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Abstract

Recent direct preference alignment algorithms (DPA), such as DPO, have shown1

great promise in aligning large language models to human preferences. While this2

has motivated the development of many new variants of the original DPO loss,3

understanding the differences between these recent proposals, as well as develop-4

ing new DPA loss functions, remains difficult given the lack of a technical and5

conceptual framework for reasoning about the underlying semantics of these al-6

gorithms. In this paper, we attempt to remedy this by formalizing DPA losses7

in terms of discrete reasoning problems. Specifically, we ask: Given an existing8

DPA loss, can we systematically derive a symbolic expression that characterizes9

its semantics? How do the semantics of two losses relate to each other? We pro-10

pose a novel formalism for characterizing preference losses for single model and11

reference model based approaches, and identify symbolic forms for a number of12

commonly used DPA variants. Further, we show how this formal view of pref-13

erence learning sheds new light on both the size and structure of the DPA loss14

landscape, making it possible to not only rigorously characterize the relationships15

between recent loss proposals but also to systematically explore the landscape and16

derive new loss functions from first principles. We hope our framework and find-17

ings will help provide useful guidance to those working on human AI alignment.18

1 Introduction19

Symbolic logic has long served as the de-facto language for expressing complex knowl-20

edge throughout computer science (Halpern et al., 2001), including in artificial in-21

telligence (McCarthy et al., 1960; Nilsson, 1991), owing to its declarative nature22

and clean semantics. Symbolic approaches to reasoning that are driven by declar-23

ative knowledge, in sharp contrast to purely machine learning-based approaches,24
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Figure 1: Can we uncover the hidden logic of DPO?
Here we show the distillation of the DPO loss to a sym-
bolic expression that expresses its high-level model be-
havior, along with a modified version of that program
that we can compile into a novel DPO loss.

have the advantage of allowing us to rea-25

son transparently about the behavior and26

correctness of the resulting systems. In27

this paper we focus on the broad question:28

Can the declarative modeling approach29

be used to better understand and formally30

specify learning algorithms for large lan-31

guage models (LLMs)?32

We specifically investigate direct prefer-33

ence learning algorithms, such as direct34

preference optimization (DPO) (Rafailov35

et al., 2024), for pairwise preference learn-36
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ing, which are currently at the forefront of research on LLM alignment and learning from human37

preferences (Ouyang et al., 2022; Wang et al., 2023). While there has been much recent work on38

algorithmic variations of DPO (Azar et al., 2023; Hong et al., 2024; Meng et al., 2024, inter alia)39

that modify or add new terms to the original loss, understanding the differences between these new40

proposals, as well as coming up with new variants, remains a formidable challenge due to the lack41

of a conceptual and technical framework for reasoning about their underlying semantics.42

Our study attempts to remedy this problem by formalizing the corresponding loss functions in terms43

of logic. Such a formalization is based on trying to answer the following question: Given an existing44

loss function, such as DPO (see Figure 1), can we derive a symbolic expression that captures the45

core semantics of that loss function (i.e., one that we can then systematically compile back into the46

exact loss)? In treating loss functions as discrete reasoning problems, ones that abstract away from47

certain lower-level details about optimization and tell us about high-level model behavior, it becomes48

possible to study them using conventional semantic notions from logic and probability (e.g., logical49

entailment), relate it semantically to other programs, or even modify its underlying logical semantics50

to derive entirely new algorithms.51

To facilitate this formalization, we devise a novel probabilistic logic based on a generalization of the52

notion of semantic loss (SL) Xu et al. (2018) coupled with a provably correct mechanical procedure53

for translating existing DPA losses into programs in our logic. As in SL, losses are produced from54

symbolic programs by counting the weighted propositional models of those programs, reducing the55

problem to one of standard probabilistic inference (Chavira & Darwiche, 2008). In contrast to the56

kinds of symbolic programs commonly used with SL, however, empirically successful DPA losses57

impose systematic conditional constraints on the types of models that should be counted, which58

shape the structure of the underlying probability distribution. We express these constraints through59

a new primitive in our logic called a preference structure that also addresses various technical60

and conceptual issues involved with modeling pairwise preference symbolically. It is through such61

constraints that certain semantic relationships between existing losses can be easily observed and62

new losses can be derived.63

Our formal view of preference learning sheds much light on the size and structure of the DPA loss64

landscape. Under modest assumptions motivated by the structure of existing DPA losses and our65

new logic, we see that the number of definable DPA losses is doubly exponential over the number66

(n) of unique predictions (i.e., forward model calls) made in a loss function, or 42
n

. This results in,67

for example, close to 4.3 billion unique variations of the original DPO loss. While big, we show68

how this space is structured in interesting ways based on formal connections between relationships69

that hold in the semantic space among formalized DPA losses (e.g., logical entailment, equivalence)70

and their monotonicity properties in the loss space.71

These formal results also provide practical insights into how to effectively search for new DPA72

losses. For example, one can start with empirically successful loss functions, use the formalization73

to understand their semantics, then modify their semantics to arrive at novel variants that are either74

more constrained or less, then experiment accordingly.75

2 Related work76

Language model alignment While traditional approaches to language model alignment have em-77

ployed reinforcement learning (Ziegler et al., 2019; Christiano et al., 2017), we focus on DPA ap-78

proaches such as DPO (Rafailov et al., 2024) and SliC (Zhao et al., 2023) that use closed-form loss79

functions to tune models directly to offline preferences.80

We touch on two recent areas in this space: formal characterizations of DPA losses (Azar et al.,81

2023; Tang et al., 2024; Hu et al., 2024) and work on devising algorithmically enhanced variants82

of DPO (Amini et al., 2024; Hong et al., 2024; Meng et al., 2024; Pal et al., 2024; Xu et al., 2024;83

