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Abstract

Recent direct preference alignment algorithms (DPA), such as DPO, have shown
great promise in aligning large language models to human preferences. While this
has motivated the development of many new variants of the original DPO loss,
understanding the differences between these recent proposals, as well as develop-
ing new DPA loss functions, remains difficult given the lack of a technical and
conceptual framework for reasoning about the underlying semantics of these al-
gorithms. In this paper, we attempt to remedy this by formalizing DPA losses
in terms of discrete reasoning problems. Specifically, we ask: Given an existing
DPA loss, can we systematically derive a symbolic expression that characterizes
its semantics? How do the semantics of two losses relate to each other? We pro-
pose a novel formalism for characterizing preference losses for single model and
reference model based approaches, and identify symbolic forms for a number of
commonly used DPA variants. Further, we show how this formal view of pref-
erence learning sheds new light on both the size and structure of the DPA loss
landscape, making it possible to not only rigorously characterize the relationships
between recent loss proposals but also to systematically explore the landscape and
derive new loss functions from first principles. We hope our framework and find-
ings will help provide useful guidance to those working on human AI alignment.

1 Introduction
Loss functionsSymbolic programs

DPO

novel DPO variant

modify
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Figure 1: Can we uncover the hidden logic of
DPO? Here we show the distillation of the DPO loss
into a symbolic expression that expresses its high-
level model behavior, along with a modified ver-
sion we can compile into a novel DPO loss.

Symbolic logic has long served as the de-
facto language for expressing complex knowl-
edge throughout computer science (Halpern
et al., 2001), including in AI (McCarthy et al.,
1960; Nilsson, 1991), owing to its clean seman-
tics. Symbolic approaches to reasoning that
are driven by declarative knowledge, in sharp
contrast to purely machine learning-based ap-
proaches, have the advantage of allowing us
to reason transparently about the behavior and
correctness of the resulting systems. In this pa-
per we focus on the broad question: Can the
declarative approach be used to better under-
stand and formally specify algorithms for large language models (LLMs)?

We specifically investigate direct preference learning algorithms, such as direct preference opti-
mization (DPO) (Rafailov et al., 2024), for pairwise preference learning, which are currently at
the forefront of research on LLM alignment and learning from human preferences (Ouyang et al.,
2022; Wang et al., 2023). While there has been much recent work on algorithmic variations of DPO
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(Azar et al., 2023; Hong et al., 2024; Meng et al., 2024, inter alia) that modify or add new terms
to the original loss, understanding the differences between these new proposals, as well as coming
up with new variants, remains a formidable challenge due to the lack of a conceptual and technical
framework for reasoning about their underlying semantics.

Our study attempts to remedy this problem by formalizing the corresponding loss functions in terms
of logic. Such a formalization is based on trying to answer the question: Given an existing loss
function, such as DPO (see Figure 1), can we derive a symbolic expression that captures the core
semantics of that loss function (i.e., one that we can then systematically compile back into the exact
loss)? In treating loss functions as discrete reasoning problems, ones that abstract away from lower-
level optimization details and tell us about high-level model behavior, it becomes possible to study
them using conventional semantic notions from logic (e.g., entailment), relate it semantically to
other programs, or even modify its underlying logical semantics to derive entirely new algorithms.

To do formalization, we devise a novel probabilistic logic based on a generalization of the notion of
semantic loss (SL) (Xu et al., 2018) coupled with a provably correct mechanical procedure for trans-
lating existing DPA losses into programs in our logic. As in SL, losses are produced from symbolic
programs by counting the weighted propositional models of those programs, reducing the problem
to one of probabilistic inference (Chavira & Darwiche, 2008). In contrast to the kinds of symbolic
programs commonly used with SL, however, empirically successful DPA losses impose systematic
conditional constraints on the types of models that should be counted, which shape the structure
of the underlying probability distribution. We express these constraints through a new primitive in
our logic called a preference structure that also addresses various technical and conceptual issues
involved with modeling pairwise preference symbolically. It is through such constraints that certain
semantic relationships between existing losses can be easily observed and new losses can be derived.

Our formal view of preference learning sheds much light on the size and structure of the DPA loss
landscape. Under modest assumptions motivated by the structure of existing DPA losses and our
new logic, we see that the number of definable DPA losses is doubly exponential over the number
(n) of unique predictions (i.e., forward model calls) made in a loss function, or 42

n

. This results
in, for example, close to 4.3 billion unique variations of the original DPO loss, which leaves much
room for exploration. While big, we show how this space is structured in interesting ways based on
formal connections between relationships that hold in the semantic space among formalized DPA
losses (e.g., logical entailment, equivalence) and their monotonicity properties in the loss space.

These formal results also provide practical insights into how to effectively search for new DPA
losses. For example, one can start with empirically successful loss functions, use the formalization
to understand their semantics, then modify their semantics to arrive at novel variants that are either
more constrained or less, then experiment accordingly.

2 Related work

Language model alignment While traditional approaches to language model alignment have em-
ployed reinforcement learning (Ziegler et al., 2019; Christiano et al., 2017), we focus on DPA ap-
proaches such as DPO (Rafailov et al., 2024) and SliC (Zhao et al., 2023) that use closed-form loss
functions to tune models directly to offline preferences.

We touch on two recent areas in this space: formal characterizations of DPA losses (Azar et al.,
2023; Tang et al., 2024; Hu et al., 2024) and work on devising algorithmically enhanced variants
of DPO (Amini et al., 2024; Hong et al., 2024; Meng et al., 2024; Pal et al., 2024; Xu et al., 2024;
Ethayarajh et al., 2024; Park et al., 2024). In contrast to this work on formal characterization, which
focuses on the optimization properties of DPA losses and particular parameterizations like Bradley-
Terry, we attempt to formally characterize the semantic relationships between these variants of DPO
in an optimization agnostic way to better understand the structure of the DPA loss landscape.

Neuro-symbolic modeling For formalization, we take inspiration from work on compiling symbolic
formulas into novel loss functions (Li et al., 2019; Fischer et al., 2019; Marra et al., 2019; Asai &
Hajishirzi, 2020, inter alia), which is used for incorporating background constraints into learning to
improve training robustness and model consistency. In particular, we focus on approaches based on
probabilistic logic (Manhaeve et al., 2018; Ahmed et al., 2022, 2023; van Krieken et al., 2024).
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In contrast to this work, however, we focus on the inverse problem of decompilation, or deriving
symbolic expressions from known and empirically successful loss functions to better understand
their semantics (see Friedman et al. (2024) for a similar idea). Work in this area has mostly been
limited to symbolically deriving standard loss function such as cross-entropy (Giannini et al., 2020;
Li et al., 2019), whereas we look at deriving more complex algorithms for LLMs.

