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Abstract

Existing self-supervised methods in natural001
language processing (NLP), especially hier-002
archical text classification (HTC), mainly fo-003
cus on self-supervised contrastive learning, ex-004
tremely relying on human-designed augmen-005
tation rules to generate contrastive samples,006
which can potentially corrupt or distort the007
original information. In this paper, we tend008
to investigate the feasibility of a contrastive009
learning scheme in which the semantic and syn-010
tactic information inherent in the input sam-011
ple is adequately reserved in the contrastive012
samples and fused during the learning pro-013
cess. Specifically, we propose an information014
lossless contrastive learning strategy for HTC,015
namely Hierarchy-aware Information Lossless016
contrastive Learning (HILL), which consists of017
a text encoder representing the input document,018
and a structure encoder directly generating the019
positive sample. The structure encoder takes020
the document embedding as input, extracts the021
essential syntactic information inherent in the022
label hierarchy with the principle of structural023
entropy minimization, and injects the syntac-024
tic information into the text representation via025
hierarchical representation learning. Experi-026
ments on three common datasets are conducted027
to verify the superiority of HILL.028

1 Introduction029

Self-supervised learning (SSL) has exhibited re-030

markable success across various domains in deep031

learning, empowering models with potent represen-032

tation capabilities. Based on these achievements,033

researchers have incorporated contrastive learning034

into hierarchical text classification (Wang et al.,035

2022a), a challenging sub-task within the realm of036

text multi-label classification. Beyond processing037

text samples, hierarchical text classification meth-038

ods should handle a predefined directed acyclic039

graph in the corpus, referred to as the label hi-040

erarchy. While language models such as BERT041
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Figure 1: Comparison between HILL and previous
methods. (a) Previous work use structure encoder in
data augmentation. (b) Our method extracting syntactic
information in information lossless learning paradigm.

(Devlin et al., 2019) are pretrained on textual data, 042

their efficacy in handling structural input is limited. 043

Consequently, researchers have introduced a Graph 044

Neural Network (GNN)-based encoder to establish 045

a dual-encoder framework for HTC (Zhou et al., 046

2020; Deng et al., 2021; Chen et al., 2021). 047

Although the structure encoder contributes to 048

representing the label hierarchy, the dual-encoder 049

framework simply blends the outputs of encoders. 050

In an effort to integrate the label hierarchy into 051

BERT, Wang et al. (2022a) propose a contrastive 052

learning framework, in which BERT functions as 053

a siamese network (Bromley et al., 1993) accept- 054

ing both the raw text and the masked text, where 055

the mask is generated by the structure encoder. 056

However, their contrastive learning process essen- 057

tially relies on data augmentation, even with the 058

involvement of the structure encoder in the mask- 059

ing process, as depicted in Figure 1(a). Accord- 060

ing to the data processing inequality (Cover and 061

Thomas, 2006), applying data augmentation to the 062

raw text may potentially erase sufficient semantic 063

information relevant to downstream prediction. 064

To maximally preserve the semantic information 065

in the text and effectively leverage the structural en- 066

coder in the contrastive learning process for HTC, 067
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we tend to inject the essential information inher-068

ent in the label hierarchy into text representations069

rather than augmenting the input document. As070

shown in Figure 1(b), our structure encoder di-071

rectly generates feature vectors by fusing textual072

and structural information, in contrast to masking073

the text as illustrated in Figure 1(a). Following the074

insights of Li and Pan (2016), where structural en-075

tropy encodes and decodes the essential structure076

of the original system to support its semantic anal-077

ysis. Since hierarchical text classification holds078

both semantic and syntactic information, we aim079

to design our model with the guidance of struc-080

tural entropy. Specifically, we implement a suite081

of algorithms to minimize the structural entropy082

of label hierarchies by constructing their coding083

trees. Subsequently, we design a structure encoder084

to perform representation learning on coding trees,085

in which the leaf-node embeddings are initialized086

by the text encoder while the non-leaf node embed-087

dings are iteratively obtained from bottom to top.088

Afterward, the structure encoder generates an over-089

all representation of the coding tree, which serves090

as a contrastive sample for the text encoder. Ad-091

ditionally, we provide a definition of information092

lossless learning and prove that the information093

retained by our approach is the upper bound of094

any augmented data. In comparison with other095

contrastive and supervised learning methods, our096

model achieves significant performance gains on097

three common datasets. Overall, the contributions098

of our work can be summarized as follows:099

• To realize information lossless learning, we100

decode the essential structure of label hierar-101

chies through the proposed algorithms under102

the guidance of structural entropy, supporting103

the semantic analysis for HTC.104

• We propose a contrastive learning framework,105

namely HILL, which fuses the structural in-106

formation from the label hierarchies into the107

given document embeddings, while the seman-108

tic information from the input document is109

maximally preserved.110

• We define information lossless learning for111

HTC and prove that the information retained112

by HILL is the upper bound of any other113

augmentation-based methods.114

• Experiments conducted on three common115

datasets demonstrate the effectiveness and ef-116

ficiency of HILL.1117
1The source code will be available after acceptance.