Ethayarajh et al., 2024; Park et al., 2024). In contrast to this work on formal characterization, which84

focuses on the optimization properties of DPA losses and particular parameterizations like Bradley-85

Terry, we attempt to formally characterize the semantic relationships between these variants of DPO86

in an optimization agnostic way to better understand the structure of the DPA loss landscape.87

Neuro-symbolic modeling For formalization, we take inspiration from work on compiling symbolic88

formulas into novel loss functions (Li et al., 2019; Fischer et al., 2019; Marra et al., 2019; Asai &89
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Hajishirzi, 2020, inter alia), which is used for incorporating background constraints into learning90

that have shown to improve training robustness and model consistency. In particular, we focus on91

approaches based on probabilistic logic (Xu et al., 2018; Manhaeve et al., 2018; Ahmed et al., 2022,92

2023; van Krieken et al., 2024b).93

In contrast to this work, however, we focus on the inverse problem of decompilation, or deriving94

symbolic expressions from known and empirically successful loss functions to better understand95

their semantics (see Friedman et al. (2024) for a similar idea related to decompiling LLMs). To96

our knowledge, work in this area has mostly been limited to symbolically deriving standard loss97

function such as cross-entropy (Giannini et al., 2020; Li et al., 2019), whereas we look at more98

complex preference learning loss functions at the forefront of LLM research.99

Language model programming Finally, we take inspiration from recent work on formalizing LLM100

algorithms in terms of programming language concepts (Dohan et al., 2022; Beurer-Kellner et al.,101

2023; Khattab et al., 2023), with our approach being declarative in style. As such, our study relates102

to work on declarative programming techniques for ML (Eisner et al., 2004; De Raedt et al., 2007;103

De Raedt & Kimmig, 2015; Li et al., 2023; Vieira et al., 2017; van Krieken et al., 2024a).104

3 Direct Preference Alignment105

In this section, we review the basics of offline preference alignment, which can be defined as the106

following problem: given data of the form: Dp =
{
(x(i), y

(i)
w , y

(i)
l )

}M

i=1
consisting of a model input107

x and two possible generation outputs (often ones rated by humans), a preferred output yw (the108

winner w) and a dispreferred output yl (the loser l), the goal is to optimize a policy model (e.g., an109

LLM) πθ(· | x) to such preferences.110

f(ρθ, β) = ρθ (standard formulation)
DPO − log σ(βρθ) log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x)IPO (ρθ − 1

2β
)2

SliC max(0, β−ρθ) log πθ(yw|x)
πθ(yl|x)

RRHF max(0,−ρθ) log
exp

(
1

|yw| log πθ(yw|x)
)

exp
(

1
|yl|

log πθ(yl|x)
)

Table 1: Examples of some popular DPA loss func-
tions with different choices of f and ρθ.

As mentioned at the outset, we focus111

on direct preference alignment (DPA) ap-112

proaches that all take the form of some113

closed-form loss function ℓ that we can use114

to directly train our model on Dp to approx-115

imate the corresponding ground preference116

distribution p∗(yw ≻ yl | x). Since our117

study focuses on the formal properties of118

DPA losses, it is important to understand119

their general structure, which will take the120

following form (Tang et al., 2024):121

ℓDPA(θ,D) := E
(x,yw,yl)∼Dp

[
f
(
ρθ(x, yw, yl), β

)]
(1)

consisting of some convex loss function f : R×R+→ R, a model quantity ρθ(x, yw, yl) which we122

will abbreviate to ρθ and a parameter β.1123

Table 1 lists four specific DPA losses: DPO (Rafailov et al., 2024), IPO (Azar et al., 2023), SliC124

(Zhao et al., 2022, 2023), and RRHF (Yuan et al., 2023). Here the logistic log loss (shown using the125

logistic function σ(x) = 1
1+exp(−x) ), square loss, hindge loss, and perceptron loss are used for f ,126

respectively. Loss functions such as SliC and RRHF are examples of single model approaches define127

ρθ in terms of the log ratio of the winner and loser given prediction probabilities πθ of the model128

being trained. As an important implementation detail, the prediction probabilities are sometimes129

computed using log length normalization as shown for RRHF. For DPO and IPO, in contrast, the130

model quantity ρθ is the log ratio difference (of the winner and the loser) between the predictions131

of the model being trained and a frozen LLM called a reference model, πref. These two approaches132

constitute a two model approach, where the role of the reference model is to avoid overfitting on the133

target preference data (controlled by the parameter β).134

Single model approaches have the advantage of avoiding the overhead associated with having an ad-135

ditional reference model and can sometimes yield competitive performance when compared against136

1Following Tang et al. (2024) and their GPO framework, we formulate DPA approaches as general binary
classification problems and do not make any assumptions about the preference structure p(yw ≻ yl | x).
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two model approaches. In the absence of a reference model, these losses are usually regularized137

using an added cross-entropy term, which we exclude from our current analysis.2138

The structure of DPA variants. Conceptually, preference losses involve making predictions139

about winners and losers across models and reasoning about the relationships between predictions.140

The main question we ask is: If we view this process as a discrete reasoning problem, what is the141

nature of the reasoning that underlies these different losses and each ρθ? To do our analysis, we start142

by rewriting each loss function in a way that strips away various optimization and implementation143

details (e.g., details about f , β and the choice about whether length normalization is used) in order144

to arrive at a bare form of ρθ.145

Loss ρθ := log
ρtθ
ρb
θ

sm1,m2(y1, y2) := log
Pm1 (y1|x)
Pm2

(y2|x)