3 Direct Preference Alignment

In this section, we review the basics of offline preference alignment, which can be defined as the
following problem: given data of the form: Dp =

{
(x(i), y

(i)
w , y

(i)
l )

}M

i=1
consisting of a model input

x and two possible generation outputs (often ones rated by humans), a preferred output yw (the
winner w) and a dispreferred output yl (the loser l), the goal is to optimize a policy model (e.g., an
LLM) y ∼ πθ(· | x) to such preferences.

f(ρθ, β) = ρθ (standard formulation)
DPO − log σ(βρθ) log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x)IPO (ρθ − 1

2β
)2

SliC max(0, β−ρθ) log πθ(yw|x)
πθ(yl|x)

RRHF max(0,−ρθ) log πθ(yw|x)
1

|yw|

πθ(yl|x)
1

|yl|

Table 1: Examples of some popular DPA loss func-
tions with different choices of f and ρθ.

As mentioned at the outset, we focus on
direct preference alignment (DPA) ap-
proaches that all take the form of some
closed-form loss function ℓ that we can use
to directly train our model on Dp to ap-
proximate the corresponding ground prefer-
ence distribution p∗(yw ≻ yl | x) (where
yw ≻ yl denotes that yw is preferred over
yl). Since our study focuses on the formal
properties of DPA losses, it is important to
understand their general structure, which will take the following form (Tang et al., 2024):

ℓDPA(θ,D) := E
(x,yw,yl)∼Dp

[
f
(
ρθ(x, yw, yl), β

)]
(1)

consisting of some convex loss function f : R×R+→ R, a model quantity ρθ(x, yw, yl) which we
will abbreviate to ρθ and a parameter β.1

Table 1 lists four specific DPA losses: DPO (Rafailov et al., 2024), IPO (Azar et al., 2023), SliC
(Zhao et al., 2022, 2023), and RRHF (Yuan et al., 2023). Here the logistic log loss (shown using
the logistic function σ(x) = 1

1+exp(−x) ), square loss, hindge loss, and perceptron loss are used for
f , respectively. Loss functions such as SliC and RRHF are examples of single model approaches
that define ρθ in terms of the log ratio of the winner and loser given prediction probabilities πθ

of the model being trained. As an important implementation detail, the prediction probabilities
are sometimes computed using length normalization as shown for RRHF. For DPO and IPO, in
contrast, the model quantity ρθ is the log ratio difference (of the winner and the loser) between
the predictions of the model being trained and a frozen LLM called a reference model, πref. These
two approaches constitute a two model approach, where the role of the reference model is to avoid
overfitting on the target preference data (controlled by the parameter β).

Single model approaches have the advantage of avoiding the overhead associated with having an ad-
ditional reference model and can sometimes yield competitive performance when compared against
two model approaches. In the absence of a reference model, these losses are usually regularized
using an added cross-entropy term, which we exclude from our formal analysis.

The structure of DPA variants. Conceptually, preference losses involve making predictions
about winners and losers across models and reasoning about the relationships between predictions.
The main question we ask is: If we view this process as a discrete reasoning problem, what is the
nature of the reasoning that underlies these different losses and each ρθ? To do our analysis, we start
by rewriting each loss function in a way that strips away optimization and implementation details
(e.g., details about f , β, length normalization) in order to arrive at a bare form of ρθ.

Accordingly, we will write Pm(y | x) in place of πθ(y | x) to denote the probability assigned by a
model m to an output y in a way that is agnostic to whether length normalization is used. In Table 2,

1Following Tang et al. (2024) and their GPO framework, we formulate DPA approaches as general binary
classification problems and do not make any assumptions about the preference structure p(yw ≻ yl | x).
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we show different variants of DPO that we consider and two common baselines, the cross-entropy
loss ℓCE and a variant that uses an unlikelihood (Welleck et al., 2019) term ℓCEUnl. Importantly, we
later express each ρθ as a single log ratio ρtθ/ρ

b
θ, which we refer to as the core loss equation.

To more easily see the relationships between these proposals, we rewrite each ρθ in terms of the log
ratio function sm(y1, y2) defined in Table 2 (we use y to denote the negation of y, or 1 − Pm(y |
x)). Here we see that all losses are derivable from the log ratio of winner and loser sθ(yw, yl)
used in SliC and RRHF either exactly, as in CPO (Xu et al., 2024), or with added terms. DPO, for
example, is expressible as this ratio minus an additional log ratio term sref(yw, yl) that contains
information about the reference model. Many variations to DPO then involve making the following
two modifications.

Loss ρθ := log
ρtθ
ρb
θ

sm1(,m2)(y1, y2) := log
Pm1

(y1|x)
Pm2

(y2|x)

Baselines ρθ
ℓCE log Pθ(yw|x)

1−Pθ(yw|x) ℓCEUnl log Pθ(yw|x)(1−Pθ(yl|x))
Pθ(yl|x)+(1−Pθ(yw|x)))

Single model approaches (no reference) Pθ

ℓCPO log Pθ(yw|x)
Pθ(yl|x)

sθ(yw, yl)

ℓORPO log Pθ(yw|x)(1−Pθ(yl|x))
Pθ(yl|x)(1−Pθ(yw|x)) sθ(yw, yl) −sθ(yw, yl)

ℓSimPO log Pθ(yw|x)Pmref(yl|x)
Pmref(yw|x)Pθ(yl|x)

sθ(yw, yl) −smref(yw, yl)

with reference model Pref

ℓDPO log Pθ(yw|x)Pref(yl|x)
Pref(yw|x)Pθ(yl|x)

sθ(yw, yl) −sref(yw, yl)

ℓDPOP log Pθ(yw|x)Pθ2(yw|x)Pref(yl|x)
Pref(yw|x)Pref2(yw|x)Pθ(yl|x)

sθ(yw, yl) −sref(yw, yl)

−sref2,θ2(yw, yw)

Table 2: How are variants of DPO structured? Here we de-
fine some popular variants in terms of their core loss equa-
tion ρθ and the helper function sm1,m2

(y1, y2) (last column)
that rewrites each ρθ in a way that brings out general shared
structural patterns and added terms compared with the log
win/loss ratio sθ(yw, yl).

Adding additional terms. Ap-
proaches like ℓDPOP (Pal et al., 2024)
(see also Amini et al. (2024); Park
et al. (2024)) incorporate additional
terms into DPO (sref2,θ2(yw, yw))
that address particular failure cases.
We use θ2 and ref2 to refer to
copies of our two models, which
is a decision that we address later
when discussing the structure of
the equation class assumed for ρθ
(Section 5.2) .

