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Abstract
Memorization of the relation between entities
in a dataset can lead to privacy issues when us-
ing a trained model for question answering. We
introduce Relational Memorization (RM) to un-
derstand, quantify and control this phenomenon.
While bounding general memorization can have
detrimental effects on the performance of a trained
model, bounding RM does not prevent effective
learning. The difference is most pronounced when
the data distribution is long-tailed, with many
queries having only few training examples: Im-
peding general memorization prevents effective
learning, while impeding only relational memo-
rization still allows learning general properties of
the underlying concepts. We formalize the no-
tion of Relational Privacy (RP) and, inspired by
Differential Privacy (DP), we provide a possible
definition of Differential Relational Privacy (DrP).
These notions can be used to describe and com-
pute bounds on the amount of RM in a trained
model. We illustrate Relational Privacy concepts
in experiments with large-scale models for Ques-
tion Answering.

1. Introduction
Consider training a deep neural network for question answer-
ing (QA) with data that may contain sensitive information,
say a list of names and their corresponding phone numbers.
The tendency of large neural networks to memorize train-
ing data can raise privacy concerns if sensitive information
can be exfiltrated. Current tools from Differential Privacy
(DP) help shield the data, but usually at the price of a steep
performance loss, forcing users to either forgo privacy or
accuracy. In some cases, however, the sensitive information
may be not in the data itself, but rather in the relation among
data points. For example, the collection of phone numbers
in a given area code may be public domain, but not their
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association with names. Is it possible to extract utility from
data while preserving privacy about relations within? We
call this variant of DP Relational Privacy (RP).

To frame RP more precisely and relate it to existing work
in DP, we start with a simplified setting. Learning consists
of estimating the parameters w of a model using indepen-
dent training samples {zi}Ni=1 that can be decomposed as
zi = (xi, yi), where xi contains information (e.g., an email
address or phone number) deemed private only if associated
with yi, which denotes the remaining part of the sample
(e.g., a name or an identifier). This decomposition reflects
the internal structure of the samples, which can be different
depending on the task of interest and domain (e.g., an im-
age of an object and its background in a visual recognition
system). Our first goal towards enabling RP is to quantify
and control the information about xi that an attacker can
recover from the parameters of a trained model, w, and
knowledge about the remaining part of the sample, yi.

The trade-off between accuracy and privacy in DP hardens
when the task requires learning long-tailed distributions. In
QA, for example, each of the many possible queries is likely
to have only few training examples; good performance of
the system hinges on memorizing them. DP and its variants
forbid learning any statistic of xi unless a large enough
number of samples has been observed. We instead focus
on enabling models to use xi so long as its relation to yi is
protected.

Previous work (Feldman, 2020; Feldman & Zhang, 2020)
addressed memorization as the amount of information a
model captures from a single sample. In their setting, what
matters more is the sensitivity of a training algorithm with
respect an individual training sample, which is the subject
matter of Differential Privacy (DP). A short-cut to RP could
be to declare a portion of the data private, for instance phone
numbers in the example above, and train the model using Se-
lective DP (sDP) (Shi et al., 2021). Imposing sDP constrains
the information that can be extracted on the component xi,
which therefore bounds memorization of the relation be-
tween xi and yi. While this can guarantee relational privacy,
it also hampers the training process, for instance by prevent-
ing the model from learning the general format of phone
numbers.
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MARGINAL AND RELATIONAL MEMORIZATION

To study relational information, in §3 we decompose the
amount of information that a model can memorize about
a sample xi in its parameters (weights) w and that can be
exfiltrated given knowledge of yi as the sum of two terms:

memW (Xi|Yi) = I(Xi;W )− I∩(Xi;Yi;W ) (1)
= memm

W (Xi) + memr
W (Xi, Yi), (2)

where I denotes the mutual information. The first term
measures the amount of information that the weights con-
tain about xi per se, independent of its relation with other
entities, (e.g., which xi’s were present in the training set,
what are their statistics or distribution). We call this term
Marginal Memorization (MM); it is important to measure
the risk of membership attacks, but it is not central to RP.
The second, on the other hand, measures the amount of infor-
mation that the weights contain about the relation between
xi and yi. This is key to quantify the risk of adversarial
extraction of private information about xi pertaining to a
specific individual yi (or vice versa). We will call this term
Relational Memorization (RM).

CONTRIBUTIONS

Armed with the definition of Marginal Memorization and
Relational Memorization, the next step is to derive estimates
or bounds, so we can focus on controlling them. In particu-
lar, Relational Privacy hinges on controlling the latter.

We show that both DP and sDP only bound the sum of
Relational and Marginal Memorization. We also show that
Selective DP on the components yi alone bounds RM. We
then state a necessary and sufficient condition that a training
algorithm must respect in order to be Relational Private
(RP), that is to completely avoid relational memorization
(RM).

