃kk

≈ Σ̃kk

The generated covariance will be

Σ̃ = Fdiag(λ̃k)F ∗

≈ Fdiag(Σ̃kk)F
∗

Remark G.4. • Basically it’s the same story as the one-layer linear network, the major differ-
ence is, instead of evolution along the eigenbasis of data covariance (PCs), the parametriza-
tion of convolutional network enforces the learning dynamics to align with the Fourier basis
regardless of the original PC of the data. It treats the data as if it’s stationary / translation
invariant.

• The generated data will be independent along each Fourier mode, just like the fully connected
case, the generated data is independent along each eigen-mode.

• This amounts to decorrelating the original covariance in the spectral domain, making it
translation invariant / circulant.

Generated distribution during training Using the solution to gradient flow of spectral
parametrization, for each Fourier mode,

γk(τ ;σ) = γ∗k +
(
γk(0;σ)− γ∗k

)
e−2η(σ2+Σ̃kk)τ

We can solve the sampling ODE during training. Assume the initial value of each Fourier mode is the
same across noise scale γk(0;σ) = γk(0), ∀σ. We can write down the generated variance through
training time as, 3

Φk(σ) = exp
(∫ σ

−γk(λ)− 1

λ
dλ

)
= exp

(∫ σ

−
Σ̃kk

λ2+Σ̃kk
+
(
γk(0)− Σ̃kk

λ2+Σ̃kk

)
e−2η(λ2+Σ̃kk)τ − 1

λ
dλ

)
=

√
Σ̃kk + σ2 exp

(
1

2

[
(1− γk(0))Ei

(
−2ητσ2

)
e−2ητΣ̃kk − Ei

(
−2ητ

(
σ2 + Σ̃kk

))])
Using the solution to gradient flow of filter weights parametrization, we effectively amplify the
learning rate η → Nη in the expression.

γk(τ ;σ) = γ∗k +
(
γk(0;σ)− γ∗k

)
e−2Nη(σ2+Σ̃kk)τ

3One thing to note is that it’s highly likely that the initial value of γk(0;σ) can differ for each Fourier mode,
i.e. different Fourier modes are initialized at different weights due to the filter initialization.
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The generated distribution has variance Σ̆ = F Λ̆F ∗,whereΛ̆kk = σ2
T

(
Φk(σ0)
Φk(σT )

)2

controls variance
along Fourier modes.

Φk(σ) =

√
Σ̃kk + σ2 exp

(
1

2

[
(1−γk(0))Ei

(
−2Nητσ2

)
e−2NητΣ̃kk−Ei

(
−2Nητ

(
σ2 + Σ̃kk

))])
(245)
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G.4 Local patch linear convolutional network

Now, let’s consider a local filter w.

Spectral representation and spatial locality constraint The major difference is that if we have a
locality constraint in w, the corresponding constraint in γ will be constrained in a lower dimensional
space

wℓ =
1

N

N−1∑
k=0

e2πi
kl
N γk

γ =
√
NFw

γl =

N−1∑
k=0

e−2πi klN wk

But if our wk = 0, ∀k ≥ K, then the spectral moment just sums over K

γl =

K−1∑
k=0

e−2πi klN wk

Specific case: kernel 3 convolution Consider the case where the kernel size is 3, so only
w1, w0, w−1 ̸= 0. Then the spectrum can only have a DC and a cosine and sine component

γl =
∑

k∈{−1,0,1}

e−2πi klN wk

= w0 + w1e
−2πi l

N + w−1e
2πi l

N

= w0 + (w1 + w−1) cos
(2πl
N

)
+ i(w−1 − w1) sin

(2πl
N

)
Basically, the small kernel size mandates that the spectral view of it γ cannot vary very fast! Thus the
spectral representation has to be very smooth, just sine and cosine waves.

G.4.1 Training dynamics of patch linear convolutional net

To study the training dynamics of the linear local convolutional network, it’s easier to directly work
with the entries of the filters.

Consider the Toeplitz weight matrix (general boundary condition),

W =


w0 w1 w2 · · · wd−1

w−1 w0 w1 · · · wd−2

w−2 w−1 w0 · · · wd−3

...
...

...
. . .

...
w−d+1 w−d+2 w−d+3 · · · w0

 .

Shift matrix formulation Generally, a Toeplitz matrix can be written as

W =

d−1∑
k=0

wkP
k +

d−1∑
k=1

w−k(P
T )k

where the (non-circulant) shift matrix is P ,

P =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 .
This compactly expresses the weight matrix as a weighted sum of shift matrix powers, enabling us to
write down the gradient efficiently.
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Remark:

• For circulant shift matrix PT = P−1. PTP = 0 exactly.
• For non-circulant shift matrix, approximately PT = P−1 but there will be some issues in

the boundary condition.
• Trace with it also allows us to elegantly extract entries from a matrix.
• Multiplying this shift matrix allows us to shift the matrix

This decomposition of weights allows us to write down the loss and the gradient.

For k ≥ 0
∂L
∂wk

=
∑

j−i=k

Gij

=
∑

j−i=k

∂L
∂Wij

= ⟨P k, G⟩
= Tr[(P k)TG]

= Tr[(P k)T
∂L
∂W

]

for the other k,
∂L
∂w−k

= ⟨(PT )k, G⟩

= Tr[P kG]

= Tr[P k ∂L
∂W

]

Using this formulation, we can express the gradient to each entry.
∂L
∂wk

= 2Tr[−(P k)TΣ+ (P k)TW (σ2I +Σ)]

= −2Tr[(P k)TΣ] + 2Tr[(P k)TW (σ2I +Σ)]

= −2Tr[(P k)TΣ] + 2Tr[(P k)T
( d−1∑

m=0

wmP
m +

d−1∑
m=1

w−m(PT )m
)
(σ2I +Σ)]