Changing the reference ratio. No
reference approaches, such as ℓORPO
(Hong et al., 2024) and ℓSimPO (Meng
et al., 2024) instead reparameterize
the reference ratio sref(yw, yl) either
in terms of some quantity from our
policy model as in ORPO (sθ(yw, yl))
or a heuristic penalty term γ as in
SimPO. For SimPO we rewrite γ term in terms of the ratio γ = smref(yw, yl) (where ‘mref’ refers
to a manual reference model) to make it align to DPO. For example, given any γ ≥ 0 and manual
Pmref(yw | x), γ = smref(yw, yl) can be satisfied by setting Pmref(yl | x) = Pmref(yw | x)/ exp(γ).
While our techniques will cover both reference and no reference approaches, due to their simplicity
and the ability to derive the former from the latter, we use no reference losses such as ℓCEUnl , ℓCPO,
ℓORPO and a novel loss ℓunCPO (defined later) as running examples throughout.

4 Preference modeling as a reasoning problem
(A) Example symbolic formulas (B) Model output distribution

e

Model predicts winner Model predicts loser 

The model should
deem the winner to
be valid and the loser
to be not valid.

Whenever the model
deems the loser to be a
valid generation, it should
deem the winner to be
valid too. 

Figure 2: What do formal representations of loss functions
tell us? We show (A) two symbolic formulas related to sin-
gle model preference learning with their semantics in English.
When grounded in model behavior, they tell us about the struc-
ture of the model’s output probability distribution (B) and where
predictions belong in that distribution (relative to some ϵ). We
will later show that these formulas correspond to the losses ℓunCPO
(Figure 4) and the common baseline ℓCEUnl (Table 2).

To better understand the DPA
loss space, we will formalize the
preference losses and the model
quantities ρθ introduced in the
previous section in terms of sym-
bolic reasoning problems. This
will involve the following core
ideas and assumptions.

Model predictions are sym-
bolic objects The declarative
approach will involve thinking
of LLMs predictions as logical
propositions. For example, when
a model M generates an output yw
for a prompt x, we will use the
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notation M(x, yw) to express the proposition that yw is a valid generation for x. Importantly,
we will further weight these propositions by assigning the probabilities given by our LLMs, i.e.,
Pθ(M(x, yw)) = Pθ(yw | x). We call these our probabilistic predictions X1, ..., Xn, which will
form the basis of symbolic formulas.

Relationships between predictions are expressed as symbolic formulas Relationships between
model predictions will take the form of symbolic constraints expressed as formulas of propositional
logic P defined by applying zero or more Boolean operators over probabilistic predictions. For
example, in Figure 3 (A), the top formula, which we later show is fundamental to the semantics of
many DPA approaches, uses the implication operator (Implies) to express the constraint that model
M should never deem the loser yl to be a valid generation (M(x, yl)) without deeming the winner yw
to also be valid (M(x, yw)). The bottom formula tells us instead that only the winner yw should be
deemed valid using the conjunction and negation operators (And, Not).2

When grounded to model behavior via the proposition weights, such constraints tell us about the
structure of a model’s output probability distribution, as visualized in Figure 3 (B). Semantically,
we assume that what constitutes a valid generation is any probabilistic prediction whose weight
exceeds some threshold ϵ in that distribution, similar to ϵ-truncated support in Hewitt et al. (2020).
While our results later will not depend on making any direct assumptions about ϵ, such a definition
is merely meant to provide intuitions for how to understand our formulas.

4.1 Compilation and Decompilation

Compilation and semantic loss To compile a symbolic formula P into loss, we employ a proba-
bilistic approach based on the semantics of a variant of weighted model counting (WMC) (Chavira
& Darwiche, 2008; Fierens et al., 2015). This is based on computing a probability of a formula P:

pθ(P) = WMC
(
P; θ

)
:=

∑
w∈{0,1}n

1{w |= P}
∏

w|=Xi

Pθ(Xi) ·
∏

w|=¬Xi

(
1− Pθ(Xi)

)
(2)

or as a weighted sum over all the propositional models of that formula w |= P, or truth assignments
(e.g., rows in the truth table in Figure 3 where P is satisfied (✓)). Each w is weighted via a product
of all the probabilistic predictions Xi in w (either Pθ(Xi) or 1−Pθ(Xi) depending on the truth value
of Xi in each w). A loss can then be obtained by taking the negative logarithm of this probability,
which is known as the semantic loss first defined in Xu et al. (2018).

Formally, the semantic loss takes the form Ed∼D[− log pθ
(
Pd

)
], where we use the notation Pd

throughout to refer to the substitution of variables in our formulas P (e.g., x, yw, yl) with specific
values from d ∼ D. Since our approach will later involve computing the probability of P condi-
tioned (optionally) on some conditioning constraints PC (i.e., an additional propositional formula),
we consider the conditional form of the semantic loss and show its full objective below:

min
θ

E
d∼D

[
− log pθ(Pd | PCd

)

]
, pθ(P | PC) =

WMC
(
P ∧ PC; θ

)
WMC

(
P ∧ PC; θ

)
+ WMC

(
¬P ∧ PC; θ

) (3)

where the last part follows from the standard definition of conditional probability (with the denomi-
nator being an expanded form of WMC

(
PC; θ

)
). We note that when PC is equal to ⊤ (or true), this

form of the semantic loss is equivalent to the original version.

As an important technical point, we see below how having an explicit negation ¬P in the normaliza-
tion allows us write the probability of P in the following way (without loss of generality, we exclude
PC to improve readability and remove θ from WMC):

pθ(P) =
exp

(
logWMC

(
P
))

exp
(
logWMC

(
P
))

+ exp
(
logWMC

(
¬P

)) = σ

(
log

WMC
(
P
)

WMC
(
¬P

)
︸ ︷︷ ︸
semantic loss ratio

)
(4)

with ℓ(P, θ,D) := E
d∼D

[
− log pθ(Pd)

]
= E

d∼D

[
− log σ

(
log

WMC
(
Pd

)
WMC

(
¬Pd

) )]
(5)

2We will switch between using conventional logical notation (e.g., ∧,∨,¬,→,⊕) and operator notation
(e.g., And, Or, Not, Implies, XOR) depending on the context.
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yielding a logistic log form of the semantic loss ℓ(P, θ,D) that aligns with the structure of the DPA
losses in Section 3. As an analog to ρθ, we call the inner part of σ(·) above the semantic loss ratio.

