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ABSTRACT

Deep generative models for molecular discovery have become a very popular
choice in new high-throughput screening paradigms. These models have been
developed inheriting from the advances in natural language processing and com-
puter vision, achieving ever greater results. However, generative molecular mod-
elling has unique challenges that are often overlooked. Chemical validity, inter-
pretability of the generation process and flexibility to variable molecular sizes are
among some of the remaining challenges for generative models in computational
materials design. In this work, we propose an autoregressive approach that de-
composes molecular generation into a sequence of discrete and interpretable steps
using molecular fragments as units, a ‘molecular story’. Enforcing chemical rules
in the stories guarantees the chemical validity of the generated molecules, the
discrete sequential steps of a molecular story makes the process transparent im-
proving interpretability, and the autoregressive nature of the approach allows the
size of the molecule to be a decision of the model. We demonstrate the validity of
the approach in a multi-target inverse design of electroactive organic compounds,
focusing on the target properties of solubility, redox potential, and synthetic ac-
cessibility. Our results show that the model can effectively bias the generation
distribution according to the prompted multi-target objective.

1 INTRODUCTION

Deep generative models (DGMs) have become a popular choice in new high throughput screening
(HTS) paradigms (Westermayr et al., 2023; Ortega Ochoa et al., 2023). Within new HTS, generative
models are used to create an initial pool of candidates subject to some target properties (Sanchez-
Lengeling & Aspuru-Guzik, 2018). This initial pool is then filtered in sequential steps of increasing
computational expense, from machine-learning surrogate models (Schütt et al., 2017; Tsubaki &
Mizoguchi, 2020a) to classical computing methods, such as density functional theory (DFT; Kohn
& Sham, 1965). These generative models vary in the molecular representation used, e.g., SMILES
strings (Gómez-Bombarelli et al., 2018; Lim et al., 2018; Popova et al., 2018; Podda et al., 2020),
graph-based (Jin et al., 2019; 2020) or point sets (Hoogeboom et al., 2022b; Gebauer et al., 2022;
Guan et al., 2023; Schneuing et al., 2023; Qiang et al., 2023), and modelling approach, e.g., re-
inforcement learning-based (Popova et al., 2018; Simm et al., 2020a;b), variational autoencoders
(VAEs; Gómez-Bombarelli et al., 2018; Lim et al., 2018), generative adversarial network (GANs;
Cao & Kipf, 2022), diffusion models (Hoogeboom et al., 2022b; Guan et al., 2023; Schneuing et al.,
2023; Qiang et al., 2023; Wu et al., 2022; Huang et al., 2022; Xu et al., 2023), normalizing flows
(Satorras et al., 2022) or flow matching (Dunn & Koes, 2024). Despite the diversity of models, there
are challenges unique to computational materials modelling that have been often overlooked:

(A) Multi-step vs one-shot generation: Generating a molecule in a single step risks making the
generation process opaque. Generating a molecule in sequential steps allows spending
more computation per step and makes the generation more transparent. Multi-step genera-
tive models for materials include Molgym (Simm et al., 2020a), diffusion models (Hooge-
boom et al., 2022b; Qiang et al., 2023), flow matching (Dunn & Koes, 2024), VAE-based
models with an autoregressive decoder (Jin et al., 2019; 2020), and other autorregressive
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models (Gebauer et al., 2022; You et al., 2018; Liao et al., 2020; Xie et al., 2021; Maziarz
et al., 2024).

(B) The size of the molecule is fixed during the generation process: A number of models that do
satisfy the desirable feature (A) fixed the size of the molecule during the generation process.
We believe the size of the molecule should be a choice of the model during the generation
process. Some models that do take this into account include the graph-based, VAE variant
models with autoregressive decoders (Jin et al., 2019; 2020), G-Schnet (Gebauer et al.,
2022) which operates on point sets, MARS (Xie et al., 2021), MoLeR (Maziarz et al.,
2024).

(C) Low chemical validity of generated molecules: Most often, chemical validity checks are en-
forced only at the end of the generation process, resulting in a lower percentage of chemical
valid molecules. Incorporating chemical checks during the multi-step generation process
allows to identify chemical violations before the molecule is completed, thus avoiding con-
tinuing the generation of chemically invalid molecules. Models that do satisfy this desirable
feature are the graph-based AE variant models with autoregressive decoders JTNN, Hier-
VAE (Jin et al., 2019; 2020), MARS (Xie et al., 2021), MoLeR (Maziarz et al., 2024).

(D) Coarse-graining molecules: Molecules naturally exhibit hierarchical structure, they often can
be decomposed into molecular fragments that can be treated as units in themselves. Ex-
ploiting the hierarchical nature of molecules helps scale deep learning models to larger
molecules (Wang & Gómez-Bombarelli, 2019), something that has remained a notable
challenge. Models like JTNN and HierVAE use molecular fragments as units, and this
approach has also been adapted for diffusion models (Qiang et al., 2023).

(E) Incorporating 3D information: A model that has no access to 3D geometry information of
the molecule will struggle to conditionally generate other structures when the target prop-
erty depends on the 3D geometry. Models like JTNN, HierVAE, MARS or MoLeR do
not include this information in the molecule representation. This has remained a notable
challenge for autoregressive models, as discussed in (Voloboev, 2024).

Our proposed model is designed to satisfy the five desirable requirements in the most general formu-
lation we could think: a purely autoregressive (no encoder), semi-order-agnostic, multi-step, multi-
property generation using symmetry-aware molecular fragments and 3D geometry of a non-fixed
size molecule with enforced chemistry sanitation during generation.