2 Related Works 118

Hierarchical Text Classification. Existing 119

works for HTC could be categorized into local 120

and global approaches (Zhou et al., 2020). Local 121

approaches build multiple models for labels in 122

different levels in the hierarchy, conveying the 123

information from models in the upper levels to 124

those in the bottom (Kowsari et al., 2017; Shimura 125

et al., 2018; Banerjee et al., 2019; Huang et al., 126

2019). On the contrary, global studies treat HTC as 127

a flat multi-label classification problem(Gopal and 128

Yang, 2013; You et al., 2019; Aly et al., 2019; Mao 129

et al., 2019; Wu et al., 2019; Rojas et al., 2020). 130

Recently, Zhou et al. (2020) introduce a dual- 131

encoder framework consisting of a text and a graph 132

encoder to separately handle the text and the label 133

hierarchy. Based on HiAGM (Zhou et al., 2020), 134

Chen et al. (2020a) jointly model the text and labels 135

in the hyperbolic space. Chen et al. (2021) formu- 136

late HTC as a semantic matching problem. Deng 137

et al. (2021) introduce information maximization 138

to capture the interaction between text and label 139

while erasing irrelevant information. 140

Given the success of Pretrained Language Mod- 141

els (PLMs), researchers attempt to utilize their pow- 142

erful abilities in HTC. Wang et al. (2022a) propose 143

a contrastive learning framework for HTC to make 144

BERT learn from the structure-encoder-controlled 145

text augmentation. Wang et al. (2022b) introduce 146

prompt tuning and construct dynamic templates for 147

HTC. Jiang et al. (2022) encode the global hier- 148

archies with BERT, extract the local hierarchies, 149

and feed them into BERT in a prompt-tuning-like 150

schema. Despite their success, neither existing con- 151

trastive learning nor prompt tuning methods try to 152

improve the structure encoder. 153

Contrastive Learning. Inspired by the pretext 154

tasks in GPT (Radford and Narasimhan, 2018) and 155

BERT (Devlin et al., 2019), researchers originally 156

proposed contrastive learning in computer vision 157

(Chen et al., 2020b; He et al., 2020), addressing 158

the limitations of previous methods in training with 159

massive unlabeled visual data. Numerous studies 160

have shown that the key to contrastive learning lies 161

in the construction of positive pairs (Tian et al., 162

2020; Caron et al., 2020; Jaiswal et al., 2020; Grill 163

et al., 2020), especially in natural language process- 164

ing (Wu et al., 2020; Yan et al., 2021; Meng et al., 165

2021; Pan et al., 2022). 166
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Figure 2: An example of our model with K = 3. We first feed the document D into the text encoder to extract the
semantic information. Next, the structure encoder takes label hierarchy GL as input and constructs the optimal
coding tree TL with Algorithm 1 under the guidance of structural entropy. In the hierarchical representation learning
module, the leaf node embeddings are initialized by the document embeddings, and the representations of non-leaf
nodes are learned from bottom to top. The structure encoder finally generates an information lossless positive view
for the text encoder, which is formulated in Section 3.4 and proved in Appendix C.

Structural Entropy. Structural entropy (Li and167

Pan, 2016) is a natural extension of Shannon en-168

tropy (Shannon, 1948) on a structural system,169

which could measure the structure complexity of170

the system. Non-Euclidean data, especially graph171

data, is a typical structured system. The structural172

entropy of a graph is defined as the average length173

of the codewords obtained by a random walk under174

a specific coding scheme, namely coding tree (Li175

and Pan, 2016). In the past few years, structural176

entropy has been successfully applied in commu-177

nity security (Liu et al., 2019) graph classification178

(Wu et al., 2022b,a; Yang et al., 2023), text classi-179

fication (Zhang et al., 2022), and node clustering180

(Wang et al., 2023).181

3 Methodology182

In this section, we first give a problem definition of183

hierarchical text classification. Next, we elaborate184

on the working process of the text encoder (in Sec-185

tion 3.2) and the structure encoder (in Section 3.3)186

of the proposed HILL. Theoretical analysis is fur-187

ther given to reveal the information lossless prop-188

erty of HILL for HTC in Section 3.4. Overall, the189

framework of HILL is shown in Figure 2.190

3.1 Problem Definition191

In hierarchical text classification, the label set is192

predefined and represented as a directed acyclic193

graph, namely the label hierarchy. Every label that194

appears in the corpus corresponds to a unique node195

on the hierarchy. Each non-root node is pointed by196

only one node in the upper levels, i.e. its parent 197

node. In the ground-truth label set Y of any sam- 198

ple, a non-root label yi always co-occurs with its 199

parent nodes, put differently, for any yi ∈ Y , the 200

parent node of yi is also in Y . Given a document 201

D to be classified, where D = {w1, w2, . . . , wN} 202

is commonly treated as a sequence with N tokens, 203

an HTC model should predict a subset Ŷ of the 204

complete label set Y. 205

3.2 Text Encoder 206

Our framework is compatible with multiple docu- 207

ment representation models. To maintain consis- 208

tency with previous works, we utilize BERT (De- 209

vlin et al., 2019) as the text encoder. 210

First, the input document D is tokenized into a 211

sequence with N tokens and then padded with two 212

special tokens: 213

D̃ = {[CLS], w1, w2, . . . , wN , [SEP ]}, (1) 214

where [CLS] and [SEP ] are respectively recog- 215

nized as the beginning and the end of the document. 216

Next, the BERT encoder takes the padded doc- 217

ument D̃ as input and generates hidden repre- 218

sentations of each token, formally, HBERT = 219

FBERT (D̃), where HBERT ∈ R(N+2)×dB is the 220

token embedding matrix while FBERT (·) denotes 221

the holistic BERT model. Afterward, the [CLS] 222

embedding is taken as the representation of the en- 223

tire document. That is, hD = H
[CLS]
BERT = H0

BERT , 224

where hD ∈ RdB is the document embedding, and 225

dB is the hidden size of BERT. 226
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3.3 Structure Encoder227