These are only first steps in the broad scope of Differential
Relational Privacy (DrP), that aims to develop new tools to
provide and guarantee privacy in the setting of this work.
To further our investigation, we concentrate on a restricted
class of models and present an analytical expression for
memorization in linear models. This helps illustrate the
concepts and may shed light on the more general problem.

Finally, through experiments on Question Answering tasks,
we efficiently quantify the amount of memorization in the
trained models. In particular, we confirm that the emergence
of the phenomenon can be associated to a particular instance
of RM, which is a non-trivial result of the interaction be-
tween the particular internal structure of the data, the model
used and the learning dynamics.

In summary:

1. We introduce the concept of Relational Memorization

to quantify the information that the weights of a trained
model contain about the relation among parts of the
data, rather than the raw data themselves. To the best of
our knowledge, this area of investigation has received
little attention despite the increasing importance of
privacy in large deep neural networks;

2. We quantify and characterize the amount of informa-
tion that can be extracted from a trained model and part
of a training sample in order to recover the remaining
part. We establish connections with Differential Pri-
vacy, and introduce the notion of Relational Privacy,
with possible algorithmic constraints and methods to
foster it – which we refer to as Differential Relational
Privacy;

3. We empirically probe some of the concepts introduced
on Question Answering tasks. We provide an efficient
policy to estimate memorization in this setting. We be-
lieve these to be the first experiments on memorization
and privacy in a relational setting for QA.

2. Related Work
Differential Privacy (Dwork & Roth, 2014) is an established
tool to provide strong guarantees on the maximum amount
of information that any attacker can extract from a trained
model about an individual training sample. In particular, it
allows users to select the desired trade-off between privacy
and accuracy of the model, mediated by a privacy parameter
ϵ, which can be chosen based on the application. Specifi-
cally designed training algorithms, such as DP-SGD (Abadi
et al., 2016), allow training machine learning models while
guaranteeing a given ϵ-DP requirement. DP-SGD can be fur-
ther improved by adapting to the structure of deep networks
(Yu et al., 2021; Andrew et al., 2021).

However, even with the current techniques, DP is a strong
constraint and training large machine learning models while
guaranteeing strong privacy for each sample remains chal-
lenging (Tramer & Boneh, 2021), since large models can
easily memorize information about the training set (Nasr
et al., 2019; Shokri et al., 2017). This is especially true
on long-tailed tasks, where each class may only have few
representatives in the training set. In this case, it may be
difficult, or impossible, to separate the general information
about the class from that of individual samples (Feldman,
2020; Feldman & Zhang, 2020). Under these conditions,
learning with strong privacy constrain can severely impact
accuracy. To address this issue, Shi et al. (2021) proposed
Selective DP, that aims to improve utility in the case where
only a subset of the information in each sample is consid-
ered private. Our work follows this generail aim, to mitigate
the utility loss from DP. In particular, we study the setting
where it is not individual components of the samples that
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should be considered private, but rather their relation.

There is a strong relation between privacy and memoriza-
tion in inductive learning. Memorization is often defined
as the influence a training sample has on the model outputs
(Feldman, 2020; Feldman & Zhang, 2020; Harutyunyan
et al., 2021). Memorization has been studied in particular
in Natural Language Processing (NLP), where it has been
observed that large language models can output snippets of
training text, when queried the right prefix (Carlini et al.,
2021; 2019). We note that such large models are usually
pre-trained on a reconstruction tasks, such as predicting the
missing words in a sentence (Raffel et al., 2020; Brown
et al., 2020). This naturally encourages models to mem-
orize the input verbatim, in order to achieve low training
loss. Similarly, on downstream tasks like summarization
and translation, where the correct ground truth target may
be ambiguous, it has also been observed that memorized
content may be outputted (Zhao et al., 2020; Raunak et al.,
2021).

On the other hand, we focus on the setting where most of
the privacy concerns are on the relation among data, such as
in Question Answering (QA). In QA, a language model is
trained to answer questions about an input text. In particular,
QA datasets consists of samples organized as a context, a
question, and a ground-truth answer to it. In principle, a
well performing model does not need to memorize to achieve
zero training error, as the correct answer can be inferred
from the context. However, we show that memorization is
possible even in this setting. To the best of our knowledge,
the empirical study of memorization in QA models is largely
unexplored.

3. Relational Memorization and Privacy
We investigate the scenario where the training set is com-
posed of N independent training samples S = {zi}Ni=1,
such that each zi can be decomposed as zi = (xi, yi), where
xi ∈ X and yi ∈ Y . We use capitalized letters to refer to
random variables, and lower-case for samples from their
distribution. Let A be a stochastic training algorithm, which
takes as input the dataset S and outputs a probability dis-
tribution p(w|S) = A(S) over the weights space W . We
want to characterize the information being memorized in the
weights W about a sample Xi, and which can potentially
be exfiltrated given the knowledge of Yi:

memW (Xi|Yi) = sup
R

I(R(W,Yi);Xi)− I(Yi;Xi) (3)

where R is a particular policy of recovery, that uses the
trained model W and the available part of the sample Yi.
The supremum of the mutual information between the recov-
ery and the unknown attribute describes the success of the
attack. The mutual information between the two attributes

represents the information an attacker already has about Xi

given Yi, without accessing to the model, which we subtract.
For example, a name could already provides some informa-
tion about the country of the individual, and therefore to the
prefix of their phone number.