1.1 RELATED WORK & CONTRIBUTION

Our work builds on ideas from the aforementioned studies, but it is most closely related to JTNN
(Jin et al., 2019) and HierVAE (Jin et al., 2020), particularly the latter. HierVAE is a hierarchical
graph VAE-based model operating on molecular fragments using an autoregressive decoder to build
molecules in sequential steps. Similarly, we enforce chemical validity during the generation process,
and, like JTNN and HierVAE, we use a coarse-graining procedure to extract molecular fragments.
In summary, our contributions are:

• We propose a semi-order-agnostic autoregressive model that grows molecules in discrete
steps.

• We formulate the one-step prediction step as a single classification task, as opposed to the
nested classification approach of Jin et al. (2020).

• We formulate an approach to uniquely identify attachments of a fragment taking into ac-
count its symmetries.

• We show how to incorporate spatial information in the autoregressive process to make the
prediction geometry-aware.

• We demonstrate the model can be used for multi-target inverse design by examining how
well calibrated are the predicted properties of compounds generated subject to design cri-
teria spanning a whole dataset.
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Algorithm 1 Extract fragments from Molecular GraphM
1: function GENERATEFRAGMENTS(M)
2: fragments ← [TUPLE(x) for x in GETSSSR(M)]
3: for each bond inM.GETBONDS() do
4: a1, a2 ← bond .GETBEGINATOM(), bond .GETENDATOM()
5: bond in existing fragments ← False
6: for each fragment in fragments do
7: if (a1 in fragment) and (a2 in fragment) then
8: bond in existing fragments ← True
9: break

10: if not bond in existing fragments then
11: fragments.APPEND((a1, a2))

return fragments

2 METHODS

2.1 COARSE GRAINING MOLECULES

Molecules exhibit hierarchical structure, and we often find repeating fragments within a molecule
that can be treated as units in their own right to obtain a coarse representation of the molecule. A
coarse representation is particularly useful because it simplifies the problem by shifting the focus
to global patterns rather than the finer details. However, there is not a unique hierarchy. There
are a variety of ways of decomposing a molecule into constituent fragments. The choice of the
decomposition procedure depends on the application and the level of resolution at which one wants
to describe the molecule. Nevertheless, there are some desirable requirements for the fragments and
the decomposition procedure to satisfy. Uniqueness: A molecule should always be decomposed
into the same set of fragments that are themselves irreducible. Disjoint fragments: A molecule is
decomposed into fragments that do not overlap. So that the whole molecule can be reconstructed
by docking fragments with one another. Interpretable fragments: The fragment constituents of
the molecule are commonly used chemical fragments, for a better synchrony between the chemist
and the model. Following from these three self-imposed requirements, we propose the procedure
described in Algorithm 1. The procedure finds the Smallest Set of Small Rings (SSSR) of a molecule
and uses them to segment the molecule into its rings and all other individual bonds not belonging to
a single ring.

2.2 STANDARDIZATION OF FRAGMENTS AND ATTACHMENTS

A fragment of a molecule is the irreducible unit extracted using Algorithm 1, and its attachment
points are the fragment’s atoms that the neighbour fragments dock to. Using the fragments and
its attachment points as building blocks requires a unique way of representing them. A natural,
unique and human-readable representation for the fragments are their Canonical SMILES strings
(Weininger, 1988; Weininger et al., 1989). However, a Canonical SMILES string can not encode
the attachment information. Given a molecule, all the atoms in said molecule have an index number
associated. This atom index can be used for identifying the atoms that serve as attachments between
fragments. In Figure 1, there are three fragments: a six-membered ring with atoms (3, 4, 5, 6, 7, 8),
a five-membered ring with (1, 2, 3, 8, 9) and a bond-type fragment with atoms (0, 1). The two ring
fragments dock at atoms (3, 8) and the five-membered ring docks with the bond-type fragment at
(1). This atom-indexing is referred to as ‘global indexes’. When the fragment is extracted as a
separate entity, the atom-index numbering is automatically reset. However, we can keep track of the
map between the ‘global’ index and the new ‘local’ index as we extract the fragment, retaining the
docking point information. Through this map, we know the 6-membered ring is docked with the
5-membered ring at local indexes (4, 5). This fragment is then encoded as the Canonical SMILES
string to obtain a unique representation of the fragment that is invariant to atom indexing.

We want to express the attachment points in the local index system of the Canonical fragment so they
are uniquely identified. The challenge is that when loading the graph from the Canonical SMILES,
unless the original fragment was itself in the canonical index form, we have once again a new ‘local’
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Figure 1: Extraction of fragments and attachments from a molecule. For each, fragment we use the
map between the ‘global’ and ‘local’ indexes to track which of the fragment’s atoms participated in
attachments. The fragment extracted is then encoded into its Canonical SMILES.

index, and because the SMILES removes all atom-index information we lose the map between
previous ‘local’ atom indexes and the ‘local’ indexes in the canonical fragment. This problem is
illustrated in Figure 2 (a). This ‘lost map’ can, however, be recovered by exploiting how SMILES
strings are generated and the specific choice of fragments decomposition described in Algorithm 1.
The fragments resulting from Algorithm 1 are single-cyclic graphs (single rings, or bonds, which
are ‘2-membered rings’). When a Canonical SMILES string is created for these fragments, the
encoding algorithm traverses the graph alongside the single cycle, which results in any possible new
indexing being a cyclic permutation of the original indexing. Computing the similarity matrix based
on Tanimoto distance of the Morgan fingerprints (Rogers & Hahn, 2010) from each of the atoms for
the canonical and non-canonical fragment, we can see all possible maps superposed. Using the prior
knowledge that any remap will be a clock shift, we can extract all shifts (positive or negative) that
will allow a map from the canonical to the non-canonical fragment. This is illustrated in Figure 2.