= −2Tr[(P k)TΣ] + 2Tr[
( d−1∑

m=0

wm(P k)TPm +

d−1∑
m=1

w−m(PT )k+m
)
(σ2I +Σ)]

= −2Tr[(P k)TΣ] + 2

d−1∑
m=0

wmTr[(P k)TPm(σ2I +Σ)] + 2

d−1∑
m=1

w−mTr[(PT )k+m(σ2I +Σ)]

Similarly,
∂L
∂w−k

= 2Tr[−P kΣ+ P kW (σ2I +Σ)]

= −2Tr[P kΣ] + 2Tr[P kW (σ2I +Σ)]

= −2Tr[P kΣ] + 2Tr[P k
( d−1∑

m=0

wmP
m +

d−1∑
m=1

w−m(PT )m
)
(σ2I +Σ)]

= −2Tr[P kΣ] + 2Tr[
( d−1∑

m=0

wmP
k+m +

d−1∑
m=1

w−mP
k(PT )m

)
(σ2I +Σ)]

= −2Tr[P kΣ] + 2

d−1∑
m=0

wmTr[P k+m(σ2I +Σ)] + 2

d−1∑
m=1

w−mTr[P k(PT )m(σ2I +Σ)]
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We denote the general k-shift operator (non-circulant boundary condition)

S(k) =

{
P k, k ≥ 0,

(PT )−k, k < 0,

S(k)T = (P k)T = (PT )k = S(−k)

Define a special function with two indices

T [k,m] = Tr[S(m)(σ2I +Σ)S(k)T ]

= σ2Tr[S(m)S(k)T ] + Tr[S(m) Σ S(k)T ]

The first term is diagonal, the second term is not. Non-diagonal terms all come from the second term.

Note that this special function is symmetric, which is understandable, since it will be functioning as
the new covariance matrix.

T [m, k] = Tr[S(m)(σ2I +Σ)S(k)T ]

= Tr[S(k)(σ2I +Σ)S(m)T ]

= T [k,m]

Then the gradient can be written as this simplified equation, of a similar structure as before.

∂L
∂wk

= −2Tr[S(k)TΣ] + 2

d−1∑
m=1−d

Tr[S(m)(σ2I +Σ)S(k)T ]wm

= −2Tr[S(k)TΣ] + 2

d−1∑
m=1−d

T [k,m]wm

= −2Tr[S(k)Σ] + 2

d−1∑
m=1−d

T [k,m]wm (246)

Thus to study the learning dynamics of convolutional linear models, the object that needs to be
focused on is T [k,m], the spectrum of it. Thus, the learning dynamics of w will be first along higher
eigenvalues of T , and then lower eigen ones.

Interpretation of T matrix Note that the T [k,m] matrix can be regarded as the spatially averaged
version of the covariance matrix, especially by averaging local cross covariances of pixels at distance
k,m.

Optimal solution The fixed point of the equation is the following linear equation∑
m

T [k,m]wm = Tr[S(k)Σ]

Let the vector be Rk = Tr[S(k)Σ], k = {1− d, ...d− 1}

w∗ = T −1R (247)

Here we successfully derived the matrix equation for gradient flow for weights w.

Cyclic case (circular convolution) Now consider the cyclic shift matrix

P =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 .
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then PT = P−1, so we have

T [k,m] = Tr[S(m)(σ2I +Σ)S(k)T ]

= Tr[Pm(σ2I +Σ)P−k]

= Tr[Pm−k(σ2I +Σ)]

= σ2Tr[Pm−k] + Tr[Pm−kΣ]

Note that
Tr[Pm−k] = Nδmk

So

T [k,m] = Nσ2δmk + Tr[Pm−kΣ]

= N
(
σ2δmk +

1

N
Tr[Pm−kΣ]

)
Note that the second term is the shift-averaged version of the covariance matrix

1

N
Tr
[
P m−k Σ

]
=

1

N

N∑
i=1

Σi,i+(m−k) mod N

Let’s define a new averaged cross-covariance vector

χ[k] =
1

N
Tr[P kΣ]

=
1

N

N∑
i=1

Σi,i+k mod N

Note χ[k] = χ[−k]
Rk = Nχ[k]

T [k,m] = N
(
σ2δmk + χ[m− k]

)
We want to solve the linear system ∑

m

T [k,m]wm −Rk = 0

Note that T [k,m] is a Toeplitz matrix.

In the circulant case the optimal solution satisfies,
K∑

m=−K

(Nσ2δkm +Rk−m)w∗
m = Rk

where Rk is the averaged version of the covariance matrix. So again it’s a circulant regression with a
Ridge-like penalty.

Rk = Tr[P kΣ]

If we let Σ̆k,m = 1
NRk−m ∈ R2K+1×2K+1 be the Toeplitz patch covariance matrix, then we can

write Rk as the center column of it
K∑

m=−K

(Nσ2δkm +N Σ̆k,m)w∗
m = N Σ̆k,0

The solution can be written in vector form as

(Nσ2I +N Σ̆)w∗ = N Σ̆:,0

w∗ = (Nσ2I +N Σ̆)−1N Σ̆:,0

=
(
(σ2I + Σ̆)−1Σ̆

)
:,0
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Thus the denoiser equals the central column from the Gaussian solution to the patch covariance.

The gradient flow dynamics is

∂L
∂wk

= −2Rk + 2

d−1∑
m=1−d

(Nσ2δkm +Rk−m)wm (248)

We can write the flow dynamics in vector form

dw

dτ
= −η ∂L

∂w

= 2η
(
N Σ̆:,0 −N(σ2I + Σ̆)w

)
= 2ηN

(
Σ̆:,0 − (σ2I + Σ̆)w

)
Solution will be

w = w∗ + exp
(
− 2ηN(σ2I + Σ̆)

)
(w(0)−w∗) (249)

with w∗ =
(
(σ2I + Σ̆)−1Σ̆

)
:,0

.