Decompilation The goal of decompilation is to derive for a loss function ℓx a symbolic expression
P that characterizes the semantics of that loss. As we show later in Sec. 5.2, this will reduce to the
problem of finding a program whose semantic loss ratio is equivalent to a loss’s core loss equation
ρθ, based largely on the derivation above and its connection with DPA.

5 A logic for preference modeling

Figure 3: The Boolean semantics (top) of
our version of semantic loss and prefer-
ence structures: ✓ correspond to proposi-
tional models satisfying P, Pf , × s to ¬P
and ¬Pf , blank cells to conditioning con-
straints PC and cells with multiple marks
to PA. Losses (columns) are created by
assigning/removing marks then counting
these marks/rows via WMC and using the
the bottom Eq. (following from Eq. 5).

In the standard semantic loss (SL), ML loss functions
ℓx are expressible as a single propositional formu-
las P interpreted via probabilistic logic, with ℓx ∼
− log pθ(P). At first glance, this formulation is at
odds with standard formulations of pairwise prefer-
ence, such as the Bradley-Terry (BT) model (Bradley
& Terry, 1952) typically assumed in RLHF, which in-
volves modeling a preference distribution pθ(yw ≻ yl)
between two (often disparate) quantities (e.g., given by
the kinds of log ratios in Table 2). Indeed, logical ac-
counts of pairwise preference such as Jeffrey (1965);
Rescher (1967) assume a similar semantics where
preference is defined not as a single propositional for-
mula but as and inequality between model counts µ of
two independent formulas µ(Pw) > µ(Pl).

We observe none of the DPA losses in Table 2 and their
log ratios can be expressed as a single propositional formula in standard SL using only their prob-
abilistic prediction variables3 While this can be remedied by creating a new version of SL that in-
volves counting multiple formulas as in Rescher (1967), we instead define a relational structure and
encoding called a preference structure that allows us to capture the semantics of losses in a modu-
lar fashion using a single propositional formula coupled with auxiliary constraints. Such a structure,
which is based on a novel construction in propositional logic for encoding multiple formulas, will
later make it easy to cleanly characterize different DPA losses and gives rise to a generalized form
of SL (see Figure 3 for a high-level illustration).

Preference structure A preference structure is a tuple P = (P,PC,PA) consisting of three propo-
sitional formulas: a core semantic formula P coupled with conditioning constraints PC (as in
Eq 3, which restrict the propositional models that can be counted) and additive constraints PA that
tell us what propositional models always need to be counted. As we will show, all the DPA losses
in Table 2 are representable as preference structures, often ones where the same core formula P is
shared (e.g., the formulas in Figure 3), yet that differ in the constraints they impose (PC and PA).

Each preference structure will have a formula form Pf and a negated formula form ¬Pf , which
are defined by the following two propositional formulas (see running examples in Figure 3):

Pf :=

(
P ∨ PA

)
∧ PC, ¬Pf :=

(
¬P ∨ PA

)
∧ PC. (6)

In the absence of the additive constraint PA, we note that these representations encode the condi-
tional P | PC, thus making the semantic loss of these formulas equivalent to the conditional semantic
loss in Eq 3. Indeed, many DPA losses will be reducible to the conditional semantic loss, however,
PA and the ability to add default model counts to P and ¬P will be needed to derive some DPA
losses symbolically and account for peculiar properties of their normalization.

Below we show that any two propositional formulas can be expressed as a preference structure based
on a particular construction, called the implication form, that we use later for decompilation.

3To see this for the ratio sθ(yw, yl) from Table 2, which has two probabilistic prediction variables yw and yl,
one can enumerate all 16 unique Boolean functions over variables yw and yl to see that none yield a semantic
formula whose WMC is equal to σ(sθ(yw, yl)). Through further analysis, one can also see that it is not possible
to derive σ(sθ(yw, yl)) using conditional WMC either. The same argument can be applied to other losses.
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Proposition 1. Given any two propositional formulas P1 and P2, there exists a preference structure
P such that P1 ≡ Pf and P2 ≡ ¬Pf .

Proof. We provide a specific construction we call the implication form of P1 and P2. This is based
on the following logical equivalences (the correctness of which can be checked manually):

P1 ≡
(

(P2 → P1)︸ ︷︷ ︸
P

∨ (P1 ∧ P2)︸ ︷︷ ︸
PA

)
∧ (P1 ∨ P2)︸ ︷︷ ︸

PC

,P2 ≡
(
¬(P2 → P1)︸ ︷︷ ︸

¬P

∨ (P1 ∧ P2)︸ ︷︷ ︸
PA

)
∧ (P1 ∨ P2)︸ ︷︷ ︸

PC

As noted above, this construction corresponds exactly to the preference structure (P,PC,PA) with
P := P2 → P1, PC := P1 ∨ P2 and PA := P1 ∧ P2 and its two formula forms. (As a special case,
whenever P2 ≡ ¬P1, this simplifies to the structure P = (P1,⊤,⊥))

As a corollary, this tell us that we can decompose any preference structure formed via the implication
form to two formulas. When visualized as truth tables (Figure 3), which we can use an alternative
encoding of preference structures, these correspond to the formulas representing the ✓ s and × s.

5.1 Generalized semantic loss based on preference structures

Name f(ρsem, β) = Semantic loss ratio
ℓsl-log − log σ(βρsem)

ρsem := log
WMC

(
Pf ;θ

)
WMC

(
¬Pf ;θ

)ℓsl-squared (ρsem − 1
2β

)2

ℓsl-margin max(0, β−ρsem)

Table 3: Different forms of the generalized se-
mantic loss that match the DPA losses in Table 1.

In our generalization of the semantic loss, for-
mulas P will be replaced with preference struc-
tures P. For example, we can modify the lo-
gistic log form of SL in Eq 5 to be ℓ(P, θ,D)
and change the semantic loss ratio ρsem accord-
ingly to operate over the formula forms of P in
Eq 6. By analogy to the generalized DPA in
Eq 1, we can view this logistic log form as a particular instance of a generalized semantic loss:
ℓsl(P, θ,D) := Ed∼D[f(ρsem(d), β)] where, like in DPA, different choices can be made about what
f to apply over the semantic loss ratio ρsem, which gives rise to several novel logics. To match the
structure of DPA, we also add a weight parameter β. We define three particular versions of SL in
Table 5, which we will need to apply our formal analysis to particular DPA losses in Table 1.