Baselines ρθ
ℓCE log Pθ(yw|x)

1−Pθ(yw|x) ℓCEUnl log Pθ(yw|x)(1−Pθ(yl|x))
Pθ(yl|x)+(1−Pθ(yw|x)))

Single model approaches (no reference) Pθ

ℓCPO log Pθ(yw|x)
Pθ(yl|x)

sθ(yw, yl)

ℓORPO log Pθ(yw|x)(1−Pθ(yl|x))
Pθ(yl|x)(1−Pθ(yw|x)) sθ(yw, yl) −sθ(yw, yl)

ℓSimPO log Pθ(yw|x)Pmref(yl|x)
Pmref(yw|x)Pθ(yl|x)

sθ(yw, yl) −smref(yw, yl)

with reference model Pref

ℓDPO log Pθ(yw|x)Pref(yl|x)
Pref(yw|x)Pθ(yl|x)

sθ(yw, yl) −sref(yw, yl)

ℓDPOP log Pθ(yw|x)Pθ2(yw|x)Pref(yl|x)
Pref(yw|x)Pref2(yw|x)Pθ(yl|x)

sθ(yw, yl) −sref(yw, yl)

−sref2,θ2(yw, yw)

Table 2: How are variants of DPO structured? Here we
define some popular variants in terms of their core loss
equation ρθ and the helper function sm1,m2

(y1, y2) (last
column) that rewrites each ρθ in a way that brings out
general shared structural patterns and added terms com-
pared with the log win/loss ratio sθ(yw, yl).

Accordingly, we will write Pm(y | x) in146

place of πθ(y | x) to denote the proba-147

bility assigned by a model m to an out-148

put y in a way that is agnostic to whether149

length normalization is used. In Table 2,150

we show different variants of DPO that151

we consider and two common baselines,152

the cross-entropy loss ℓCE an a variant153

that uses an unlikelihood (Welleck et al.,154

2019) term ℓCEUnl. Importantly, we later155

express each ρθ as a single log ratio156

ρtθ/ρ
b
θ, which we refer to as the core loss157

equation for each individual loss.158

To more easily see the relationships be-159

tween these proposals, we rewrite each160

ρθ in terms of the log ratio function161

sm(y1, y2) defined in Table 2 (we use162

y to denote the negation of y, or 1 −163

Pm(y | x)). Here we see that all losses164

are derivable from the log ratio of win-165

ner and loser sθ(yw, yl) used in SliC166

and RRHF either exactly, as in CPO (Xu et al., 2024), or with added terms. DPO, for example, is ex-167

pressible as this ratio minus an additional log ratio term sref(yw, yl) that contains information about168

the reference model. Many variations to DPO then involve making the following two modifications.169

Adding additional terms. Approaches like ℓDPOP (Pal et al., 2024) (see also Amini et al. (2024);170

Park et al. (2024)) incorporate additional terms into DPO (sref2,θ2(yw, yw)) that address particular171

failure cases. We use θ2 and ref2 to refer to copies of our two models, which is a decision that we172

address later when discussing the structure of the equation class ρθ.173

Changing the reference ratio. Approaches, such as ℓORPO Hong et al. (2024) and ℓSimPO Meng174

et al. (2024) instead reparameterize the reference ratio sref(yw, yl) either in terms of some quantity175

from our policy model as in ORPO (sθ(yw, yl)) or a heuristic penalty term γ as in SimPO. For SimPO176

rewrite their γ term in terms of the log ratio γ = smref(yw, yl) (where ‘mref’ refers to a manual177

approximation of the reference model) to make it align to the structure of DPO.178

4 Preference modeling as a reasoning problem179

To better understand the DPA loss space, we will formalize the preference losses and the model180

quantities ρθ introduced in the previous section in terms of symbolic reasoning problems. This will181

involve the following core ideas and assumptions.182

Model predictions are symbolic objects The declarative approach will involve thinking of LLMs183

predictions as logical propositions. For example, when a model M generates an output yw for a184

2When referring to the CPO, ORPO and SliC losses, we refer to the losses without the cross-entropy terms.
For example, what we call SliC and ODPO refers to the cal and OR losses, respectively, in the original papers.
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(A) Example symbolic formulas (B) Model output distribution
Model predicts winner Model predicts loser 

The model should
deem the winner to be
valid and the loser to
be not valid.

Whenever the model deems
the loser to be a valid
generation, it should deem
the winner to be valid too. 

Figure 2: What do formal representations of loss functions tell us? We show (A) two symbolic
formulas related to single model preference learning with their semantics paraphrased in informal
English. When grounded in model behavior, they tell us about the structure of the model’s output
probability distribution (B) and where predictions belong in that distribution (relative to some ϵ).

prompt x, we will use the notation M(x, yw) to express the proposition that yw is a valid generation185

for x. Importantly, we will further weight these propositions by assigning the probabilities given186

by the corresponding model, i.e., Pθ(M(x, yw)) = Pθ(yw | x). We call these propositions our187

probabilistic predictions X1, ..., Xn, which will form the basis of symbolic formulas.188

Relationships between predictions are expressed as symbolic formulas Relationships between189

model predictions will take the form of symbolic constraints expressed as formulas of propositional190

logic P defined by applying zero or more Boolean operators over probabilistic predictions. For191

example, in Figure 2 (A), the top formula uses the implication operator (Implies) to express the192

constraint that model M should never deem the loser yl to be a valid generation (M(x, yl)) without193

deeming the winner yw to also be valid (M(x, yw)). The bottom formula, in contrast, tells us that only194

the winner yw should be deemed valid using the conjunction and negation operators (And, Not).3195

