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ABSTRACT

Despite remarkable success in a variety of computer vision applications, it is
well-known that deep learning can fail catastrophically when presented with out-
of-distribution data, where there are usually style differences between the training
and test images. Toward addressing this challenge, we consider the domain gener-
alization problem, wherein predictors are trained using data drawn from a family
of related training (source) domains and then evaluated on a distinct and unseen
test domain. Naively training a model on the aggregate set of data (pooled from all
source domains) has been shown to perform suboptimally, since the information
learned by that model might be domain-specific and generalize imperfectly to
test domains. Data augmentation has been shown to be an effective approach to
overcome this problem. However, its application has been limited to enforcing
invariance to simple transformations like rotation, brightness change, etc. Such
perturbations do not necessarily cover plausible real-world variations that preserve
the semantics of the input (such as a change in the image style). In this paper,
taking the advantage of multiple source domains, we propose a novel approach
to express and formalize robustness to these kinds of real-world perturbations of
the images. The three key ideas underlying our formulation are (1) leveraging
disentangled representations of the images to define different factors of variations,
(2) generating perturbed images by changing such factors composing the represen-
tations of the images. (3) enforcing the learner (classifier) to be invariant to such
change in the images. We use image to image translation models to demonstrate
the efficacy of this framework. Based on this, we propose a domain-invariant
regularization (DIR) loss function, that enforces invariant prediction of targets
(class labels) across domains which yields improved generalization performance.
We demonstrate the effectiveness of our approach on several widely used datasets
for the domain generalization problem, on all of which we achieve competitive
results with state-of-the-art models.

1 INTRODUCTION

Deep neural networks (DNNs) have advanced the state-of-the- arts for a wide variety of computer
vision applications (Ciregan et al., 2012; Guo et al., 2018; Erhan et al., 2014). The trained models
typically perform well on the test/validation data which follows similar characteristics/distribution as
the training data, but fail catastrophically when presented with out of distribution (OOD) data in new
domains (environments) that may present different characteristics (e.g., style, texture) (Krizhevsky
et al., 2012; Taori et al., 2020). The captured images in the new domains in general present style
discrepancy with respect to the training data, such as illumination, color contrast/saturation, quality,
etc. These result in domain gap/shift between the training (source) and test (target) domains, hence,
directly applying a model trained on a source dataset to an unseen target dataset typically suffers
from a large performance degradation (Long et al., 2016; Ma et al., 2019).

To address such domain gap/shift issues, numerous research have been conducted that are mainly
divided into two categories: Domain Generalization (DG) (Muandet et al., 2013; Li et al., 2018b;
Balaji et al., 2018) and Domain Adaptation (DA) (Tzeng et al., 2017; Wang & Deng, 2018). Both
DG and DA refer to approaches in which, the model is trained on (multiple) labeled source domains
so that it is expected to generalize well to target domains. The key difference between DG and DA is
that, DA can access/exploit the unlabeled data of the target domain for training/fine-tuning, while
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in DG, the learner does not have access to the target domain data, making the problem much more
challenging.

Although a variety of DG approaches have been proposed (Muandet et al., 2013; Li et al., 2018b;
Balaji et al., 2018), it was recently shown (Gulrajani & Lopez-Paz, 2021) that no existing domain
generalization method can significantly outperform empirical risk minimization (ERM) (Vapnik,
1999) over the training domains when ERM is properly tuned and equipped with state-of-the-art
architectures (He et al., 2016) and data augmentation techniques (Gulrajani & Lopez-Paz, 2021).

In this paper, we introduce a new approach for domain generalization based on deep generative image
models (Ranzato et al., 2011). Our key idea is to leverage the latent space of a generative model
utilizing the data from multiple source domains to capture (latent) domain-specific features of data.
We propose domain-invariant regularization (DIR) loss function that enforce the learner (classifier)
to be invariant to such features, making learner more robust under new domains.

More precisely, we assume that there is an underlying (latent) feature space that is a product space of
two subspaces: i) content-specific feature space containing the semantic information of data (subject-
related content), ii) style-specific feature space containing domain-related (e.g., style) information
of data. We assume the content-specific and the style-specific spaces are disentangled, i.e. style
changes are content-preserving. For example, when classifying cats against elephants from images,
different parts of the animals constitute content, while style could be, for example, background,
lighting conditions and camera lens characteristics. We also assume there is an ideal generator that
maps features from the underlying latent space to the image space.

Based on the above assumptions, only content being relevant for the downstream (classification) tasks
while the style is irrelevant. Hence, we introduce a regularizer that enforces a classifier to be invariant
to the underlying style-specific features of the data.

We utilize image to image translation (I2I) models to learn the generator and the latent features of
the data through the training process of generative adversarial networks (GANs) (Creswell et al.,
2018). We conduct extensive experiments on several widely used datasets and observe a significant
improvement over the naive baseline of training a model on the aggregate dataset from all domains.
We also compare DIR against other state-of-the-art models and show that our method achieves
competitive results. Our contributions are as follows:

• We propose a new objective, Domain Invariant Regularization (DIR), that enforces invariant
prediction through an explicit regularizer and show improved generalization performance.

• We demonstrate how to leverage I2I models to capture style-specific and content-specific
features of data, thus allowing us to automatically generate realistic content preserving
variations in data.

• We demonstrate how to incorporate the categorical semantic features (such as object labels)
into the content-specific feature space using the source domains categorical (class) labels.
We learn such features from multiple object categories shared between perceptually different
domains by incorporating a category-label classifier into I2I models.

• We show the effectiveness of our method by performing extensive experiments on
widely used domain generalization datasets (e.g., PACS (Wang et al., 2020a), Office-
Home (Venkateswara et al., 2017), DomainNet (Peng et al., 2019)) and comparing with
relevant state-of-the-art baselines.