How many loss functions are there? Under this new formulation, we can view loss creation as a
generative procedure, where we first select a f then sample two formulas P1 and P2 (each denoting a
unique Boolean function in n variables) to create a P via Prop 1 (see also Figure 3). This view allows
us to estimate the total number of definable loss functions for choice of f to be doubly exponential in
the number of probabilistic predictions n, equal to 42

n

(i.e., the unique pairs of Boolean functions).
For DPO, which involves four probabilistic predictions, this results in more than 4.2 billion variations
that can be defined (how DPO is translated into a preference structure is addressed in Section 5.2).

How is the loss space structured? While the space of loss functions is often very large, one can
structure this space using the semantics of the corresponding formulas. Below we define preference
entailment and equivalence and relate these semantic notions to the behavior of the compiled losses.
The following formal results (see proofs in Appendix B) give us tools for structuring the DPA loss
space and informing the search for new loss functions.

We define preference entailment for two preference structures P
(1) ⊑ P

(2)
in terms of ordinary

propositional entailment (|=) between formula forms: P
(1) ⊑ P

(2)
:= (Pf

(1) |= Pf
(2) ∧ ¬Pf

(2) |=
¬Pf

(1)
). Below we show (proof deferred to Appendix) that losses are monotonic w.r.t. preference

entailment, as in the original SL (Xu et al., 2018).

Proposition 2 (monotonicity). If P
(1) ⊑ P

(2)
then ℓsl(P

(1)
, θ,D) ≥ ℓsl(P

(2)
, θ,D) for any θ,D.

We will use later entailment to characterize the relative strength of DPA losses and visualize their
relations using a representation called a loss lattice (see Figure 4). We also extend preference
entailment to preference equivalence in a natural way: P

(1) ≡ P
(2)

:= (P
(1) ⊑ P

(2) ∧ P
(2) ⊑

7



P
(1)

), and observe that our version of semantic loss is equivalent under preference equivalence
(please see Appendix B for proofs and additional formal results).

5.2 Decompiling DPA losses into preference structures

The decompilation of a DPA loss ℓDPAx
into a symbolic form can now be stated as finding a

preference structure P whose particular semantic loss ℓslx is equal to ℓDPAx
, as given in Eq 7:

∀D, θ. ℓDPAx
(D, θ) = ℓslx(P, D, θ) (7) ρθ = ρsem, with ρt

θ

ρb
θ

=
WMC

(
Pf ;θ

)
WMC

(
¬Pf ;θ

) (8)

We say that a preference structure P correctly characterizes a loss ℓx under some ℓslx whenever
this condition holds. Given the structure of the DPA loss (Eq 1) and the generalized semantic loss,
whenever f is fixed this can be reduced to finding a P whose semantic loss ratio ρsem is equal to ℓx’s
core loss equation ρθ as shown in Eq 8 (with the log removed) .

Algorithm 1: DPA to logic

Input : disjoint polynomials ρθ =
ρt
θ

ρb
θ

Output: P = (P,PC,PA)
1 Pt ← SEM(ρtθ)

2 Pb ← SEM(ρbθ)
3 P← SIMPLIFY(Implies(Pb,Pt))
4 PC ← SIMPLIFY(Or(Pt,Pb))
5 PA ← SIMPLIFY(And(Pt,Pb))

Based on this, we define a procedure for translating
the core loss equations ρθ in Table 2 into preference
structures and ρsem. We consider each part in turn.

Characterizing the DPA equation class By con-
struction, we will assume that all the core equations for
DPA losses ρtθ and ρbθ are expressible as certain types
of disjoint multilinear polynomials over binary vari-
ables {xi}ni=1, intuitively polynomials whose transla-
tion via the rules in Table A results in valid formulas
of propositional logic. Formally, such polynomials over n variables are defined as any polynomial
e of the form e =

∑
i ei where (a) for all i there exists Ji ⊆ {1, . . . , n} such that ei =

∏
j∈Ji

ℓij
where ℓij is either xj or (1 − xj), and (b) for all i, i′, terms ei and ei′ are disjoint, i.e., have no
common solutions (for some k, one term has xk and the other has 1− xk).

We note that not all preference loss functions in the preference learning literature immediately fit
this format, including the original form of DPOP (Pal et al., 2024) which we discuss in Appendix D
and fix through variable copying as shown in Table 2.

Translation algorithm Our translation process is shown in Algorithm 1. Given an input ρθ, both
parts of that equation are translated into logic (lines 1-2) via a translation function SEM. The trans-
lation is standard and its correctness can be established via induction on the rules (see the full rules
in Table A): each model prediction PM(·) is mapped to a probabilistic prediction M(·) then: 1 − P
is mapped to negation, P1 · P2 to conjunction, and P1 + P2 to disjunction. Lines 3-5 apply the
implication construction from Prop 1 to create a P, where formulas are minimized via SIMPLIFY.

The following result establishes the correctness of our decompilation algorithm, showing specifically
that our algorithm yields preference structures that satisfy Eq 8. This follows immediately from the
correctness of our translation rules and the implication construction from Prop 1.

Proposition 3 (correctness). Given a loss equation ρθ = ρtθ/ρ
b
θ where ρtθ, and ρbθ are disjoint

polynomials, Algorithm 1 returns a preference structure P whose semantic loss ratio ρsem equals ρθ.

6 Results and Discussion

Table 4 shows the preference structures obtained from Algorithm 1 for the DPA losses in Table 2.
Since the original losses were all formulated using the logistic log form of DPA, the correctness of
Algorithm 1 (Prop. 3) tells us that compiling the representations in Table 4 under ℓsl-log will yield
exactly the original losses, and hence satifies Eq 7. Importantly, when the DPO symbolic form is
compiled using ℓsl-square (i.e., the squared loss form of SL), this will yield exactly IPO (Azar et al.,
2023), showing how our semantic analysis is invariant to the particular choice of f .

6.1 What we learn about known losses?
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Loss Representation P
CE P := M(x ,yw ), PC := ⊥
CEUnl P := And(M(x,yw ), Not(M(x,yl )))
CPO P := Implies(M(x,yl ), M(x ,yw ))

PC := Or(M(x ,yl ), M(x ,yw ))
ORPO P := Implies(M(x,yl ),M(x ,yw ))

PC := XOR(M(x,yl ), M(x ,yw ))
DPO P := Implies(And(Ref(x,yw),M(x,yl )),

And(Ref(x,yl ),M(x ,yw )))
PC := Or(And(Ref(x,yw ),M(x ,yl )),
And(Ref(x,yl ),M(x ,yw )))

Table 4: Formalizations of some of the losses
from Table 2 shown in terms of P and PC
(for succinctness, we exclude PA which can
be inferred from each PC via Algorithm 1).