From the Data Processing Inequality and other basic proper-
ties of Mutual Information, we have:

memW (Xi|Yi) = sup
R

I(R(W,Yi);Xi)− I(Yi;Xi)

= I((W,Yi);Xi)− I(Yi;Xi)

= I(W ;Xi)− I∩(Xi;Yi;W )

=: memm
W (Xi) + memr

W (Xi, Yi),

(4)

where we defined the Marginal Memorization (MM):

memm
W (Xi) := I(W ;Xi), (5)

and the Relational Memorization (RM):

memr
W (Xi, Yi) := −I∩(Xi;Yi;W ). (6)

Here I∩(X;Y ;Z) := I(X,Y ) − I(X,Y |Z) is the inter-
action information between the three random variables,
which can also be negative. memW (Xi|Yi) is always pos-
itive, since it can also be written as memW (Xi|Yi) =
I(W ;Xi|Yi).

Marginal Memorization describes how much information
the model contains about the random variable Xi, indepen-
dently on its relation with Yi. This quantity is equivalent
to the information we would be able to extract from the
model W about Xi without any knowledge of the context
Yi. Relational Memorization (RM) instead represents how
knowledge of Yi could reveal information about the associ-
ated entity Xi. We are interested on the conditions under
which an algorithm A can guarantee an upper bound on
these two separate terms.

3.1. Towards Differential Relational Privacy

We now want to derive an algorithmic constraint that lim-
its the amount of Relational Memorization. In particu-
lar, to guarantee that an attacker is unable to access ad-
ditional information about the relation between Xi and Yi

if given access to the weights, we want memr
W (Xi, Yi) =

I(Xi;Yi) − I(Xi;Yi|W ) ≤ 0. Renner & Maurer (2002)
study under which conditions the mutual information be-
tween two random variables I(X;Y ), is larger or smaller
than their mutual information conditioned on a third random
variable, I(X;Y |W ).

Adapting their results to our setting, we get the following
necessary and sufficient condition to guarantee that a model
does not memorize any relation between entities in the data.
Theorem 3.1 (Renner & Maurer (2002)). Given a fixed al-
gorithm A : (X ×Y)n → W , if, for every joint distribution
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PXY such that the independent samples (Xi, Yi) ∼ PXY ,
we have memr

W (Xi, Yi) ≤ 0, then the model does not fit
spurious correlations between Yi and Xi, which means that

p(w|xi, yi) = r(w, xi)s(w, yi), (7)

where r, s are generic functions from W ×X to R and from
W ×Y to R.

Vice versa, if the algorithm A generates a conditional dis-
tribution of W that factorizes with respect xi and yi, then

memr
W (Xi, Yi) ≤ 0. (8)

The previous theorem provides necessary conditions that a
training algorithm should satisfy in order to avoid incurring
in Relational Memorization. In particular, a model does not
memorize the relation between Xi and Yi, for every i, if and
only if it satisfies the following definition.
Definition 3.2 (Factorized model). We call a model W ∼
A(S) factorized if, for every i, there exist two functions
r(w, xi), s(w, yi) such that:

p(w|xi, yi) = r(w, xi)s(w, yi),

for all (xi, yi) ∈ X × Y .

Equation 3 allows us to measure, after training, whether a
given model memorizes a sample. However, in practice it
is important to design algorithms that can guarantee, before
training, that relational information will not be memorized.
To this end, we introduce the following definition.
Definition 3.3 (Differential Relational Privacy). An algo-
rithm A : S → W is ε-Differential Relational Private (DrP)
with respect to x and y if there exists a random variable Ŵ
factorized with respect to Xi and Yi, such that, for all w,

p(w|xi, yi) ≤ eεp̂(w|xi, yi), (9)

where p(w|xi, yi) and p̂(w|xi, yi) are the conditional prob-
ability distributions of W and W ′ respectively.

This definition encodes the requirement of having a model
“ε-close” to a factorized one. The previous considerations
and results suggest that encouraging disentanglement and
penalizing correlations promote Relational Privacy. This can
be achieved, for example, using data augmentation, which
is already known to provide increasing privacy guarantees
(Sablayrolles et al., 2019).

3.2. Connection with Differential Privacy

Differential Privacy (DP) (Dwork et al., 2006) is a formal
definition of privacy that limits the usage of information
from a sample when training a model. In this section, we
show how different notions of DP protect against different
types of memorization. We start by recalling the definition
of DP.