When grounded to model behavior via the proposition weights, such constraints tell us about the196

structure of a model’s output probability distribution, as visualized in Figure 2 (B). Semantically, we197

assume that what constitutes a valid generation is any probabilistic prediction whose weight exceeds198

some threshold ϵ in that distribution, similar to the notion of ϵ-truncated support from Hewitt et al.199

(2020). While our results later will not depend on making any direct assumptions about ϵ, such a200

definition is merely meant to provide intuitions for how to understand our formulas.201

Loss functions are expressible as symbolic formulas We assume that all preference loss func-202

tions have an internal logic that can be expressed in the form described above. Our main goal is203

to uncover that internal logic, and to use semantic concepts, such as entailment (denoted as |=) or204

logical equivalence (≡) to meaningfully characterize the DPA loss space.205

4.1 Compilation and Decompilation206

Compilation and semantic loss To compile a symbolic formula P into loss, we employ a proba-207

bilistic approach based on the semantics of weighted model counting (WMC) (Chavira & Darwiche,208

2008; Fierens et al., 2015). This is based on computing a probability of a formula P, given by209

pθ(P) = WMC
(
P; θ

)
:=

∑
w∈{0,1}n

1{w |= P}
∏

w|=Xi

Pθ(Xi) ·
∏

w|=¬Xi

(
1− Pθ(Xi)

)
(2)

or as a weighted sum over all the propositional models of that formula w |= P, or truth assignments210

where P is satisfied. Each w is weighted via a product of all the probabilistic predictions Xi in w211

(either Pθ(Xi) or 1 − Pθ(Xi) depending on the truth value of Xi in each w). A loss can then be212

obtained by taking the negative logarithm of this probability, which is known as the semantic loss213

first defined in Xu et al. (2018).214

Formally, the semantic loss takes the form Ed∼D[− log pθ
(
Pd

)
], where we use the notation Pd to215

refer to the substitution of variables in our formulas P (e.g., x, yw, yl) with specific values from d ∼216

3We will switch between using conventional logical notation (e.g., ∧,∨,¬,→) and operator notation (e.g.,
And, Or, Not, Implies) depending on the context.
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D. Since our approach will later involve computing the probability of P conditioned (optionally)217

on some conditioning constraints PC (i.e., an additional propositional formula), we consider the218

conditional form of the semantic loss and its full objective below:219

min
θ

E
d∼D

[
− log pθ(Pd | PCd

)

]
, pθ(P | PC) =

WMC
(
P ∧ PC; θ

)
WMC

(
P ∧ PC; θ

)
+ WMC

(
¬P ∧ PC; θ

) (3)

where the last part follows from the standard definition of conditional probability (with the denomi-220

nator being an expanded form of WMC
(
PC; θ

)
). We note that when PC is equal to ⊤ (or true), this221

form of the semantic loss is equivalent to the original version.222

As an important technical point, we see below how having an explicit negation ¬P in the normaliza-223

tion allows us write the probability of P in the following way (without loss of generality, we exclude224

PC to improve readability and remove θ from WMC):225

pθ(P) =
exp

(
logWMC

(
P
))

exp
(
logWMC

(
P
))

+ exp
(
logWMC

(
¬P

)) = σ

(
log

WMC
(
P
)

WMC
(
¬P

)
︸ ︷︷ ︸

semantic loss ratio ρsem

)
(4)

with ℓ(P, θ,D) := E
d∼D

[
− log σ

(
ρsem(d)

)]
(5)

yielding a logistic log form of the semantic loss ℓ(P, θ,D) that aligns with the structure of the DPA226

losses in Section 3, where, as an analog to ρθ, we call the inner part the semantic loss ratio ρsem.227

Decompilation The goal of decompilation is to derive for a loss function ℓx a symbolic expression228

P that characterizes the semantics of that loss. As we show later in Sec. 5.2, this will reduce to the229

problem of finding a program whose semantic loss ratio is equivalent to a loss’s core loss equation230

ρθ, based largely on the derivation above and its connection with DPA.231

5 A logic for preference modeling232

In the standard semantic loss (SL), ML loss functions ℓx are expressible as a single propositional for-233

mulas P interpreted via probabilistic logic, with ℓx ∼ − log pθ(P). At first glance, this formulation234

is at odds with standard formulations of pairwise preference, such as the Bradley-Terry (BT) model235

(Bradley & Terry, 1952) typically assumed in RLHF, which involves modeling a preference distri-236

bution pθ(yw ≻ yl) between two (often disparate) quantities (e.g., given by the kinds of log ratios237

in Table 2). Indeed, logical accounts of pairwise preference such as Rescher (1967) (see Cvetković238

(1993)) assume a similar semantics where preference is defined not as a single propositional formula239

but as an inequality between the counts of two independent formulas WMC(Pw) > WMC(Pl).240

As it turns out, none of the variations of DPO and their log ratios in Table 2 can be expressed as a241

single formula in standard SL.4 While this can be remedied by modifying the SL to involve counting242

multiple formulas as in Rescher (1967), we instead define a relational structure called a preference243

structure that allows us to capture the semantics of losses in a modular fashion using a single propo-244

sitional formula coupled with auxiliary constraints. Such a structure, which is based on a novel245

construction in propositional logic, will later make it easy to cleanly characterize different DPA246

losses and devise new variants through manipulation to their constraints.247

Preference structure A preference structure is a tuple P = (P,PC,PA) consisting of three propo-248

sitional formulas: a core semantic formula P coupled with conditioning constraints PC (as in249

Eq 3, which restrict the propositional models that can be counted) and additive constraints PA that250

tell us what propositional models always need to be counted. As we will show, all the DPA losses251

in Table 2 are representable as preference structures, often ones where the same core formula P is252

shared (e.g., the formulas in Figure 2), yet that differ in the constraints they impose (PC and PA).253