G.4.2 Sampling dynamics of patch linear convolutional net

Consider a kernel of width 2K + 1,

γl =
∑

k∈−K:K

e−2πi klN wk

= w0 +

K∑
k=1

wke
−2πi klN + w−ke

2πi klN

= w0 +

K∑
k=1

(wk + w−k) cos
(2πkl
N

)
+ i(w−k − wk) sin

(2πkl
N

)
For symmetric filter weights wk = w−k, we have

γl = w0 +

K∑
k=1

2wk cos
(2πkl
N

)
(250)

During sampling we have
d

dσ
ck = −γk(σ)− 1

σ
ck − bk(σ) (251)

The key integral governing the variance is

Φk(σ) = exp
(∫ σ

−γk(λ)− 1

λ
dλ

)
(252)

=exp
(∫ σ

−
w0(λ) +

∑K
l=1 2wl(λ) cos

(
2πlk
N

)
− 1

λ
dλ

)
Thus we can see it integrates these sinusoidal modulations in the frequency domain.

G.5 Appendix: Useful math

Discrete Fourier Transformation (DFT) matrix

Fjk =
1√
N
e−2πi jk/N (253)

Property
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Symmetry
F = FT

Conjugacy
FF ∗ = I

FjkF
∗
km =

1

N

N∑
k

e−2πi jk/Ne+2πi km/N

=
1

N

N∑
k

e−2πi
k(j−m)
N

= δjm

Properties of Circulant and DFT Consider matrices of the following form
M = FΛF ∗ (254)

Explicitly, the matrix reads

Mjk =
∑
m

FjmλmF
∗
mk

=
∑
m

λm
1√
N

exp

(
−2πi

jm

N

)
1√
N

exp

(
2πi

mk

N

)
=

1

N

∑
m

λm exp

(
−2πi

jm

N
+ 2πi

mk

N

)
=

1

N

∑
m

λm exp

(
−2πi

m(j − k)

N

)
Thus we see Mjk depends only on j − k, hence is circulant. Let’s define the circulant coefficients
cj−k :=Mj,k.

Then we have for ∆ = 0, 1, ...N − 1

c∆ =
1

N

∑
m

λm exp

(
−2πi

m∆

N

)
(255)

The special case is the “DC” non-oscillating term, which are the diagonal values in M

c0 =
1

N

∑
m

λm

the adjacent sub-diagonal values in M are

c1 =
1

N

∑
m

λm exp
(
−2πi

m

N

)
cN−1 =

1

N

∑
m

λm exp

(
−2πi

m(N − 1)

N

)
=

1

N

∑
m

λm exp
(
+2πi

m

N

)
More generally ck = c∗N−k are complex conjugates, or equal in the real case.

Properties of the Λ spectrum Since Σ is real symmetric, the eigenvalues exhibit mirror, i.e. even
symmetry λk = λN−k for k = 1, 2, ..., N − 1

There are one or two standalone eigenvalues: when N is odd, λ0 is the zero-th frequency, DC
component, which is unpaired.

When N is even, λ0 (DC component) and λN//2 (Nyquist frequency) are both standing alone, which
are both unpaired.
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H Detailed derivation of Flow Matching model

Consider the objective of flow matching [28], at a certain t
L = Ex0∼N (0,I), x1∼p1

∥u(xt; t)− (x1 − x0)∥2 (256)

= Ex0∼N (0,I), x1∼p1
∥u((1− t)x0 + tx1; t)− (x1 − x0)∥2 (257)

xt = (1− t)x0 + tx1 (258)
Given linear function approximator of the velocity field,

u(x; t) = Wtx+ bt (259)

L = Ex0∼N (0,I), x1∼p1
∥Wt((1− t)x0 + tx1) + bt − (x1 − x0)∥2

= Ex0∼N (0,I), x1∼p1

(
Wt((1− t)x0 + tx1) + bt − (x1 − x0)

)T (
Wt((1− t)x0 + tx1) + bt − (x1 − x0)

)
= Ex0∼N (0,I), x1∼p1

Tr
[
((1− t)x0 + tx1)

TWT
t Wt((1− t)x0 + tx1) + bTb+ (x1 − x0)

T (x1 − x0)

− 2(x1 − x0)
Tbt − 2(x1 − x0)

TWt((1− t)x0 + tx1) + 2bT
t Wt((1− t)x0 + tx1)

]
= Ex0∼N (0,I), x1∼p1

Tr
[
WT

t Wt((1− t)x0 + tx1)((1− t)x0 + tx1)
T + bTb+ (x1 − x0)

T (x1 − x0)

− 2(x1 − x0)
Tbt − 2Wt((1− t)x0 + tx1)(x1 − x0)

T + 2bT
t Wt((1− t)x0 + tx1)

]
Similar to the diffusion case, it will also depend only on the mean and covariance of p1.

Ex0,x1 [(1− t)x0 + tx1] = tµ

Ex0,x1 [x1 − x0] = µ

Ex0,x1
[(x1 − x0)

T (x1 − x0)] = Ex0,x1
[xT

1 x1 − 2xT
1 x0 + xT

0 x0]

= Tr[Σ+ µµT + I]

Ex0,x1
[((1− t)x0 + tx1)(x1 − x0)

T ] = t(Σ+ µµT )− (1− t)I

Ex0,x1 [((1− t)x0 + tx1)((1− t)x0 + tx1)
T ] = t2(Σ+ µµT ) + (1− t)2I

Taking full expectation, the average loss reads.