Due to the symmetries of the fragments, we find multiple possible maps. In the case of Figure 2,
there are four such maps. Any of these maps can be used to find the attachment points in the
canonical fragment (highlighted in green), so we choose to use one, the first one, as the map between
the non-canonical fragment and the canonical fragment. Then we can say that there is a 6-membered
ring fragment that in the global system has atoms (3, 4, 5, 6, 7, 8) and an attachment at (3, 8) or in
its canonical local system it has atoms (0, 1, 2, 3, 4, 5) and has attachments with another fragment at
(4, 3). This procedure works to decompose the molecules into canonical fragments and attachments.
The fragments are represented by the Canonical SMILES and the attachments are represented as the
atom indexes of an attachment in the canonical form, making them unique. However, if we take
into account the symmetries, this definition of standard attachments is problematic. Following the
previous example, attachments at the atoms (4, 3) or (1, 0), (0, 1), (3, 4) are indistinguishable.

To fix this, we create the standardization map. The standardization map lets us check if any two
canonical attachments are the same. To construct this standardization map we take one of the re-
constructed maps (e.g., the first one) as reference, invert it, and convolute it with all other maps.
For each item, its standard map is the minimum of the values of the convoluted maps. For example,
atom 0 from the reference canonical form can be mapped on to 0, 3, 4, 1, then since 0 is the minimum
in the standard map 0 maps to 0. If we take now atom index 2 (which in the reference canonical
form corresponds to a nitrogen), it can be mapped to 2, 5, 2, 5, of which the minimum is 2, so in the
standard map 2 maps to 2. In the appendix, Figure 7 fully illustrates this example. Using the stan-
dardization map, we can confirm that (3, 4), (4, 3), (1, 0) and (0, 1) are the same type of attachment
because all of them map to the tuple (0, 0) using the standardization map. Then, we will always take
one as reference, the first one ever encountered, e.g., (0, 1), and whenever the attachment is seen as
a canonical attachment (3, 4) we will say its a (0, 1) standard attachment.

2.3 UNROLLING MOLECULAR STORIES

We model molecular generation as a semi-order-agnostic autoregressive process. This requires a
procedure for unrolling a molecule into a sequence of attachment steps, which we call a molecular
story. A molecular story S starts with a single fragment to which other fragments are attached until
the molecule is completed. A story can start from any fragment and can be grown in any particular
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Figure 2: Extraction of all the possible maps between ‘local’ indexes. After a fragment is encoded
into its SMILES if we then re-create the fragment from said SMILES the ‘local’ index changes and
the map between the old and new ‘local’ indexes is unknown (a). This lost map can be recovered by
computing the Tanimoto similarity of Morgan fingerprints of every pair of atoms in the fragment,
resulting in a similarity matrix (b). Using this similarity matrix, and the prior knowledge that any
possible map will be a cyclic permutation of the indexes, we can extract all possible cyclic permu-
tations allowed by the similarity matrix, which leads into all the possible maps from the old to the
new ‘local’ index (c).

order, only bound by having to dock new fragments to existing ones. In terms of graph theory, this is
a graph traversing procedure where the exploration node frontier is sampled at random (as opposed
to the First In First Out approach of BFS or the Last In First Out of DFS).

To create a story of a given molecule, we begin by randomly selecting a fragment of the molecule
and then initializing the exploration queue by adding all chemically possible attachment points of the
fragment in the form of tuples (fragment, attachment). At every step, a tuple (fragment, attachment)
is randomly sampled from the exploration queue. This fragment is referred to as focal fragment
(ffocal, afocal) and becomes the point at which, through the attachment, the molecule will grow.
Given this tuple, if the original molecule had a fragment (fnext, anext) docked at this location that
has not been added already, the next fragment is created and docked to the focal fragment, updating
the exploration queue with the new frontier. That is, (ffocal, afocal) is docked with (fnext, anext).
Otherwise, the focal fragment is cauterized at the attachment by not docking anything. Finally,
the focal fragment is removed from the exploration queue. The process stops when the exploration
queue is empty, meaning that all fragments have been added at the correct attachment points and
all other attachment locations have been cauterized. The procedure is described in Algorithm 2. At
every step in the story of a molecule, the atomic coordinates are computed using a classical Force-
Field (Rappe et al., 1992; Halgren, 1996). The Force-field is used to do a conformer search and
return the lowest energy conformer.

