
D-Flow: Differentiating through Flows for Controlled Generation

Heli Ben-Hamu 1 2 * Omri Puny 2 Itai Gat 1 Brian Karrer 1 Uriel Singer 1 Yaron Lipman 1 2

Abstract
Taming the generation outcome of state of the art
Diffusion and Flow-Matching (FM) models with-
out having to re-train a task-specific model un-
locks a powerful tool for solving inverse problems,
conditional generation, and controlled generation
in general. In this work we introduce D-Flow, a
simple framework for controlling the generation
process by differentiating through the flow, opti-
mizing for the source (noise) point. We motivate
this framework by our key observation stating
that for Diffusion/FM models trained with Gaus-
sian probability paths, differentiating through the
generation process projects gradient on the data
manifold, implicitly injecting the prior into the op-
timization process. We validate our framework on
linear and non-linear controlled generation prob-
lems including: image and audio inverse prob-
lems and conditional molecule generation reach-
ing state of the art performance across all.

1. Introduction
Controlled generation from generative priors is of great
interest in many domains. Various problems such as condi-
tional generation, inverse problems, sample editing etc., can
all be framed as a controlled generation problem. In this
work we focus on controlled generation from diffusion/flow
generative models (Song & Ermon, 2019; Ho et al., 2020;
Lipman et al., 2023) as they are the current state-of-the-art
generative approaches across different data modalities.

There are three main approaches for controlled generation
from diffusion/flow models: (i) conditional training, where
the model receives the condition as an additional input dur-
ing training (Song et al., 2020; Dhariwal & Nichol, 2021;
Ho & Salimans, 2022b), although performing very well
this approach requires task specific training of a generative

*Work done as a research intern at FAIR, Meta. 1Meta
2Weizmann Institute of Science. Correspondence to: Heli Ben-
Hamu <heli.benhamu@weizmann.ac.il>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

GT Distorted Ours α = 96.62

GT Distorted Ours

Figure 1: Free-form inpainting with a latent T2I FM model
(Ground truth image is taken from the MS-COCO validation
set), conditionally generated molecule and audio inpainting
using D-Flow.

model which in cases may be prohibitive; (ii) training-free
approaches that modify the generation process of a pre-
trained model, adding additional guidance (Bar-Tal et al.,
2023; Yu et al., 2023). The guidance is usually built upon
strong assumptions on the generation process that can lead
to errors in the generation and mostly limit the method to
observations that are linear in the target (Kawar et al., 2022;
Chung et al., 2022; Song et al., 2023a; Pokle et al., 2023);
lastly, (iii) adopt a variational perspective, framing the con-
trolled generation as an optimization problem (Graikos et al.,
2023; Mardani et al., 2023; Wallace et al., 2023; Samuel
et al., 2023b), requiring only a differentiable cost to enforce
the control. This paper belongs to this third class.

The goal of this paper is to introduce a framework for adding
controlled generation to a pre-trained Diffusion or Flow-
Matching (FM) model based on differentiation through the
ODE sampling process. Our key observation is that for
Diffusion/FM models trained with standard Gaussian proba-
bility paths, differentiating an arbitrary loss L(x) through
the generation process of x with respect to the initial point,
x0, projects the gradient∇xL onto the “data manifold”, i.e.,
onto major data directions at x, implicitly injecting a valu-
able prior. Based on this observation we advocate a simple
general algorithm that minimizes an arbitrary cost function
L(x), representing the desired control, as a function of the
source noise point x0 used to generate x. That is,

min
x0

L(x). (1)

1

D-Flow: Differentiating through Flows for Controlled Generation

Algorithm 1 D-Flow.

Require: cost L, pre-trained flow model ut(x)

Initialize x
(0)
0 = x0

for i = 1, . . . , N do
x(i)(1)← solve(x(i)

0 , ut)

x
(i+1)
0 ← optimize step(x(i)

0 ,∇x0
L(x(i)(1)))

end for
Return: xN (1)

Differentiating through a generator of a GAN or a nor-
malizing flow was proven generally useful for controlled
generation (Bora et al., 2017; Asim et al., 2020; Whang
et al., 2021) and counterfactual examples (Dombrowski
et al., 2021; 2024). Recently, (Wallace et al., 2023; Samuel
et al., 2023b) have been suggesting to differentiate through
a discrete diffusion solver for the particular tasks of incorpo-
rating classifier guidance and generating rare concepts. In
this paper we generalize this idea in two ways: (i) we con-
sider general flow models trained with Gaussian probability
paths, including Diffusion and Flow-Matching models; and
(ii) we demonstrate, both theoretically and practically, that
the inductive bias injected by differentiating through the
flow is applicable to a much wider class of problems mod-
eled by general cost functions.

We experiment with our method on a variety of settings and
applications: Inverse problems on images using conditional
ImageNet and text-2-image (T2I) generative priors, condi-
tional molecule generation with QM9 unconditional genera-
tive priors, and audio inpainting and super-resolution with
unconditional generative prior. In all application we were
able to achieve state of the art performance without care-
fully tuning the algorithm across domains and applications.
One drawback of our method is the relative long time for
generation (usually 5− 15 minutes on ImageNet-128 on an
NVidia V100 GPU) compared to some baselines, however
the method’s simplicity and its superior results can justify
its usage and adaptation in many use cases. Furthermore,
we believe there is great room for speed improvement.

To summarize, our contributions are:

• We formulate the controlled generation problem as a
simple source point optimization problem using gen-
eral flow generative models.

• We show that source point optimization of flows trained
with Gaussian probability paths inject an implicit bias
exhibiting a data-manifold projection behaviour to the
cost function’s gradient.

• We empirically show the generality and the effective-
ness of the proposed approach for different domains.

2. Preliminaries
Flow models. Generative flow models, including Contin-
uous Normalizing Flows (CNFs) (Chen et al., 2018; Lip-
man et al., 2023) and (deterministic sampling of) Diffusion
Models (Song et al., 2020) generate samples x(1) ∈ Rd

by first sampling from some source (noise) distribution
x(0) ∼ p0(x0) and then solving an Ordinary Differential
Equation (ODE),

ẋ(t) = ut(x(t)), (2)

from time t = 0 to time t = 11, using a predetermined
velocity field u : [0, 1] × Rd → Rd. We denote by p1
the distribution and density function of x(1) given x(0) ∼
p0(x0).

3. Controlled Generation via Source Point
Optimization

Given a pre-trained (frozen) flow model, ut(x), represented
by a neural network and some cost function L : Rd → R+,
our goal is to find likely samples x that provide low cost
L(x) and are likely under the flow model’s distribution p1.
We advocate a general framework formulating this problem
as the following optimization problem

min
x0

L(x(1)) (3)

where in general L can also incorporate multiple costs in-
cluding potentially a regularization term that can depend on
x0 and u,

L̃(x) = L(x) +R(x0, u). (4)

In this formulation, the sample x(1) is constrained to be
a solution of the ODE 2 with initial boundary condition
x(0) = x0, where x0 is the only optimized quantity and L
is the desired cost function. Optimizing equation 3 is done
by computing the gradients of the loss w.r.t. the optimized
variable x0 as listed in Algorithm 1. We call this method D-
Flow. To better understand the generality of this framework
we next consider several instantiations of equation 3.

3.1. Cost Functions

Reversed sampling. First, consider the simple case where
L(x) = ∥x− y∥2. In this case, the solution of 3 will be
the x0 that that has an ODE trajectory that reaches y at
t = 1, i.e., x(1) = y. Note that since (under some mild
assumptions on ut(x)) equation 2 defines a diffeomorphism
Rd → Rd, for an arbitrary y ∈ Rd, there exists a unique
solution x0 ∈ Rd to equation 3.

1In this paper we use the convention of t = 0 corresponds to
noise, and t = 1 to data.

2

D-Flow: Differentiating through Flows for Controlled Generation

Distorted Initial x(1) step 2 step 4 step 6 step 8 step 10 step 12 GT

Figure 2: Intermediate x(1) during optimization. Given a distorted image and randomly initialized x0 defining the initial
x(1), our optimization travels close to the natural image manifold passing through in-distribution images on its way to the
GT sample from the face-blurred ImageNet-128 validation set.

Inverse problems. In this case we have access to some
known corruption function H : Rd → Rn and a corrupted
sample from an unknown ground truth signal x∗,

y = H(x∗) + ϵ, (5)

where ϵ ∼ N (ϵ) is an optional additive noise. The goal is to
recover an x that produces y and the cost function is usually

L(x) = ∥H(x)− y∥2 , (6)

where the norm can be some arbitrary Lp norm or even a
general loss ℓ(H(x), y) comparing H(x) and y. Specific
choices of the corruption function H can lead to common
applications: Image inpainting corresponds to choosing the
corruption function H to sub-sample known n < d pixels
out of d total pixels; Image deblurring corresponds to taking
H : Rd → Rd to be a blurring function, e.g., a convolution
with a blurring kernel; Super-resolution corresponds to H :
Rd → Rd/k lowering the dimension by a factor of k.