2 RELATED WORK

Many DG methods (Huang et al., 2021; Xu et al., 2021; Zhao et al., 2020; Mahajan et al., 2021;
Muandet et al., 2013; Zhou et al., 2021; Li et al., 2018b; Balaji et al., 2018; Wang et al., 2020a) aim
to learn a domain-invariant feature representation or classifier across the source domains, in the hope
that it would also be invariant to domain shift brought by the target domain. Other approaches include
meta learning (Li et al., 2018a), invariant risk minimization (Arjovsky et al., 2019), distributionally
robust optimization (Sagawa et al., 2019), mixup (Wang et al., 2020b), and causal matching (Mahajan
et al., 2021). Adversarial training with improvements (Pei et al., 2018) has also been used to learn
invariant representations. Li et al. (2018a) propose a meta-learning solution, which uses a model
agnostic training procedure to simulate train/test domain shift during training and jointly optimize
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the simulated training and test domains within each mini-batch. However, there is an intrinsic flaw in
this approach, that is, when the source domains become more diverse, learning a domain invariant
model becomes more difficult. This is because each domain now contains much domain-specific
information.

Complementary to these approaches, we focus instead on learning invariant classifiers1 by explicitly
enforcing soft invariance-based constraints on the classifiers.

Another common pervasive theme in domain generalization literature is to use DA techniques to
transform the source data into a lower-dimensional feature space that is invariant to domains but
retains the discriminative class information. Domain-invariant features could be learned by directly
minimizing distribution divergence measures, such as MMD (Long et al., 2015; 2017) or optimal
transport (Damodaran et al., 2018; Balaji et al., 2019).

The multi-source DA methods are more related to this work because of the same problem setting. Xu
et al. (2018); Peng et al. (2019); Li et al. (2018b) extended the alignment idea to multi-source DA
by considering all possible source-target distance pairs. Relationships between each source and the
target were exploited in (Li et al., 2018c) where only the target-related sources were kept for model
learning. Hoffman et al. (2018) computed distribution-based weights for combining source classifiers.

Another approach toward improving OOD performance is to modify or augment the available training
data. Data augmentation (Hoffer et al., 2020; Liu et al., 2020; Ko & Gu, 2020; Lee et al., 2020; Lin
et al., 2019) is a well-known approach to tackle this issue, encoding additional priors in the form
of invariant feature transformations. Intuitively, data augmentation enables the model to train on
more data, encouraging the model to capture certain types of invariance with respect to its inputs
and outputs leading to better generalization performance; data augmentation may also produce data
that may be closer to an out-of-distribution target task. For example, Mixup also uses information
from two images. Rather than implanting one portion of an image inside another, Mixup produces an
element-wise convex combination of two images (Zhang et al., 2017). The AugMix (Hendrycks et al.,
2020) aims to make models robust to out-of-distribution data by exposing the model to a wide variety
of augmented images. In Augmix, several augmentation ‘chains’ are sampled, where a chain is a
composition of one to three randomly selected augmentation operations (e.g., rotation, scale, contrast,
etc).

3 NOTATION

Throughout our paper, we use x ∈ X ,y ∈ Y , and d ∈ D to denote the input image, its class label,
and its domain label taking values from the image space X , the class label space Y , and the domain
label space D respectively. Each training data point (x,y,d) is sampled from an unknown joint
distribution P(x,y,d) over X ×Y ×D. y also denotes the y-th coordinate of the on-hot class label y

Z denotes the underlying latent space that is a product space of the form Z = Zc × Zs, where
Zc denotes the content-specific feature space and Zs denotes the style-specific feature space. The
generator G : Z → X maps features form Z to the data (image) space X . We also denote the
classifier by f : X → Y that maps the samples from the image space X to their class label in the
output space Y .

4 METHODOLOGY

4.1 PROBLEM DEFINITION

For the Domain Generalization (DG) task, we assume we have access to i.i.d. data from S source
domains {D1, · · · ,DS}. The goal of DG is to learn a classifier f that generalizes well to unseen
target domain(s) where no data about the target domain is available during training (out-of-domain
generalization), as well as new data from existing domains (in-domain generalization) (Shankar et al.,
2018).

1Note that our approach is not opposed to invariant feature learning, we merely focus on learning domain
invariant classifiers, that can be easily combined with domain-invariant feature learning approaches.
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4.2 PROPOSED SOLUTION

In general, learning a robust predictive model f that is invariant across different domains with different
data distributions has always been challenging. We must assume the existence of some statistical
invariances across training and test domains in order to incorporate such invariances into the classifier.
Assuming a disentangled latent space (Higgins et al., 2018), we hypothesize that there exists a latent
subspace that is domain invariant. We propose a generative model with two independent sources
of variation; zs ∈ Zs, which is style-specific containing domain-related (e.g., style, background)
information of data, and zc ∈ Zc which is content-specific containing the semantic information of
data (subject-related content). A generator G : Z → X maps features form Z = Zc ×Zs to the data
(image) space X . For a given classification task where the goal is to predict the label y for a data point
x, only the feature zc is relevant, while zs is irrelevant. The causal graphical model representing
the causal relationship between a sample (x,y,d), and its latent features is illustrated in Fig. 1.

House=1
Bird=0

Horse=0

Real=0
Cartoon=1

Sketch=0

Figure 1: Causal graph illustrating assump-
tions about content-specific feature zc and
style-specific feature zs of the data point x
and their relationship with category label y
and domain label d. Observed variables are
shaded.