2.4 MODEL AND ARCHITECTURE

Inspired by order-agnostic autoregressive models (Uria et al., 2014; Hoogeboom et al., 2022a), we
propose a semi-order-agnostic autoregressive model, in which we allow factorization only over valid
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Algorithm 2 Randomly decoding Molecular stories
1: Input: Molecular graphM
2: Output: List of all steps S(M) in story ofM
3: f ∼ U(GETFRAGMENTS(M)) ▷ Uniformly sample a fragment
4: S ← [f ] ▷ Initialize the story
5: Q← {(f, a) | a ∈ ATTACHMENTS(f)} ▷ Initialize the queue
6: while Q is not empty do
7: (f, a) ∼ U(Q) ▷ Uniformly sample from queue
8: fnext ← GETNEXT(S,M, (f, a)) ▷ Get fragment at dock location
9: if fnext /∈ S and fnext ̸= ∅ then

10: S.APPEND(fnext) ▷ Append to story
11: Q← {(fnext, a) | a ∈ ATTACHMENTS(fnext)} ▷ Update queue

▷ I.e., it is cauterize when fnext = ∅ or fnext ∈ S
12: Q← Q− {(f, a)} ▷ Remove explored sample

return S

molecular stories. Specifically, we assume that the probability of a molecular graphM factorizes as

p(M) = ES∼U(S(M))

OS∏
i=1

pθ
(
x
(S)
i

∣∣xS
<i

)
, (1)

where S = [xS
0 , . . . , x

S
OS

] is a molecular story, x = (f, a) is a tuple of fragment and attachments
points, θ the model parameters, and xS

<i is shorthand for xS
0 , x

S
1 , . . . , x

S
i−1. The conditional density

in Equation (1) is based on decoder-only transformer (Vaswani et al., 2023) architectures, which are
commonly used in language models. A schema of the model architecture is illustrated in Figure 3,
and in Figure 4, the integration of the model in the story generation is shown.

In the architecture, molecular fragments are represented by learnable embeddings, the positional em-
beddings are removed, and the attention mechanism is modified to incorporate the spatial structure.
The model first takes as input the collection of fragment embeddings, their local docking environ-
ment features referred to as docks saturation, and the target conditions. A fully connected layer is
used on every fragment to embed its dock saturations and conditions into the embedding. The dock
saturations are tuples of 3 elements, representing the percentage of ‘docks in use’, ‘free docks’,
‘cauterized docks’ of a fragment. These saturation features are scaled to the [−1, 1] range before
being fed to the network. The resulting tensor forms the input to a transformer block. Inside the at-
tention heads, the self-attention mechanism is modified to bias the attention weights by introducing
a discount factor product of a learnable scalar value a and the pairwise euclidean distance between
all fragments. The learnable scalar parameter a acts as a weight on the effect of the geometry.

As with other transformer models, the output of a transformer layer is used as input to the next
transformer layer in a process repeated for N layers. In this case, only the last transformer layer is
modified. There the query is the final embedding of the focal fragment, and the pairwise distance
matrix is computed between all fragment positions and the position of the attachment. The result of
this final layer is a tensor treated as a hidden representation of the next (fragment, attachment) to be
added, which can then be projected into the vocabulary. However, to aid the model in deciding what
to add next, the final projection layer also takes as input the docks saturation of the focal fragment, a
learnable embedding of the type of attachment and the target conditions. The output is a probability
distribution over the vocabulary formed by the combination of fragments and attachment points
{(f, a) | f ∈ Vf and a ∈ Va(f)}.

2.5 TRAINING

We wish to learn the model by maximum likelihood estimation. However, we use a lower bound on
the likelihood that is more amenable to stochastic optimisation, similar to order-agnostic autoregres-
sive models (Uria et al., 2014; Hoogeboom et al., 2022a). For a single moleculeM, we can write
the log-likelihood function as

L(θ|M) = logES∼U(S(M))

OS∏
i=1

pθ
(
x
(S)
i

∣∣xS
<i

)
≥ ES∼U(S(M))

OS∑
i=1

log pθ
(
x
(S)
i

∣∣xS
<i

)
, (2)
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Figure 3: Molminer model architecture. On the left, the overall architecture. On the right, the
geometry-aware multi-head attention. The spatial information is fed in as a tensor of pairwise dis-
tances (in red) weighted by a learnable scalar value.

Figure 4: Integration of Molminer in the creation of a molecular story step. The model takes the
molecule to be grown at a focal fragment through an attachment point and predicts which fragment
at which attachment configuration should be added, resulting in a step of a ‘molecular story’.
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where the lower bound is obtained through Jensen’s inequality (Jensen, 1905). In practice, this
means that given a molecule M, we sample a story S ∼ U(S(M)) of OS steps and prompt the
model at each story step what should be attached next. The objective is to maximize the probability
of selecting the true next (fi, ai) to be docked at (fi−1, ai−1). It must be noted that a molecule
does not have a single story, so to allow the model to learn to grow molecules independent of any
particular story, at every epoch for every molecule a new story is created. This also serves as data
augmentation. This training procedure starts from an initial choice of a starting fragment. During
training one of the target molecule building fragments is sampled randomly to start the molecular
story. However, when generating new compounds the starting fragment is a choice on itself. To
perform this task a separate simple model is created, whose architecture is a simple FFNN map-
ping some properties to the fragments vocabulary. The model’s objective is to predict which of the
available fragments will manifest in a molecule from its target conditions, a multi-class classifica-
tion task. To train this model, the same train and validation split is used as with the autorregressive
model, here, we aim to predict the set of fragments present in a molecule given its properties by
minimizing the binary cross-entropy loss.

3 RESULTS

Molminer is trained on the RedDB dataset (Sorkun et al., 2022) of organic compounds for aqueous
redox flow batteries. The dataset used includes 12 185 reactant molecules. Of those, 8 529 (∼ 70%)
are randomly selected to be used in training, and 3 556 (∼ 30%) are reserved for testing. The remain-
ing 100 molecules were used for validation. The targeted conditions are the reactant log-solubility,
the redox potential, and the synthetic accessibility score (SAScore; Ertl & Schuffenhauer, 2009), the
latter is not part of the dataset but is calculated for all the molecules. In addition to the dataset, Aq-
SolPred (Sorkun et al., 2021) and QuantumDeepField (Tsubaki & Mizoguchi, 2020a;b) are used to
act as surrogate models in predicting solubility and redox potential, respectively, of molecules out-
side the dataset. AqSolPred was already trained on this same dataset, whereas QuantumDeepField
has been trained in-house on RedDB.