Conditional sampling. Another important application is
to guide the sampling process to satisfy some conditioning
y. In this case we can take L(x) to encourage a classifier or
some energy function to reach a particular class or energy y.
For example, ifF : Rd → R is some function and we would
like to generate a sample from a certain level set c ∈ R we
can use the loss

L(x) = (F(x)− c)
2
. (7)

3.2. Initialization

The initialization of x0 can have a great impact on the con-
vergence of the optimization of equation 3. A natural choice
will be to initialize x0 with a sample from the source dis-
tribution p0(x0). We find that for cases when an observed
signal y provides a lot of information about the desired x,
one can improve the convergence speed of the optimization.
For example, in linear inverse problems on images, where
the observed y has a strong prior on the structure of the im-
age, it is beneficial to initialize x0 with a blend of a sample
from the source distribution and the backward solution of
the ODE from t = 1 to t = 0 of y:

x0 =
√
α · y(0) +

√
1− α · z, (8)

where z ∼ p0(x0) and y(0) = y +
∫ 0

1
u(t, y(t))dt.

3.3. Regularizations

The formulation in equation 3 allows including different reg-
ularizationsR (equation 4) discussed next. Maybe the most
intriguing of these regularizations, and the main point of
this paper, is the implicit regularization, i.e., corresponding
toR ≡ 0, discussed last in what follows.

Regularizing the target x(1). Maybe the most natural
is incorporating the negative log likelihood (NLL) of the
sample x(1), i.e., R = − log p1(x(1)) in equation 4. This
prior can be incorporated by augmenting x(t) ∈ Rd with an
extra coordinate z ∈ R and formulate equation 3 as

min
x0

L(x(1))− z(1) (9a)

s.t. ẋ(t) = ut(x(t)), x(0) = x0 (9b)
ż(t) = −div ut(x(t)), z(0) = log p0(x0) (9c)

BPD=2.02 BPD=1.84

Figure 3: BPD of two im-
ages in an ImageNet-128
model.

Indeed, solving the
ODE system defined by
equations 9b and 9c for
times t ∈ [0, 1] provides
z(1) = log p1(x(1)), see
(Chen et al., 2018). How-
ever, aside from the extra
complexity introduced by
the divergence term in the
ODE in equation 9c (see
e.g., (Grathwohl et al.,
2018) for ways to deal with this type of ODE) it is not
clear whether likelihood is a good prior in deep generative
models in high dimensions (Nalisnick et al., 2019); In
Figure 3 we compare bits-per-dimension (BPD) of a test
image of ImageNet-128 and a version of this image with a
middle square masked with zeros, providing a more likely
image according to our flow model trained on ImageNet.

Regularizing the source x(0) = x0. Another option is
to regularize the source point x(0) = x0. The first choice
would again be to incorporate the NLL of the noise sample,
i.e.,R = − log p0(x0), which for standard noise p0(x0) =

N (x0|0, I) would reduce toR = c+ 1
2 ∥x0∥2, where c is a

constant independent of x0. This however, would attract x0

3

D-Flow: Differentiating through Flows for Controlled Generation

towards the most likely all zero mean but far from most of
the probability mass at norm

√
d.

Following (Samuel et al., 2023a) we instead prefer to make
sure x0 stays in the area where most mass of p0 is concen-
trated and therefore use the χd distribution, which is defined
as the probability distribution p(r) of the random variable
r = ∥x0∥ where x0 ∼ N (x0|0, I) is again the standard
normal distribution. The NLL of r in this case is

R = − log p(r) = c+ (d− 1) log ∥x0∥ −
∥x0∥2

2
, (10)

where c is a constant independent of x0.

Implicit regularization. Maybe the most interesting and
potentially useful regularization in our formulation (equa-
tion 3) comes from the choice of optimizing the costL(x(1))
as a function of the source point x(0) = x0. For standard
diffusion/flow models that are trained to zero loss:

Optimizing the cost L(x(1)) with respect to x0 follows
the data distribution p1(x1) by projecting the gradient
∇x(1)L(x(1)) with the local data covariance matrix.

Figure 4: Implicit
bias in differentiating
through the solver.

This is intuitively illustrated
in Figure 4: while moving
in direction of the gradient
∇x(1)L(x(1)) generally moves
away from the data distribu-
tion (in pink), differentiating
w.r.t. x(0) projects this gradi-
ent onto high variance data di-
rections and consequently stay-
ing close to the data distribution.
To exemplify this phenomena
we show in Figure 2 optimiza-
tion steps x(0)(1), x(2)(1), x(4)(1), . . . of a loss L(x) =

∥H(x)−H(x∗)∥2, where H is a linear matrix that subsam-
ples a (random) subset of the image’s pixels consisting of
90% of the total number of pixels, and x∗ is a target image
(different from the initial x(0)(1)). The sampling process
here is using an ImageNet trained flow model with the class
condition ‘bulbul’. As can be seen in this sequence of im-
ages, the intermediate steps of the optimization stay close
to the distribution and pass through different sub-species
of the bulbul bird. In the next section we provide a precise
mathematical statement supporting this claim but for now
let us provide some intuitive explanation.

3.4. Practical Implementation

The practical implementation of Algorithm 1 requires three
algorithmic choices. First, one needs to decide how to ini-
tialize x0. In all experiments we either initialize x0 as a
sample from the source distribution, i.e., normal Gaussian,
or we use a variance preserving blend of a normal Gaussian

with the backward solution from t = 1 to t = 0 of the
observed signal when possible. Second, we need to choose
the solver used to parameterize x(1). To this end we uti-
lize the torchdiffeq package (Chen, 2018), providing
a wide class of differentiable ODE solvers. Backpropagat-
ing through the solver can be expensive in memory and we
therefore use gradient checkpointing to reduce memory con-
sumption at the cost of runtime. In most of our experiments
we use the midpoint method with 6 function evaluations.
Lastly, we need to choose the optimizer for the gradient
step. Since the optimization we perform is not stochastic
we choose to use the LBFGS algorithm with line search in
all experiments. The runtime of the optimization depends
on the problem but typically ranges from 5 − 15 minutes
per sample. For large text-2-image and text-2-audio models
run times are higher and can reach 30− 40 minutes.

4. Theory
In this section we provide the theoretical support to the
implicit regularization claim made in the previous section.

First, we revisit the family of Affine Gaussian Probability
Paths (AGPP) taking noise to data that are used to supervise
diffusion/flow models. When diffusion/flow models reach
zero loss they reproduce these probability paths and we will
therefore use them to analyze the implicit bias. Second, we
use the method of adjoint dynamics to provide an explicit
formula for the gradient ∇x0L(x(1)) under the AGPP as-
sumption, and consequently derive the asymptotic change
(velocity vector) in x(1). Lastly, we interpret this veloc-
ity vector of x(1) to demonstrate why it is pointing in the
direction of the data distribution p1(x).

Affine Gaussian probability paths. Diffusion and recent
flow based models use Affine Gaussian Probability Path
(AGPP) to supervise their training. In particular, denoting
p0 = N (0, σ2

0I) the Gaussian noise (source) distribution
and p1 data (target) distribution, an AGPP is defined by

pt(x) =

∫
pt(x|x1)p1(x1)dx1, (11)

where pt(x|x1) = N (x|αtx1, σ
2
t I) is a Gaussian kernel

and αt, σt : [0, 1] → [0, 1] are called the scheduler, satis-
fying α0 = 0, σ1 ≈ 0, and α1 = 1 = σ0, consequently
guaranteeing that pt interpolates (exactly or approximately)
the source and target distributions at times t = 0 and t = 1,
respectively. The velocity field that generates this proba-
bility path and coincide with the velocity field trained by
diffusion/flow models at zero loss is (Lipman et al., 2023;
Shaul et al., 2023)

ut(x) =

∫
[atx+ btx1] pt(x1|x)dx1 (12)

4

D-Flow: Differentiating through Flows for Controlled Generation

where using Bayes’ Theorem

pt(x1|x) =
pt(x|x1)p1(x1)

pt(x)
, (13)

and

at =
σ̇t

σt
, bt = α̇t − αt

σ̇t

σt
. (14)

One can also simplify the integral in equation 12 and write
the marginal vector field in terms of the denoiser (Karras
et al., 2022), x̂1|t(x) =

∫
x1pt(x1|x)dx1:

ut(x) = atx+ btx̂1|t(x) (15)

which for AGPP possesses a useful property we will use in
Theorem 4.2, stated in the following proposition (proof in
Appendix A.1):

Proposition 4.1. For AGPP, the gradient of the denoiser
x̂1|t(x) w.r.t x is proportional to the variance of the random
variable defined by pt(x1|x), formally:

Dxx̂1|t(x) =
αt

σ2
t

Var1|t(x) (16)

where

Var1|t(x) = Ept(x1|x)
[
x1 − x̂1|t(x)

] [
x1 − x̂1|t(x)

]T
(17)

Differentiating through the solver. When diffusion/flow
models are optimized to a minimal loss they perfectly re-
produce the AGPP velocity field, i.e., equation 12 (Lipman
et al., 2023). For this velocity field we begin with an anal-
ysis of the differential of a solution (sample) Dx0x(1) for
the continuous time exact case and a discrete time approxi-
mation.