Single model approaches have an intuitive se-
mantics, highly constrained Under our analysis,
CPO and ORPO are both derived from the same core
semantic formula P and implication first introduced
in Figure 3, in spite of the superficial differences in
their original form. They differ, however, in terms
of the conditioning constraints PC they impose, with
CPO imposing a one-true constraint that requires ei-
ther the winner or loser to be deemed valid, whereas
ORPO imposes a one-hot constraint where one and
only one can be deemed valid. When plotted in a
broader loss landscape, as shown in Figure 4, we
see that both are entailed by the CEUnl baseline, yet
have a non-entailing relation to one another.

In general, we see that preference losses are highly
constrained. This is in contrast to the losses typically
used with the semantic loss, suggesting that there is much to learn by working backward from
empirically successful loss functions to their semantic properties.

ℓCEUnl ✓

ℓsCE
ℓCE ✓

ℓcUNL

ℓl20
ℓfUnl

ℓORPO ✓

ℓCPO ✓

ℓcCPO ℓunCPO

ℓqfUnl

ℓcfUnl

M(x, yl) → M(x, yw)

¬M(x, yl)

M(x, yw)

M(x, yw) ∧ ¬M(x, yl)

most constrained least constrained

Figure 4: What other losses are there? Here we
show the loss landscape for single model pref-
erence approaches using a loss lattice showing
losses (nodes) structured according to strict entail-
ment (<) and their core formulas P (boxes) with
✓ being the known losses. See Appendix C for
details of the individual losses and Figure 5.

There are many losses still to explore We
created new losses by modifying the condition-
ing constraints of existing losses. Figure 4
shows a (non-exhaustive) lattice representation
of the loss landscape for single model prefer-
ence approaches created by mechanically de-
riving new losses from the ℓCEUnl baseline (the
most constrained) and ordering them by strict
entailment (terminating in ℓunCPO , our running
example). We see different semantic regions
emerge characterized by different formulas P,
notably an unexplored region of unlikelihood
losses that optimize for the negation of the loser
(Not(M(x, yl))).

DPO has a peculiar semantics, shared among variants The semantics of DPO shown in Table 4
is logically equivalent to a conjunction of two implications: Ref(x, yw) ∧ M(x, yl) → M(x, yw) and
Ref(x, yw)∧¬M(x, yl)→ ¬M(x, yl). The first says that If the reference deems the winner to be valid
and the tunable model deems the loser to be valid, then that model should also deem the winner to be
valid, while the second says that the tunable model should deem the loser to be not valid whenever
the reference deems the winner to be valid and the loser to be not valid. While this semantics makes
sense, and complements nicely the semantics of CPO by adding information about the referent model,
DPO includes conditioning constraints that are hard to justify from first principles, and that make it
semantically disconnected from the CE and CEUnl baselines.

We also note that variants like SimPO and DPOP when formalized maintain exactly the same struc-
ture of DPO in Table 4, with DPOP adding repeated variables that amplify the score of the winner.
Giving the semantic similarity between these variants and DPO, any small semantic change found
in one would likely be useful in these others, which motivates general exploration into varying the
conditioning constraints (we show several such variants of DPO in Figure C built from Figure 4).

6.2 Applying our framework

Our formal analysis reveals that the space of DPA losses is large, yet structured in systematic ways
that we can now describe through symbolic encodings. Through cases studies involving the new
losses in Figure 4, we discuss some empirical results that give tips for how to better navigate this
space and look for improved DPA losses using our framework. Specifically, we focus on losses
around the known loss ℓCPO, which we treat as a natural baseline to compare against. All experiments
are performed using an 0.5 billion LLM, Qwen-0.5B (Bai et al., 2023), tuned using trl (von Werra
et al., 2020) on the ultrafeedback dataset (see full experiment details in Appendix C).
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Figure 5: An illustration (A) of how to
semantically satisfy losses ( ✓ ) and the
corresponding log probability behavior
during training (B) and evaluation (C).

How does constrainedness relate to loss behavior?
Moving left to the right in Figure 4 yields semantically
less constrained losses. For example, we see through the
Boolean semantics in Figure 5 that some unconstrained
losses can be satisfied by making the winner and loser
both false (ℓunCPO, ℓcfUNL) or by making the the winner
and loser both true (ℓunCPO, ℓcfUNL).

We observe, consistent with other recent work on
neuro-symbolic modeling (Marconato et al., 2024; van
Krieken et al., 2024), that such unconstrainedness can
yield extreme behavior as illustrated in Figure 5. For
example, ℓunCPO and ℓcfUNL attempt to make both the win-
ners and losers false by driving their probability in the
direction of zero (as shown in in both training (b) and
evaluation (c)), whereas ℓcfUNL keeps both probabilities
high to make both true. These results suggest that un-
derstanding the way in which a loss is constrained and
whether it gives rise to spurious shortcuts is an impor-
tant factor when designing new loss functions.

What is the right semantics for preference learning?
Given the spurious behavior of losses ℓunCPO and ℓcfUNL,
we would expect them to be less empirically successful.
To test this and compare against ℓCPO, we performed a model-as-judge-style experiment based on
Hong et al. (2024) that uses an off-the-shelf reward model (Cai et al., 2024) to score the outputs
generated by our new models using the prompts from the ultrafeedback test set. We then com-
pare these rewards scores against those of ℓCPO to compute a win-rate, which gives an indication of
improved generation quality over ℓCPO. Indeed, we see in Table 5 that in aggregate, ℓunCPo and ℓcfUNL
have the lowest win-rate against ℓCPO. Interestingly, we see that ℓcCPO has a win-rate that suggests
comparable generation quality to ℓCPO, which shows the potential of using our framework to derive
new and empirically successful losses.

loss WR% (ℓcpo) evol false-qa flan sharegpt ultrachat
ℓcfUNL 46.1 (±0.4) 46.1 (±2.2) 51.6 (±2.9) 46.4 (±1.7) 46.2 (±1.2) 44.1 (±1.0)
ℓqfUNL 48.9 (±0.8) 45.3 (±1.9) 34.7 (±6.3) 57.9 (±1.2) 46.8 (±2.4) 41.3 (±1.4)

ℓcCPO 52.0 (±0.6) 50.7 (±0.5) 50.2 (±0.7) 57.2 (±1.1) 47.2 (±1.8) 53.1 (±1.9)
ℓunCPO 46.0 (±0.2) 45.8 (±0.3) 52.1 (±3.0) 45.7 (±0.6) 46.2 (±2.1) 44.8 (±2.1)

Table 5: Comparing performance of Qwen-0.5B tuned on
new losses (rows) against ℓCPO based on aggregate win-
rate (WR % (std)) on ultrafeedback test (second col-
umn) and different test subsets (columns 2-6).