Molminer’s hyperparameters were optimized using a reduced dataset containing 100 molecules from
the training set and the 100 molecules from the validation set. A gridsearch was performed for frag-
ment embedding size (64, 128, 256), attachment embedding size (16, 32, 64), number of attention
heads per layer (4, 8, 16), and number of transformer layers (2, 3, 4) resulting in 81 models trained
for 100 epochs or equivalently 10 000 stories. The rest of the parameters were left fixed at a learn-
ing rate of 10−4, the Adam parameters (β1, β2) = (0.9, 0.9) and ϵ = 10−9, 512 hidden nodes
in the fully connected layers, a dropout rate of 0.3, and an initialization of 1.0 for the geometry
weight. Among the 81 resulting models, the best-performing model was found to have an accuracy
of 80.93% and 80.09% on the training and validation sets. This model used 256 for the fragment
embedding size, 64 for the attachment, 8 heads and 3 transformer layers. Using these hyperparam-
eters, the model was trained on the entire training set. The model achieved 81.96% and 82.94%
fragment-level reconstruction accuracy on the training and testing sets, respectively, after 80 epochs
or equivalently 682 320 stories.

3.1 MOLECULAR GENERATION

To generate a compound, we give the model some desired properties, in this case, a desired redox
potential, log-solubility and synthetic accessibility score and use the fragment initializer to return
the probabilities of each of the fragments in the vocabulary manifesting in a molecule with such
properties. Then one of the top-k fragments with highest probability is uniformly sampled and
used as the first building fragment from which the whole rest of the molecule is grown. The best
results where achieved with at least k = 3; this experiment is discussed in the appendix. During the
autoregressive generation, the fragments are sampled weighted by their probabilities, and chemistry
rules are enforced at every step so that all attachments are valid.

To asses whether the conditional generation is calibrated, that is, the model creates compounds that
obey our target properties, we create three separate experiments, one for each of the target properties.
In each experiment, two of the target conditions are fixed at their mean, and we vary the remaining
one for the range of values spanning from its minimum to the maximum of the dataset in 30 steps.
For each of these 30 steps 30 molecules are generated with the same target condition in order to
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have a estimate of the distribution of predicted properties for the same prompt. Within each unique
prompt, we only take into account unique generations, removing all molecules that have already been
created for that same prompt, and we remove any molecule that is consisting of a single fragment.
Finally to have a notion of how far out of the dataset distribution a particular prompt is, a kernel
density estimation (KDE) with Gaussian kernel and bandwidth 0.14 is fitted to the distribution of
properties in the dataset, so that any new sample prompt can be evaluated in terms of its score to
how close or far it is of the dataset distribution. Then for each calibration plot we have: the scatter
plot of prompted vs predicted property, the aggregated mean and standard deviation across the 30
generation of a particular prompt, and on a secondary plot the density of a the prompted sample
evaluated by the KDE fitted on the dataset.

In order to benchmark our model, we perform this same procedure to a modified version of HierVAE
(Jin et al., 2020). To see further details on the modification and other benchmarking results see the
apendix. The results of the calibration experiments are shown in Figure 5 in red for HieVAE, blue
for MolMiner. For each of these experiments, we compute the novelty ratio, the percentage of
the molecules generated that are not in the dataset. For each unique prompt value, the predictions
of the generated molecules are aggregated by computing the mean and standard deviation, shown
in continuous and dashed blue/red lines respectively. The black dashed line represents the ideal
correlation, where the predicted property is equal to the prompted property. For the three different
experiments, the mean of the predictions for a given prompt follows the ideal correlation line (dashed
black), but as we move to the tails of the distribution (as seen in the lower half of each sub-figure) the
blue/red and black lines depart. These results shows that the models are well calibrated to perform
multi-target inverse design for prompts within the dataset distribution, but as we query for target
conditions where the dataset had scarce samples the models are not calibrated.

Table 1: Novelty percentage of the total generations for each of the three experiments, for each
model. Note that Molminer generates a significantly higher percentage of novel molecules than
HierVAE.

Model SAScore-exp LogSolubility-exp Redox Potential-exp
HierVAE-80epochs 52.63 % 55.56 % 43.19 %
MolMiner-80epochs 85.21 % 79.19 % 85.59 %

From Figure 5 one can see that both HierVAE and MolMiner are well calibrated for conditional
generation on each experiment. We want to emphasize that in each of these three experiments we
are simultaneously optimizing the three properties, the only difference is that on each experiment
we fix two of the properties values to be that of the mean of the dataset, while we vary the third
one. This is done so we can visualize the calibration on each of these properties individually, as we
would otherwise require a 6-dimensional plot. The three properties are always being simultaneously
used. HierVAE is better calibrated than MolMiner for low Log-Solubilities and for high SAScores,
while MolMiner is better calibrated for High redox potentials and lower SAScores, but both mod-
els perform otherwise comparably in terms of calibration to the target properties. However, when
looking at the percentage of novel compounds generated we note a significant difference between
the two models. Table 1 summarizes the novelty results on each of this experiments. For the three
experiments, MolMiner is capable of generating significantly more novel molecules than HierVAE.