Theorem 4.2. For AGPP velocity field ut (see equation 12)
and x(t) defined via equation 2 the differential of x(1) as a
function of x0 is

Dx0x(1) = σ1T exp

[∫ 1

0

γtVar1|t(x(t))dt

]
, (18)

where T exp[·] stands for a time-ordered exponential, γt =
1
2

d
dt snr(t) and we define snr(t) =

α2
t

σ2
t

.

The proof is given in Appendix A.2. In the exact case where
σ1 = 0 we also have

∫ 1

0
γtdt =∞, nevertheless we show in

Appendix A.2 that Dx0
x(1) is the time-ordered exponential

of a bounded time-dependent matrix. While a closed form
expression to this integral is unknown, we note that the
matrix-vector product Dx0x(1)v corresponds to an infinite
sum of powers of the matrices γtVar1|t(x(t)) applied to v.

To gain better intuition and align our theory with practice,
where discrete ODE solvers are used to obtain x(1), we will
now analyze the discrete time solver case. Let us consider
an Euler ODE solver with N uniform steps of size h = 1

N ,
then the differential of x(1) as a function of x0 is:

Dx0x(1) =

N−1∏
m=0

(
(1 + hamh)I + hγmhVar1|mh(xmh)

)
(19)

note that the product is a time-ordered product, with m
decreasing from right to left (derivation in Appendix A.3).
The form of equation 19, consisting of powers of Var1|t(x),
provides insights as to why D-Flow works even with a low
number of solver steps. Intuitively, the vector-matrix mul-
tiplication Var1|t(x)v projects v on the major axes of the
distribution of the data conditioned on x. As we will soon
see, Dx0x(1) is key to understanding the implicit bias claim.

The dynamics of x(1). Consider an optimization step
updating the optimized variable x0 with a gradient step, i.e.,
xτ
0 = x0 − τ∇x0

L(x(1)), where the gradient ∇x0
L(x(1))

can be now computed with the chain rule and equation 18,

∇x0
L(x(1)) = Dx0

x(1)T∇x(1)L(x(1)), (20)

We can now ask: How is the sample x(1) changing infinites-
imally under this gradient step? Denote by Φ : Rd → Rd

the map taking initial conditions x0 to solutions of equa-
tion 2 at t = 1, i.e., Φ(x0) = x(1). The variation of x(1)
is

δx(1) =
d

dτ

∣∣∣
τ=0

Φ (x0 − τ∇x0L(x(1)))

= −
[
Dx0x(1)Dx0x(1)

T
]
∇x(1)L(x(1)),

where the first equality is the definition of variation and the
second equality is using chain rule and equation 20. Indeed,
the dynamics of x(1) follow the projection of the gradient
∇x(1)L(x(1)) with the operator Dx0

x(1) that iteratively
applies projection by the covariance matrix Var1|t(x(t)) at
different times t (equations 18 and 19).

5. Related Work
Inverse Problems. A new line of works alter the diffu-
sion generation process for training-free solutions of inverse
problems. Most works can be viewed as building guidance
strategies to the generation process of diffusion models.
(Kawar et al., 2022) takes a variational approach deriving a
solver for linear inverse problems. Similarly, (Chung et al.,
2022; Wang et al., 2022) modify the generation process by
enforcing consistency with the observations either via cost
functions or projections (Choi et al., 2021; Wang et al., 2022;
Lugmayr et al., 2022). Other approaches guide the sampling

5

D-Flow: Differentiating through Flows for Controlled Generation

Distorted Ground Truth Ours RED-Diff OT-ODE ΠGDM Distorted Ground Truth Ours RED-Diff OT-ODE ΠGDM

Figure 5: Qualitative comparison for linear inverse problems on ImageNet-128. GT samples from ImageNet-128 validation.

process with derivatives through the diffusion model at each
denoising step (Ho et al., 2022; Chung et al., 2023; Song
et al., 2023a; Pokle et al., 2023). A recent work by (Rout
et al., 2023) extends the ideas for latent diffusion models
by chained applications of encoder-decoder. Similar to our
approach (Mardani et al., 2023) performs optimization of a
reconstruction loss with score matching regularization.

Conditional sampling. Conditional sampling from dif-
fusion models can be achieved by training an additional
noise-aware condition predictor model (Song et al., 2020)
or by incorporating the condition into the training process
(Dhariwal & Nichol, 2021; Ho & Salimans, 2022a). These
approaches however require task specific training. Plug-
and-play approaches, on the other hand, utilize a pre-trained
unconditional generative model as a prior. (Graikos et al.,
2023) perform constrained generation via optimization of a
reconstruction term regularized by the diffusion loss. (Liu
et al., 2023) seeks for optimal control optimizing through the
generation process to learn guiding controls. Our method
formulates a similar optimization problem like earlier works
on GANs (Bora et al., 2017) and normalizing flows (Asim
et al., 2020; Dombrowski et al., 2021; Chávez, 2022). While
(Asim et al., 2020) provides an analysis of a simplified lin-
ear model, (Dombrowski et al., 2021) analyzes the manifold
preserving properties of diffeomorphic generative models.
Our work provides a novel theoretical analysis of the gradi-
ent of differentiable functionals with respect to initial values
of diffusion/flow generative processes with affine Gaussian
paths. Our analysis unravels a fresh perspective on the im-
plicit regularization implemented by differentiating through
the generation process, even with a few number of steps
(Appendix A.3), that aligns with the denoising attributes of
diffusion/flow models. We note that using gradients through
the solver for the case of discrete diffusion models was first
used by (Wallace et al., 2023) for classifier guidance and by
(Samuel et al., 2023b) to generate rare samples.

6. Experiments
We test D-Flow on the tasks: linear inverse problems on
images, inverse problems with latent flow models and con-
ditional molecule generation. For all the inverse problems
experiments, where the observed signal provides structural
information, we use a blend initialization to our algorithm
speeding up convergence and often improving performance.
Furthermore, in most experiments we find that there is no
need in adding an explicit regularizing term in the opti-
mization. The only cases where we found regularization
helpful was in the noisy case for linear inverse problems and
molecule generation. Additional details are in Appendix B.

6.1. Linear Inverse Problems on Images

We validate our method on standard linear inverse problems
with a known degradation model on images. The tasks we
consider are center-crop inpainting, super-resolution and
Gaussian deblurring both in the noiseless and noisy case. In
all cases we stop the optimization at a task dependent target
PSNR. For the noisy case we choose the target PSNR to be
the PSNR corresponding to the known added noise.

Tasks. We follow the same settings as in (Pokle et al.,
2023): (i) For center-crop inpainting, we use a 40 × 40
centered mask; (ii) for super-resolution we use bicubic inter-
polation to downsample the images by ×2; and lastly (iii)
for Gaussian deblur we apply a Gaussian blur kernel of size
61× 61 with intensity 1. For each task we report results for
the noiseless and noisy (Gaussian noise of σy = 0.05, see
equation 5) cases. Further implementation details can be
found in the Appendix B.1.

Metrics. Following the evaluation protocol of prior works
(Chung et al., 2022; Kawar et al., 2022) we report Fréchet
Inception Distance (FID) (Heusel et al., 2018), Learned
Perceptual Image Patch Similarity (LPIPS) (Zhang et al.,
2018), peak signal-to-noise ratio (PSNR), and structural
similarity index (SSIM).

6

D-Flow: Differentiating through Flows for Controlled Generation

Table 1: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-128.