In Fig. 1, the directed arrows from zc and zs to the
observed data x (e.g. images) indicate that x is gen-
erated based on content and style. The directed arrow
from zc to the class label y encodes the assumption
that content zc (e.g., shape) directly influences the
class label, while the absence of any directed arrow
from zs to y indicates that style does not (it should
be noted that style features may be correlated to class
labels, but not causally related to them). Thus, con-
tent zc has all the necessary information to predict y.
Similarly, the directed arrow from zs to the domain
label d implies the style zs directly influences the
domain label, while the content zc does not. Thus,
the style zs encodes all the information of the do-
main (e.g., appearance, background). The absence
of any directed path between zc and zs in Fig. 1 en-
codes the intuition that these variables are marginally
independent, i.e. zc ⊥⊥ zs.

Based on our causal relationship assumption shown
in Fig. 1, it is clear that robustifying f against spurious features zs associated with class labels, is a
seemingly plausible way to improve the classifier generalization ability to unseen domains.

We formalize it using conditional independence: given a sample x = G(zc, zs) with zc ∈ Zc and
zs ∈ Zs, and its corresponding label y, we have

P(y|zc, zs) = P(y|zc). (1)

In other words, given an input image x, manipulating its style feature zs does not influence its class
label. Hence, the ideal invariant classifier f∗ that outputs a probability distribution over Y should be
consistent with the invariance assumption

f∗(G(zc, zs)) = f∗(G(zc, z̃s)), ∀ z̃s ∈ Zs. (2)

To achieve invariant prediction, we propose to explicitly enforce invariance under style perturbations
through a regularizer we call Domain Invariant Regularization (DIR) loss. We write this as

Lreg = Ex∼P(x)Ed∼P(d)Eu∼N (0,I)

[
D(f(x), f(x̃))

]
, x̃ = G

(
F(x), T (d,u)

)
, (3)

where F : X → Zc is a function that maps data points to their content-specific features, and
T : D × Rn → Zs is a function that takes a domain index d and map a n-dimensional Gaussian
vector u ∈ Rn to a point on Zs of that domain (we discuss in Sec. 4.3 how to learn these functions).
D(p1, p2) is a distance measure between two probability vectors p1 and p2. In this study, we utilize
the L1 distance (the absolute values of the difference between the classifier’s probabilistic outputs)
as:

D(p1, p2) =
K∑
i=1

|pk1 − pk2 |, (4)

where pk1 and pk2 denote probability output of p1 and p2 for class k respectively. Note that any distance
measure on distributions can be used in place of the L1 distance. Intuitively, DIR encourages the
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Figure 2: An overview of the proposed model. For a source sample (x,y) (red box), its content-
specific feature zc is extracted through the mapping F . By randomly picking a domain index d, and
drawing a Gaussian vector, a random domain feature z̃s is generated by T . A new (semantically
preserved) sample x̃ is then generated by feeding zc and z̃s into G. The classifier f is trained by two
losses (all T , F , and G are pretrained and fixed during training f ): 1) The standard cross-entropy loss
Lcls that encourages f to predict the correct class label for x, 2) The domain-invariant regularization
loss Lreg that encourages f to make similar prediction for x̃ and x.

classifier f to be invariant to the induced semantically irrelevant perturbations to the data that arise
from altering the input samples through plausible style perturbations. These perturbations to the input
are meaningful by using a disentangled latent feature that encodes independent controllable factors,
where style-specific factors are known to be independent from the class label. The final objective can
be written as

f∗ = argmin
f

Lcls + λLreg, (5)

where λ is a hyper-parameter to control a trade-off between the classifier’s prediction accuracy on the
source samples and the classifier’s consistency over the samples’ perturbations. Lcls also denotes the
standard multi-class cross-entropy loss function defined as

Lcls = E(x,y)∼P(x,y)
[
− log([f(x)]y)

]
, (6)

where [a]i returns the i-th coordinate of a. The DIR approach is depicted in Fig. 2.

4.3 TRAINING METHODOLOGY

We learn T ,F ,G, and f in two separate steps. First, we learn T ,F ,G, then, we fix them, and learn
f .

4.3.1 LEARNING T ,F , AND G

So far, we have assumed the presence of a domain-specific generator T , a content specific encoder F
and an image generator G. This section details how to train such functions using I2I models.

To do so, we train multi-domain image-to-image translation networks (MI2I) on the in-
stances drawn from the training domains. MI2I models are designed to transform images between
distinct datasets so that they resemble a diverse collection of images from another dataset.

The architectures of MI2I models generally consist of two components: a disentangled feature
extraction module and a image generation module. The role of feature extraction module is to recover
the style-specific and content-specific features of the images and the goal of image generation module
given a sample image x and a target domain d is to generate an instance in domain d using the
extracted content feature of x and a randomly generated style feature in d. In this way, MI2I are a
natural framework for learning T , F , and G. In particular, we use the StarGAN loss functions (Saito
et al., 2019) to learn T , F , and G (the details are available in Appendix).

Although StarGAN model learns accurate and diverse transformations between multiple source
domain, it can consequently result in arbitrary mappings as the translation is done without supervision
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between domains that share common semantic attributes (e.g. class labels). In other works, MI2I
models commonly been applied on domains in which a translation entails little geometric changes
and the style of the generated image is independent of the semantic content in the source sample
(e.g., translating horses→ zebras). In order to leverage the category labels of source samples, we
propose C-StarGAN by incorporating a classification module C : X → Y into the StarGAN model.
During the training of the C-StarGAN, the classifier is only trained on the actual labeled source
samples using the cross entropy loss. The G and F are then trained to translate input images to new
domains belonging to their own classes by encouraging them to minimize the cross entropy loss on
the generated images (see the Appendix for more details).