Definition 3.4. An algorithm A : S → W is ε-DP if, for
any two adjacent training sets S, S′ ∈ S, and for every
w ∈ W , the following holds.

p(w|S) ≤ eεp(w|S′), (10)

where adjacent means that S and S′ differ only by one
sample s.

As specified before, p(w|S) = A(S) is the probability
distribution of the weights after training on the dataset S
using a (stochastic) training algorithm A.

DP requires that each individual sample by itself cannot have
a large effect on the final outcome of the training. This may
make learning difficult in few-shot or long-tail tasks, where
only a few samples are available for a given class or question.
Several alternative definitions of DP have been proposed
trying to gain better utility on a dataset by restricting privacy
to a subset of the information in a sample. In particular, we
refer to Shi et al. (2021), that defines Selective DP (sDP)
for structured data. Their definition, in our settings (if we
consider x to be the private component), takes this form:
Definition 3.5. An algorithm A : S → W is ε-sDP if, for
any two selective-adjacent training sets S, S′ ∈ S, and for
every w ∈ W , the following holds.

p(w|S) ≤ eεp(w|S′), (11)

where selective-adjacent means that S and S′ differ only
over the private component of one sample. In other words,
only one sample is different in the two datasets, and this
sample will take the forms s = (x, y) and s′ = (x′, y).

Notice that strict sDP or DP conditions with ε = 0 would
imply a factorized model (Definition 3.2) with r = 1 for
sDP and complete independence in DP.

We now show that, for any ϵ, Selective DP (and conse-
quently also the stronger DP) are also bound on the maxi-
mum possible amount of memorization in the model (proof
in Appendix B.1, based on Cuff & Yu (2016)):
Theorem 3.6. An ε-sDP Algorithm (over the x component)
guarantees, for all i-s,

memW (Xi|Yi) ≤ ε. (12)

Corollary 3.7. An ε-DP Algorithm guarantees, for all i-s,

memW (Xi|Yi) ≤ ε. (13)

Since we are interested in bounding the Relational Memo-
rization our model has with respect to xi and yi, we provide
the following bound (proof in Appendix B.2):
Theorem 3.8. An ε-sDP Algorithm (over the y component)
guarantees, for all i-s,

memr
W (Xi, Yi) ≤ ε. (14)
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The intuition behind Theorem 3.8 is that, if we want to
bound the information the model has about the relation
between xi and yi, bounding the information the model has
about yi is sufficient. The previous definitions and results
show that DP is sufficient to bound Relational Memorization.
The theorem also suggests that moving the sDP constraint
over the non-sensitive component of the sample can be a
solution (for example, a phone number alone, without the
name of the owner, may not present privacy issues), if it
impacts positively the performances of the model.

4. Empirical Measurement of Memorization
Directly estimating the Relational Memorization score in
Equation 3 on real datasets and models may prove chal-
lenging. Here, we propose an efficient way to estimate the
expected RM, based on performing inference over sub-parts
of training and validation samples.

Consider a dataset S = {(xi, yi)}Ni=1, and let xi denote the
target information to extract, while yi denotes the remaining
part of the sample. For example, in an image classification
task, yi would represent the background, and xi the right
label of the object that was corrupted from the sample image
zi. In Question Answering, yi would be the context of
sample zi, after we removed the sub-strings that enable to
give the right answer (xi) to the relative question (see Table
1, for example).

We will work under the following assumptions:

1. the training algorithm is symmetric with respect to
the input samples, which leads to I(W,Yi;Xi) =
I(W,Yj ;Xj), for every couple of training samples.
This term will be indicated by I(W,Y ;X). This as-
sumption is satisfied, for example, by stochastic gradi-
ent descent (SGD).

2. p(xi) ≃ c = e−H(X). We are assuming ground truth
to be equi-probable. This is the case in image classifica-
tion, and a reasonable approximation on the numerical
answers on the QA datasets we will use in the experi-
ments;

3. an almost optimal policy of attack is using corrupted
samples for inference (this also resembles what we
do with linear models). This permits us to write
p(xi|yi, w) = qw((−, yi))xi , where qw is the probabil-
ity distribution described by the trained model. This
assumption stands close to the settings that considers
black-box attacks on the model;

4. either the model has strong confidence on the recon-
struction, which means qw((−, yi))xi ≃ 1, or almost
no confidence, qw((−, yi))xi ≃ p(xi) ≃ c.

Figure 1. Memorization can decrease over time. While in over-
parametrized models memorization generally increase over time,
we show that when the size of the linear model in §5 is compa-
rable with the number of samples (here d = n = 1000) gradient
descent may exhibit a non-trivial dynamics where the model first
memorizes relations, but forget them later on (right).