Inpainting-Center Super-Resolution X2 Gaussian deblur
Method FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑
σy = 0
ΠGDM (Song et al., 2023a) 5.73 0.096 36.89 0.908 6.01 0.104 34.31 0.911 4.27 0.066 37.61 0.961
OT-ODE (Pokle et al., 2023) 5.65 0.094 37.00 0.893 4.28 0.097 33.88 0.903 2.04 0.048 37.44 0.959
RED-Diff (Mardani et al., 2023) 5.40 0.068 38.91 0.928 3.05 0.091 33.74 0.900 1.62 0.055 35.18 0.937
Ours 4.14 0.072 37.67 0.922 2.50 0.069 34.88 0.924 2.37 0.035 39.47 0.976

σy = 0.05
ΠGDM (Song et al., 2023a) 7.99 0.122 34.57 0.867 4.38 0.148 32.07 0.831 30.30 0.328 29.96 0.606
OT-ODE (Pokle et al., 2023) 6.25 0.119 35.01 0.882 4.61 0.149 32.59 0.862 4.84 0.175 31.94 0.821
RED-Diff (Mardani et al., 2023) 14.63 0.171 32.42 0.820 10.54 0.182 31.82 0.852 21.43 0.229 31.41 0.807
Ours 4.76 0.102 34.609 0.890 4.26 0.146 32.35 0.858 5.35 0.167 31.99 0.820

Table 2: Quantitative evaluation of free-form inpainting on
MS-COCO with T2I latent model.

Inpainting-Free-Form
Method FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ Clip score ↑

RED-Diff (Mardani et al., 2023) 23.31 0.327 33.28 0.813 0.882
Ours 16.92 0.327 32.34 0.759 0.892

Datasets and baselines. We use the face-blurred ImageNet-
128 dataset and report our results on the 10k split of the
face-blurred ImageNet dataset used by (Pokle et al., 2023).
We compare our method to three recent state of the art
methods: ΠGDM (Song et al., 2023a), OT-ODE (Pokle
et al., 2023) and RED-Diff (Mardani et al., 2023). We
use the implementation of (Pokle et al., 2023) for all the
baselines. All methods, including ours, are evaluated with
the same Cond-OT flow-matching class conditioned model
trained on the face-blurred ImageNet-128 unless the reults
we produced were inferior to the ones reported in (Pokle
et al., 2023). In that case, we use the reported numbers from
(Pokle et al., 2023).

Results. As shown in Table 1, our method shows strong
performance across all tasks, Figure 5 shows samples for
each type of distortion. For inpainting and super-resolution
our method improves upon state of the art in most metrics.
We believe that our method’s ability to reach images with
higher fidelity to the ground truth is attributed to the source
point optimization, which, differently from guided sampling
approaches such as (Song et al., 2023a; Pokle et al., 2023),
iteratively correct the sampling trajectory to better match the
observed signal. We further note that compared to RED-Diff,
which is also an optimization approach, our method does not
struggle in the noisy case and achieves SOTA performance.
We show more samples in Figures 8,9.

6.2. Inverse Problems with Latent Flow Models

6.2.1. IMAGE INPAINTING

We demonstrate the capability of our approach for non-linear
inverse problems by applying it to the task of free-form
inpainting using a latent T2I FM model.

Metrics. To quantitatively assess our results we report stan-
dard metrics used in T2I generation: PSNR, FID (Heusel
et al., 2018), and Clip score (Ramesh et al., 2022).

Datasets and baselines. The T2I model we use was trained
on a proprietary dataset of 330m image-text pairs. It was
trained on the latent space of an autoencoder as in (Rombach
et al., 2022). The architecture is based on GLIDE (Nichol
et al., 2022) and uses a T5 text encoder (Raffel et al., 2023).
We evaluate on a subset of 1k samples from the validation
set of the COCO dataset (Lin et al., 2015). We compare our
method to RED-Diff (Mardani et al., 2023) as it is also not
limited to linear inverse problems like the other baselines
we used in the previous section. We tested different hyper-
parameters for RED-Diff and report results with the best.

Results. Table 2 reports metrics for the baseline and our
method. The metrics indicate that while RED-Diff bet-
ter matches the unmasked areas, achieving superior perfor-
mance for structural metrics (PSNR, SSIM) our method
produces more semantically plausible image completion
winning in perceptual metrics. We do observe that RED-Diff
often produces artifacts for this task. Results are visualized
in Figure 10.

6.2.2. AUDIO INPAINTING AND SUPER-RESOLUTION

We evaluate our method on the tasks of music inpainting
and super-resolution, utilizing a latent flow-matching music
generation model. For this, we used a trained Cond-OT
flow-matching text conditioned model with a transformer
architecture of 325m parameters that operates on top of En-
Codec representation (Défossez et al., 2022). The model’s
performance aligns with the current state-of-the-art scores
in text-conditional music generation, achieving a Fréchet
Audio Distance (FAD) score of 3.13 (Kilgour et al., 2018)
on MusicCaps and FAD of 0.72 on in-domain data. The
model is trained to generate ten-seconds samples. In the
following, we evaluate the performance of inpainting and
super-resolution using our method and RED-Diff as base-
line, we report FAD and PSNR metrics.

7

D-Flow: Differentiating through Flows for Controlled Generation

Table 3: Quantitative evaluation of music generation with latent flow models.
Inpainting (10%) Inpainting (20%) Super-Resolution X2 Super-Resolution X4 Super-Resolution X8

Method FAD ↓ PSNR ↑ FAD ↓ PSNR ↑ FAD ↓ PSNR ↑ FAD ↓ PSNR ↑ FAD ↓ PSNR ↑
In-domain

RED-Diff (Mardani et al., 2023) 0.75 31.19 0.78 29.99 0.93 35.27 1.63 33.51 1.73 29.12
Ours 0.22 31.02 0.49 29.57 0.22 44.51 0.50 42.64 1.01 36.50

MusicCaps
RED-Diff (Mardani et al., 2023) 3.59 32.81 3.72 30.39 3.07 37.13 3.51 34.99 3.97 30.49
Ours 1.19 31.78 1.31 31.08 1.25 38.93 1.42 35.83 2.09 32.20

Datasets and baselines. For evaluation, we use the Music-
Caps benchmark, which comprises of 5.5K pairs of music
and a textual description and an internal (in-domain) evalua-
tion set of 202 samples, similar to (Copet et al., 2023; Ziv
et al., 2024). Similar to prior work, we compute FAD metric
using VGGish. We compare our method to RED-Diff (Mar-
dani et al., 2023).

Results. Table 3 studies our method in inapinting and super
resolution tasks. This experiment demosntrates the ability
of our method to work in non-linear setup, where the flow
model is trained over a neural representation and the cost
function is evaluated on the post-decoded signal (neural rep-
resentation after decoding). In the inpainting task, we center
crop the signal by 10% and 20%, i.e., for a ten-seconds
signal, we mask out two and four seconds respectively. In
the super-resolution task we upscale a signal by factors of
two, four, and eight,i.e., from 4kHz, 8kHz, 16kHz to 32kHz
respectively. Overall, our method improves upon the base-
line. Specifically, in all experiments, our method obtain
the lowest FAD metric. In the inpainting task our method
obtains a slightly lower PSNR from the baseline. Audio sam-
ples are attached in a supplementray material. Additional
implementation details appear in Appendix B.2.2.

6.3. Conditional Molecule Generation on QM9

In this experiment we illustrate the application of our
method for controllable molecule generation, which is of
practical significance in the fields of material and drug de-
sign. The properties targeted for conditional generation
(c in equation 7) include polarizability α, orbital energies
εHOMO, εLUMO and their gap ∆ε, Diople moment µ, and
heat capacity Cv . To assess the properties of the molecules
generated, we used a property classifier (F in equation 7)
for each property. Those classifiers were trained follow-
ing the methodology outlined in (Hoogeboom et al., 2022).
Further details are in Appendix B.3.

Metrics. To assess conditional generation, we calculate
the Mean Absolute Error (MAE) between the predicted
property value of the generated molecule by the property
classifier, (Satorras et al., 2022), and the target property
value. According to the conditional training protocol from
(Hoogeboom et al., 2022), the property classifier is trained

Table 4: Quantitative evaluation of conditional molecule
generation. Values reported in the table are MAE (over 10K
samples) for molecule property predictions (lower is better).

Property α ∆ε εHOMO εLUMO µ Cv

Units Bohr2 meV meV meV D cal
mol K

QM9∗ 0.10 64 39 36 0.043 0.040
EDM 2.76 655 356 584 1.111 1.101
EQUIFM 2.41 591 337 530 1.106 1.033
GEOLDM 2.37 587 340 522 1.108 1.025
Ours 1.39 344 182 330 0.300 0.784

Table 5: Stability and validity evaluation of D-flow on con-
ditional molecule generation (10K samples).