4.3.2 LEARNING f

Given N training samples {xi,yi,di}Ni=1 from S source domains, we approximate the expectations
in Eqs. 3 and 6 with empirical average and obtain f as

f∗ = argmin
f

1

N

N∑
i=1

[
− log([f(xi)]yi) + λ

M∑
j=1

D
(
f(xi)− f(x̃j)

)]
, (7)

where

x̃i = G
(
F(xi), T (d̃j , ũj)

)
, d̃j ∼ U({1, 2, ..., S}), ũj ∼ N (0, I), (8)

and U(.) denote discrete uniform distribution over the index set {1, 2, ..., S}. Intuitively, for each
training image xi, we encourage f (i) to correctly predict its class label yi, (ii) to have similar
prediction with a set of M perturbed images {x̃j}Mj=1 with the same content as xi under varying
style. The training procedures is detailed in Algorithm 1 in the Appendix.

5 EXPERIMENTAL RESULTS

5.1 DATASETS

To evaluate our method, we perform experiments on three datasets that are commonly used in the
literature for domain generalization (some sample images from each domain is shown in Fig. 3).

PACS (Wang et al., 2020a) contains 9, 991 images from four different domains: Art-Painting,
Cartoon, Photo, Sketch. The task is classification with seven classes.

OfficeHome (Venkateswara et al., 2017) has 15, 500 images of daily objects from four do-
mains: art, clipart, product and real. There are 65 classes in this classification dataset.

DomainNet (Peng et al., 2019) is a recently introduced benchmark for large-scale multi-
source domain adaptation. It has six domains (Clipart, Infograph, Painting, Quickdraw, Real and
Sketch) and 0.6M images of 345 classes. The full DomainNet requires considerable computing
resources for training. Following (Zhou et al., 2021), we use mini-DomainNet, which takes a subset
of DomainNet (four domains and 126 classes) containing 18, 703 images of Clipart, 31, 202 images
of Painting, 65, 609 images of Real and 24, 492 images of Sketch.

5.2 BASELINES

We compare DIR with various recent algorithms on domain generalization problem. we used the
DomainBed (Gulrajani & Lopez-Paz, 2021) package, facilitating comparison to a range of state-
of-the-art methods namely ERM (Vapnik, 1999),DRO (Sagawa et al., 2019), Mixup (Zhang et al.,
2017), MLDG (Li et al., 2018a), CORAL (Peng et al., 2019), MMD (Lee et al., 2019), Sagnet (Nam
et al., 2019), and MTL (Blanchard et al., 2021).

5.3 EXPERIMENTAL SETTING

For all datasets, we perform “leave-one-domain-out” experiments, where we choose one domain as
the target domain, train the model on all remaining domains and evaluate it on the chosen domain. For
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(a) PACS datasets (b) OfficeHome dataset (c) Mini-DomainNet dataset

Figure 3: Exemplary images from different datasets. a) PACS datatset (first row: Art-painting, second
row: Cartoon, Third row: Photo, last row: Sketch), b) OfficeHome dataset (first column: Art, second
column: ClipArt, Third column: Product, last column: Photo). c) Mini-DomainNet dataset (first
column: ClipArt, second column: Painting, Third column: Real, last column: Sketch).

Table 1: Leave-one-domain-out generalization results on PACS dataset. The best (green), the second
best (blue).

Algorithm Art-Painting Cartoon Photo Sketch Avg
ERM 81.3 ± 0.5 80.1 ± 0.5 95.4 ± 0.4 79.4 ± 0.2 84.05
DRO 81.7 ± 0.4 80.0 ± 0.3 94.5 ± 0.3 79.6 ± 0.2 83.94
Mixup 81.9 ± 0.5 79.4 ± 0.1 95.6 ± 0.8 78.7 ± 0.1 84.23
MLDG 81.6 ± 0.6 80.0 ± 0.1 94.8 ± 0.8 80.2 ± 0.4 84.10
CORAL 81.1 ± 0.2 80.5 ± 0.4 95.2 ± 0.8 79.2 ± 0.2 84.27
MMD 80.6 ± 0.2 80.7 ± 0.1 94.9 ± 1.4 79.1 ± 0.8 83.87
MTL 80.4 ± 0.8 78.0 ± 0.5 94.0 ± 0.8 77.0 ± 1.5 82.35
SagNet 80.0 ± 1.0 80.4 ± 0.6 94.6 ± 0.1 79.5 ± 0.4 83.62
DIR (Ours) 85.0 ± 1.5 81.4 ± 0.5 95.8 ± 0.8 82.3 ± 0.1 86.10

all datasets, we use a Resnet18 (He et al., 2016) network as the classifier f . As a standard practice,
the Resnet18 backbone is pre-trained on ImageNet.

Data augmentation is also standard practice for real-world computer vision datasets, and during the
training we augment our data as follows: crops of random size and aspect ratio, resizing to 224× 224
pixels, random horizontal flips, random color jitter, randomly converting the image tile to grayscale
with 10% probability, and normalization using the ImageNet channel means and standard deviations.

Hyperparameter Search: Following standard practice, we use 90% of available data as
training data and 10% as validation data to select hyper-parameter λ.
Random Trials: For fair comparison, for each target domain, we have reported our average and
standard deviation for five independent runs of the model.
The StarGAN (Choi et al., 2020) model implementation is taken from the authors’ original source
code2. Further details concerning hyperparameter tuning and model selection (e.g. batch-size,
learning rate, etc.) are deferred to the Appendix.