L = Tr
[
WT

t Wt

(
t2(Σ+ µµT ) + (1− t)2I

)
+ bTb+ (Σ+ µµT + I)

− 2µTbt − 2Wt

(
t(Σ+ µµT )− (1− t)I

)
+ 2tbT

t Wtµ

]
(260)

The gradients with respect to parameters are
∇bL = 2[b− µ+ tWµ] (261)

∇WL = 2
[
W

(
t2(Σ+ µµT ) + (1− t)2I

)
−
(
t(Σ+ µµT )− (1− t)I

)
+ tbµT

]
, (262)

Simplifying case µ = 0 Note the special case µ = 0

∇bL = 2b (263)

∇WL = 2
[
W

(
t2Σ+ (1− t)2I

)
−

(
tΣ− (1− t)I

)]
, (264)

Optimal solution The optimal solution to the full case is
b∗ = µ− tW∗µ (265)

W∗ =
(
tΣ− (1− t)I

) (
t2Σ+ (1− t)2I

)−1
(266)

We can represent it on the eigenbasis of Σ, [u1, ...ud]

W∗ =
∑
k

tλk − (1− t)

t2λk + (1− t)2
uku

T
k (267)
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Asymptotics Consider the limit t→ 0,

W∗
t→0 = −I

b∗
t→0 = µ

Consider the limit t→ 1,

W∗
t→1 = I

b∗
t→1 = µ−W∗

t→1µ = 0

H.1 Solution to the flow matching sampling ODE with optimal linear solution

Solving the sampling ODE of flow matching integrating from 0 to 1, with the linear vector field

dx

dt
= u(x; t) (268)

Under the linear solution case
dx

dt
= W∗

tx+ b∗
t (269)

Simplified zero mean case µ = 0

dx

dt
=

∑
k

tλk − (1− t)

t2λk + (1− t)2
uku

T
k x

Solving the flow-matching sampling ODE mode by mode

uT
k

dx

dt
=

tλk − (1− t)

t2λk + (1− t)2
uT
k x

dck(t)

dt
=

tλk − (1− t)

t2λk + (1− t)2
ck(t)

ln ck(t) =
1

2
ln
∣∣ t2λk + (1− t)2

∣∣+ C.

ck(t) = C
√
t2λk + (1− t)2 (270)

ck(t)

ck(0)
=

√
t2λk + (1− t)2

ck(1)

ck(0)
=

√
λk

This is the correct scaling of x. The sampling trajectory of xt reads

xt =
∑
k

ck(t)uk (271)

=
∑
k

√
t2λk + (1− t)2uku

T
k x0 (272)

Thus, at time t the covariance of the sampled points is

E[xtx
T
t ] =

∑
k

(t2λk + (1− t)2)uku
T
k (273)

with variance λ̃k = t2λk + (1− t)2 along eigenmode uk
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General case µ ̸= 0

dx

dt
= W∗

tx+ µ− tW∗
tµ

= µ+
∑
k

tλk − (1− t)

t2λk + (1− t)2
uku

T
k (x− tµ) (274)

It can also be solved mode by mode. Redefine variable yt = xt − tµ

dyt

dt
=
dxt

dt
− µ

=
∑
k

tλk − (1− t)

t2λk + (1− t)2
uku

T
k yt

Then each mode can be solved accordingly, ck(t) = uT
k yt

dck(t)

dt
=

tλk − (1− t)

t2λk + (1− t)2
ck(t)

Using the same solution as above, we get the full solution for the sampling equation with any µ

xt = tµ+
∑
k

ck(t)uk

= tµ+
∑
k

√
t2λk + (1− t)2uku

T
k x0 (275)

H.2 Learning dynamics of flow matching objective (single layer)

Simplifying case µ = 0, single layer network Note the special case µ = 0

∇bL = 2b (276)

∇WL = 2
[
W

(
t2Σ+ (1− t)2I

)
−

(
tΣ− (1− t)I

)]
(277)

dW

dτ
= −η∇WL (278)

dW

dτ
= −2η

[
W

(
t2Σ+ (1− t)2I

)
−
(
tΣ− (1− t)I

)]
(279)

Using the eigenbasis projection
dWuk

dτ
= −2η

[
W

(
t2Σ+ (1− t)2I

)
−

(
tΣ− (1− t)I

)]
uk (280)

= −2η
[
Wuk

(
t2λk + (1− t)2

)
−

(
tλk − (1− t)

)
uk

]
(281)

= −2η
(
t2λk + (1− t)2

)[
Wuk − tλk − (1− t)

t2λk + (1− t)2
uk

]
(282)

W(τ)uk − tλk − (1− t)

t2λk + (1− t)2
uk = A exp

(
− 2ητ

(
t2λk + (1− t)2

))
(283)

W(τ)uk =
tλk − (1− t)

t2λk + (1− t)2
uk+

(
W(0)uk−

tλk − (1− t)

t2λk + (1− t)2
uk

)
exp

(
−2ητ

(
t2λk+(1−t)2

))
(284)

The full solutions of the weight and bias are

W(τ) = W∗ +
∑
k

(
W(0)uk − tλk − (1− t)

t2λk + (1− t)2
uk

)
uT
k exp

(
− 2ητ

(
t2λk + (1− t)2

))
(285)

b(τ) = b(0) exp(−2ητ) (286)

It is easy to see this solution has a similar structure to that of the denoising score matching objective
for diffusion models.
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Remarks

• The learning dynamics of weight eigenmodes at different times t were visualized in Fig. 8A.

• Note that the convergence speed of each mode is exp(−2ητ
(
t2λk + (1− t)2

)
). Similarly,

at the same time t, the higher the data variance λk, the faster the convergence speed.

• At smaller t, all eigenmodes converge at similar speed.

• At larger t ∼ 1, the eigenmodes are resolved at distinct speeds depending on the eigenvalues.

• Note that for each eigenvalue λk, there is a special time point where the convergence speed
is maximized: t∗ = 1/(λk + 1).