Property α ∆ε εHOMO εLUMO µ Cv

Molecule Stability (%) 56.2 59.4 60.2 59.4 60.7 57.9
Atom Stability (%) 93.6 93.9 94.1 93.8 94.2 93.6
Validity (%) 77.4 79.4 80.2 79.4 81.1 78.9
Validity & Uniqueness (%) 77.4 79.4 80.2 79.4 81.1 78.9

over half of the QM9 train set (50K) while the remaining
half is used for training the conditional generative mod-
els. Additionally, we appraise the quality of the generated
molecules by evaluating atom stability (the percentage of
atoms with correct valency), molecule stability (the percent-
age of molecules where all atoms are stable), validity (as
defined in RDKit (Landrum, 2016)), and the uniqueness of
the generated molecules.

Dataset and baselines. The generative models used for this
experiment are trained using the QM9 dataset (Ramakrish-
nan et al., 2014), a commonly used molecular dataset con-
taining small molecules with up to 29 atoms. The model we
use as prior in these experiments is an unconditional equiv-
ariant Flow-Matching model with CondOT path (Lipman
et al., 2023), trained on the train set half used in (Hooge-
boom et al., 2022) for conditional training. We compare
our method to several state of the art conditional models:
conditional EDM, Equivariant Flow-Matching (EQUIFM)
(Song et al., 2023b), and Geometric Latent Diffusion Model
(GEOLDM)(Xu et al., 2023) an equivariant latent diffusion
model. Additionally, we report the test MAE of each prop-
erty classifier (denoted as QM9∗ in Table 4), which serves
as an empirical lower bound. It is important to note that
for each specific property of conditional generation, the

8

D-Flow: Differentiating through Flows for Controlled Generation

52.22 63.60 72.63 79.36 81.33 88.88 95.13 102.40
Figure 6: Qualitative visualization of controlled generated molecules for various polarizability (α) levels.

baseline methods utilized a distinct conditional model, each
individually trained for generating that particular property
while we used a single unconditional model.

Results. Table 4 demonstrates that our approach signifi-
cantly outperforms all other baseline methods in the quality
of conditional molecule generation. This superior perfor-
mance is attributed to our direct optimization of the condi-
tional generation. Table 5 presents the stability and validity
metrics for our method. In comparison with conditional
EDM, which achieves an average molecular stability of
82.1% across different properties, our method reveals a dis-
parity in the stability of the generated molecules. This gap is
a consequence of two factors. First, the trained Flow Match-
ing unconditional model achieved inferior performance com-
pared to EDM reaching molecular stability of 72.2%. Sec-
ond, the optimization with respect to the property predictor
does not achieve the same quality of generation as regular
sampling. We further verify that the gain in MAE that D-
Flow presents is not due to the degradation in the percentage
of stable molecules and report both MAE values for stable
and non-stable molecules withing the 10k generated sample,
in Table 8. The MAE values for both stable and non-stable
molecules are on par and improve by a large margin the
existing baselines. Figure 6 visualize the controlled gener-
ation for different polarizability α values; all molecules in
the figure are valid and stable with a classifier error lower
than 1.

7. Discussion, Limitations and Future Work
We have presented a simple and general framework for con-
trolled generation from pre-trained diffusion/flow models
and demonstrated its efficacy on a wide range of problems
from various domains and data types ranging from images,
and audio to molecules. The main limitation of our ap-
proach is in its relatively long runtimes (see Section 3.4, and
Appendix B) which stems from the need to back-propagate
through multiple compositions of the velocity field (equiv-
alently, the diffusion model). Our theoretical analysis and
empirical evidence show however that computing gradients
through the ODE solution have a desirable implicit bias,
producing state of the art results on common conditional
generation tasks. Consequently, an interesting future di-
rection is to utilize the implicit bias but with potentially
cheaper computational overhead, and draw connections to
other biases used in other controlled generation paradigms.

Acknowledgments
OP is supported by a grant from Israel CHE Program for
Data Science Research Centers and the Minerva Stiftung.

Impact Statement
In this paper we introduce a general approach for controlled
data generation from generative priors. This paper presents
work whose goal is to advance the field of Machine Learning.
There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.

References
Anderson, B., Hy, T.-S., and Kondor, R. Cormorant: Co-

variant molecular neural networks, 2019.

Asim, M., Daniels, M., Leong, O., Ahmed, A., and Hand,
P. Invertible generative models for inverse problems:
mitigating representation error and dataset bias, 2020.

Bar-Tal, O., Yariv, L., Lipman, Y., and Dekel, T. Multi-
diffusion: Fusing diffusion paths for controlled image
generation. arXiv preprint arXiv:2302.08113, 2023.

Bora, A., Jalal, A., Price, E., and Dimakis, A. G. Com-
pressed sensing using generative models, 2017.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. Neural ordinary differential equations. arXiv preprint
arXiv:1806.07366, 2018.

Chen, R. T. Q. torchdiffeq, 2018. URL https://
github.com/rtqichen/torchdiffeq.

Choi, J., Kim, S., Jeong, Y., Gwon, Y., and Yoon, S. Ilvr:
Conditioning method for denoising diffusion probabilistic
models, 2021.

Chung, H., Sim, B., Ryu, D., and Ye, J. C. Improving
diffusion models for inverse problems using manifold
constraints, 2022.

Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and
Ye, J. C. Diffusion posterior sampling for general noisy
inverse problems, 2023.

Chávez, J. A. Generative flows as a general purpose solution
for inverse problems, 2022.

9

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq

D-Flow: Differentiating through Flows for Controlled Generation

Copet, J., Kreuk, F., Gat, I., Remez, T., Kant, D., Synnaeve,
G., Adi, Y., and Défossez, A. Simple and controllable
music generation. In NeurIPS, 2023.

Detlefsen, N. S., Borovec, J., Schock, J., Jha, A. H., Koker,
T., Liello, L. D., Stancl, D., Quan, C., Grechkin, M.,
and Falcon, W. Torchmetrics - measuring reproducibility
in pytorch. Journal of Open Source Software, 7(70):
4101, 2022. doi: 10.21105/joss.04101. URL https:
//doi.org/10.21105/joss.04101.

Dhariwal, P. and Nichol, A. Diffusion models beat gans on
image synthesis. arXiv preprint arXiv:2105.05233, 2021.

Dombrowski, A.-K., Gerken, J. E., and Kessel, P. Diffeomor-
phic explanations with normalizing flows. In ICML Work-
shop on Invertible Neural Networks, Normalizing Flows,
and Explicit Likelihood Models, 2021. URL https:
//openreview.net/forum?id=ZBR9EpEl6G4.

Dombrowski, A.-K., Gerken, J. E., Müller, K.-R., and
Kessel, P. Diffeomorphic counterfactuals with gener-
ative models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 46(5):3257–3274, 2024. doi:
10.1109/TPAMI.2023.3339980.

Défossez, A., Copet, J., Synnaeve, G., and Adi, Y.
High fidelity neural audio compression. arXiv preprint
arXiv:2210.13438, 2022.

Evans, L. C. An introduction to mathematical optimal con-
trol theory. Lecture Notes, University of California, De-
partment of Mathematics, Berkeley, 3:15–40, 2005.

Graikos, A., Malkin, N., Jojic, N., and Samaras, D. Diffu-
sion models as plug-and-play priors, 2023.

Grathwohl, W., Chen, R. T. Q., Bettencourt, J., Sutskever,
I., and Duvenaud, D. Ffjord: Free-form continuous dy-
namics for scalable reversible generative models, 2018.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium, 2018.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022a.

Ho, J. and Salimans, T. Classifier-free diffusion guidance,
2022b.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. arXiv preprint arXiv:2006.11239, 2020.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models, 2022.

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling,
M. Equivariant diffusion for molecule generation in 3d,
2022.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
Advances in Neural Information Processing Systems, 35:
26565–26577, 2022.

Kawar, B., Elad, M., Ermon, S., and Song, J. Denoising
diffusion restoration models. In Advances in Neural In-
formation Processing Systems, 2022.

Kilgour, K., Zuluaga, M., Roblek, D., and Sharifi, M.
Fréchet audio distance: A metric for evaluating music en-
hancement algorithms. arXiv preprint arXiv:1812.08466,
2018.

Landrum, G. Rdkit: Open-source cheminformatics soft-
ware. 2016. URL https://github.com/rdkit/
rdkit/releases/tag/Release_2016_09_4.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., and
Dollár, P. Microsoft coco: Common objects in context,
2015.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling, 2023.

Liu, X., Wu, L., Zhang, S., Gong, C., Ping, W., and Liu, Q.
Flowgrad: Controlling the output of generative odes with
gradients. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
24335–24344, June 2023.