5.4 RESULTS

Results are summarized in Tables 1,2, and 3 where each experiment is averaged over 5 independent
trials. We achieve SOTA results on all three datasets that verifies the effectiveness of the proposed
approach. As can be seen DIR provides an average improvement of 3.2% in accuracy across all
three datasets over the ERM baseline that simply combines data from all the training domains to
train a model. This can be attributed to the increased diversity in the training data in each domain
by perturbing samples by modifying their style, which allows us to construct images that cover the
space of domains better. Moreover, according to the assumption of the existence of disentangled
latent space, when the number of training domains is appropriate, DIR can mitigate the impact of
spurious correlation between the domain-specific features and the class labels by relying only on the
content-specific features to achieve more effective domain generalization. In comparison to other DG

2https://github.com/clovaai/stargan-v2
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Table 2: Leave-one-domain-out generalization results on OfficeHome dataset. The best (green), the
second best (blue).

Algorithm Art ClipArt Product Photo Avg
ERM 52.0 ± 0.6 49.0 ± 0.3 69.0 ± 0.2 70.1 ± 0.2 60.13
DRO 51.2 ± 0.6 47.4 ± 0.3 68.7 ± 0.2 69.3 ± 0.2 58.78
Mixup 53.0 ± 0.9 51.2 ± 0.3 71.5 ± 1.6 72.2 ± 0.3 62.03
MLDG 52.5 ± 0.7 49.0 ± 0.3 69.4 ± 1.2 70.1 ± 0.1 60.45
CORAL 55.8 ± 0.6 52.0 ± 0.2 71.5 ± 1.3 74.5 ± 0.2 63.11
MMD 52.6 ± 0.3 49.9 ± 0.5 69.8 ± 0.5 70.6 ± 0.9 60.83
MTL 51.5 ± 0.3 50.1 ± 0.8 70.4 ± 0.4 73.3 ± 0.4 61.32
SagNet 53.4 ± 0.7 52.3 ± 0.3 70.6 ± 0.3 74.1 ± 0.4 62.60
DIR (Ours) 56.2 ± 1.4 55.1 ± 0.4 72.4 ± 1.8 74.0 ± 0.2 64.45

approaches, DIR either performs better or competitively with the best approach on each individual
dataset.

In order to evaluate the proposed approach for in-domain generalization setting (the test set contains
a mix of unseen samples from source domains), we conducted an experiment, in which we split the
source domain samples into training and test sets with various proportions. Then, we trained a model
on source training samples and tested it on source test samples. Due to lack of space, the results are
available in the Appendix.

5.5 ABLATION STUDIES

5.5.1 SENSITIVITY ANALYSIS TO PARAMETER λ

To analyze the sensitivity of DIR to changes in parameter λ, we conducted additional experiments
to analyze the parameter sensitivity of DIR w.r.t. the various values of λ. To this end, we consider
OfficeHome dataset here. Fig. 4 shows the sensitivity analysis of DIR respect to λ. Sensitivity
analysis is performed by varying λ at the time over a given range, while for the other parameters we
set them to their final values. From Fig. 4, we see that when λ = 0 (no domain-invariant regularization
term is considered), we recover the ERM method for which the performance drops considerably. For
other values of λ, the performance is superior and there is little variation in the model performance,
evidencing the robustness of our method w.r.t. λ.

5.5.2 EFFECTIVENESS OF C-STARGAN

To verify the effectiveness of the proposed C-StarGAN model, we compare both qualitatively and
quantitatively with StarGAN. The experiment is conducted on PACS and the average performance

Table 3: Leave-one-domain-out generalization results on mini-DomainNet datasets. The best (green),
the second best (blue).

Algorithm ClipArt Painting Real Sketch Avg
ERM 65.5 ± 0.3 57.1 ± 0.5 62.3 ± 0.2 57.1 ± 0.1 60.50
DRO 64.8 ± 0.4 57.4 ± 0.4 61.5 ± 0.5 56.9 ± 0.1 60.15
Mixup 67.1 ± 0.2 59.1 ± 0.5 64.3 ± 0.3 59.2 ± 0.3 62.42
MLDG 65.7 ± 0.2 57.0 ± 0.2 63.7 ± 0.3 58.1 ± 0.1 61.12
CORAL 66.5 ± 0.2 59.5 ± 0.4 66.0 ± 0.6 59.5 ± 0.1 62.87
MMD 65.0 ± 0.5 58.0 ± 0.2 63.8 ± 0.2 58.4 ± 0.7 61.30
MTL 65.3 ± 0.5 59.0 ± 0.4 65.6 ± 0.4 58.5 ± 0.2 62.10
SagNet 65.0 ± 0.4 58.1 ± 0.2 64.2 ± 0.3 58.1 ± 0.4 61.35
DIR (Ours) 68.2 ± 0.3 60.5 ± 0.3 65.8 ± .4 60.0 ± 0.1 63.62
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Figure 4: Sensitivity analysis of DIR to the hyper-parameter λ on OfficeHome dataset.

Figure 5: Image generation results on PACS. First row: Original Images. Second row: Transformed
Images using C-StarGAN. Last row: Transformed Images using StarGAN.

over test domains is used for comparison. Tab. 4 shows that training F , T ,G using StarGAN performs
slightly better than the ERM model (StarGAN’s 84.55% vs. ERM’s 84.05%) while training them
using C-StarGAN obtains a clear improvement of 1.55% over StarGAN. This confirms C-StarGAN
learns a better domain and content disentanglement than StarGAN. Fig. 5 shows some examples
of input images and their corresponding generated images in other domains. As shown in Fig. 5,
without the classifier, the StarGAN does not preserve the semantic content of the input images, while
C-StarGAN successfully capture such information to translate input images to new domains.