To implement information lossless contrastive228

learning in the structure encoder, we propose an229

algorithm to extract structural information from the230

label hierarchy via structural entropy (Li and Pan,231

2016) minimization and a hierarchical represen-232

tation learning mechanism to inject the structural233

information into text embeddings. Thereafter, the234

structure encoder generates a positive view of the235

document that retains both semantic and structural236

information losslessly.237

Structural Entropy. In Li and Pan (2016), the238

structural entropy of a graph G = (VG, EG) is239

defined as the average length of the codewords240

obtained by a random walk under a specific coding241

pattern named coding tree, formally,242

HT (G) = −
∑
v∈T

gv
vol(G)

log
vol(v)

vol(v+)
, (2)243

where v is a non-root node of coding tree T which244

represents a subset of VG, v+ is the parent node of245

v on the coding tree. gv represents the number of246

v’s cut edges on G. vol(G) denotes the volume of247

graph G while vol(v) and vol(v+) is the sum of248

the degree of nodes partitioned by v and v+.249

The height of the coding tree should be fixed250

to formulate a certain coding scheme. Therefore,251

the K-dimensional structural entropy of the graph252

G determined by the coding tree T with a certain253

height K is defined as:254

HK(G) = min
{T |height(T )≤K}

HT (G). (3)255

More details about structural entropy and coding256

trees are provided in Appendix A.257

Structural Entropy Minimization. To mini-258

mize the structural entropy is to construct the opti-259

mal coding tree of graph G. Thus, we design two260

algorithms to heuristically construct a coding tree261

T with height K. In Algorithm 1, we take VG as the262

leaf nodes, connect them directly to the root node263

vTr , and call Algorithm 2 to construct an initial cod-264

ing tree T . 2 Algorithm 2 creates a new coding tree265

T of height 1 with v and iteratively compresses266

two child nodes from the children set C(v) of root267

node v in the first while loop (lines 3-6), priori-268

tizing the nodes that result in the largest reduction269

in structural entropy. Since tree T’s height may270

2Due to different scopes, we use T and T to distinguish
the coding trees in Algorithm 1 and Algorithm 2.

exceed K, in the second while loop (lines 7-10), 271

we iteratively remove non-leaf nodes of T, prior- 272

itizing nodes with the smallest entropy increase 273

upon deletion. Afterward, leaf nodes of T might 274

have different heights, contradicting the definition 275

of coding trees. Thus, we adopt the operation in 276

line 11 to align leaf nodes. Algorithm 2 always 277

returns a coding tree T with height 2. Algorithm 1 278

will iteratively invoke Algorithm 2 until the height 279

of T reaches K. More precisely, each iteration 280

within the while loop will increment the height of 281

T by 1 by calling Algorithm 2 on the root node vTr 282

or on all nodes in V 1
T , depending on the reduction 283

in structural entropy3. More details about the pro- 284

posed algorithms can be found in Appendix B.

Algorithm 1 Greedy Coding Tree Construction
Input: A graph G = (VG, EG) and a positive
integer K.
Output: Coding tree T = (VT , ET ) of the graph
G with height K.

1: V 1
T := {vTr }, V 0

T := C(vTr ) := VG;
2: T = Algo. 2(v := vTr );
3: while T.height < K do
4: T1 = T.merge(Algo. 2(v := vTr ));
5: T2 = T.merge({T = Algo. 2(v :=

v̂)|∀v̂ ∈ V 1
T });

6: T = (HT1(G) < HT2(G)) ? T1 : T2;
7: end while
8: return T ;

285
286

Hierarchical Representation Learning. After 287

calling Algorithm 1(GL = (VG, EG),K), we 288

get a coding tree TL = (VTL
, ETL

) of label hi- 289

erarchy GL with TL.height = K . For rep- 290

resentation learning, reformulate the label hier- 291

archy and its coding tree as triplets: GL = 292

(VGL
, EGL

, XGL
), TL = (VTL

, ETL
, XTL

) where 293

XGL
∈ RY×dV is derived from document embed- 294

ding hD via two-dimensional projector, formally, 295

XGL
= ϕproj(hD). ϕproj(·) consists of a (Y× 1) 296

and a (dB × dV ) feed-forward network, where 297

dV is the hidden size for vertices. Meanwhile, 298

XTL
= {X0

TL
, X1

TL
, . . . , XK

TL
} represents the node 299

embeddings of V i
TL

, i ∈ [0,K]. 300

In Algorithm 1, the leaf nodes V 0
TL

are initial- 301

ized with VGL
, thus X0

TL
:= XGL

. Furthermore, 302

{V k
TL

|k ∈ [1,K]} is given by Algorithm 1 while 303

3In the implementation, we apply pruning strategies to
improve the efficiency, but they are omitted here for clarity.
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Algorithm 2 2-level sub-coding tree construction.
Input: A node v.
Output: Coding tree T = (VT, ET) with height 2.