H.2.1 Interaction of weight learning and flow sampling

Consider the sampling dynamics of a flow matching model with learned weights:

dx

dt
= W(τ, t)x+ b(τ, t) (287)

Assume the weight initialization is aligned and the same across t:

W(0, t) =
∑
k

Qkuku
T
k (288)

then

W(τ, t) = W∗ +
∑
k

(
W(0)−W∗

)
uku

T
k exp

(
− 2ητ

(
t2λk + (1− t)2

))
(289)

=
∑
k

tλk − (1− t)

t2λk + (1− t)2
uku

T
k +

∑
k

(
Qk − tλk − (1− t)

t2λk + (1− t)2

)
uku

T
k exp

(
− 2ητ

(
t2λk + (1− t)2

))
(290)

Ignoring the bias part, consider the weight integration along ck(t) = uT
k x(t):

d

dt
ck(t) =

[
tλk − (1− t)

t2λk + (1− t)2
+
(
Qk − tλk − (1− t)

t2λk + (1− t)2

)
exp

(
− 2ητ

(
t2λk + (1− t)2

))]
ck(t)

(291)
We have the integration of the coefficient:

I =

∫ 1

0

dt
[ tλk − (1− t)

t2λk + (1− t)2
+
(
Qk − tλk − (1− t)

t2λk + (1− t)2

)
exp

(
− 2ητ

(
t2λk + (1− t)2

))]

=

√
2πQke

− 2ητλk
λk+1

(
erf

(√
2
√

ητ
λk+1

)
+ erf

(√
2λk

√
ητ

λk+1

))
4
√
ητ (λk + 1)

+

1

2
(Ei(−2ητ)− Ei (−2ητλk) + log (λk))

=
1

2
log (λk) +

1

2
(Ei(−2ητ)− Ei (−2ητλk)) +

1

2

√
π

2ητ (λk + 1)
Qke

− 2ητλk
λk+1

(
erf

(√
2ητ

λk + 1

)
+ erf

(
λk

√
2ητ

λk + 1

))
(292)
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Φk(1)

= exp(I)

= exp
( ∫ 1

0

dt
[ tλk − (1− t)

t2λk + (1− t)2
+

(
Qk − tλk − (1− t)

t2λk + (1− t)2

)
exp

(
− 2ητ

(
t2λk + (1− t)2

))] )
= exp

(1
2
log (λk) +

1

2
(Ei(−2ητ)− Ei (−2ητλk)) +

1

2

√
π

2ητ (λk + 1)
Qke

− 2ητλk
λk+1

(
erf

(√
2ητ

λk + 1

)
+ erf

(
λk

√
2ητ

λk + 1

)))
=

√
λk

√
exp

(
Ei(−2ητ)− Ei (−2ητλk)

)
exp

(1
2

√
π

2ητ (λk + 1)
Qke

− 2ητλk
λk+1

(
erf

(√
2ητ

λk + 1

)
+ erf

(
λk

√
2ητ

λk + 1

)))
(293)

λ̃k
λk

=
Φk(1)

2

λk

= exp
(

Ei(−2ητ)− Ei (−2ητλk)
)
× (294)

exp
(√ π

2ητ (λk + 1)
Qke

− 2ητλk
λk+1

(
erf

(√
2ητ

λk + 1

)
+ erf

(
λk

√
2ητ

λk + 1

)))
Remarks

• The learning dynamics of generated variance were visualized in Fig. 8B.

• The power law relationship between the convergence time τ∗k of generated variance and the
target variance λk was shown in Fig. 9. For the harmonic mean criterion, the power law
coefficient was also close to −1.

H.3 Learning dynamics of flow matching objective (two layers)

Let W = PPT . Given the general loss,

∇WL = 2
[
W

(
t2Σ+ (1− t)2I

)
−

(
tΣ− (1− t)I

)]
(295)

∇PL = (∇WL)P + (∇WL)TP

=

[
∇WL+ (∇WL)T

]
P

∇PL = 2
[
PPT

(
t2Σ+ (1− t)2I

)
−
(
tΣ− (1− t)I

)]
P

+ 2
[(
t2Σ+ (1− t)2I

)
PPT −

(
tΣ− (1− t)I

)]
P

= 2
[
−2

(
tΣ− (1− t)I

)
P+

PPT
(
t2Σ+ (1− t)2I

)
P +

(
t2Σ+ (1− t)2I

)
PPTP

]
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Similarly, let uT
k P = qTk :

uT
k∇PL = 2

[
−2uT

k

(
tΣ− (1− t)I

)
P+

uT
k PP

T
(
t2Σ+ (1− t)2I

)
P + uT

k

(
t2Σ+ (1− t)2I

)
PPTP

]
= 2

[
−2

(
tλk − (1− t)

)
uT
k P + qTk

∑
m

PTum

(
t2λm + (1− t)2

)
uT
mP

+
(
t2λk + (1− t)2

)
uT
k P

∑
n

PTunu
T
nP

]
= 2

[
−2

(
tλk − (1− t)

)
qTk + qTk

∑
m

qm
(
t2λm + (1− t)2

)
qTm +

(
t2λk + (1− t)2

)
qTk

∑
n

qnq
T
n

]

∇qkL = −4
(
tλk − (1− t)

)
qk + 2

∑
m

(qTk qm)
(
t2λm + (1− t)2

)
qm + 2

(
t2λk + (1− t)2

)∑
n

(qTk qn)qn

= −4
(
tλk − (1− t)

)
qk + 2

∑
m

(
t2λm + (1− t)2 + t2λk + (1− t)2

)
(qTk qm)qm

= −4
(
tλk − (1− t)

)
qk + 2

∑
m

(
t2λm + t2λk + 2(1− t)2

)
(qTk qm) qm (296)

Simplifying assumption: aligned initialization Assume at initialization qTk qm = 0,∀k ̸= m:

∇qkL = −4
(
tλk − (1− t)

)
qk + 4

(
t2λk + (1− t)2

)
(qTk qk)qk (297)

The learning dynamics follow:

d

dτ
qk = −η∇qkL

= 4η
[(
tλk − (1− t)

)
−

(
t2λk + (1− t)2

)
(qTk qk)

]
qk

1

2

d

dτ
(qTk qk) = 4η

[(
tλk − (1− t)

)
−

(
t2λk + (1− t)2

)
(qTk qk)

]
(qTk qk) (298)