4To see this for the ratio sθ(yw, yl) from Table 2, one can enumerate all 16 unique Boolean functions over
variables yw and yl to see that none yield a semantic formula whose WMC is equal to σ(sθ(yw, yl)). Through
further analysis, one can also see that it is not possible to derive σ(sθ(yw, yl)) using conditional WMC.
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Each preference structure will have a formula form Pf and a negated formula form ¬Pf , which254

are defined by the following two propositional formulas:255

Pf :=

(
P ∨ PA

)
∧ PC, ¬Pf :=

(
¬P ∨ PA

)
∧ PC. (6)

In the absence of the additive constraint PA, we note that these representations encode the condi-256

tional P | PC, thus making the semantic loss of these formulas equivalent to the conditional semantic257

loss in Eq 3. Indeed, many DPA losses will be reducible to the conditional semantic loss, however,258

PA and the ability to add default model counts to P and ¬P will be needed to derive some DPA259

losses symbolically and account for peculiar properties of their normalization.260

Below we show that any two propositional formulas can be expressed as a preference structure based261

on a particular construction, called the implication form, that we use later for decompilation.262

Proposition 1. Given any two propositional formulas P1 and P2, there exists a preference structure263

P such that P1 ≡ Pf and P2 ≡ ¬Pf .264

Proof. We provide a specific construction we call the implication form of P1 and P2. This is based265

on the following logical equivalences (the correctness of which can be checked manually):266

P1 ≡
(

(P2 → P1)︸ ︷︷ ︸
P

∨ (P1 ∧ P2)︸ ︷︷ ︸
PA

)
∧ (P1 ∨ P2)︸ ︷︷ ︸

PC

,P2 ≡
(
¬(P2 → P1)︸ ︷︷ ︸

¬P

∨ (P1 ∧ P2)︸ ︷︷ ︸
PA

)
∧ (P1 ∨ P2)︸ ︷︷ ︸

PC

As noted above, this construction corresponds exactly to the preference structure (P,PC,PA) with267

P := P2 → P1, PC := P1 ∨ P2 and PA := P1 ∧ P2 and its two formula forms. (As a special268

case, whenever P2 ≡ ¬P1, this simplifies to the structure P = (P1,⊤,⊥), thus making any single269

formula representable as a preference structure.)270

5.1 Generalized semantic loss based on preference structures271

Name f(ρsem, β) = Semantic loss ratio
ρsem

ℓsl-log − log σ(βρsem)
log

WMC
(
Pf ;θ

)
WMC

(
¬Pf ;θ

)ℓsl-squared (ρsem − 1
2β

)2

ℓsl-margin max(0, β−ρsem)

Table 3: Different forms of the semantic loss that
match the DPA losses in Table 1.

In our generalization of the semantic loss, for-272

mulas P will be replaced with preference struc-273

tures P. For example, we can modify the logis-274

tic log form of SL in Eq 5 to be ℓ(P, θ,D) and275

change the semantic loss ratio ρsem accordingly276

to operate over the formula forms of P in Eq 6.277

By analogy to the generalized DPA in Eq 1, we278

can view this logistic log form as a particular279

instance of a generalized semantic loss:280

ℓsl(P, θ,D) := E
d∼D

[
f(ρsem(d), β)

]
(7)

where, like in DPA, different choices can be made about what f to apply over the semantic loss ratio281

ρsem, which gives rise to several novel logics. To match the structure of DPA, we also add a weight282

parameter β. We define three particular versions of SL in Table 5, which we will need to apply our283

formal analysis to particular DPA losses in Table 1.284

How many loss functions are there? Under this new formulation, we can view loss creation as a285

generative procedure, where we first select a f then sample two formulas P1 and P2 (each denoting286

a unique Boolean function in n variables) to create a P via Prop 1. This view allows us to estimate287

the total number of definable loss functions to be doubly exponential in the number of probabilistic288

predictions n, equal to 42
n

(i.e., the unique pairs of Boolean functions). For DPO, which involves289

four probabilistic predictions, this results in more than 4.2 billion variations that can be defined (how290

exactly losses like DPO are translated into preference structures is addressed in Section 5.2).291

How is the loss space structured? While the space of loss functions is often very large, one can292

structure this space using the semantics of the corresponding formulas. Below we define preference293

entailment and equivalence and relate these semantic notions to the behavior of the compiled losses.294
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The following formal results (see proofs in Appendix B) give us tools for structuring the DPA loss295

space and informing the search for new loss functions.296

We define preference entailment for two preference structures P
1 ⊑ P

2
in terms of ordinary propo-297

sitional entailment (|=) between formula forms: P
1 ⊑ P

2
:= (Pf

1 |= Pf
2 ∧¬Pf

2 |= ¬Pf
1
). Below298

we show (proof deferred to Appendix) that losses are monotonic w.r.t. preference entailment, as in299

the original SL (Xu et al., 2018).300

Proposition 2 (monotonicity). If P
(1) ⊑ P

(2)
then ℓsl(P

(1)
, θ,D) ≥ ℓsl(P

(2)
, θ,D) for any θ,D.301

We will use later entailment to characterize the relative strength of DPA losses and visualize their302

relations using a representation called a loss lattice (see Figure 3). We also extend preference303

entailment to preference equivalence in a natural way: P
1 ≡ P

(2)
:= (P

1 ⊑ P
2 ∧ P

2 ⊑ P
1
). It304

follows as a corollary to the above proposition that our semantic loss is equivalent under prefrence305

equivalence, i.e., whenever P
1 ≡ P

2
then ℓsl(P

(1)
, θ,D) = ℓsl(P

2
, θ,D) for any θ,D.306

Finally, when comparing losses with differing numbers of probabilistic predictions or variables, we307

also prove a locality property that ensures that such a comparison is possible (see Prop 5).308