1: vTr := v, V 0
T := C(v);

2: ∀v ∈ V 0
T, v.parent := vTr , C(vTr ) := v ∪

C(vTr )
3: while |C(vTr )| > 2 do
4: (vα, vβ) = argmax

(v,v′)
{HT(G) −

HT.compress(v,v′)(G)}
5: T.compress(vα, vβ)
6: end while
7: while T.height > 2 do
8: vi = argmin

v
{HT.remove(v)(G) −

HT(G)}
9: T.remove(vi)

10: end while
11: T.align()
12: return T

their node embeddings {Xk
TL

|k ∈ [1,K]} need to304

be fetched. Based on the structure of coding trees,305

we design a hierarchical representation learning306

module. For xkv ∈ Xk
TL

in the k-th layer,307

xkv = ϕk
FFN (

∑
n∈C(v)

xk−1
n ), (4)308

where v ∈ V k
T , xkv ∈ RdV is the feature vector309

of node v, and C(v) represents the child nodes310

of v in coding tree TL. ϕi
FFN (·) denotes a feed-311

forward network. The information from leaf nodes312

propagates layer by layer until it reaches the root313

node. Finally, to capture the multi-granular infor-314

mation provided by nodes at different levels, we315

utilize Equation 5 to integrate information from316

each layer of TL:317

hT =

K⊔
k=1

η({xkv |v ∈ V k
TL

}), (5)318

where
⊔
(·) indicates the concatenation operation.319

η(·) could be a feature-wise summation or averag-320

ing function. hT ∈ RdT is the final output of the321

structure encoder.322

3.4 Contrastive Learning Module323

Positive Pairs and Contrastive Loss. We expect324

the text encoder and the structure encoder to learn325

from each other. Thus, the document embedding326

hD and structural embedding hT of the same sam-327

ple form the positive pair in our model. Consider-328

ing hD and hT might be in different distributions,329

we first project them into an embedding space via 330

independent projectors, formally, 331

h = W 2
DReLU(W 1

D · hD + bD) (6) 332

ĥ = W 2
TReLU(W 1

T · hT + bT ), (7) 333

where h and ĥ are the projected vectors of hD and 334

hT . W 1
D, W 2

D, bD, W 1
T , W 2

T , and bT are weights 335

of projectors. 336

Next, we utilize NT-Xent loss (Chen et al., 337

2020b) to achieve contrastive learning. Let hi and 338

ĥi denote the projected positive pair of the i-th doc- 339

ument in a batch, the contrastive learning loss Lclr 340

is formulated as: 341

Lclr = −log
eε(hi,ĥi)/τ∑|B|

j=1,j ̸=i e
ε(hj ,ĥj)/τ

, (8) 342

where |B| denotes the batch size, τ is the temper- 343

ature parameter, and ε(h, ĥ) is a distance metric 344

implemented by cosine similarity h⊤ĥ
||h||·||ĥ||

. 345

Information Lossless Contrastive Learning for 346

HTC. Information lossless learning dose not im- 347

ply retaining any input data. It is preserving the 348

minimal but sufficient information, i.e., the mutual 349

information required by the downstream task. This 350

is how we define information lossless learning for 351

hierarchical text classification: 352

Definition 1 In HTC, the mutual information be- 353

tween inputs and targets can be written as: 354

I((GL ◦ D);Y ), (9) 355

where GL ∈ G,D ∈ D are random variables 356

for the label hierarchy GL and the document D. 357

I(X1;X2) denotes the mutual information between 358

random variables X1 and X2. ◦ indicates any in- 359

put combination of GL and D 360

Definition 2 Given a function F ⊆ FT × FG, 361

which is an arbitrary fusion of a text and a struc- 362

ture encoder. Define the optimal function F∗ if and 363

only if F∗ satisfies: 364

F∗ = argmax
F⊆FT×FG

I(F(GL ◦ D); (GL ◦ D)). (10) 365

That is, F∗retains the most mutual information be- 366

tween the input random variables and the encoded 367

random variables. Apparently, F∗ is a determinis- 368

tic mapping as the embedding F∗(GL ◦D) is fixed 369

for downstream prediction when given (GL ◦D). 370

Thus, for any random variable ξ, 371

I(F∗(GL ◦ D); ξ) = I((GL ◦ D); ξ). (11) 372
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When ξ = Y , we could have,373

I(F∗(GL ◦ D);Y ) = I((GL ◦ D);Y ). (12)374

Theorem 1 Given a document D and the coding375

tree TL of the label hierarchy GL. Denote their376

random variable as D, TL, and GL. For any aug-377

mentation function θ, we have,378

I((TL ◦ D);Y ) ≥ I(θ(GL,D);Y ). (13)379

The proof for Theorem 1 is given in Appendix C.380

Supervised Contrastive Learning. Following381

the training strategy of previous contrastive learn-382

ing methods for HTC, we train HILL with classi-383

fication loss and contrastive loss simultaneously.384

After executing the structure encoder, the docu-385

ment embedding hD and its positive view hT are386

concatenated and fed into the classifier along with387

the sigmoid function:388

P = Sigmoid([hD;hT ] ·Wc + bc), (14)389

where Wc ∈ R(dB+dT )×|Y| and bc ∈ R|Y| are390

weights and bias of the classifier while |Y| is the391

volume of the label set. For multi-label classifica-392

tion, we adopt the Binary Cross-Entropy Loss as393

the classification loss:394

LC = − 1

|Y|

|Y|∑
j

yj log(pj) + (1− yj)log(1− pj), (15)395

where yj is the ground truth of the j-th label while396

pj is the j-th element of P .397

Overall, the final loss function can be formulated398

as:399

L = LC + λclr · Lclr. (16)400

where λclr is the weight of Lclr.