4 CONCLUSIONS

MolMiner is capable of producing significantly more novel molecules than its predecessor while
subject simultaneously to three conditions. We attribute this performance enhancement to the re-
moval of constraints in the autoregressive decoding by making the process semi-order-agnostic, to
our handling of fragments symmetries, and the inclusion of the 3D geometry in the generative pro-
cess.

The choice of the three simultaneously-imposed conditions used for conditional generation: Sol-
ubility, Redox Potential and Synthetic Accessibility, demonstrates the real world potential of our
generative model in the search of novel electroactive organic compounds for aqueous redox flow
batteries, a promising alternative for sustainable energy storage. Moreover we highlight that the
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(a) Calibration for log-solubility (Novelty:
79.19% MolMiner, 55.56% HierVAE)

(b) Calibration for redox pot. (Novelty: 85.59%
MolMiner, 43.19% HierVAE)

(c) Calibration for SAScore (Novelty: 85.21%
MolMiner, 52.63% HierVAE)

(d) Molecular story of a novel sample

Figure 5: Calibration plots (red: HierVAE-80epochs, blue: MolMiner-80epochs) prompted vs pre-
dicted condition for the three properties trained on: (a) log-solubility, (b) redox potential, and (c)
SAScore. The lower half of the figures represents the density of the KDE of each of the prompts,
a measure of distance between some prompted condition and the distribution of conditions in the
dataset. Sub-figure (d) shows a generated story for a novel molecule generated by MolMiner (read
left to right, top to bottom)

generation process is transparent, which allows human intervention and the possibility of hybrid
computer-human co-design of molecules.

In future work we aim to expand the capabilities of this autoregressive approach of molecular stories
including other applications like molecular graph to graph translation and synthesis path prediction.
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A APPENDIX

A.1 EXAMPLE OF FRAGMENT EXTRACTION

Example of the fragments extracted using Algorithm 1 on the molecule with SMILES
’O=C1CC(=O)C=C1C(=O)O’.

Figure 6: Extracted fragments highlighted on the molecular graph for
’O=C1CC(=O)C=C1C(=O)O’

A.2 CONSTRUCTION OF THE STANDARD MAP

Figure 7 illustrates the process of creating the standard map, used to uniquely identify attachment
points taking into account symmetries. Given all possible maps from one indexing to another, rep-
resented as Fi for i = 0, 1, 2, 3 the standard map is constructed by taking the first map as reference,
F0, inverting it and convoluting it with all other maps, then taking the minimum value mapped to
x→ min(F−1

0 (Fi(x))).

Figure 7: Extraction of fragments and attachments from a molecule. Construction of the standard
map.
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A.3 EFFECT OF THE NUMBER OF TOP-K FRAGMENTS IN MOLECULAR GENERATION

When generating a molecule using MolMiner we start by selecting a starting fragment from which
the whole molecule will be grown. A model was trained to predict probability of any fragment
manifesting, given the target conditions. When we are generating a new molecule we only need
one starting fragment, so we can greedily take the one with the highest predicted probability of
manifesting and use it. One problem of this greedy approach is the loss of diversity. In the calibration
experiment, the same prompts where used to create 30 molecules, so if using only the top-1 starting
fragments the model would always be using the same starting fragment. In Figure 8 we explored
the effect of using the top-1, top-3 or top-5 starting fragments in the calibration of the Synthetic
Accessibility score. The three different options perform equally for lower values of SAScore. The
top-1 performs noticeably worse for higher values, with its mean departing the ideal correlation
before top-3 or top-5 do, and the standard deviation is greater for values of SAScore greater then
3.0 than the two other options. Top-3 and top-5 perform similarly in the entire range, with top-3
performing slightly better for SAScore values in (1.5,2.0) and (3.5,4.0), which motivated its used in
the main text.

Figure 8: Calibration for SAScore using top-1, top-3 and top-5 starting fragments.

A.4 THE ROLE OF INCORPORATING GEOMETRY

Using the optimized network parameters from the hyperparameter search, we explored the effect
of different initialization methods for the weight on the geometry in the modified attention mecha-
nism. Using the same 100 molecules from the training set and 100 molecules of the validation set
10 models were trained for 100 epochs, or for 10000 stories. Each of the different models had a
different initialization method for the scalar parameter. Including gaussian, uniform and constant
initialization. One particular initialization is interesting for its implications: choosing the initial
value as constant 0.0 and not letting the model optimize this parameter results in complete removal
of geometric information of the model. The metrics monitored are the classification accuracy for
both the training and validation set. The results are shown in Table 2. The accuracy metrics are ap-
proximately the same for all the different models, which we believe indicates the network is plastic
enough that it can learn equally well to fit this reduced data regardless of the initialization method.
However upon closer inspection, one can see that models with constant and positive initialization
perform sightlier better, in particular models with Constant=+1.0 achieves the best accuracy on the
validation set and Constant=+10.0 does so on the training set. This is in line with what one might
think, the positive sign means the attention to further away fragments is reduced, whereas a neg-
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Table 2: Ablation study of the scalar weight of the geometry. Reduced dataset

Initialization Training accuracy (%) Validation accuracy (%)

Normal(0,1) 80.37 79.90
Normal(1,1) 79.95 79.30
Uniform(-1,1) 79.98 79.41
Uniform(0,1) 79.85 79.48
Constant=-10.0 80.14 79.99
Constant=-1.0 80.01 80.06
No Geometry 80.37 79.84
Constant=+0.1 80.11 80.02
Constant=+1.0 80.93 80.09
Constant=+10.0 81.25 79.41

Table 3: Effect of the geometry. Entire dataset.