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte,
R., and Gool, L. V. Repaint: Inpainting using denoising
diffusion probabilistic models, 2022.

Magnus, W. On the exponential solution of differential
equations for a linear operator. Communications on
Pure and Applied Mathematics, 7(4):649–673, 1954.
doi: https://doi.org/10.1002/cpa.3160070404. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpa.3160070404.

Mardani, M., Song, J., Kautz, J., and Vahdat, A. A varia-
tional perspective on solving inverse problems with diffu-
sion models, 2023.

Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., and
Lakshminarayanan, B. Do deep generative models know
what they don’t know?, 2019.

Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin,
P., McGrew, B., Sutskever, I., and Chen, M. Glide: To-
wards photorealistic image generation and editing with
text-guided diffusion models, 2022.

Pokle, A., Muckley, M. J., Chen, R. T. Q., and Karrer, B.
Training-free linear image inversion via flows, 2023.

10

https://doi.org/10.21105/joss.04101
https://doi.org/10.21105/joss.04101
https://openreview.net/forum?id=ZBR9EpEl6G4
https://openreview.net/forum?id=ZBR9EpEl6G4
https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160070404
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160070404

D-Flow: Differentiating through Flows for Controlled Generation

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer, 2023.

Ramakrishnan, R., Dral, P., Rupp, M., and von Lilienfeld,
A. Quantum chemistry structures and properties of 134
kilo molecules. Scientific Data, 1, 08 2014. doi: 10.1038/
sdata.2014.22.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models, 2022.

Rout, L., Raoof, N., Daras, G., Caramanis, C., Dimakis,
A. G., and Shakkottai, S. Solving linear inverse problems
provably via posterior sampling with latent diffusion mod-
els, 2023.

Sakurai, J. J. and Napolitano, J. Modern Quantum Mechan-
ics. Cambridge University Press, 3 edition, 2020.

Samuel, D., Ben-Ari, R., Darshan, N., Maron, H., and
Chechik, G. Norm-guided latent space exploration for
text-to-image generation, 2023a.

Samuel, D., Ben-Ari, R., Raviv, S., Darshan, N., and
Chechik, G. Generating images of rare concepts using
pre-trained diffusion models, 2023b.

Satorras, V. G., Hoogeboom, E., Fuchs, F. B., Posner, I., and
Welling, M. E(n) equivariant normalizing flows, 2022.

Shaul, N., Chen, R. T., Nickel, M., Le, M., and Lipman, Y.
On kinetic optimal probability paths for generative mod-
els. In International Conference on Machine Learning,
pp. 30883–30907. PMLR, 2023.

Song, J., Vahdat, A., Mardani, M., and Kautz, J.
Pseudoinverse-guided diffusion models for inverse prob-
lems. In International Conference on Learning Represen-
tations, 2023a. URL https://openreview.net/
forum?id=9_gsMA8MRKQ.

Song, Y. and Ermon, S. Generative modeling by estimat-
ing gradients of the data distribution. arXiv preprint
arXiv:1907.05600, 2019.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Song, Y., Gong, J., Xu, M., Cao, Z., Lan, Y., Ermon, S.,
Zhou, H., and Ma, W.-Y. Equivariant flow matching with
hybrid probability transport, 2023b.

Wallace, B., Gokul, A., Ermon, S., and Naik, N. End-to-end
diffusion latent optimization improves classifier guidance,
2023.

Wang, Y., Yu, J., and Zhang, J. Zero-shot image restoration
using denoising diffusion null-space model, 2022.

Whang, J., Lei, Q., and Dimakis, A. G. Solving inverse
problems with a flow-based noise model, 2021.

Xu, M., Powers, A., Dror, R., Ermon, S., and Leskovec,
J. Geometric latent diffusion models for 3d molecule
generation, 2023.

Yu, J., Wang, Y., Zhao, C., Ghanem, B., and Zhang, J. Free-
dom: Training-free energy-guided conditional diffusion
model, 2023.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric, 2018.

Ziv, A., Gat, I., Lan, G. L., Remez, T., Kreuk, F., Défossez,
A., Copet, J., Synnaeve, G., and Adi, Y. Masked audio
generation using a single non-autoregressive transformer.
2024.

11

https://openreview.net/forum?id=9_gsMA8MRKQ
https://openreview.net/forum?id=9_gsMA8MRKQ

D-Flow: Differentiating through Flows for Controlled Generation

A. Proofs and Theorems
A.1. Proof of Proposition 4.1

We restate Proposition 4.1 here:

Proposition A.1. For AGPP, the gradient of the denoiser x̂1|t(x) w.r.t x is proportional to the variance of the random
variable defined by pt(x1|x), formally:

Dxx̂1|t(x) =
αt

σ2
t

Var1|t(x) (21)

where
Var1|t(x) = Ept(x1|x)

[
x1 − x̂1|t(x)

] [
x1 − x̂1|t(x)

]T
(22)

Proof. We recall a general affine Gaussian path is defined by

pt(x|x1) = N (x|αtx1, σ
2
t I), conditional probability path (23)

pt(x) =

∫
pt(x|x1)q(x1)dx1, marginal probability path (24)

where (αt, σt) define the scheduler and q is the dataset probability density. The velocity fields defining these paths are
(Lipman et al., 2023):

ut(x|x1) = atx+ btx1, at =
σ̇t

σt
, bt = α̇t − αt

σ̇t

σt
conditional velocity field (25)

ut(x) =

∫
ut(x|x1)pt(x1|x)dx1, pt(x1|x) =

pt(x|x1)q(x1)

pt(x)
marginal velocity field (26)

The differential of the denoiser is then:

Dxx̂1|t(x) = Dx

∫
x1pt(x1|x)dx1 =

∫
x1∇xpt(x1|x)dx1 (27)

Since pt(x|x1) is a Gaussian:

∇xpt(x|x1) =
αtx1 − x

σ2
t

pt(x|x1) (28)

and plugging into 24, we have:

∇xpt(x) =

∫
αtx1 − x

σ2
t

pt(x|x1)q(x1)dx1 (29)

using 26, we get:

∇xpt(x1|x) = pt(x1|x)
αt

σ2
t

(
x1 − x̂1|t(x)

)
(30)

therefore, 27 takes the form:

Dxx̂1|t(x) =

∫
αt

σ2
t

pt(x1|x)x1(x1 − x̂1|t(x))
T dx1 = (31)

=

∫
αt

σ2
t

pt(x1|x)(x1 − x̂1|t(x))(x1 − x̂1|t(x))
T dx1 =

αt

σ2
t

Var1|t(x)

12

D-Flow: Differentiating through Flows for Controlled Generation

A.2. Proof of Theorem 4.2

We restate Theorem 4.2 here:

Theorem A.2. For AGPP velocity field ut (see equation 12) and x(t) defined via equation 2 the differential of x(1) as a
function of x0 is

Dx0x(1) = σ1T exp

[∫ 1

0

γtVar1|t(x(t))dt

]
, (32)

where T exp[·] stands for a time-ordered exponential, γt = 1
2

d
dt snr(t) and we define snr(t) =

α2
t

σ2
t

.

Proof. To compute the differential of x(1) w.r.t the initial point x0 we utilize adjoint dynamics.

Let us define the adjoint p(t) = Dx(t)x(1). The dynamics of p(t) are defined by the following ODE (Evans, 2005):

ṗ(t) = −Dxut(x(t))
T p(t) (33)

p(1) = Dx(1)x(1) = I. (34)

To compute Dx0
x(1) we solve 33 from time t = 1 back to time t = 0. Then,

p(0) = Dx0x(1). (35)

First, we will use the properties of AGPPs to further analyze the differential of the velocity field, Dxut(x(t)), that defines
the adjoint dynamics in equation 33.

We write the velocity field in terms of the denoiser by plugging 25 into 26:

ut(x) = atx+ btx̂1|t(x) (36)

and using equation 31, the differential of the velocity field is:

Dxut(x) = atI + btDxx̂1|t(x) = atI + bt
αt

σ2
t

Var1|t(x) (37)

The adjoint dynamics are then given by:

ṗ(t) = A(t)p(t) (38)
p(1) = Dx(1)x(1) = I. (39)

where

A(t) = −
(
atI + γtVar1|t(x)

)T
. (40)

and we define:

γt = bt
αt

σ2
t

=

(
α̇t − αt

σ̇t

σt

)
αt

σ2
t

=
α̇tαtσ

2
t − α2

t σ̇tσt

σ4
t

=
1

2

d

dt

(
α2
t

σ2
t

)
=

1

2

d

dt
snr(t) (41)

The adjoint ODE 38 is a non-autonomous linear ODE and together with the initial condition equation 39 its solution is given
by (Sakurai & Napolitano, 2020):

p(t) = T exp

[
−
∫ 1

t

A(s)ds

]
p(1) (42)

13

D-Flow: Differentiating through Flows for Controlled Generation

known as the time-ordered exponential, defined as follows:

T exp

[∫ 1

t

A(s)ds

]
=

∞∑
n=1

(−1)n

n!