Model Art-Painting Cartoon Photo Sketch Avg
DIR (StarGAN) 82.7 80.2 95.0 80.4 84.55

DIR(C-StarGAN) 85.0 81.4 95.8 82.3 86.10

Table 4: Domain Generalization results for DIR using StarGAN and C-StarGAN on PACS dataset.

6 CONCLUSION

In this paper, we introduced a new approach for domain generalization by proposing a new reg-
ularizer called Domain Invariant Regularization (DIR). In this approach, we showed that under
latent disentanglement assumption, we can diminish the effect of spurious features on training the
classifier, encouraging it to rely on discriminative domain-invariant features. We then introduced
an implementation for our approach in practice with the domain transformations learned by the
StarGAN model and empirically showed that our approach outperforms other state-of-the-art models
on several datasets. In the future, We plan to extend the domain-invariant learning framework to the
more challenging applications such as visual Semantic Segmentation and Object Detection.
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A APPENDIX

This Appendix consists of the following parts:

• Appendix B: Quantitative results investigating the in-domain generalization performance of
DIR and comparing it with other baselines.

• Appendix C: The details of learning F , T and G using the proposed C-StarGAN model.
• Appendix D: Details of the experimental settings.
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Table 5: In-domain test accuracies on PACS dataset, where 75% of all domains samples were used
for training and the rest of 25% for test. The best (green), the second best (blue).

Algorithm Art-Painting Cartoon Photo Sketch Avg
ERM 91.5 ± 0.6 94.3 ± 0.4 96.0 ± 0.4 95.3 ± 0.4 94.27
DRO 92.7 ± 0.4 94.6 ± 0.3 94.5 ± 0.3 94.9 ± 0.4 94.17
Mixup 93.6 ± 0.4 94.7 ± 0.1 97.0 ± 0.8 96.0 ± 0.3 95.32
MLDG 92.6 ± 0.6 94.5 ± 0.3 96.2 ± 0.8 95.0 ± 0.5 94.57
CORAL 92.5 ± 0.3 94.3 ± 0.5 96.4 ± 0.8 95.5 ± 0.4 94.67
MMD 92.1 ± 0.4 93.6 ± 0.3 95.7 ± 0.7 94.8 ± 0.5 94.05
MTL 93.0 ± 0.3 95.0 ± 0.6 95.5 ± 0.5 93.3 ± 0.6 94.20
SagNet 93.2 ± 0.4 93.4 ± 0.8 95.4 ± 0.9 93.4 ± 0.8 93.85
DIR (Ours) 94.3 ± 0.5 95.5 ± 0.3 96.9 ± 0.3 96.3 ± 0.4 95.75

Table 6: In-domain test accuracies on PACS dataset, where 50% of all domains samples were used
for training and the rest of 50% for test. The best (green), the second best (blue).

Algorithm Art-Painting Cartoon Photo Sketch Avg
ERM 91.4 ± 0.5 93.2 ± 0.5 95.6 ± 0.4 94.3 ± 0.2 93.62
DRO 91.6 ± 0.4 93.7 ± 0.3 95.9 ± 0.3 95.0 ± 0.2 94.05
Mixup 91.5 ± 0.5 94.3 ± 0.1 96.5 ± 0.8 95.4 ± 0.1 94.42
MLDG 91.8 ± 0.6 92.7 ± 0.1 95.4 ± 0.8 95.2 ± 0.5 93.77
CORAL 92.7 ± 0.4 93.8 ± 0.5 96.3 ± 0.5 95.2 ± 0.5 94.65
MMD 90.9 ± 0.2 92.6 ± 0.4 96.6 ± 0.4 94.5 ± 0.5 93.65
MTL 92.8 ± 0.3 94.6 ± 0.6 95.2 ± 0.5 93.3 ± 0.6 93.97
SagNet 93.0 ± 0.4 93.0 ± 0.8 95.1 ± 0.9 93.1 ± 0.8 93.55
DIR (Ours) 93.6 ± 0.5 95.2 ± 0.4 96.4 ± 0.4 96.3 ± 0.4 95.37

B IN-DOMAIN GENERALIZATION RESULTS

In order to evaluate the proposed framework for in-domain generalization setting (the test set contains
a mix of unseen samples from source domains), we conducted two experiments, in which we split
the source domain samples into training and test sets with various proportions. Then, we trained
a model on source training samples and tested it on source test samples. The first experiment was
done by using 75% of source samples as training and the rest of 25% as test samples. The second
experiment was done by using 50% of source samples as training and the rest of 50% as test samples
(Results are shown in Tabs. 5, 6, 7, 8, 9, and 10. We can see that the DIR achieves the best average
accuracy on all PACS, OfficeHome, and mini-DomainNet datasets, respectively. DIR outperforms
the baseline (ERM) that aggregates all source domains to train a single model by 1.7%, 4.5%, and
3.8% for PACS, OfficeHome, and mini-DomainNet, respectively.

C LEARNING F , T AND G USING C-STARGAN

we can use several I2I models to learn F , T and G. In particular, we use the StarGAN (Choi et al.,
2020) model, which is designed for multiple image domain transformations. The StarGAN contains
four module namely, an image generator module, a style generator module, a style mapping module,
and a domain discriminator module. We consider T , and G(F(.)) as the style generator module and
the image generator module of the StarGAN, respectively. Given an image x and its domain label d,
four important objective functions of the StarGAN model to train F , T ,G are:

• Domain Adversarial objective: During training, a latent code u ∼ N (0, I) and a target
domain d are randomly sampled to generate a target (domain-specific) style code z̃s =
T (u,d). F and G are learned to generate an output image x̃ = G(F(x), z̃s) via an
adversarial loss using a domain discriminator D. T learns to provide the style code z̃s
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Table 7: In-domain test accuracies on OfficeHome dataset, where 75% of all domains samples were
used for training and the rest of 25% for test. The best (green), the second best (blue).