Importantly, we see also that win-
rate across different categories in
ultrafeedback varies quite consider-
ably across models. This suggests that
different types of preference data rely
on a different semantics of preference,
which requires a tuning approach that’s
tailored to those differences. This high-
lights the benefit of having a framework
where one can systematically study and
manipulate the semantics accordingly,

and we think that more empirical work in this area is a promising direction for future research.

7 Conclusion

Despite the routine use of a variety of DPA algorithms to align LLMs with human preferences,
knowing what exactly the losses underlying these algorithms capture and how they relate to each
other remains largely unknown. We presented a new technique for characterizing the semantics
of such losses in terms of logical formulas over boolean propositions that capture model predic-
tions. Key to our approach is the decompilation procedure, allowing one to derive provably correct
symbolic formulas corresponding to any loss function expressed as a ratio of disjoint multilinear
polynomials. Our approach provides a fresh perspective into preference losses, identifying a rich
loss landscape and opening up new ways for practitioners to explore new losses by systematically
varying the symbolic formulas corresponding to existing successful loss functions.
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M(x, yw) M(x, yl) uncCPO cCPO CPO CE sCE ORPO

T T ✓ ✓ ✓ ✓ ✓
T F ✓ ✓ ✓ ✓ ✓ ✓
F T
F F ✓

M(x, yw) M(x, yl) cUnl CEUnl cfUnl fUnl qfUnl l20

T T
T F ✓ ✓ ✓ ✓ ✓ ✓
F T
F F ✓ ✓ ✓ ✓

Figure 6: A Boolean representation (in the style of Figure 3) of the single model loss functions
shown in Figure 4.

Input SEM(·)
predictions

PM(y | x) P := M(x, y)
formulas P

P1 · P2 P := And(P1,P2)
1− P P := Not(P)

P1 + P2 P := Or(P1,P2)

Table 6: Rules for the translation of
loss expressions into symbolic for-
mulas.

Below we state propositions discussed in Section 5.1 with
their proofs.

Proposition 4 (monotonicity). If P
(1) ⊑ P

(2)
then

ℓsl(P
(1)

, θ,D) ≥ ℓsl(P
(2)

, θ,D) for any θ,D.

Proof. By the definition of preference entailment, we have
P
(1)

f |= P
(2)

f . This means that for any d, P
1
(d) |=

P
2
(d), which implies that for any θ, WMC

(
P
(1)

(d); θ
)
≤

WMC
(
P
(2)

(d); θ
)
. From the definition of preference entail-

ment, we also have ¬P(2)
(d) |= ¬P(1)

(d). Following a similar line of reasoning as above, this

implies WMC
(
¬P(1)

(d); θ
)
≥ WMC

(
¬P(2)

(d); θ
)
. Thus, for any d and θ, the weighted model

counting ratio term in the semantic loss in Table 5 is no larger for P
(1)

than for P
(2)

. It fol-
lows that ℓsl(P

(1)
, θ, {d}) ≥ ℓsl(P

(2)
, θ, {d}). Taking the expectation over d ∼ D, we obtain

ℓsl(P
(1)

, θ,D) ≥ ℓsl(P
(2)

, θ,D).

Proposition 5 (locality). Let P be a preference structure defined over probabilistic prediction vari-
ables X with parameters θx. Let Y be some disjoint set of variables with parameters θy . Then
ℓsl(P, θx, D) = ℓsl(P, [θx θy], D) for any D.

Proof. Let wx be any world over variables X and wy be any world over (disjoint) variables Y.
Let wx,y denote the joint world. By Eq 2, the probability of the world wx,y in the (X,Y) space
can be written as Pθx,θy (wx,y) =

∏
Xi∈X Qθx,θy (Xi) ·

∏
Yj∈Y Qθx,θy (Yj) where Q is either P or

1 − P. Since the parameters θx and θy refer to disjoint sets of variables, we can simplify this to∏
Xi∈X Qθx(Xi) ·

∏
Yj∈Y Qθy (Yj).

It follows that the marginal probability of the world wx in the (X,Y) space equals Pθx,θy (wx) =∑
Y

(∏
Xi∈X Qθx(Xi) ·

∏
Yj∈Y Qθy (Yj)

)
=

∏
Xi∈X Qθx(Xi) ·

∑
Y

(∏
Yj∈Y Qθy (Yj)

)
=∏

Xi∈X Qθx(Xi) ·
∏

Yj∈Y

(
Qθy (Yj) + (1−Qθy (Yj))

)
=

∏
Xi∈X Qθx(Xi) = Pθx(wx). This last

expression is precisely the probability of the world wx in only the X space. Thus, Pθx(wx) =
Pθx,θy (wx), which implies WMC

(
P; θx

)
= WMC

(
P; θx, θy

)
and similarly for ¬P. From this, the

claim follow immediately.
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C New losses in loss lattice and experiment details

To visualize the semantics of the single model losses shown in Figure 4, we use the Boolean truth
table shown in Figure 6. As illustrated Figure 3, each loss column can be mechanically converted
into a preference structure via the following steps: 1) translate ✓ and × into two standard propo-
sitional formulas that are logically consistent with the marks, Pt for Pb, respectively, then 2) apply
the rules Algorithm 1 on lines 3-5 to these formulas to get a preference structure P. (Note that the
formulas in boxes in Figure 4 show the core formula P in the resulting preference structure and
intentionally hide details about the constraints.)

With these preference structures, we can then obtain a compiled version of the loss by simply apply-
ing one of the versions of the semantic loss. In simplified terms, finding the compiled loss equation
directly from a truth table for the log sigmoid SL involves the following equation:

− log σ

(
log

∑
✓∑
×

)
where we can replace each

∑
. with the corresponding WMC equations for each mark, then simplify

the resulting equation (i.e., the core loss equation) to arrive at a compact loss equation that can be
directly used for implementation.