Dataset |Y| Avg(|Y)|) Depth # Train # Dev # Test
WOS 141 2.0 2 30,070 7,518 9,397

RCV1-v2 103 3.24 4 20,833 2,316 781,265
NYTimes 166 7.6 8 23,345 5,834 7,292

Table 1: Summary statistics of the three datasets.
401

4 Experiment402

4.1 Experiment Setup403

Datasets and Evaluation Metrics. Experiments404

are conducted on three popular datasets in HTC.405

RCV1-v2 (Lewis et al., 2004) and NYTimes (Sand-406

haus, Evan, 2008) consists of news articles, while407

WOS (Kowsari et al., 2017) includes abstracts of408

academic papers. Each of these datasets is anno- 409

tated with ground-truth labels existing in a pre- 410

defined hierarchy. We split and preprocess these 411

datasets following (Wang et al., 2022a). The statis- 412

tics of these datasets are shown in Table 1. The ex- 413

perimental results are measured with Micro-F1 and 414

Macro-F1 (Gopal and Yang, 2013). Micro-F1 is 415

the harmonic mean of the overall precision and re- 416

call of all the test instances, while Macro-F1 is the 417

average F1-score of each category. Thus, Micro-F1 418

reflects the performance on more frequent labels, 419

while Macro-F1 treats labels equally. 420

Implementation Details. For the text encoder, 421

we use the BertModel of bert-base-uncased and 422

update its parameters with Adam (Kingma and Ba, 423

2015) as the initial learning rate is 3e-5. For all 424

three datasets, the batch size is set to 24, the hidden 425

sizes dB, dV , dT are all set to 768. ϕk
FFN in Equa- 426

tion 4 is implemented by K independent multi- 427

layer perceptions which consists of 2-layer linear 428

transformations and non-linear functions. The η(·) 429

in Equation 5 is a summation. The learning rate of 430

the structure encoder is set to 1e-3 for WOS, 1e-4 431

for RCV1 and NYTimes. The weight of contrastive 432

loss λclr is respectively set to 0.001, 0.1, 0.3 for 433

WOS, RCV1, and NYTimes. The optimal height 434

K of coding trees goes to 3, 2, and 3. 435

Baselines. We compare HILL with self- 436

supervised only models including HiAGM(Zhou 437

et al., 2020), HTCInfoMax (Deng et al., 2021), 438

HiMatch (Chen et al., 2021) and their BERT-based 439

version and a contrastive learning model HGCLR 440

(Wang et al., 2022a). HiAGM, HTCInfoMax, and 441

HiMatch use different fusion strategies to model 442

text-hierarchy correlations. Specifically, HiAGM 443

proposes a multi-label attention (HiAGM-LA) and 444

a text feature propagation technique (HiAGM-TP) 445

to get hierarchy-aware representations. HTCIn- 446

foMax enhances HiAGM-LA with information 447

maximization to model the interaction between 448

text and hierarchy. HiMatch treats HTC as a 449

matching problem by mapping text and labels into 450

a joint embedding space. HGCLR makes BERT 451

learn from the structure encoder with a controlled 452

document augmentation. 453

4.2 Results and Analysis 454

The main results are presented in Table 2. In the 455

supervised-only models, HTCInfoMax enhances 456

HiAGM through the maximization of mutual in- 457

formation principles. HiMatch treats HTC as a 458
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Model
WOS RCV1-v2 NYTimes Average

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Supervised Learning Models

TextRCNN (Zhou et al., 2020) 83.55 76.99 81.57 59.25 70.83 56.18 78.65 64.14
HiAGM (Zhou et al., 2020) 85.82 80.28 83.96 63.35 74.97 60.83 81.58 68.15
HTCInfoMax (Deng et al., 2021) 85.58 80.05 83.51 62.71 - - - -
HiMatch (Chen et al., 2021) 86.20 80.53 84.73 64.11 - - - -

Supervised Learning Models (BERT-based)
BERT † 85.63 79.07 85.65 67.02 78.24 65.62 83.17 70.57
BERT (Chen et al., 2021) 86.26 80.58 86.26 67.35 - - - -
BERT+HiAGM † 86.04 80.19 85.58 67.93 78.64 66.76 83.42 71.67
BERT+HTCInfoMax † 86.30 79.97 85.53 67.09 78.75 67.31 83.53 71.46
BERT+HiMatch † 86.70 81.06 86.33 68.66 - - - -

Contrastive Learning Models
HGCLR (Wang et al., 2022a) 87.11 81.20 86.49 68.31 78.86 67.96 84.15 72.49
HILL(Ours) 87.28 81.77 87.31 70.12 80.47 69.96 85.02 73.95

Table 2: Experimental results of our proposed model on three datasets and their average performance. The supervised
learning models (in the upper part) originally take TextRCNN (Lai et al., 2015) as the text encoder. For fairness,
we compared with their BERT-based versions implemented by Wang et al. (2022a) (in the middle part). The best
results are marked in bold. “-” means not reported or not applicable.

matching problem, and the reported results stand459

out as the best among these models. The replace-460

ment of TextRCNN with BERT has minimal impact461

on the relative ranking of their outcomes. This im-462

plies that the text encoder primarily influences the463

overall effectiveness of their models, while their464

specific merits are determined by their efforts be-465

yond the text encoder. To some extent, it also indi-466

cates that their text encoder and structure encoder467

operate independently.468

HGCLR is the inaugural contrastive learning ap-469

proach for HTC. Despite the involvement of the470

structure encoder, the positive sample construc-471

tion in HGCLR still relies on data augmentation.472

Conversely, our model effectively utilizes the syn-473

tactic information extracted by the structure en-474

coder, enabling cooperation between the text en-475

coder and the structure encoder. Specifically, the476

proposed HILL surpasses all supervised learning477

models and the contrastive learning model across478

all three datasets. Our model demonstrates average479

improvements of 1.85% and 3.38% on Micro-F1480

and Macro-F1 compared to vanilla BERT. In com-481

parison with HGCLR, our model achieves nearly482

a 2% performance boost on both RCV1-v2 and483

NYTimes. Additionally, the improvement in WOS484

is notable, though slightly less than that observed485

in the other two datasets. A likely reason is that486

BERT is pretrained on news corpus, and the do-487

main knowledge acquired may differ from that of488

paper abstracts. However, this could also indicate489

effective collaboration between the text encoder490

and the structural encoder in our framework. As491

the text encoder learns robust features, the struc- 492

tural encoder becomes increasingly powerful, and 493

vice versa.