5. since the algorithm is symmetric, I(X;W ) ≃
I(X;R(W )), where R is an attack that interrogates
the model in a way that each sample xi is returned with
probability 1/n;

6. we assume nc ≫ 1. Or alternatively, log n ≫ H(X).
This, again, is reasonable in our experimental settings.

We say that an attack over the sample i is successful if
argmax qw((−, yi)) = xi (the model returns the right label
or answer given the corrupted input). If we call rtr and rval
the success rates of the attacks on the training and validation
set, it can be shown (see Appendix B.4) that the expected
RM the model has for x and y takes the form

memr = H(X)(rtr − rval). (15)

The expected Relational Memorization between the two
components, on our dataset, will be the difference of the
recovery scores between the training set and a validation
set.

In practice, in our experiments, we will have small control
on the entropy of the random variable X . Thus, we will
compute a normalized version of the RM, which will be a
number between 0 and 1,

mr = rtr − rval. (16)

5. Relational Memorization in Linear Models
In order to better gauge what affects Relational Memoriza-
tion, we explicitly compute Relational Memorization in
linear models on a prototypical regression task. Deep learn-
ing models have been shown to mimic linear models in the
limit of wide networks (Jacot et al., 2018; Lee et al., 2019),
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Context Corrupted Context Question Answer Answer on
Corrupted

On February 6, 2016, one day before her
performance at the Super Bowl, Beyoncé
released a new single exclusively on music
streaming service Tidal called ”Formation”.

On February , , one day before her
performance at the Super Bowl, Be-
yoncé released a new single exclu-
sively on music streaming service
Tidal called ”Formation”.

What day did Bey-
once release her sin-
gle, Formation?

February
6, 2016

February

In the county, the population was spread out
with 23.5% under the age of 18, 7.8% from
18 to 24, 28.5% from 25 to 44, 25.9% from
45 to 64, and 14.2% who were 65 years
of age or older. The median age was 40
years. For every 100 females, there were
93.8 males. For every 100 females age 18
and over, there were 90.5 males.

In the county, the population was
spread out with .% under the age
of , .% from to , .% from to , .%
from to , and .% who were years of
age or older. The median age was
years. For every females, there were
. males. For every females age and
over, there were . males.

How many in per-
cent wasn’t under
18 for the county?

76.5 76.5

Table 1. Examples from the SQuAD and DROP training sets. The model may give the correct answer on corrupted samples, even
though there is not the necessary information in the context anymore (second example). This happens because the model memorizes the
relation between the context and the ground truth answer. If the document contains private information, the model may still output that
information even though that information is not in the query.

and linear approximations of them have been shown to per-
form comparably to their non-linear counterparts in different
tasks (Harutyunyan et al., 2021; Achille et al., 2021). There-
fore, studying this setting can provide insights for more
general models.

Let us suppose we have a dataset with N samples
(zi, gi)1≤i≤N , where gi is the ground truth of the inputs zi’s.
Let us consider the case where zi = (xi, yi) and gi = xi. In
particular the inputs are vectors made by two independent
components, xi ∈ R and yi ∈ Rd. The labels are a function
of only the first component of zi. We define Z to be the
matrix with zi as the i-th row, and at the same way X and
Y . In particular, we have Z = [X,Y ]. As before, we can
think about xi as the component of the samples we want to
recover through yi. We will study how the relation between
d and n can influence the learned model.

The empirical loss can be written as

L(w) =
1

2n

∑
i

(w⊤zi − xi)
2. (17)

The minimizer w∗ = argminL(w) satisfies the following
equation

Z⊤(Zw∗ −X) = 0. (18)

When d < n, the solution is unique (if the samples are not
linearly dependent) and it is easy to verify that w∗ = ed+1

1 ,
where epq is the q-th element of the canonical base in Rp.
This means that neither the xi-s nor the yi-s influence the
model, then Relational Memorization is 0.

When d ≥ n the solution is no longer unique and different
algorithms may converge to different global minima, which
may exhibit different memorization. In Appendix B.3, we

study memorization when training with gradient descent,
starting with zero initialization w(0) = 0. The main results
are that, after training, feeding the model the query z̃i =
[0, yi], an attacker would be able to recover xi. In other
words, yi behaves as a decryption key to obtain xi through
the model. Moreover, in the limit of d ≫ n, the solution
becomes almost independent of the first components xi,
since overfitting dominates (see Appendix B.3). Therefore,
we have memr

w(Xi, Yi) ≃ memw(Xi|Yi) = H(X).

These results suggest that, if the nuisance component of the
samples is high dimensional, it will be easier to over-fit. In
particular, over-parametrized models are more susceptible
to Relational Memorization between the two parts of the
sample. This can hold in more general contexts. For exam-
ple, in a QA task, if the context contains the same string
of the answer, even if with a different meaning, it can be
over-fitted by the model, and related to the ground truth
answer to the question.

Finally, when d ≈ n so that the number of training samples
is comparable with the size of the model, we observe non-
trivial memorization dynamics even in simple linear models.
In particular, in Fig. 1 we observe that some relations are
first learned but then forgotten with additional training.