Initialization Training accuracy (%) Testing accuracy (%)

No Geometry 80.58 80.31
Constant=+1.0 81.98 81.17

ative sign would do the opposite and would be counter-intuitive. It is worth noting also that the
No-Geometry model performed relatively good.

However the difference in this small validation set is so small its not fair to draw conclusions from it.
In order to finally asses the role of the geometry, two different models are trained on the entire dataset
one with Constant=+1.0 since it performed best at the validation set, and a model without Geometry.
The results of this last experiment are shown in Table 3. The model with geometry outperforms the
model without geometry by approximately 1 point in both training and testing set. Further work
will be carried out to explore the dependence on datasets of geometry aware vs geometry not aware
models, as this is a widespread problem within machine learning for materials (Tian et al., 2022).

A.5 COMPARISON ON FRAGMENTATION APPROACHES

The fragment extraction procedure described in Algorithm 1 found the 34 fragments shown in Fig-
ure 9. As discussed in the main text the motivation behind our particular choice of fragmentation
was based on our desire for the fragments to be unique, disjoint and interpretable. We then showed
that our particular procedure results in fragments that are always single-cyclic graphs which allowed
us to handle their symmetries and avoid the presence of duplicate entries in the vocabulary formed
by the tuple (fragment, attachment).

In this subsection we compare our approach with that of previous work and highlight some unre-
ported problematic results of previous methods, that in turn will emphasize the importance of our
contribution.

Our fragmentation approach, Algorithm 1, is the simplest procedure of extracting fragments when
compared to the approach used in JTNN(Jin et al., 2019), HierVAE(Jin et al., 2020) or HierDiff
(Qiang et al., 2023). It must be noted that this three other approaches are not independent but are
closely related. Both HierDiff and HierVAE are based on JTNN’s fragmentation. All these methods,
calculate the Small Set of Small Rings (SSSR) of the molecule, which they use to divide the molecule
into ts constituent rings, and bonds. Then, HierVAE, HierDiff and JTNN merge individual rings if
they share two or more atoms, and HierVAE also re-merges all bonds mutually connected into
a single fragment. Algorithm 1 does not do any further merging, once the rings and bonds are
extracted they are not fused together, and the result of this is a set of fragments that are single-cyclic
graphs, as discussed in the main text.
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Figure 9: Fragments (without attachments) extracted for RedDB dataset (Sorkun et al., 2022). Using
Algorithm 1.

The problem of HierDiff, JTNN and HierVAE handling of the fragments can be highlighted
with an example. Looking at the vocabulary of fragments of HierVAEs implementation, which
can be found at https://github.com/wengong-jin/hgraph2graph/blob/master/data/logp04/vocab.txt
lines 30-40 correspond to different attachment configurations of the fragment with SMILES
C1=CC=[NH+]C=C1. We note that among the different attachments of the fragment there are du-
plicates: a): C1=C[CH:1]=CC=[NH+]1 and b): C1=[NH+]C=C[CH:1]=C1 are the same attachment
configuration (Note this is indicated by a number next to the atom e.g C:1), but its only because their
model does not take into account the symmetries that this is possible. Now, if during training, the
model predicts a.) but the correct answer is b) that would prevent the model to learn correctly. Our
model deals with this by incorporating the symmetries. A visualization of the duplicates attachments
in the vocabulary of fragments of HierVAE is shown in Figure 10.
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Figure 10: Duplicated vocabulary entries in HierVae.
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A.6 ON THE IMPORTANCE OF VARIABLE-SIZE AUTOREGRESSIVE GENERATION OF
MOLECULES

Enabling variable size of the molecule during generation signifies the removal of an arbitrary con-
straint. Why should any model pre-define before generation the size (in terms of atoms or in terms
of fragments) of a molecule? We believe this is a result of adapting generative approaches from
Vision tasks (image generation, where the image has a fixed size) to materials modelling without
taking into account the unique challenges of materials. In this subsection we would like to raise
awareness of the limitations of fixing the size of the molecule during generation, an approach that
is widely extended in current diffussion models for molecules, with examples in (Hoogeboom et al.,
2022b), (Qiang et al., 2023).

Given a set of target properties, the space of possible molecules that satisfy those properties do not
necessarily have the same size, therefore, by constraining the space of possible solutions, to those
with some predetermined size constrains the solution. Given that this is an unnecessary constraint
(other than convenience), a justification should be demanded from models that impose it, and not of
models that remove it.

To further highlight the error that fixing the size of the molecule upon generation constitutes, we
can examine how the size of the molecule is chosen upon initialization in models that pre-define
it. From (Qiang et al., 2023) section C. Additional Experiments subsection C.1. Experimental
configuration. ‘In all non-autoregressive methods, the number of nodes used for sampling is drawn
from the size distribution histogram calculated on the training set.’. In other words, they sample
the size of the molecule from the distribution of the molecular sizes of the dataset. Doing so for
non-conditional generation imposes an unjustified constraint as discussed before. However if this is
done for conditional generation (section C.6. Conditional generation from (Qiang et al., 2023)) then
this is altogether wrong. Because they are sampling from the distribution of sizes when they should
be sampling from the conditional distribution of size given the property. In other words, in general
given a set of target properties the distribution of sizes of molecules satisfying those properties is
not the general distribution of sizes.