Ablation Models
RCV1-v2

Micro-F1 Macro-F1
HILL 87.31 70.12
r.p. GIN (Xu et al., 2019) 86.48 69.30
r.p. GAT (Velickovic et al., 2018) 86.51 68.12
r.p. GCN (Kipf and Welling, 2017) 86.24 68.71
r.m. Lclr 86.51 68.60
r.m. Algorithm 1 86.67 67.92

Table 3: Performance when replacing or removing some
components of HILL on the test set of RCV1-v2. r.p.
stands for the replacement and r.m. stands for remove.
The results of r.m. Lclr and r.m. Algorithm 1 are both
obtained from 5 runs under different random seeds, each
of which is distinguished from HILL’s at a significant
level of 95% under a one-sample t-test.

494

4.3 Ablation Studies 495

The necessity of proposed methods. We con- 496

duct ablation studies by removing one component 497

of our model at a time while keeping other con- 498

ditions consistent whenever possible. The results 499

of the ablation studies are presented in Table 3. 500

To demonstrate the effectiveness of proposed hier- 501

archical representation learning, we replaced the 502

structure encoder with three commonly used graph 503

neural networks including GCN (Kipf and Welling, 504

2017), GAT (Velickovic et al., 2018), and GIN (Xu 505

et al., 2019). All of them are fed with the label 506

hierarchy GL and the document embedding hD to 507

initialize node embeddings. For GCN and GAT, the 508

number of layers is set to 2 while other parameters 509

7



2 3 4 5 6 7 8

85.0

85.5

86.0

86.5

87.0

78

79

80

81

Micro-F1
Macro-F1

(a) WOS

2 3 4 5 6 7 8

85.0

85.5

86.0

86.5

87.0

68.25

68.50

68.75

69.00

69.25

69.50

69.75

70.00Micro-F1
Macro-F1

(b) RCV1-v2

2 3 4 5 6 7 8

78.5

79.0

79.5

80.0

80.5

68.50

68.75

69.00

69.25

69.50

69.75

70.00
Micro-F1
Macro-F1

(c) NYTimes

Figure 3: Test performance of HILL with different height K of the coding tree on three datasets.

are the default settings in PyTorch-Geometric (Fey510

and Lenssen, 2019). Regarding GIN, the combine511

function is a 2-layer multi-layer perception with512

ϵ = 0, and the iteration is set to 3. We find that513

the hierarchical learning module outperforms all514

graph encoders on RCV1-v2, which empirically515

proves that syntactic information extraction is suc-516

cessful in HILL. Moreover, the performance of517

the supervised-only model (r.m. Lclr) declines by518

0.92% and 2.17%, underscoring the necessity of519

contrastive learning. Additionally, we directly feed520

the initial coding tree, i.e., a coding tree within the521

root node vr connecting to the leaf nodes, into522

the structure encoder. The model (r.m. Algo-523

rithm 1) exhibits performance decreases of 0.73%524

and 3.14%, emphasizing the effectiveness of struc-525

tural entropy minimization.526

The Height K of Coding Trees. The height of527

the coding tree affects the performance of HILL.528

Higher coding trees may involve more explosive529

gradients. To investigate the impact of K, we run530

HILL with different heights K of the coding tree531

while keeping other settings the same. Figure 3532

shows the test performance of different height cod-533

ing trees on WOS, RCV1-v2, and NYTimes. As K534

grows, the performance of HILL sharply degrades.535

The optimal K seems to be unrelated to the heights536

of label hierarchies, since the heights of the three537

datasets are 2, 4, and 8, while the optimal K is 3,538

2, and 3. On the contrary, the optimal K is more539

likely to positively correlate with the volumes of540

label set Y, 141, 103, and 166.541

Model
Trainable Parameters (M) Training Time Per Epoch (s)

WOS RCV1-v2 NYTimes WOS RCV1-v2 NYTimes
Ours 7.35 7.27 7.40 1005.84 639.82 721.98

HGCLR 19.07 18.80 19.27 1898.65 1224.74 1390.60

Table 4: The number of trainable parameters and the
average training time of our model and HGCLR on
WOS, RCV1-v2, and NYTimes.

Time-and-Memory-Saving Contrastive Learn- 542

ing. The structure encoder of HILL is consider- 543

ably smaller than that of HGCLR, as the kernel 544

of hierarchical representation learning consists of 545

only K multi-layer perceptions, while Graphormer 546

(Ying et al., 2021) is built upon multi-head atten- 547

tion. In this comparison, we assess the number 548

of learnable parameters and the training speed of 549

HILL in contrast to HGCLR. Specifically, we set 550

the hidden state sizes of both HILL and HGCLR 551

to 768, with batch sizes set to 16. The count of 552

trainable parameters is determined by the numel(·) 553

function in PyTorch (Paszke et al., 2019), excluding 554

those related to BERT. As indicated in Table 4, our 555

model exhibits significantly fewer parameters than 556

HGCLR, averaging 7.34M compared to 19.04M. 557

Additionally, the training speed is evaluated after 558

20 epochs of training4. The average training time 559

for HILL is 789.2s, which is half the time taken by 560

HGCLR (1504.7s). Overall, this analysis suggests 561

that the efficient architecture of HILL contributes 562

to its status as a time- and memory-saving model. 563

5 Conclusion 564

In this paper, we design a suite of methods to ad- 565

dress the limitations of existing contrastive learning 566

models for HTC. In particular, we propose HILL, 567

in which the syntactic information is sufficiently 568

fused with the semantic information after structural 569

entropy minimization and hierarchical representa- 570

tion learning. Theoretically, we give the definition 571

on information lossless learning for HTC and the 572

information extracted by HILL is proved to be the 573

upper bound of other contrastive learning based 574

methods. Experimental results demonstrate the 575

effectiveness and efficiency of our model against 576

state-of-the-arts. 577

4Both of them converge around the 20th epoch.
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Limitations578