6. Experiments

Datasets. We empirically investigate Memorization in Ques-
tion Answering (QA) tasks. We focus on two QA datasets:
SQuAD (Rajpurkar et al., 2016) and DROP (Dua et al.,
2019). In these datasets, every sample is formed by a con-
text, a question, and a ground-truth answer. An example
for both SQuAD and DROP, is provided in Table 1, re-
spectively in the first and second row. DROP, differently
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from SQuAD, focuses its questions on discrete reasoning
over paragraphs. Sometimes, this implies the absence of
the ground-truth answer in the context, making it more dif-
ficult for language models to achieve high performance.
In SQuAD, instead, the answer string is always contained
in the context. Both are well-studied QA datasets, with a
reasonably high fraction of numerical questions. SQuAD
contains 22% of questions where the answer contains a digit,
while DROP contains 69% of numerical questions. This al-
lows an especially simple experimental design for the study
of memorization.

Models. We make use of T5-small (Raffel et al., 2020) and
numnet+ (Ran et al., 2019) to perform our experiments on
the datasets mentioned above. We made use of the same
hyperparameters listed in the relative references, to make
our experiments easy to reproduce.

6.1. Dataset Memorization

To measure the amount of memorization in our trained mod-
els, we apply the policy described in §4, applying directly
Equation 16. Given the availability of numerical answers xi

in the two datasets, we define yi to be equal to the sample
zi, after we remove all the digits from the context (we leave
the question untouched), we call this procedure corruption.
We opted for this corruption procedure since it is fast and
easy to implement.

There will be samples where it is still possible to obtain
the right answer from the corrupted context. This is the
case for non-numerical questions, for example. We mitigate
this problem in SQuAD, where most of the answers are not
numerical, measuring the RM only on its numerical subset.

Some numerical questions may still be solvable, since the
answer is present in words in the context, or because of prior
information in the model (T5 is pre-trained on web pages,
where both datasets come from). Also, the model can of
course return the right answer by chance. However, these
factors are all considered in our definition of Memorization,
when we subtract the term I(Xi, Yi).

We measure memr between Xi and Yi, to show that QA
models can memorize. To compute the rate r of success of
the reconstruction attacks, we make use of both metrics F1
and EM (exact match). In the datasets we use, those metrics
are computed asymmetrically between the training set and
the validation set: in fact, on the validation set there are
more possible ground truth answers, that are compared with
the answer provided by the trained model. This biases the
scores on the validation set to be slightly higher.

In the following paragraphs, we present our empirical find-
ings, connecting the role that data, model, and training time
have on the emergence of RM.

T5/SQUAD NUMNET+/DROP

EM F1 EM F1

sTR 79.2 89.0 79.9 84.7
sVAL 84.0 90.0 78.6 82.3
rTR 0.1 23.5 35.8 39.2
rVAL 1.9 26.0 31.5 34.7
m −1.8 −2.5 4.2 4.5

Table 2. Memorization scores on SQUAD and DROP. We report
scores (str, sval), recovery scores (rtr, rval), and normalized mem-
orization (m) for T5-small trained on SQuAD and for numnet+
trained on DROP. On SQuAD the scores computed only on the
subsets of the datasets containing only numerical answers. The Re-
lational Memorization results negative in SQuAD. This is caused
by an asymmetry between the scoring metric on training and val-
idation set, that provides more available correct answers on the
validation set. These results suggest lack of memorization for
SQuAD, but a meaningful amount of memorization for DROP.

Data. Using the T5-small model, and fine-tuning it over
the SQuAD and DROP tasks, we can make the first empiri-
cal observations: On models that are overfit, it is easier to
witness the emergence of memorization. In SQuAD, there
is little overfitting, and the answer is always explicitly con-
tained in the context. In DROP, the answer is usually not
explicitly contained in the context. However, the answer
string is sometimes contained somewhere else, either in the
context or in the question (see, for example, Table 1). At
training time, the model overfits this string, relating it to the
ground truth answer. This results in the model being able to
correctly reply to answers on the training samples, even if
the informative part of the context has been removed. The
results are showed in Table 2 and Figure 2.

Figure 2. Complex QA datasets display memorization. We re-
port the F1 (left) and EM (right) scores when training a T5-small
model on DROP, as a function of the training epoch. We ob-
serve that the a large gap between the corrupted train (dashed blue
line) and the corrupted val (dashed orange) suggesting an high-
memorization. In particular, in this range of epochs, we have on
average mEM = 10.9 and mF1 = 9.6.
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Figure 3. Over-training stimulates memorization. We show how longer training in an over-parametrized model affects Relational
Memorization using T5-small on DROP. In this case, overtraining leads to increasing memorization (right two plots).