Algorithm Art ClipArt Product Photo Avg
ERM 68.4 ± 0.6 74.7 ± 0.4 86.1 ± 0.4 75.5 ± 0.4 76.17
DRO 66.7 ± 0.6 75.7 ± 0.3 85.6 ± 0.4 77.8 ± 0.4 76.45
Mixup 69.7 ± 0.4 77.5 ± 0.3 87.6 ± 0.6 78.6 ± 0.3 78.35
MLDG 68.9 ± 0.7 75.7 ± 0.3 86.7 ± 1.2 78.0 ± 0.1 77.32
CORAL 71.0 ± 0.6 78.4 ± 0.4 87.6 ± 0.3 79.3 ± 0.4 79.07
MMD 68.8 ± 0.3 74.9 ± 0.5 86.7 ± 0.5 77.6 ± 0.9 77.00
MTL 66.1 ± 0.5 76.5 ± 0.5 85.9 ± 0.1 77.8 ± 0.4 76.55
SagNet 68.6 ± 0.1 78.8 ± 0.3 87.0 ± 0.3 79.1 ± 0.2 78.37
DIR (Ours) 71.2 ± 0.4 80.5 ± 0.4 88.8 ± 0.5 80.9 ± 0.5 80.35

that is likely in the target domain d, and G is learned to utilize z̃s and generate an image
that is indistinguishable from real images of the domain d. The domain adversarial loss is
formulated as

Ladv = Ex,d[logDd(x)] + Ex,d̃,u[log(1−Dd̃(x̃))], x̃ = G(F(x), T (u, d̃)), (9)

where Dd(.) denotes the output of the discriminator D corresponding to the domain d.

• Style reconstruction Objective. In order to enforce the generator module to utilize the
style code z̃s when generating the image x̃, a style reconstruction loss is employed to learn
a mapping E from an image to its style code. The style reconstruction loss can be written as

Lsty = Ex,d̃,u

[
||z̃s − Ed̃(x̃)||1

]
, x̃ = G(F(x), z̃s), z̃s = T (u, d̃), (10)

where Ed(.) denotes the output of the mapping network E corresponding to the domain d.

• Style diversification Objective: To enable the generator module to produce diverse images,
G and F are regularized with a diversity sensitive loss. The regularization term forces G
and F to explore the image space and discover meaningful style features to generate diverse
images. The style diversification loss can be expressed as

Lsd = Ex,d̃,u1,u2

[
||G(F(x), z1)− G(F(x), z2)||1

]
, z1 = T (u1, d̃), z2 = T (u2, d̃),

(11)

• Cycle Consistency Objective: To guarantee that the generated image x̃ properly preserves
the domain invariant characteristics (e.g. shape) of its input image x, a cycle consistency loss
is used. This loss encourages the generator module to preserve the original characteristics of
x while changing its style faithfully. This loss can be represented as

Lcyc = Ex,d,d̃,u

[
||x− G(F(x̃), s)||1

]
, x̃ = G(F(x), T (u, d̃)), s = Ed(x), (12)

Category Classification Objective: In order to leverage the category labels of source samples, we
propose to incorporate a classification module C : X → Y into the StarGAN model. Hence, we
propose C-starGAN by adding a classification loss function Lclass into the StarGAN:

Lclass = E(x,y)∼P(x,y)
[
− log([C(x)]y)

]
, (13)

Full objective. The full objective functions of the C-StarGAN can be summarized as

min
G,F,T ,C

max
D
Ladv + λstyLsty + λcycLcyc − λdsLds + λclassLclass, (14)

where λsty, λcyc, λds, and λclass are hyperparameters for each term. It should be noted that, during
the training the C-StarGAN, the classifier C is only trained on the actual labeled source samples. On
the other hand, G and F are trained using the classification loss of generated samples as well as other
StarGAN loss functions.
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Table 8: In-domain test accuracies on OfficeHome dataset, where 50% of all domains samples were
used for training and the rest of 50% for test. The best (green), the second best (blue).

Algorithm Art ClipArt Product Photo Avg
ERM 61.5 ± 0.5 71.8 ± 0.5 82.6 ± 0.5 72.4 ± 0.4 72.07
DRO 63.0 ± 0.5 72.8 ± 0.5 82.8 ± 0.5 72.6 ± 0.2 72.80
Mixup 63.6 ± 0.5 73.5 ± 0.4 85.3 ± 0.6 72.7 ± 0.4 73.77
MLDG 62.8 ± 0.7 72.4 ± 0.5 83.7 ± 0.2 73.2 ± 0.1 73.02
CORAL 66.1 ± 0.6 75.6 ± 0.2 85.8 ± 1.3 75.6 ± 0.2 75.77
MMD 60.5 ± 0.3 72.2 ± 0.5 83.6 ± 0.5 73.2 ± 0.6 72.37
MTL 61.7 ± 0.5 73.6 ± 0.5 83.9 ± 0.1 74.9 ± 0.4 73.52
SagNet 65.2 ± 0.1 75.9 ± 0.3 86.1 ± 0.3 74.7 ± 0.2 75.47
DIR (Ours) 67.1 ± 0.4 77.8 ± 0.4 87.1 ± 0.4 76.6 ± 0.4 77.15

Table 9: In-domain test accuracies on mini-DomainNet dataset, where 75% of all domains samples
were used for training and the rest of 25% for test. The best (green), the second best (blue).