5.2 Decompiling DPA losses into preference structures309

The decompilation of a DPA loss ℓDPAx
into a symbolic form can now be stated as find-310

ing a preference structure P whose semantic loss is equal to ℓDPAx
, as given in Eq 8:311

∀D, θ. ℓDPAx
= ℓsl(P, Dp, θ) s.t. (8) ρθ = ρsem, with ρt

θ

ρb
θ

=
WMC

(
P;θ

)
WMC

(
¬P;θ

) (9)312

We will say that a preference structure P correctly characterizes a loss ℓx under some ℓsl whenever313

this condition holds. Given the structure of the DPA loss (Eq 1) and the generalized semantic loss314

(Eq 7), whenever f is fixed this can be reduced to finding a P whose semantic loss ratio ρsem is equal315

to ℓx’s core loss equation ρθ as shown in Eq 9.316 Algorithm 1: DPA to logic

Input : loss expression ρθ =
ρt
θ

ρb
θ

Output: P = (P,PC,PA)
1 Pt ← SEM(ρtθ)

2 Pb ← SEM(ρbθ)
3 P← SIMPLIFY(Implies(Pb,Pt))
4 PC ← SIMPLIFY(Or(Pt,Pb))
5 PA ← SIMPLIFY(And(Pt,Pb))

Based on this, we define a procedure for translating the317

core loss equations ρθ in Table 2 into preference structures318

and ρsem. We consider each part in turn.319

Characterizing the DPA equation class By construc-320

tion, we will assume that all the core equations for DPA321

losses ρtθ and ρbθ are expressible as certain types of disjoint322

multilinear polynomials over binary variables {xi}ni=1, in-323

tuitively polynomials whose translation via the rules in Ta-324

ble 7 results in valid formulas of propositional logic. Formally, such polynomials over n variables325

are defined as any polynomial e of the form e =
∑

i ei where (a) for all i there exists Ji ⊆ {1, . . . , n}326

such that ei =
∏

j∈Ji
ℓij where ℓij is either xj or (1− xj), and (b) for all i, i′, terms ei and ei′ are327

disjoint, i.e., have no common solutions (for some k, one term has xk and the other has 1− xk).328

We note that not all preference loss functions in the preference learning literature immediately fit329

this format, including the original form of DPOP (Pal et al., 2024) which we discuss in Appendix D330

and fix through variable copying as shown in Table 2.331

Translation algorithm Our translation process is shown in Algorithm 1. Given an input ρθ, both332

parts of that equation are translated into logic (lines 1-2) via a translation function SEM. The trans-333

lation is standard and its correctness can be established via induction on the rules (see the full rules334

in Table 7): each model prediction PM(·) is mapped to a probabilistic prediction M(·) then: 1 − P335

is mapped to negation, P1 · P2 to conjunction, and P1 + P2 to disjunction. Lines 3-5 apply the336

implication construction from Prop 1 to create a P, where formulas are minimized via SIMPLIFY.337

The following result establishes the correctness of our decompilation procedure, which follows from338

the correctness of our translation rules and the implication construction from Prop 1.339
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CEUnl ✓

sCE CE ✓

cUNL

l20

fUnl

ORPO ✓

CPO ✓

cCPO unCPO

qfUnl

cfUnl

Implies(M(x, yl), M(x, yw))Not(M(x, yl))

M(x, yw)

And(M(x, yw), Not(M(x, yl)))

Figure 3: What other losses are there? Here we show the loss landscape for single model preference
approaches using a loss lattice showing losses (nodes) structured according to strict entailment and
their core formulas P (dashed boxes). See Appendix C for details of the individual losses.

Proposition 3 (correctness). Given a loss equation ρθ = ρtθ/ρ
b
θ where ρtθ, and ρbθ are disjoint340

multilinear polynomials, Algorithm 1 returns a preference structure P whose semantic loss ratio341

ρsem equals ρθ.342

6 Results and Discussion343

Table 4 shows the preference structures obtained from Algorithm 1 for the key DPA losses in Table 2.344

Given that the original losses were all formulated using the logistic log form of DPA, the correctness345

of Algorithm 1 (Prop. 3) tells us that compiling the representations in Table 4 under ℓsl-log will yield346

exactly the original losses. Importantly, when the DPO symbolic form is compiled using ℓsl-square347

(i.e., the squared loss form of SL), this will yield exactly IPO Azar et al. (2023), showing how our348

semantic analysis is invariant to the particular choice of f . (A similar argument can be made for349

deriving SliC from ℓsl-margin and the representation for CPO).350

6.1 What we learn about existing losses?351 Loss Representation P
CE P := M(x ,yw ), PC := ⊥
CEUnl P := And(M(x,yw ), Not(M(x,yl ))),

PC := ⊥
CPO P := Implies(M(x,yl ), M(x ,yw ))

PC := Or(M(x ,yl ), M(x ,yw ))
ORPO P := Implies(M(x,yl ),M(x ,yw ))

PC := Or(
And(M(x,yl ), Not(M(x,yw ))),
And(Not(M(x,yl )), M(x ,yw )))

DPO P := Implies(
And(Ref(x,yw ),M(x ,yl )),
And(Ref(x,yl ),M(x ,yw )))

PC := Or(
And(Ref(x,yw ),M(x ,yl )),
And(Ref(x,yl ),M(x ,yw )))

Table 4: Formalizations of some of the
losses from Table 2 shown in terms of P
and PC (for succinctness, we exclude PA
which can be inferred from each PC via Al-
gorithm 5.1).