In Table 2, we only provide the results of HILL579

and HGCLR when using BERT as the text encoder.580

Due to the focus on designing the structure encoder,581

we do not report results on a smaller model, for in-582

stance, TextRCNN, or a larger language model as583

the text encoder. On the other hand, we adopt su-584

pervised contrastive learning in accordance with585

the settings of HGCLR. The performance of HILL586

under contrastive-supervised two-stage training re-587

mains to be explored.588
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Original Graph � Coding Tree � & Structural Entropy

Determined T.B.D

Figure 4: An illustration of coding trees and structural entropy. The coding tree T provides us with multi-granularity
partitions of the original graph G, as shown by the three partitions in the example. Structural entropy is defined as
the average amount of information of a random walk between two nodes in VG, considering all nodes partitioned
(encoded and decoded) by coding tree T . Under the guidance of structural entropy, coding tree T could reveal the
essential structure of graph G.
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A A Brief Introduction to Structural930

Entropy and Coding Trees931

The exhaustive definitions and theorems of coding932

trees and structural entropy are originated by Li and933

Pan (2016). Here, we just briefly introduce some934

key concepts which are crucial to this paper. An935

illustration of coding trees and structural entropy936

is shown in Figure 4.937

Coding tree. A coding tree T = (VT , ET ) of938

graph G = (VG, EG) is a tree that satisfies:939

I. Denote vTr as the unique root node of940

T , Vζ as the leaf-node set of T , and941

T.height the height of T . The node set942

of T is VT , which consists of a few sub-943

sets, that is, VT = {V 0
T , V

1
T , . . . , V

T.height
T }.944

V T.height
T := vTr , V

0
T := Vζ .945

II. Each node v ∈ VT is the marker (Li and Pan,946

2016) of a subset of VG. For instance, vTr is947

the marker VG, while each vζ ∈ Vζ marks a 948

single node in VG. 949

III. For any V ∈ {V 0
T , V

1
T , . . . , V

T.height
T }. All 950

nodes in V has the same height (depth) and 951

any subset of V represents a partition of VG. 952

Specifically, V 0
T = Vζ is an element-wise par- 953

tition for VG as there exists a one-to-one cor- 954

respondence for nodes in Vζ and VG. While 955

V T.height
T = vTr is the overall partition for VG 956

as vTr marks the integrity of VG. 957

Structural Entropy. As coding trees can be re- 958

garded as coding patterns for graphs, the struc- 959

tural entropy of a graph is defined as the average 960

amount of information under a determined coding 961

tree. Specifically, as depicted in Figure 4, when 962

a random walk on graph G progresses from node 963

v1 to node v3, a portion of the information is en- 964

coded by their parent node v+, and at this point, 965

only the information from v+ to v3 remains to be 966

determined. Meanwhile, the conditional entropy 967

H(v3|v1) is then reduced to H(v3|v+). 5 Thus, we 968

have: 969

H(v3|v1) = H(v3|v+) = −log
vol (v3)

vol (v+)
, (17) 970

where vol(v3) denotes the degree of v3 while (v+) 971

is the total degree of its children, i.e. vol(v+) = 972

vol(v1) + vol(v3) + vol(v5). Structural entropy 973

of a graph G is defined as the average amount of 974

information required to determine during a random 975

walk between two accessible nodes. According to 976

5Conditional entropy should be defined with random vari-
ables, but we omit them here for simplicity.
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Original Graph � Initial Coding Tree �

Figure 5: The initialization stage of Algorithm 1, in
which a 1-height coding tree is constructed.

the derivation procedure provided by Li and Pan977

(2016), we have:978

HT (G) = −
∑
v∈T

gv
vol(G)

log
vol(v)

vol(v+)
, (18)979

where gv represents the number of v’s cut edges980

on G, vol(G) denotes the volume of graph G, and981
gv

vol(G) indicates the probability of a random walk982

on G involving the leaf nodes marked by v.
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(a) An example of compressing leaf node vα and vβ .

��
�

��
�

(b) The final result after executing lines 3-6.

Figure 6: An illustration of T.compress(·) operation.
(a) A single execution of T.compress(vα, vβ). (b) The
final state after executing lines 3-6 in Algorithm 2.

983

B Explanations for The Proposed984

Algorithms985

Definitions for Algorithm 1 and Algorithm 2.986

Given a coding tree T = (VT , ET ), we define some987

attributes and member functions of T as follows,988

A. Given any two nodes vα, vβ ∈ VT . If (α, β) ∈989

ET , call vα the parent of vβ , and vβ a child990

of vα, which is denoted as vβ ∈ C(vα),991

vβ.parent = vα.992

B. Function compress(·, ·). As illustrated in993

Figure 6(a), given any vα, vβ ∈ C(vTr ).994

��
�

�

��
�

(a) An example of deleting an intermediate node v.