Losses used in experiments Employing the process above, below show the core loss equations
for the losses we used in our experiments in accordance with the form in Table 2:

Loss name Core loss equation (implementation)
ℓcpo log Pθ(yw|x)

Pθ(yl|x)
ℓorpo log Pθ(yw|x)(1−pθ(yw|x))

Pθ(yl|x)(1−pθ(yw|x))

ℓcCPO log Pθ(yw|x)
(1−Pθ(yw|x))Pθ(yl|x)

ℓqfUNL log (1−Pθ(yl|x))
(1−Pθ(yw|x)

ℓcfUNL log (1−Pθ(yw|x))
(1−Pθ(yw|x))Pθ(yl|x)

ℓunCPO log pθ(yl|x)pθ(yw|x)+(1−pθ(yl|x))
pθ(yl|x)(1−pθ(yw|x))

As described above, the final loss that we implemented was then obtained by applying the logistic
loss loss over these equations and adding a β term. We used the trl library for implementation
from von Werra et al. (2020), with assistance from the trainer scripts used in Meng et al. (2024).4

Extending the loss lattice to reference models While our loss lattice and the subsequent exper-
iments we describe center around novel no reference loss functions, we note that given abstract
structure of DPA, we can easily transform a no reference loss function into reference loss function
by simply subtracting the reference log win-lose ratio, sref(yw, yl) (either using a real reference ratio
or one for simpo) from any single model loss equation (e.g., any of of the loss equations above).
Via some algebraic simplification, we can then arrive a new core loss equation with this reference
information and straightforwardly generate a preference structure via Algorithm 1.

Figure C shows the result of this process for the single loss functions derived in Figure 4. This
reveals a wide range of novel variants of DPO that we leave for future experiments and study.

C.1 Experiment settings

Dataset and Model Following much of the DPA work we cite, we train models on the
ultrafeedback dataset (Cui et al., 2023), which contains around 60k binarized preference pairs
aggregated from several individual preference datasets (the different categories are listed in Table 5).
For tuning (detailed below) we used a custom held-out development set containing around 1.3k ex-
amples taken from the train set and reserve the test set (containing 2k examples) for final evaluation.

Standardly, we ran experiments starting from a instruction tuned model (SFT), using a Qwen-0.5B
(containing .5 billion parameters) base model (Bai et al., 2023) that was initially tuned on 6k pairs

4see https://github.com/huggingface/trl and https://github.com/princeton-nlp/SimPO.
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CEUnl ✓

sCE CE ✓

cUNL

l20

fUnl

ORPO ✓

CPO ✓

cCPO

unCPO

qfUnl

cfUnl

M(x, yl) → M(x, yw)¬M(x, yl)

M(x, yw)

M(x, yw) ∧ ¬M(x, yl)

M(x, yl) ∧ Ref(x, yw)
→ M(x, yw) ∧ Ref(x, yl)

M(x, yl) ∧ Ref(x, yw)
→ M(x, yw)

Ref(x, yw) ∧ (M(x, yl) ∨ ¬Ref(x, yl))
→ M(x, yw)

Ref(x, yw) ∧ (M(x, yl) ∨ ¬Ref(x, yl))
→ M(x, yw) ∧ ¬M(x, yl)

Ref(x, yw) → ¬M(x, yl)

Ref(x, yw) → M(x, yw)

Ref(x, yw)
→ M(x, yw) ∧ ¬M(x, yl)

Ref(x, yw) ∧ (¬M(x, yw) ∨ ¬Ref(x, yl))
→ M(x, yw) ∧ ¬M(x, yl)

Figure 7: Extending the loss lattice in Figure 4 to a version of the single model losses with reference
models, showing different (largely unexplored) variants of DPO and the different semantics regions
(gray boxes, corresponding to the core semantic formula for P each set of losses).

from the deita dataset of Liu et al. (2023). To avoid repeating the process of instruction tuning, we
started from the trained Qwen model released in the TRL library5.

Hyper-parameters and model selection The following are the standard set of tunable hyper-
parameters involved in our experiments: the β term for DPA losses (see again Table 1), the learning
rate, number of epochs, batch size and length normalization. Following other studies, we also reg-
ularized our losses with cross-entropy terms (CE) that include a tunable weight parameter λ that
controls their contribution to the gradient. Specifically, we kept set β to 1, and experimented with
learning rates in the range {1e-6, 3e-6, 8e-6, 9e-7}, number of epochs in the range of {3, 5, 8}
and batches sizes in the range { 32, 128 } (for efficiency reasons, most tuning with done with
a batch size of 32), which follow many of the suggested ranges in Meng et al. (2024). Impor-
tantly, length normalization was used throughout to make all losses comparable and given that it
has been shown to improve training performance (Meng et al., 2024). We used λs in the range of
{0.0, 0.01, 0.1, 0.3, 1.0} (we found lower values, around 0.01 and 0.1, to be most effective).

For each loss function we searched the best hyper-parameters by performing a comprehensive grid
search over the ranges detailed above. Final model selection was then performed by performing
inference with each trained model on our held-out development set and scoring the resulting gen-
erating outputs using an off-the-shelf reward model, in particular, a 1.8B parameter reward model
from Cai et al. (2024)6. We then selected the models with the highest average reward score over the
development set for comparison.

Evaluation protocol and win-rate comparison We compare models tuned using our different
losses using a procedure similar to how model selection is performance, which also follows the
setup in Hong et al. (2024). Specifically, we do a instance-level comparison of the reward score
given for each generated output, compare that score with the score of our baseline ℓcpo and compute
an overall win-rate, i.e., % of instances where the reward score is higher than or equal to the reward
score for ℓcpo. We report the average win-rate averaged over 3 runs of each models with different
generation seeds.

D DPOP equation

The DPOP loss function in Table 2 adds to the DPO an additional log term α·max(0, log Pref(yw|x)
Pθ(yw|x) ) that

aims to ensure that the log-likelihood of preferred example is high relative to the reference model
(we simplified this loss by removing the max and α parameter, the latter of which is set to be a
whole number ranging from 5 to 500 in Pal et al. (2024)). When translating the full loss into a single
log, this results in the equation ρθ = log Pref(yl|x)Pθ(yw|x)2

Pref(yw|x)2Pθ(yl|x) for α = 1. The top and bottom equations

5https://huggingface.co/trl-lib/qwen1.5-0.5b-sft
6internlm/internlm2-1_8b-reward
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are hence not multilinear since they both contain exponents > 1. To fix this, we can simply create
copies of these variables, e.g., with Pθ(yp | x)2 and Pref(yl | x)2 set to Pθ(yp | x)Pθ2(yp | x)
and Pref(yl | x)Pref2(yl | x) using the copied prediction variables Pθ2(·) and Pref2(·). This type of
variable copying also allows us to take into account the α and max above by setting the values of
these copied variable to be 1 whenever the log ratio is less than 0.

Below we show the core semantic formula for DPOP, which, as noted before, makes a small adjust-
ment to the DPO semantics as shown in Table 4:

P := Implies(
And(Ref(x,y),Ref2(x,yw),M(x,yl)),
And(Ref(x,yl),M(x,yw), M1(x,yw))

)
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