Model. numnet+ (Ran et al., 2019) is an architecture ex-
plicitly designed to reach good performance on the DROP
dataset. Using a model with higher performances, overfit-
ting decreases. However, we can observe that Memorization
still occurs (see Table 2). On T5-small, the extent of memo-
rization is still larger (10.9 against 4.2, in the EM metric),
especially at larger epochs (Figure 2 and Figure 3). This
experiment shows how even high performing models can
still exhibit memorization in QA tasks, but confirms that
smaller generalization error usually implies lower memo-
rization. Experiments on T5-base and findings on how the
size of the model can affect memorization can be found in
Appendix A.1.

Training Time. Overtraining is associated with memoriza-
tion. In Figure 3, we show that this is what we empirically
see in training dynamics like T5-small over DROP. However,
we see that memorization starts from epoch 10, while the
validation accuracy keeps increasing until epoch 50. This
implies that memorization cannot be associated with only
post-learning times.

This dynamics of memorization and learning can also be-
have very differently. For example, in the linear model
discussed in §5, if the number of parameters is larger but
with the same order of magnitude of the data points, we
observe a local maximum in the memorization instead (see
Figure 1): the memorization first increases, but then de-
creases. This indicates that relational information is being
forgotten as the training progresses, in contrast with the
previous case, and with the usual empirical observation in
over-parametrized models, where Memorization is directly
associated with over-training (see Appendix B.3 for more
details and an explanation of this phenomenon).

7. Conclusions
We study an under-explored privacy problem in trained ma-
chine learning models, where the concern is not the privacy

of the data themselves, but of the relation among their com-
ponents. In particular, we decompose the memorization
often observed in large machine learning models in different
factors that can be studied and controlled independently.
Our analysis allows extracting utility from the data while
preserving the privacy of their relation. This is especially im-
portant for long-tail problems such as Question Answering,
where each question may come with relatively few samples.
We establish connection with Differential Privacy, showing
that different notions of DP can bound different aspects of
memorization. While memorization for large transformer
models has been shown empirically on reconstruction tasks,
such as next word prediction, we empirically study mem-
orization in QA tasks which, in principle, do not require
memorization to reach perfect training loss. Here we show
that transformers can indeed still memorize sensitive infor-
mation, but whether that happens depends on a combination
of non-trivial factors.

In §3.2 we showed that Relational Memorization can be
controlled through existing notions in differential privacy.
However, these may be a blunt upper-bound to RM. De-
signing differential privacy algorithms that can take full
advantage of the RM setting may further improve the accu-
racy of private model on long-tail data. Our Definition 3.3
is a first step in this direction.

In addition, RM could go beyond Question Answering. QA
problems provide a clear separation between private data
and context. This simplifies the experimental design and the
measurement of RM. However, the notion of RM applies
more widely to other tasks, such as relations between entities
in images. We leave extending RM to these compelling
cases to future work.
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A. Additional Experiments
A.1. Memorization in T5-base on the DROP dataset

Figure 4. Memorization in T5-base on DROP. Performances, as well as Memorization, are higher in this model.

We perform the same experiments over the DROP task with the model T5-base, a bigger version of T5-small. From Figure
4, we see that the value of RM at epoch 40 is already larger than RM at epoch 100 in the case of T5-small (Figure 2). Also
the performances increase.

B. Additional Proofs
B.1. Proof of Theorem 3.6

Proof. Dropping the index i to ease the notation

memW (X|Y ) = I(W ;X|Y ) =

∫
p(y)

∫
p(w, x|y) log p(w, x|y)

p(w|y)p(x|y)
=

∫
p(w, x, y) log

p(w|x, y)
p(w|y)

. (19)

From the definition of ε-Selective DP over x we have, for all x′

p(w|x, y) ≤ eεp(w|x′, y)

e−ε ≤ p(w|x′, y)

p(w|x, y)
(20)

Integrating both sides over p(x′|y) gives

e−ε ≤
∫
x′

p(w|x′, y)

p(w|x, y)
p(x′|y) = p(w|y)

p(w|x, y)
. (21)

Merging the last inequality, with equation 19, gives

memW (X|Y ) = I(W ;X|Y ) =

∫
p(w, x, y) log

p(w|x, y)
p(w|y)

≤
∫

p(w, x, y) log eε = ε. (22)

B.2. Proof of Theorem 3.8

Proof. Dropping the index as in the previous proof, we can write

memr
W (X,Y ) = −I∩(Xi;Yi;W ) = I(W ;Y |X)− I(W ;Y ) ≤ I(W ;Y |X) (23)

In the previous proof we showed that ε-Selective DP over x implies I(W ;X|Y ) ≤ ε. In the same way, we can then prove
that ε-Selective DP over y implies I(W ;Y |X) ≤ ε, which proves the theorem.
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B.3. Computation for RM in linear models, with d ≥ n

Let the singular value decomposition of Y be Y = V DU⊤, with D a n × d matrix, with the singular values of Y . The
solution of the optimization problem respects the following equation