Using abbreviations:

A := 8η
(
tλk − (1− t)

)
B := 8η

(
t2λk + (1− t)2

)
r(τ) := ∥qk∥2

we can see the core structure:
dr(τ)

dτ
= Ar −Br2 (299)

With initialization r(0) = qTk qk(τ = 0) = Qk, the solution reads:

∥qk∥2(τ) =
A

B

1

1 + ( A
BQk

− 1)e−Aτ

=
tλk − (1− t)

t2λk + (1− t)2
Qk

Qk + ( tλk−(1−t)
t2λk+(1−t)2 −Qk)e

−8ητ
(
tλk−(1−t)

)
= Q∗

k

Qk

Qk + (Q∗
k −Qk)e

−8ητ
(
tλk−(1−t)

) (300)

where

Q∗
k =

tλk − (1− t)

t2λk + (1− t)2
(301)
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So the overall weight dynamics read:

W(τ ; t) =
∑
k

∥qk∥2(τ)uku
T
k

=
∑
k

Qk

Qk + (Q∗
k −Qk)e

−8ητ
(
tλk−(1−t)

)Q∗
kuku

T
k

=
∑
k

Qk

Qk + (Q∗
k −Qk)e

−8ητ
(
tλk−(1−t)

) tλk − (1− t)

t2λk + (1− t)2
uku

T
k (302)

Note that the optimal weight (301) is not positive definite, but the two-layer symmetric weight
network is. So, different from the diffusion case with denoiser loss, there are two scenarios:

• When t > 1
λk+1 , A > 0 and Q∗ > 0. The solution converges to Q∗: limτ→∞ ∥qk∥2(τ) =

Q∗
k.

• When t < 1
λk+1 , A < 0 and Q∗ < 0. In this case, the optimal solution is “non-achievable”

by a two-layer symmetric network. limτ→∞ e−Aτ → ∞, so limτ→∞ ∥qk∥2(τ) = 0. In
other words, 0 becomes a stable fixed point instead of Q∗, and the solution ∥qk∥2(τ) will be
attracted to and stuck at 0.

Thus,

lim
τ→∞

W(τ ; t) =
∑

k, where λk<
1
t−1

tλk − (1− t)

t2λk + (1− t)2
uku

T
k (303)

Because of this, asymptotically speaking, the symmetric network architecture PTP will not approxi-
mate this vector field very well.

Thus, for the purpose of studying the learning dynamics of flow matching models, some extension
beyond the symmetric two-layer linear network is required for a thorough analysis.
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I Detailed Experimental Procedure

I.1 Computational Resources

All experiments were conducted on research cluster. Model training was performed on single A100 /
H100 GPU. MLP training experiments took 20mins-2hrs while CNN based UNet training experiments
took 5-8 hours, using around 20GB RAM.

Evaluations were also done on single A100 / H100 GPU, with heavy covariance computation done
with CUDA and trajectory plotting and fitting on CPU. Covariance computation for generated samples
generally took a few minutes.

I.2 MLP architecture inspired by UNet

We used the following custom architecture inspired by UNet in [26] and [62] paper. The basic block
is the following

class UNetMLPBlock(torch.nn.Module):
def __init__(self,

in_features, out_features, emb_features, dropout=0, skip_scale=1, eps=1e-5,
adaptive_scale=True, init=dict(), init_zero=dict(),

):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.emb_features = emb_features
self.dropout = dropout
self.skip_scale = skip_scale
self.adaptive_scale = adaptive_scale

self.norm0 = nn.LayerNorm(in_features, eps=eps)
#GroupNorm(num_channels=in_features, eps=eps)

self.fc0 = Linear(in_features=in_features, out_features=out_features, **init)
self.affine = Linear(in_features=emb_features, out_features=out_features*(2

if adaptive_scale else 1), **init)
self.norm1 = nn.LayerNorm(out_features, eps=eps)

#GroupNorm(num_channels=out_features, eps=eps)
self.fc1 = Linear(in_features=out_features, out_features=out_features,

**init_zero)

self.skip = None
if out_features != in_features:

self.skip = Linear(in_features=in_features, out_features=out_features,
**init)

def forward(self, x, emb):
orig = x
x = self.fc0(F.silu(self.norm0(x)))

params = self.affine(emb).to(x.dtype) # .unsqueeze(1)
if self.adaptive_scale:

scale, shift = params.chunk(chunks=2, dim=1)
x = F.silu(torch.addcmul(shift, self.norm1(x), scale + 1))

else:
x = F.silu(self.norm1(x.add_(params)))

x = self.fc1(F.dropout(x, p=self.dropout, training=self.training))
x = x.add_(self.skip(orig) if self.skip is not None else orig)
x = x * self.skip_scale

return x
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and the full architecture backbone

class UNetBlockStyleMLP_backbone(nn.Module):
"""A time-dependent score-based model."""

def __init__(self, ndim=2, nlayers=5, nhidden=64, time_embed_dim=64,):
super().__init__()
self.embed = GaussianFourierProjection(time_embed_dim, scale=1)
layers = nn.ModuleList()
layers.append(UNetMLPBlock(ndim, nhidden, time_embed_dim))
for _ in range(nlayers-2):

layers.append(UNetMLPBlock(nhidden, nhidden, time_embed_dim))
layers.append(nn.Linear(nhidden, ndim))
self.net = layers

def forward(self, x, t_enc, cond=None):
# t_enc : preconditioned version of sigma, usually
# ln_std_vec = torch.log(std_vec) / 4
if cond is not None:

raise NotImplementedError("Conditional training is not implemented")
t_embed = self.embed(t_enc)
for layer in self.net[:-1]:

x = layer(x, t_embed)
pred = self.net[-1](x)
return pred

class EDMPrecondWrapper(nn.Module):
def __init__(self, model, sigma_data=0.5, sigma_min=0.002, sigma_max=80,

rho=7.0):
super().__init__()
self.model = model
self.sigma_data = sigma_data
self.sigma_min = sigma_min
self.sigma_max = sigma_max
self.rho = rho

def forward(self, X, sigma, cond=None, ):
sigma[sigma == 0] = self.sigma_min
## edm preconditioning for input and output
## https://github.com/NVlabs/edm/blob/main/training/networks.py#L632
# unsqueze sigma to have same dimension as X (which may have 2-4 dim)
sigma_vec = sigma.view([-1, ] + [1, ] * (X.ndim - 1))
c_skip = self.sigma_data ** 2 / (sigma_vec ** 2 + self.sigma_data ** 2)
c_out = sigma_vec * self.sigma_data / (sigma_vec ** 2 + self.sigma_data **