A.7 BENCHMARKING MOLMINER: CALIBRATION, NOVELTY AND SAMPLE EFFICIENCY

We aim to compare the performance of our proposed model, Molminer, against its closest relative in
terms of the modeling approach, HierVAE (Jin et al., 2020). We believe that the best way to compare
these two models is by evaluating them on the task of conditional generation of novel molecules.
That is, how good are these models at generating novel molecules that obey desired target criteria?.

To achieve so, we need to modify HierVAE to allow for conditional generation. HierVAE is a
latent-space based generative model, so we can concatenate conditions to the latent vector and
decode using this extended latent space. After implementing this slight modification, both HierVAE
and Molminer were trained on the same training set for the same number of epochs, 50. Once
trained we use them to generated compounds according to a range of conditions of Solubility,
Synthetic Accessibility and Redox Potential spanning the whole dataset, as was done in the
Calibration experiment, resulting in three separate experiments. The result of this experiment is
shown in Figure 11 and Table 4

Table 4: Novelty percentage of the total generations for each of the three experiments, for each
model. Note that Molminer generates a significantly higher percentage of novel molecules than
HierVAE.

Model SAScore-exp LogSolubility-exp Redox Potential-exp
HierVAE-50epochs 57.68 % 58.87 % 38.57 %
MolMiner-50epochs 81.18 % 76.60 % 74.34 %

In Figure 11 we can see the calibration plot for novel molecules from the three experiments by
HierVAE and Molminer after 50 epochs of training. HierVAE is better calibrated than MolMiner,
specially for the extreme values for each of the conditions, however MolMiner achieves significantly
better novelty ratio, upwards of 74% novel molecules generated by MolMiner vs lower than 59%
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for HierVAE. However we suspect that HierVAE appears to be better calibrated than MolMiner
at 50 epochs because MolMiner requires from more repetitions to achieve the same calibration as
HierVAE, as a result from learning from different stories every time, that is, we hypothesize that
MolMiner is less sample-efficient. To test this hypothesis we repeat this benchmarking experiment
at a later checkpoint for both models, at 80 epochs. The hypothesis is that, because MolMiner uses
different stories at every epoch it takes more epochs to converge, so if we compare these two models
at a later training checkpoint the difference in calibration will be lower. This second calibration
experiment is shown in Figure 5 and Table 1.

From Figure 5 we can see that both models obtain now similar calibration results, which is compati-
ble with the hypothesis that MolMiner takes more epochs to achieve the same calibration result than
HierVAE, most probably due to seeing a different story at evert epoch for every molecule. Again
comparing the novelty ratios from Table 1 we obtain similar results as for the 50-epoch experiment,
Molminer obtains a novelty ratio upwards of 79 % while HierVAE obtains a novelty ratio lower than
56 %.

MolMiner can achieve controlled generation of novel molecule at a better ratio than its predecessor.
However we note that the model is less sample-efficient, requiring from more epochs to achieve the
same performance than its predecessor due to the fact that MolMiner sees a different story for every
molecule at every epoch.
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(a) Calibration for log-solubility (Novelty: 76.6%
MolMiner, 58.87% HierVAE)

(b) Calibration for redox pot. (Novelty: 74.34%
MolMiner, 38.57% HierVAE)

(c) Calibration for SAScore (Novelty: 81.18%
MolMiner, 57.68% HierVAE)

Figure 11: Calibration plots (red: HierVAE-50epochs, blue: MolMiner-50epochs) prompted vs
predicted condition for the three properties trained on: (a) log-solubility, (b) redox potential, and (c)
SAScore. The lower half of the figures represents the density of the KDE of each of the prompts,
a measure of distance between some prompted condition and the distribution of conditions in the
dataset.
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A.8 EXAMPLES OF GENERATED STORIES FOR MOLECULE NOT IN THE DATASET

The figures below show some examples of stories generated for molecules not found in the dataset.
These molecule were generated during the calibration experiments. Note that the cauterization steps
are omitted in the visualization to avoid repetition.

Figure 12: Example of story generated in the creation of a compound not in the dataset.
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Figure 13: Example of story generated in the creation of a compound not in the dataset.

Figure 14: Example of story generated in the creation of a compound not in the dataset.
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Figure 15: Example of story generated in the creation of a compound not in the dataset.

Figure 16: Example of story generated in the creation of a compound not in the dataset.
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Figure 17: Example of story generated in the creation of a compound not in the dataset.

Figure 18: Example of story generated in the creation of a compound not in the dataset.
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Figure 19: Example of story generated in the creation of a compound not in the dataset.

Figure 20: Example of story generated in the creation of a compound not in the dataset.
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Figure 21: Example of story generated in the creation of a compound not in the dataset.

Figure 22: Example of story generated in the creation of a compound not in the dataset.
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Figure 23: Example of story generated in the creation of a compound not in the dataset.

Figure 24: Example of story generated in the creation of a compound not in the dataset.
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Figure 25: Example of story generated in the creation of a compound not in the dataset.

Figure 26: Example of story generated in the creation of a compound not in the dataset.
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Figure 27: Example of story generated in the creation of a compound not in the dataset.

Figure 28: Example of story generated in the creation of a compound not in the dataset.
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Figure 29: Example of story generated in the creation of a compound not in the dataset.

Figure 30: Example of story generated in the creation of a compound not in the dataset.
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Figure 31: Example of story generated in the creation of a compound not in the dataset.

Figure 32: Example of story generated in the creation of a compound not in the dataset.

Figure 33: Example of story generated in the creation of a compound not in the dataset.
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