Zw∗ −X = 0. (24)

Also, since we assume w(t = 0) = 0, we have that if v ∈ Ker(Z), then v⊤w(t) = 0 for all t-s (the dynamics happens only
outside this subspace). From Equation 24, we know that we can write the minimizer as

w∗ = ed+1
1 +

v

∥v∥2
, (25)

where v = [1, Y −1
r X]. Y −1

r is a right inverse of Y . It can be shown that the unique convergence point is

w∗ = ed+1
1 +

v∗

∥v∗∥2
, (26)

where we picked the right inverse Y −1 = UD−1V ⊤, where D−1 contains the inverse of the singular values in the diagonal
in the upper part, and is 0 in the last d − n rows. This is because all v ∈ Ker(Z), and if we assumed v ̸= v∗ to solve
Equation 25, we would have got a contradiction checking the orthogonality constraint over both v and v∗.

At this point, after training, an attacker can recover the value of ∥v∗∥ feeding the model the synthetic query z = ed+1
1 . After

this, the attacker can easily obtain xi/ ∥v∥2 feeding the model the query z̃i = [0, yi], completing the recovery.

If we assume the zi to be sampled independently from a standard Gaussian distribution, zi ∼ N (0, Id+1), we have control
on the singular values of Y (in the limit of large d), and we can provide more quantitative intuition on the result. If d ≃ n,
∥v∗∥ becomes very large, and the solution doesn’t separate from ed+1

1 that much. If d ≫ n, ∥v∗∥ ≃ 1. This generates a
solution that is almost 0 in the first component, and larger on the other entries (overfitting with no learning).

The dynamics, for finite t, is regulated by the spectrum of D2 + V ⊤XX⊤V . If d ≫ n, the second term gets negligible,
implying an homogeneous evolution of w, which means that Memorization increases with the same rate as the learning. On
the other hand, if d ≃ n, the dynamics splits, and learning is slower than memorization. This implies that the Relational
Memorization, after a critical time, starts to decrease. Numerical simulation of these behaviors, is illustrated in Figure 5.

Figure 5. Numerical simulation of the task described in §5. Data are sampled from a Gaussian distribution. Scores are computed as 1−L,
where L is the empirical Loss in Equation 17. Memorization is computed as the expected error in reconstructing the xi-s. On the left,
simulated dynamics with n = 300, d = 2000. On the right, n = d = 1000.

B.4. Measure of Relational Memorization

We can write:

I(W,Y ;X) = Ew∼p(w|x,y)Ex,y∼PXY
log

p(x|y, w)
p(x)

≃ 1

N

∑
i

log
p(xi|yi, w)

p(xi)
. (27)
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In the last approximation, we average over our samples, and we do not average on different training processes. Using the
assumption on the optimality of the attack,

I(W,Y ;X) ≃ 1

N

∑
i

log
p(xi|yi, w)

p(xi)
≃ 1

N

∑
i

log
qw(−, yi)xi

p(xi)
. (28)

Defining now rtr the fraction of samples on the training set where qw(−, yi)xi ≃ 1, and using p(xi) ≃ c, we get

I(W,Y ;X) ≃ 1

N

∑
i

log
qw(−, yi)xi

p(xi)
≃ rtr(− log c) = H(X)rtr. (29)

Since the samples are iid, we can write
I(Yi;Xi) = I(Y ;X), (30)

In particular, the previous equation holds also for validation samples. We will indicate them as (X̃, Ỹ ). Since they are
(jointly) independent on the trained model W , we can write

I(X;Y ) = I(X̃; Ỹ ) = I(W, Ỹ ; X̃). (31)

This form is exactly the previous computation, but on the validation set.

I(X;Y ) ≃ H(X)rval. (32)

This gives
mem = H(X)(rtr − rval). (33)

To obtain an estimate on Relational Memorization, we need to control memm = I(W ;X) = supR I(R(W );Xi), where
R are again recovery attacks. Using the last assumptions, this computation reduces to computing I(R;X), where R is a
random variable defined as follows

R =

{
X, with probability 1/n;

i.i.d. to X with probability (n− 1)/n.
(34)

Using the definition of mutual information, and the last assumption we get

I(R;X) =
∑

p(ri, xj) log
p(ri, xj)

p(ri)p(xj)

=
∑
i ̸=j

n− 1

n
c2 log

n− 1

n
+

∑
i=j

n− 1 + 1/c

n
c2 log

n− 1 + 1/c

n

= (1− c)
n− 1

n
log

n− 1

n
+ c

n− 1 + 1/c

n
log

n− 1 + 1/c

n

≃ −1− c

n
+

1

n
=

c

n
=

e−H(X)

n
≪ H(X).

(35)

Therefore, in these settings, we have

memr = mem − memm ≃ mem ≃ H(X)(rtr − rval). (36)