2).sqrt()
c_in = 1 / (self.sigma_data ** 2 + sigma_vec ** 2).sqrt()
c_noise = sigma.log() / 4
model_out = self.model(c_in * X, c_noise, cond=cond)
return c_skip * X + c_out * model_out

This architecture can efficiently learn point cloud distributions. More details about the architecture
and training can be found in code supplementary.

I.3 EDM Loss Function

We employ the loss function LEDM introduced in the Elucidated Diffusion Model (EDM) paper [26],
which is one specific weighting scheme for training diffusion models.

For each data point x ∈ Rd, the loss is computed as follows. The noise level for each data point is
sampled from a log-normal distribution with hyperparameters Pmean and Pstd (e.g., Pmean = −1.2 and
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Figure 29: Example of learning to generate low-dimensional manifold with Song UNet-inspired
MLP denoiser.

Pstd = 1.2). Specifically, the noise level σ is sampled via

σ = exp
(
Pmean + Pstd ϵ

)
, ϵ ∼ N (0, 1).

The weighting function per noise scale is defined as:

w(σ) =
σ2 + σ2

data

(σ σdata)
2 ,

with hyperparameter σdata (e.g., σdata = 0.5). The noisy input y is created by the following,

y = x+ σn, n ∼ N
(
0, Id

)
,

Let Dθ(y, σ, labels) denote the output of the denoising network when given the noisy input y, the
noise level σ, and optional conditioning labels. The EDM loss per data point can be computed as:

L(x) = w(σ) ∥Dθ(x+ σn, σ, labels)− x∥2.
Taking expectation over the data points and noise scales, the overall loss reads

LEDM = Ex∼pdataEn∼N (0,Id)Eσ

[
w(σ) ∥Dθ(x+ σn, σ, labels)− x∥2

]
(304)

class EDMLoss:
def __init__(self, P_mean=-1.2, P_std=1.2, sigma_data=0.5):

self.P_mean = P_mean
self.P_std = P_std
self.sigma_data = sigma_data

def __call__(self, net, X, labels=None, ):
rnd_normal = torch.randn([X.shape[0],] + [1, ] * (X.ndim - 1),

device=X.device)
# unsqueeze to match the ndim of X
sigma = (rnd_normal * self.P_std + self.P_mean).exp()
weight = (sigma ** 2 + self.sigma_data ** 2) / (sigma * self.sigma_data) ** 2
# maybe augment
n = torch.randn_like(X) * sigma
D_yn = net(X + n, sigma, cond=labels, )
loss = weight * ((D_yn - X) ** 2)
return loss
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I.4 Experiment 1: Diffusion Learning of High-dimensional Gaussian Data

I.4.1 Data Generation and Covariance Specification

We consider learning a score-based generative model on synthetic data drawn from a high-dimensional
Gaussian distribution of dimension d = 128, 256, 512. Specifically, we first sample a vector of
variances

σ2 =
(
σ2
1 , σ

2
2 , . . . , σ

2
d

)
,

where each σ2
i is drawn from a log-normal distribution (implemented via

torch.exp(torch.randn(. . . ))). We then sort them in descending order and normalize
these variances to have mean equals 1 to fix the overall scale. Denoting

D = diag
(
σ2
1 , . . . , σ

2
d

)
,

we generate a random rotation matrix R ∈ Rd×d by performing a QR decomposition of a matrix of
i.i.d. Gaussian entries. This allows us to construct the covariance

Σ = RDRT.

This rotation matrix R is the eigenbasis of the true covariance matrix. To obtain training samples
{xi} ⊂ Rd, we draw xi from N

(
0,Σ

)
. In practice, we generate a total of 10,000 samples and stack

them as pnts. We compute the empirical covariance of the training set, Σemp = Cov(pnts), and
verify that it is close to the prescribed true covariance Σ.

I.4.2 Network Architecture and Training Setup

We train a multi-layer perceptron (MLP) to approximate the noise conditional score function. The
base network, implemented as

model=UNetBlockStyleMLP_backbone(ndim=d, nlayers=5, nhidden=256, time_embed_dim=256)

maps a data vector x ∈ Rd and a time embedding τ to a vector of the same dimension Rd. This
backbone is then wrapped in an EDM-style preconditioner via:

model_precd = EDMPrecondWrapper(model, σdata = 0.5, σmin = 0.002, σmax = 80, ρ = 7.0),

which standardizes and scales the input according to the EDM framework [26].

We use EDM loss with hyperparameters P_mean = −1.2, P_std = 1.2, and σdata = 0.5. We train the
model for 5000 steps using mini-batches of size 1024. The Adam optimizer is used with a learning
rate lr = 10−4. Each training step processes a batch of data from pnts, adds noise with randomized
noise scales, and backpropagates through the EDM loss. The loss values at each training steps are
recorded.

I.4.3 Sampling and Trajectory Visualization

To visualize the sampling evolution, we sample from the diffusion model using the Heun’s 2nd order
deterministic sampler, starting from z ∼ N (0, Id)

edm_sampler(model, z, num_steps = 20, σmin = 0.002, σmax = 80, ρ = 7).

We store these samples in sample_store to track how sampled distribution evolves over training.