��
� ��

�

(b) The final result after executing lines 7-10.

Figure 7: An illustration of T.delete(·) operation. (a)
A single execution of T.delete(v). (b) The final state
after executing lines 7-10 in Algorithm 2.

��
���

�

Figure 8: An illustration of T.align() operation.
T.align() will align the height (depth) of all the leaf
nodes to satisfy the definition of coding trees.

compress(vα, vβ) will spawn a new node 995

vγ , remove vα, vβ from C(vTr ), make vγ be 996

their parent, and add vγ to C(vTr ). After 997

that, vα.parent = vβ.parent = vγ , and 998

vγ ∈ C(vTr ) while vα, vβ /∈ C(vTr ). 999

C. Function delete(·). As depicted in Fig- 1000

ure 7(a), given any v ∈ VT , v ̸= vr. delete(v) 1001

could remove v from VT and attach all its 1002

children to the parent of v. That is, ∀vµ ∈ 1003

C(v), vµ.parent := v.parent. 1004

D. Function align(). For any leaf node vζ ∈ Vζ , 1005

align() will insert a new node between vζ and 1006

vζ .parent until the depth of vζ reaches K. 1007

align() ensures that all leaf nodes of T reach 1008

the same height (depth) K thereby satisfying 1009

the definition of a coding tree. Figure 8 shows 1010

an example of align() operation. 1011

E. Function merge(·). For any node v̂ ∈ VT , 1012

Algorithm 1(v̂) returns a new coding tree 1013

T with height equals to 2. T.merg(T) will 1014

replace the sub-tree of T rooted by v̂ with T. 1015
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Figure 9: An illustration of lines 3-7 in Algorithm 1.

Note that all the operations above update ET1016

accordingly. In no case does ET contain self-loops1017

or skip connections. That is, for any (vα, vβ) ∈ ET ,1018

|vα.height− vβ.height| ≡ 1.1019

Illustrations for Algorithm 1 and Algorithm 2.1020

Here, we present several diagrams to deliver a run-1021

ning example of proposed algorithms.1022

As shown in Figure 5, the original graph G is1023

fed into Algorithm 1 and initialized as a 1-height1024

coding tree T , in which all nodes in VG are treated1025

as leaf node and directly connect to a new root1026

node vTr . Thereafter, Algorithm 1 will call Algo-1027

rithm 2 several times to construct a coding tree of1028

the specified height K.1029

Each invocation of Algorithm 2 takes a non-leaf1030

node v in tree T as input and yields a (sub-)coding1031

tree T with a height of 2 wherein v acting as the1032

root. Algorithm 2 first initializes T in a similar1033

procedure to that illustrated in Figure 5. Subse-1034

quently, in the first while loop (lines 3-6), we sys-1035

tematically compress the structural entropy by iter-1036

atively combining two children of root node v with1037

T.compress(·, ·), prioritizing those nodes result-1038

ing in the largest structural entropy reduction. Ulti-1039

mately, the maximal reduction in structural entropy1040

is achieved, resulting in the creation of a full-height1041

binary tree, as depicted in Figure 6(b). Given that1042

the full-height binary tree may exceed the specified1043

height of 2, we rectify this by condensing the tree1044

through the invocation of T.delete(·) in the sec-1045

ond while loop (lines 7-10). The complete deletion1046

process is illustrated in Figure 7(b). It is important1047

to note that after condensation, tree T comprises1048

leaf nodes with varying heights, which violates the1049

definition of coding trees. To address this, in line1050

11, we employ T.align() to introduce inter-nodes.1051

An example of T.align() is illustrated in Figure 8.1052

Once T returned, Algorithm 1 merges T into T1053

at the original position of v. Since v is selected1054

from either vTr or V 1
T , both of which derive sub-1055

tree(s) with height 1, merging T of height 2 will1056

increase the height of T by 1. As depicted in Fig-1057

ure 9, Algorithm 1 aims to iteratively invoke Algo- 1058

rithm 2 and integrate the returned T until T reaches 1059

height K. The decision of whether Algorithm 2 is 1060

invoked on vTr or V 1
T depends on which of the two 1061

selections results in less structural entropy for the 1062

merged coding tree T . 1063

C Proof for Theorem 1 1064

Proof. According to Li and Pan (2016), structural 1065

entropy decodes the essential structure of the orig- 1066

inal system while measuring the structural infor- 1067

mation to support the semantic modeling of the 1068

system. Thus, we have, 1069

I(F∗(GL ◦ D);Y ) =I(F∗(TL ◦ D);Y ). (19) 1070

Considering the data processing inequality (Cover 1071

and Thomas, 2006) for data augmentation, we 1072

would have, 1073

I((GL,D);Y ) ≥ I(θ(GL,D);Y ), (20) 1074

where θ is a general data augmentation function 1075

acting on (GL◦D). Integrating the above equations, 1076

we have, 1077

I((TL ◦ D);Y )
(a)
=I(F∗(TL ◦ D);Y ) (21) 1078

(b)
=I(F∗(GL ◦ D);Y ) (22) 1079

(a)
=I((GL ◦ D);Y ) (23) 1080

(c)

≥I(θ(GL ◦ D));Y ). (24) 1081

where (a), (b), and (c) could be referred to Equa- 1082

tion 12, Equation 19, and Equation 20, respectively. 1083

Here, we have concluded the proof that the informa- 1084

tion encoded by HILL is lossless, which is the up- 1085

per bound of any other augmentation-based meth- 1086

ods. □ 1087
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