∫ 1

t

· · ·
∫ 1

t

T {A(s1)A(s2) . . . A(sn)}ds1ds2 . . . dsn (43)

where T {A(s1)A(s2) . . . A(sn)} orders the product of matrices such that the value of si decreases from right to left.
Alternative equivalent solutions to this differential equation are the dyson series (Sakurai & Napolitano, 2020) and the
Magnus expansion (Magnus, 1954).

When the matrices {A(s)}s∈[1,t] commute, i.e., [A(s), A(s′)] = A(s)A(s′)−A(s′)A(s) = 0, the time-ordered exponential
43 reduces to the first term in the sum for n = 1 in 43. We can therefore separate the first term in 40, since I commutes with
every matrix, and arrive at a simplified solution for t = 0:

Dx0
x(1) = σ1T exp

[∫ 1

0

γtVar1|t(x)dt

]
, (44)

where exp
[∫ 1

0
atdt

]
= σ1 under the assumption that at is integrable, concluding the proof.

Next we show that the integral in equation 18 is defined also for σ1 = 0.
Lemma A.3. For a Lipschitz function f : Rd → R we have that

∫
N (x|y, σ2I)f(x)dx = f(y) +O(σ).

Proof. ∣∣∣∣∫ N (x|y, σ2I)f(x)dx− f(y)

∣∣∣∣ ≤ ∫ N (x|y, σ2I)) |f(x)− f(y)| dx

=

∫
N (z|0, I) |f(σz + y)− f(y)| dz

≤ Kσ

∫
N (z|0, I) |z| dz

= O(σ),

where in the first equality we performed a change of variable z = x−y
σ , and in the second inequality we used the fact that f

is Lipschitz with constant K > 0.

Using this Lemma we prove (under the assumption that p1(x) and its derivatives is Lipschitz):
Proposition A.4. The denoiser asymptotics at t→ 1 is

x̂1|t(x) =
x

αt
+O(σt) (45)

Proof. First we note that we assume σt → 0 and αt → 1 as t→ 1,

N (x|αtx1, σ
2
t I) = ctN

(
x1

∣∣∣∣ xαt
,

(
σt

αt

)2

I

)
, (46)

where ct is some normalization constant such that c1 = 1. Now,

pt(x) =

∫
N (x|αtx1, σ

2
t I)p1(x1)dx1 (47)

= ct

∫
N

(
x1

∣∣∣∣ xαt
,

(
σt

αt

)2

I

)
p1(x1)dx1 (48)

= ctp1

(
x

αt

)
+O(σt), (49)

14

D-Flow: Differentiating through Flows for Controlled Generation

where in second equality we used equation 46 and the last equality Lemma A.3.

x̂1|t(x) =

∫
x1pt(x1|x)dx1 (50)

=

∫
x1
N (x|αtx1, σ

2
t I)p1(x1)

pt(x)
dx1 (51)

=

∫
x1

ctN
(
x1

∣∣∣ x
αt
,
(

σt

αt

)2
I

)
p1(x1)

pt(x)
dx1 (52)

=
ct

x
αt
p1

(
x
αt

)
+O(σt)

ctp1

(
x
αt

)
+O(σt)

(53)

=
x

αt
+O(σt), (54)

where in the second equality we used the definition of pt(x1|x), in the third equality we used equation 46, and in the fourth
equality we used Lemma A.3.

Now we can show that Dxut(x(t)) is bounded as t→ 1

Dxut(x(t)) = atI + btDxx̂1|t(x) (55)

= atI + bt

(
1

at
I +O(σt)

)
(56)

=
α̇t

αt
I +O(1), (57)

where in the first equality we used equation 37, in the second Proposition A.4 (and the fact that the derivatives of p1 are
Lipschitz for the derivation of the asymptotic rule), and in the last equality equation 25. Furthermore Dxut(x(t)) is bounded
as t→ 0 as both a0, b0 are well defined. This means that Dxut(x(t)) is integrable over [0, 1].

A.3. Discrete Time Analysis

Theorem 4.2 analyzes the continuous time case, providing intuition about the behavior of the dynamics of x(1) when
changing the initial condition x0. The final expression 18, however, involves a time-ordered exponential which may be hard
to interpret. Furthermore, our experiments show that even with a small number of discrete steps, differentiating x(1) with
respect to x0 yields meaningful gradients, performing well in practice (see B).

Let us consider Euler solver with N uniform steps of size h = 1
N , with initial point x0. An intermediate point at time mh,

xmh is given by:

x(m+1)h = xmh + humh(xmh) (58)

We are interested at the derivative of xNh = x(1) w.r.t x0.

By the chain rule and equation 37, one can write:

Dx0x1 =

N−1∏
m=0

Dxmh
x(m+1)h =

N−1∏
m=0

(
(1 + hamh)I + hγmhVar1|mh(xmh)

)
(59)

note that this is also a time-ordered product, with m decreasing from left to right.

For the CondOT probability path, where αt = t, σt = 1− t, 59 takes the form:

Dx0x1 =

N−1∏
m=0

(1− (m+ 1)h

1−mh
I +

mh2

(1−mh)3
Var1|mh(xmh)

)
(60)

15

D-Flow: Differentiating through Flows for Controlled Generation

A.4. On Flow-Matching, Denoisers and Noise Prediction

Consider a general affine conditional probability path defined by the following transport map:

xt = σtx0 + αtx1

where x0 ∼ p0 and x1 ∼ p1.

For different choices of σt, αt we can parametrize known diffusion and flow-matching paths. The corresponding conditional
vector field on x1 is:

ut(x|x1) =
σ̇t

σt
(x− αtx1) + α̇tx1 =

σ̇t

σt
x−

(
σ̇tαt

σt
− α̇t

)
x1

and the conditional vector field on x0 is:

ut(x|x0) = σ̇tx0 +
α̇t

αt
(x− σtx0) =

α̇t

αt
x−

(
α̇tσt

αt
− σ̇t

)
x0

where ḟ = d
dtf .

Consider the marginal velocity field:

ut(x) =

∫
ut(x|x1)pt(x1|x)dx1 =

∫
ut(x|x0)pt(x0|x)dx0

One can express it in terms of the optimal denoiser function, x̂1|t(x):

ut(x) =
σ̇t

σt

∫
xpt(x1|x)dx1 −

(
σ̇tαt

σt
− α̇t

)∫
x1pt(x1|x)dx1 =

σ̇t

σt
x−

(
σ̇tαt

σt
− α̇t

)
x̂1|t(x) (61)

For Cond-OT:

ut(x) =
x̂1|t(x)− x

1− t
(62)

Or, in terms of the optimal noise predictor, ϵt(x), like in DDPM:

ut(x) =
α̇t

αt

∫
xpt(x0|x)dx0 −

(
α̇tσt

αt
− σ̇t

)∫
x0pt(x0|x)dx0 =

α̇t

αt
x−

(
α̇tσt

αt
− σ̇t

)
ϵt(x)

and for Cond-OT:

ut(x) =
x− ϵt(x)

t
(63)

16

D-Flow: Differentiating through Flows for Controlled Generation

B. Implementation details
B.1. Linear Inverse Problems on Images

Optimization details. For all experiments in this section we used the LBFGS optimizer with 20 inner iterations for each
optimization step with line search. Stopping criterion was set by a target PSNR value, varying for different tasks. The solver
used was midpoint with 6 function evaluations. The losses, regularizations, initializations and stopping criterions of our
algorithm for the linear inverse problems are listed in Table 6. In the Table χd regularization corresponds to equation 10 and
λ denotes the coefficients used.

Table 6: Algorithmic choices for the ImageNet-128 linear inverse problems tasks.

Inpainting-Center Super-Resolution X2 Gaussian Deblur
σy = 0 σy = 0.05 σy = 0 σy = 0.05 σy = 0 σy = 0.05

Loss −PSNR(Hx, y) −PSNR(Hx, y) −PSNR(H†Hx,H†y) −PSNR(Hx, y)
Regularization None χd, with λ = 0.01 None χd, with λ = 0.01 None χd, with λ = 0.01
Initialization 0.1 blend 0.1 blend 0.1 blend
Target PSNR 45 32 55 32 55 32

Runtimes. For noiseless tasks: inpainting center crop took on avarage 10 minutes per image, super resolution took 12.5
minutes per image and Gaussian deblurring took 15.5 minutes per image. For the noisy tasks: inpainting center crop took on
avarage 4 minutes per image, super resolution took 2.5 minute per image and Gaussian deblurring took 3.5 minutes per
image. Experiments ran on 32GB NVIDIA V100 GPU.