I.4.4 Covariance Evaluation in the True Eigenbasis

To measure how well the trained model captures the true covariance structure, we compute the sample
covariance from the final generated samples, denoted Σ̂sample. We then project Σ̂sample and the true Σ
into the eigenbasis of Σ. Specifically, letting R be the rotation used above, we compute

RT Σ̂sample R and RT ΣR.

Since Σ = RDRT is diagonal in that basis, we then compare the diagonal elements of RT Σ̂sample R

with diag(D). As training proceeds, we track the ratio diag(RT Σ̂sample R)/diag(D) to observe
convergence toward 1 across the spectrum.

All intermediate results, including loss values and sampled trajectories, are stored to disk for later
analysis.
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I.5 Experiment 2: Diffusion Learning of MNIST | MLP

I.5.1 Data Preprocessing

For our second experiment, we apply the same EDM architecture to several natural image datasets:
MNIST, CIFAR, AFHQ32, FFHQ32, FFHQ32-fixword, FFHQ32-randomword. All dataset except
for MNIST are RGB images with 32 resolution, while MNIST is BW images with 28 resolution.
These images were flattened as vectors, (784d for MNIST, 3072 for others) and stacked as pnts
matrix. We normalize these intensities from [0, 1] to [−1, 1] by x 7→ x−0.5

0.5 . The resulting data
tensor pnts is then transferred to GPU memory for training, and we estimate its empirical covariance
Σemp = Cov(pnts) for reference.

I.5.2 Network Architecture and Training Setup

Since the natural dataset is higher dimensional than the synthetic data in the previous experiment, we
use a deeper MLP network: For MNIST:

model = UNetBlockStyleMLP_backbone(ndim = 784, nlayers = 8, nhidden = 1024, time_embed_dim = 128).

For others

model = UNetBlockStyleMLP_backbone(ndim = 3072, nlayers = 8, nhidden = 3072, time_embed_dim = 128).

We again wrap this MLP in an EDM preconditioner:

model_precd = EDMPrecondWrapper(model, σdata = 0.5, σmin = 0.002, σmax = 80, ρ = 7.0).

The model is trained using the EDMLoss described in the previous section, with parameters P_mean =
−1.2, P_std = 1.2, and σdata = 0.5. We set the training hyperparameters to lr = 10−4, n_steps =
100000, and batch_size = 2048.

I.5.3 Sampling and Analysis

As before, we define a callback function sampling_callback_fn that periodically draws i.i.d.
Gaussian noise z ∼ N (0, I784) and applies the EDM sampler to produce generated samples. These
intermediate samples are stored in sample_store for later analysis.

In addition, we assess convergence of the mean of the generated samples by computing

∥E[x_out] − E[pnts]∥2,

and we track how this mean-squared error evolves over training steps. We also examine the sample
covariance Σ̂sample of the final outputs, comparing its diagonal in a given eigenbasis to a target
spectrum (e.g. the diagonal variances of the training data or a reference covariance).

All trajectories and intermediate statistics are saved to disk for further inspection. In particular, we
plot the difference between Σ̂sample and Σ in an eigenbasis to illustrate whether the learned samples
capture the underlying covariance structure of the training data.

I.6 Experiment 3: Diffusion learning of Image Datasets with EDM-style CNN UNet

We used model configuration similar to https://github.com/NVlabs/edm, but with simplified
training code more similar to previous experiments.

For the MNIST dataset, we trained a UNet-based CNN (with four blocks, each containing one layer,
no attention, and channel multipliers of 1, 2, 3, and 4) on MNIST for 50,000 steps using a batch size
of 2,048, a learning rate of 10−4, 16 base model channels, and an evaluation sample size of 5,000.

For the CIFAR-10 dataset, we trained a UNet model (with three blocks, each containing one layer,
wide channels of size 128, and attention at resolution 16) for 50,000 steps using a batch size of 512, a
learning rate of 10−4, and an evaluation sample size of 2,000 (evaluated in batches of 1,024) with 20
sampling steps.

For the AFHQ, FFHQ (32 pixels) dataset, we used the same UNet architecture and training setup,
with four blocks, wide channels of size 128, and attention at resolution 8, trained for 50,000 steps

98

https://github.com/NVlabs/edm


with a batch size of 256 and a learning rate of 1× 10−4. Evaluation was conducted on 2,000 samples
in batches of 512.

For the AFHQ, FFHQ (64 pixels) dataset, we trained a UNet model with four blocks (each containing
one layer, wide channels of size 128, and attention at resolution 8) for 250,000 steps using a batch
size of 256, a learning rate of 1× 10−4, and an evaluation sample size of 2,000 (evaluated in batches
of 512).

I.7 Architectural Ablation: Diffusion Learning of Image Datasets with EDM-style CNN
ResNet

To systematically examine the effects of network depth and width on diffusion learning dynamics, we
conducted a controlled set of experiments using EDM-style CNN ResNet architectures trained on the
FFHQ-32×32 dataset.

We designed a simplified single-resolution ResNet denoiser (SongUNetResNet) without skip connec-
tions or attention. It consists of a stack of residual convolutional blocks conditioned on positional
timestep embeddings, followed by a normalization and output convolution. This minimal EDM-style
architecture isolates the effects of depth and width on diffusion learning dynamics.

All models followed the EDM training configuration [26] with simplified code consistent with
previous experiments, and were trained for 50,000 steps using a batch size of 256, Adam optimizer, a
learning rate of 1 × 10−4. 2,000 samples are generated at given training steps for evaluation. No
attention layers were used.

We systematically varied two architectural factors: (1) network depth, by adjusting the number of
residual layers per block (L ∈ {1, 2, 3, 5}); and (2) network width, by varying the base channel
dimension (C ∈ {4, 6, 8, 12, 16, 32, 128, 256}). Each configuration was trained independently with
identical optimizer settings and no data augmentations to isolate the contribution of architecture to
convergence and spectral scaling behavior.
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