Algorithm ClipArt Painting Real Sketch Avg
ERM 75.4 ± 0.4 71.6 ± 0.5 78.5 ± 0.2 73.7 ± 0.1 74.80
DRO 76.5 ± 0.4 72.0 ± 0.4 80.0 ± 0.5 73.5 ± 0.1 75.50
Mixup 77.8 ± 0.2 73.4 ± 0.5 79.8 ± 0.3 75.3 ± 0.3 76.57
MLDG 77.0 ± 0.2 71.5 ± 0.2 78.7 ± 0.3 73.6 ± 0.1 75.20
CORAL 77.9 ± 0.2 73.6 ± 0.4 80.4 ± 0.6 75.2 ± 0.1 76.77
MMD 75.9 ± 0.5 71.9 ± 0.2 79.0 ± 0.2 74.5 ± 0.7 75.32
MTL 75.4 ± 0.2 73.5 ± 0.4 80.6 ± 0.6 75.3 ± 0.1 76.20
SagNet 75.0 ± 0.2 73.0 ± 0.4 80.7 ± 0.6 75.0 ± 0.1 75.92
DIR (Ours) 79.3 ± 0.3 74.8 ± 0.3 81.6 ± 0.2 76.9 ± 0.1 78.15

D EXPERIMENTAL SETTINGS

In this section, we provide further experimental details beyond the results presented in the main
paper. The experiments on all datasets were performed using the DomainBed package. All of the
default hyperparameters (e.g. batch-size, learning rate, weight decay, etc.) were left unchanged from
the standard DomainBed implementation. We also set the hyper-parameter M = 1 (the number of
perturbed samples for each source sample).

C-StarGAN Experimental Setting: The StarGAN (Choi et al., 2020) model implementation is
taken from the authors’ original source code with no significant modifications. All of the default

Table 10: In-domain test accuracies on mini-DomainNet dataset, where 50% of all domains samples
were used for training and the rest of 50% for test. The best (green), the second best (blue).

Algorithm ClipArt Painting Real Sketch Avg
ERM 73.0 ± 0.5 68.4 ± 0.5 76.4 ± 0.5 72.0 ± 0.5 72.45
DRO 73.5 ± 0.4 70.0 ± 0.4 77.6 ± 0.5 71.6 ± 0.1 73.15
Mixup 75.6 ± 0.5 71.2 ± 0.4 78.5 ± 0.4 73.5 ± 0.4 74.70
MLDG 73.6 ± 0.2 70.1 ± 0.4 76.5 ± 0.4 71.4 ± 0.3 73.01
CORAL 76.4 ± 0.5 70.0 ± 0.5 78.0 ± 0.6 73.0 ± 0.3 74.35
MMD 75.4 ± 0.4 68.5 ± 0.4 77.5 ± 0.5 71.5 ± 0.5 73.68
MTL 73.0 ± 0.2 70.5 ± 0.4 78.6 ± 0.6 73.5 ± 0.1 73.90
SagNet 73.0 ± 0.2 71.1 ± 0.4 78.9 ± 0.6 73.2 ± 0.1 74.05
DIR (Ours) 78.5 ± 0.3 72.3 ± 0.5 79.7 ± 0.5 75.7 ± 0.5 76.55
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Algorithm 1 Domain Invariant Regularization (DIR) for Domain Generalization

1: Hyperparameters: step size η, number of perturbations M , mini-batch size B, Trade-off
parameter λ, Number of source domains S

2: Parameters: The Classifier f Parameters (θ)
3: C-StarGAN Training: Learn F ,G, andT using the C-StarGAN objective function in Eq. 14.
4: repeat
5: for minibatch {(xi,yi,di)}Bi=1 in training dataset D1 ∪D2 ∪ · · · ∪DS do
6:
7: {x̃j}Mj=1 ← PERTURBIMAGE(xi) ∀i ∈ [B] . Generate M perturbed samples
8:
9: Lreg(θ)← ( 1

BM )
∑b
i=1

∑M
j=1 ||(fθ(xi)− fθ(x̃i)||1 . Calculate regularizer in Eq. 7

10:
11: Lcls(θ)← (− 1

B )
∑B
i=1 log([f(xi)]yi

) . Calculate classification loss in Eq. 7
12:
13: θ ← θ − η∇θ[ Lcls(θ) + λ · Lreg(θ) ] . Gradient step for θ
14: end for
15: until convergence
16:
17: procedure PERTURBIMAGE(x)
18: zc ← F (x) . Extract the content feature zc of x
19: Sample u ∼ N (0, I)

20: Sample d̃ ∼ U({1, 2, ..., S})
21: z̃s ← T (u, d̃) . Generate a random style feature z̃s in domain d̃
22: return G(zc, z̃s) . Return perturbed image produced by C-StarGAN
23: end procedure

hyperparameters (e.g. λcyc, λsty, λds, batch-size, learning rate, weight decay, model architectures,
etc.) were left unchanged from the StarGAN implementation. We define the architecture for the
classification module C the same as the StarGAN discriminator module D except for the last layer,
where we use a single linear layer instead of multiple linear layers. The details of the classification
module is shown in Tab. 11. For each set of source domains, we train the StarGAN model for 150, 000
iterations. We also set λclass to 0.1 for all datasets.

LAYER RESAMPLE NORM OUTPUT SHAPE

Image x - - 256×256×3

Conv1×1 - - 256×256×64
ResBlk AvgPool - 128×128×128
ResBlk AvgPool - 64×64×256
ResBlk AvgPool - 32×32×512
ResBlk AvgPool - 16×16×512
ResBlk AvgPool - 8×8×512
ResBlk AvgPool - 4×4×512

LReLU - - 4×4×512
Conv4×4 - - 1×1×512
LReLU - - 1×1×512

Reshape - - 512
Linear - - 1 * K

Table 11: C-StarGAN classification module architecture. K represent the number of category labels.
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