Metrics are computed using the open source TorchMetrics library (Detlefsen et al., 2022).

RED-Diff baseline. To use the RED-Diff baseline with a FM cond-OT trained model we transform the velocity field to
epsilon prediction according to 63. We searched for working parameters and reported results that outperformed the results
that were produced by (Pokle et al., 2023) with an epsilon prediction model, otherwise we kept the number from (Pokle
et al., 2023).

B.2. Inpainting with Latent Flow Models

B.2.1. IMAGE INPAINTING

Optimization details. In this experiment we used the LBFGS optimizer with 20 inner iterations for each optimization
step with line search. Stopping criterion was set by a runtime limit of 30 minutes, but optimization usually convergences
before. The solver used was midpoint with 6 function evaluations and the loss was negative PSNR without regularization.
We initialized the algorithm with a backward blend with α = 0.25. To facilitate the backpropagation through a large T2I
model we use gradient checkpointing.

The validation set of the COCO dataset, used for evaluation, was downloaded from
http://images.cocodataset.org/zips/val2017.zip.

RED-Diff baseline. To adapt RED-Diff to a latent space diffusion model, let us recall the loss used in RED-Diff:

ℓ(µ) = ∥y − f(µ)∥2 + λt(sg [ϵ(x(t), t)− ϵ])Tµ (64)

where f can be any differentiable function. In latent diffusion/flow model for inverse problems we can model f as
f = H(decode(µ)), where decode applies the decoder of the autoencoder used in the latent diffusion/flow model and H
is the corruption operator. We use lr = 0.25, λ = 0.25.

B.2.2. AUDIO INPAINTING

Optimization details. We follow the same setup described in B.2.1. Differently, we use 10 inner iterations and stop after
100 global iterations. We initialize the algorithm with a backward blend with α = 0.1.

RED-Diff baseline. We follow the same adaptation described above in B.2.1. We use lr = 0.05, λ = 0.5.

17

D-Flow: Differentiating through Flows for Controlled Generation

B.3. Conditional Molecule Generation on QM9

Optimization details. In this section, we describe how Algorithm 1 was practically applied in the QM9 experiment. We
initialized x0 ∈ Rn×9 for the experiment, where n represents the molecule’s atom count and 9 the number of attributes per
atom, using a standard Gaussian distribution. To enhance optimization process stability, we ensured x0 had a feature-wise
mean of zero and a standard deviation of one by normalizing it after every optimization step. We employed the midpoint
method for the ode solver, with a total of 100 function evaluations, i.e.step size of 1/50. The optimization technique utilized
was LBFGS with line search, configured with 5 optimization steps and a limit of 5 inner iterations for each step. The
learning rate was set to 1. On average, generating a single molecule took approximately 2.5 minutes using a single NVIDIA
Quadro RTX8000 GPU.

Table 7: Comparison of generated molecules quality using different solvers and D-Flow.

Sample Method NFE
(#)

Molecule Stability
(%)

Atom Stability
(%)

Validity
(%)

Validity & Uniqueness
(%)

Dopri5 Adaptive Solver - 72.03 96.14 85.00 83.84
Midpoint (50 steps) 100 72.10 96.18 85.56 84.39
Midpoint (50 steps) + optimization 100 58.97 93.87 79.38 79.38

In Table 8 below we report MAE values over the split to stable and non-stable molecules within the 10k generated samples.
Other baselines and the result denoted as ’Ours’ in the table report MAE on the entire 10k set of molecules without
distinguishing between stable and non-stable ones. Since our method produces lower stability percentage, we also report
the MAE on the stable and non-stable splits. It can be seen that our improved MAE performance is not due to producing
non-stable molecules with lower MAE, but performance is also SOTA on generated stable molecules.

Table 8: Quantitative evaluation of conditional molecule generation. Values reported in the table are MAE (over 10K
samples) for molecule property predictions (lower is better).

Property α ∆ε εHOMO εLUMO µ Cv

Units Bohr2 meV meV meV D cal
mol K

QM9∗ 0.10 64 39 36 0.043 0.040
EDM 2.76 655 356 584 1.111 1.101
EQUIFM 2.41 591 337 530 1.106 1.033
GEOLDM 2.37 587 340 522 1.108 1.025
Ours 1.39 344 182 330 0.300 0.784
Ours-stable 1.40 347 180 337 0.287 0.835
Ours-non stable 1.38 340 186 318 0.321 0.714

QM9. The QM9 dataset (Ramakrishnan et al., 2014), a widely recognized collection, encompasses molecular characteristics
and atomic positions for 130K small molecules, each containing no more than 9 heavy atoms (up to 29 atoms when including
hydrogens). The train/validation/test partitions used are according to (Anderson et al., 2019) and consists of 100K/18K/13
samples per partition. We provide additional details regarding the properties used in the experiment:

• α Polarizabilty - Tendency of a molecule to acquire an electric dipole moment when subjected to anexternal electric
field.

• εHOMO - Highest occupied molecular energy.

• εLUMO - Lowest unoccupied molecular energy.

• ∆ε - The difference between HOMO and LUMO.

• µ - Dipole moment.

• Cv - Heat capacity at 298.15K.

18

D-Flow: Differentiating through Flows for Controlled Generation

C. Additional Experiments and Ablations
C.1. Linear Inverse Problems on Images: Denoising

In this experiment we consider the task of denoising. The corrupted signal, y, is given by y = x+ ϵ, ϵ ∼ N (0, σyI), with
σy = 0.05. Hyperparameters are the same as in Table 6 for the noisy experiments. Reported metrics are in Table 9.

Table 9: Quantitative evaluation of denoising inverse problem on face-blurred ImageNet-128.

Denoising
Method FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑
σy = 0.05
ΠGDM (Song et al., 2023a) 9.60 0.107 35.11 0.903
OT-ODE (Pokle et al., 2023) 3.14 0.062 37.34 0.964
RED-Diff (Mardani et al., 2023) 9.19 0.105 32.52 0.895
Ours 2.83 0.060 36.05 0.952

C.2. Ablation: Regularization Coefficient

As reported in Table 6, on the tasks of linear inverse problems on images, we used the source point χd regularization,
equation 10, for the noisy case. In the plot below, 7, we report the evaluation metrics (FID, LPIPS, PSNR, SSIM) for varying
regularization coefficient values, λ, on the task of noisy super-resolution. All other hyperparameters are as reported in Table
6.

Figure 7: Evaluation metrics vs. regularization coefficient λ of χd regularization over x0 for noisy super-resolution on
ace-blurred ImageNet-128.

19

D-Flow: Differentiating through Flows for Controlled Generation

D. Additional Qualitative Results

Distorted Ground Truth Ours RED-Diff OT-ODE ΠGDM

Figure 8: Qualitative comparison for linear inverse problems on ImageNet-128 for the noiseless case. GT samples come
from the face-blurred ImageNet-128 validation set.

20

D-Flow: Differentiating through Flows for Controlled Generation

Distorted Ground Truth Ours RED-Diff OT-ODE ΠGDM

Figure 9: Qualitative comparison for linear inverse problems on ImageNet-128 for the noisy case. GT samples come from
the face-blurred ImageNet-128 validation set.

21

D-Flow: Differentiating through Flows for Controlled Generation

Distorted Ground Truth Ours RED-Diff

Figure 10: Qualitative comparison for free-form inpainting on the MS-COCO dataset using a T2I latent FM model. GT
samples come from the MS-COCO validation set.

22

	Introduction
	Preliminaries
	Controlled Generation via Source Point Optimization
	Cost Functions
	Initialization
	Regularizations
	Practical Implementation

	Theory
	Related Work
	Experiments
	Linear Inverse Problems on Images
	Inverse Problems with Latent Flow Models
	Image Inpainting
	Audio Inpainting and Super-Resolution

	Conditional Molecule Generation on QM9

	Discussion, Limitations and Future Work
	Proofs and Theorems
	Proof of Proposition 4.1
	Proof of Theorem 4.2
	Discrete Time Analysis
	On Flow-Matching, Denoisers and Noise Prediction

	Implementation details
	Linear Inverse Problems on Images
	Inpainting with Latent Flow Models
	Image inpainting
	Audio inpainting

	Conditional Molecule Generation on QM9

	Additional Experiments and Ablations
	Linear Inverse Problems on Images: Denoising
	Ablation: Regularization Coefficient

	Additional Qualitative Results