Single model approaches have an intuitive seman-352

tics, highly constrained Under our analysis, CPO353

and ORPO are both derived from the same core seman-354

tic formula P and implication first introduced in Fig-355

ure 2, in spite of the superficial differences in their356

original form. They differ, however, in terms of the357

conditioning constraints PC they impose, with CPO im-358

posing a one-true constraint that requires either the359

winner or loser to be deemed valid, whereas ORPO im-360

poses a one-hot constraint where one and only one can361

be deemed valid. When plotted in a broader loss land-362

scape, as shown in Figure 3, we see that both are en-363

tailed by the CEUNL baseline, yet have a non-entailing364

relation to one another.365

In general, we see that all preference losses are highly366

constrained, which might explain their success. This is367

in sharp to contrast to the kinds of losses typically used368

with the semantic loss and neuro-symbolic modeling.369

For this reason, we think there is much to learned by370

working backward from empirically successful loss371

functions to their semantic properties to try and find372

out what properties make them successful and how they differ from conventional neuro-symbolic373

techniques.374

There are many losses still to explore We systematically create new losses by manipulating the375

the conditioning constraints that existing losses impose. Figure 3 shows a (non-exhaustive) lattice376
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representation of the loss landscape for single model preference approaches created by mechanically377

deriving new losses from the CEUnl baseline (i.e., the most constrained loss) and ordering them by378

strict entailment (this terminates in unCPO, a version of CPO without conditioning; see Appendix C379

for details). Here we see that different regions emerge characterized by different formulas P, notably380

an entirely unexplored region between between CEUnl and CPO and ORPO of unlikelihood losses that381

optimize for the negation of the loser (Not(M(x, yl))).382

DPO has a peculiar semantics, shared among variants The semantics of DPO shown in Table 4383

is logically equivalent to a conjunction of two implications: Ref(x, yw) ∧ M(x, yl) → M(x, yw) and384

Ref(x, yw) ∧ ¬M(x, yl) → ¬M(x, yl). The first says that If the reference deems the winner to be385

valid and the tunable model deems the loser to be valid, then that model should also deem the386

winner to be valid, while the second says that the tunable model should deem the loser to be not387

valid whenever the reference deems the winner to be valid and the loser to be not valid. While this388

semantics makes sense, and complements nicely the semantics of CPO by adding information about389

the referent model, DPO includes conditioning constraints that are hard to justify from first principles,390

and that make it semantically disconnected from the CE and CEUnl baselines. While DPO belongs391

to a much larger space, we conjecture that investigating the different semantic neighborhoods that392

result from modifying its conditioning constraints, as in Figure 3, is a promising direction.393

We also note that variants like SimPO and DPOP when formalized maintain exactly the same struc-394

ture of DPO in Table 4, with DPOP adding repeated variables that amplify the score of the winner.395

Giving the semantic similarity between these variants and DPO, any small semantic change found396

in one would likely be useful in these others, which motivates general exploration into varying the397

conditioning constraints.398

6.2 Are any of these new losses good?399

The ultimate goal of our analysis is to facilitate the discovery of empirically improved versions of400

existing DPA losses. We hypothesize that the degree of constrainedness of a loss function, which is401

a natural property to characterize in our framework, is a key property underlying its success. This402

hypothesis is based on our initial empirical investigations into the new losses introduced in Figure 3,403

which we plan to explore further.404

7 Conclusion405

Despite the routine use of a variety of DPA algorithms to align LLMs with human preferences, know-406

ing what exactly these the losses underlying these algorithms capture and how they relate to each407

other remains largely unknown. We presented a new technique for characterizing the semantics408

of such losses in terms of logical formulas over boolean propositions that capture model predic-409

tions. Key to our approach is the decompilation procedure, allowing one to derive provably correct410

symbolic formulas corresponding to any loss function expressed as a ratio of disjoint multilinear411

polynomials. Our approach provides a fresh perspective into preference losses, identifying a rich412

loss landscape and opening up new ways for practitioners to explore new losses by systematically413

varying the symbolic formulas corresponding to existing successful loss functions.414
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eralized preference optimization: A unified approach to offline alignment. arXiv preprint515

arXiv:2402.05749, 2024.516

Emile van Krieken, Samy Badreddine, Robin Manhaeve, and Eleonora Giunchiglia. Uller: A unified517

language for learning and reasoning. In International Conference on Neural-Symbolic Learning518

and Reasoning, pp. 219–239. Springer, 2024a.519

12



Emile van Krieken, Pasquale Minervini, Edoardo M Ponti, and Antonio Vergari. On the indepen-520

dence assumption in neurosymbolic learning. arXiv preprint arXiv:2404.08458, 2024b.521

Tim Vieira, Matthew Francis-Landau, Nathaniel Wesley Filardo, Farzad Khorasani, and Jason Eis-522

ner. Dyna: Toward a self-optimizing declarative language for machine learning applications. In523

Proceedings of the 1st ACM SIGPLAN International Workshop on Machine Learning and Pro-524

gramming Languages, pp. 8–17, 2017.525

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng Shang,526

Xin Jiang, and Qun Liu. Aligning large language models with human: A survey. arXiv preprint527

arXiv:2307.12966, 2023.528

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.529

Neural text generation with unlikelihood training. In International Conference on Learning Rep-530

resentations, 2019.531

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton532

Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm533

performance in machine translation. arXiv preprint arXiv:2401.08417, 2024.534

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Broeck. A Semantic Loss Function for535

Deep Learning with Symbolic Knowledge. In International Conference on Machine Learning,536

pp. 5498–5507, 2018.537

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf:538

Rank responses to align language models with human feedback without tears. arXiv preprint539

arXiv:2304.05302, 2023.540

Yao Zhao, Mikhail Khalman, Rishabh Joshi, Shashi Narayan, Mohammad Saleh, and Peter J Liu.541

Calibrating sequence likelihood improves conditional language generation. In The eleventh inter-542

national conference on learning representations, 2022.543

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. SLiC-544

HF: Sequence Likelihood Calibration with Human Feedback. arXiv preprint arXiv:2305.10425,545

2023.546

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul547

Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv548

preprint arXiv:1909.08593, 2019.549

13



Input SEM(·)
predictions

PM(y | x) P := M(x, y)
formulas P

P1 · P2 P := And(P1,P2)
1− P P := Not(P)

P1 + P2 P := Or(P1,P2)
Table 5: Rules for the translation of loss expressions into symbolic formulas.

A Semantic translation rules550

In Table 7 we show the full translation rules for Algorithm 1.551

B Proofs of propositions552

Below we state propositions in Section 5.1 with their proofs.553

Proposition 4 (monotonicity). If P
(1) ⊑ P

(2)
then ℓsl(P

(1)
, θ,D) ≥ ℓsl(P

(2)
, θ,D) for any θ,D.554

Proof. By the definition of preference entailment, we have P
(1)

f |= P
(2)

f . This means that for any d,555

P
1
(d) |= P

2
(d), which implies that for any θ, WMC

(
P
(1)

(d); θ
)
≤ WMC

(
P
(2)

(d); θ
)
. From the556

definition of preference entailment, we also have ¬P(2)
(d) |= ¬P(1)

(d). Following a similar line of557

reasoning as above, this implies WMC
(
¬P(1)

(d); θ
)
≥ WMC

(
¬P(2)

(d); θ
)
. Thus, for any d and558

θ, the weighted model counting ratio term in the semantic loss in Table 5 is no larger for P
(1)

than559

for P
(2)

. It follows that ℓsl(P
(1)

, θ, {d}) ≥ ℓsl(P
(2)

, θ, {d}). Taking the expectation over d ∼ D, we560

obtain ℓsl(P
(1)

, θ,D) ≥ ℓsl(P
(2)

, θ,D).561

Proposition 5 (locality). Let P be a preference structure defined over probabilistic prediction vari-562

ables X with parameters θx. Let Y be some disjoint set of variables with parameters θy . Then563

ℓsl(P, θx, D) = ℓsl(P, [θx θy], D) for any D.564

Proof. Let wx be any world over variables X and wy be any world over (disjoint) variables Y.565

Let wx,y denote the joint world. By Eq 2, the probability of the world wx,y in the (X,Y) space566

can be written as Pθx,θy (wx,y) =
∏

Xi∈X Qθx,θy (Xi) ·
∏

Yj∈Y Qθx,θy (Yj) where Q is either P or567

1 − P. Since the parameters θx and θy refer to disjoint sets of variables, we can simplify this to568 ∏
Xi∈X Qθx(Xi) ·

∏
Yj∈Y Qθy (Yj).569

It follows that the marginal probability of the world wx in the (X,Y) space equals Pθx,θy (wx) =570 ∑
Y

(∏
Xi∈X Qθx(Xi) ·

∏
Yj∈Y Qθy (Yj)

)
=

∏
Xi∈X Qθx(Xi) ·

∑
Y

(∏
Yj∈Y Qθy (Yj)

)
=571 ∏

Xi∈X Qθx(Xi) ·
∏

Yj∈Y

(
Qθy (Yj) + (1−Qθy (Yj))

)
=

∏
Xi∈X Qθx(Xi) = Pθx(wx). This last572

expression is precisely the probability of the world wx in only the X space. Thus, Pθx(wx) =573

Pθx,θy (wx), which implies WMC
(
P; θx

)
= WMC

(
P; θx, θy

)
and similarly for ¬P. From this, the574

claim follow immediately.575

C Boolean visualization of losses576

To visualize the semantics of the single model losses shown in Figure 3, we can use a Boolean577

truth table representation as shown in Figure 4. Here each column shows a specific loss function578

representable as a preference structure P. Intuitively, ✓ shows all the propositional models to count579

that are connected with the formula form of P (or are in the numerator of the semantic loss ratio) and580
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shows all the propositional models to count that are connected with the negated formula form (or581

the denominator in the semantic loss ratio).582

Putting this together, we can loosely define the logistic form of the semantic loss as follows (where583

WCOUNT refers to the weight count of rows either with ✓ or ):584

− log σ

(
log

WCOUNT( ✓ )

WCOUNT( × )

)

D DPOP equation585

The DPOP loss function in Table 2 adds to the DPO an additional log term α·max(0, log Pref(yw|x)
Pθ(yw|x) ) that586

aims to ensure that the log-likelihood of preferred example is high relative to the reference model587

(we simplified this loss by removing the max and α parameter, the latter of which is set to be a588

whole number ranging from 5 to 500 in Pal et al. (2024)). When translating the full loss into a single589

log, this results in the equation ρθ = log Pref(yl|x)Pθ(yw|x)2
Pref(yw|x)2Pθ(yl|x) for α = 1. The top and bottom equations590

are hence not multilinear since they both contain exponents > 1. To fix this, we can simply create591

copies of these variables, e.g., with Pθ (x, yw)
2 and Pref(yl | x)2 set to Pθ (x, yw)Pθ2 (x, yw) and592

Pref(yl | x)Pref2(yl | x) using the copied prediction variables Pθ2(·) and Pref2(·).593
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Figure 4: A Boolean representation of the different losses covered in Figure 3
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