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Abstract

This paper addresses the problem of nearly optimal Vapnik–Chervonenkis dimen-
sion (VC-dimension) and pseudo-dimension estimations of the derivative functions
of deep neural networks (DNNs). Two important applications of these estima-
tions include: 1) Establishing a nearly tight approximation result of DNNs in the
Sobolev space; 2) Characterizing the generalization error of machine learning meth-
ods with loss functions involving function derivatives. This theoretical investigation
fills the gap of learning error estimations for a wide range of physics-informed
machine learning models and applications including generative models, solving
partial differential equations, operator learning, network compression, distillation,
regularization, etc.

1 Introduction

The Sobolev training [8, 40, 46, 45, 22, 42] of deep neural networks (DNNs) has had a significant
impact on scientific and engineering fields, including solving partial differential equations [25, 12,
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33, 10], operator learning [29, 26], network compression [35], distillation [21, 34], regularization [8],
and dynamic programming [15, 48], etc. For example, Sobolev (semi) norms have been applied to
penalize function gradients in loss functions [2, 17, 15, 30] to control the Lipschitz constant of DNNs.
Moreover, Sobolev norms and equivalent formulas are commonly used to define loss functions in
various applications such as dynamic programming [15, 48], solving partial differential equations
[25, 12, 33], and distillation [21, 34, 35]. These loss functions enable models to learn DNNs that
can approximate the target function with small discrepancies in both magnitude and derivative. For
example, when utilizing the Deep Ritz method [12] to solve PDEs such as the following one:{

−∆u = f in Ω,
∂u
∂ν = 0 on ∂Ω,

(1)

the corresponding loss function can be expressed as:

ED(θ) :=
1

2

∫
Ω

|∇ϕ(x;θ)|2dx+
1

2

(∫
Ω

ϕ(x;θ)dx

)2

−
∫
Ω

fϕ(x;θ)dx,

where θ represents all the parameters in the neural network. Here, Ω denotes the domain
(0, 1)d. Proposition 1 in [27] establishes the equivalence between the loss function ED(θ) and
∥ϕ(x;θ)− u∗(x)∥H1((0,1)d), where u∗(x) denotes the exact solution of the PDEs in equation (1),

and ∥f∥H1((0,1)d) :=
(∑

0≤|α|≤1 ∥Dαf∥pL2((0,1)d)

)1/2
. Thus, the Sobolev normH1((0, 1)d) serves

as a measure of the loss function, and Sobolev training is employed to solve PDEs within the Deep
Ritz method.

Two natural questions that arise are: 1) What is the optimal approximation error of DNNs described
by a Sobolev norm? 2) What is the generalization error of the loss function defined by a Sobolev
norm? The key step to address these questions is to estimate the optimal Vapnik–Chervonenkis
dimension (VC-dimension) and pseudo-dimension [3, 46, 1, 32] of DNNs and their derivatives.
Intuitively, these concepts characterize the complexity or richness of a function set and, hence, they
can be applied to establish the best possible approximation and generalization power of DNNs.
Definition 1 (VC-dimension [1]). Let H denote a class of functions from X to {0, 1}. For any
non-negative integer m, define the growth function of H as

ΠH(m) := max
x1,x2,...,xm∈X

|{(h(x1), h(x2), . . . , h(xm)) : h ∈ H}| .

The Vapnik–Chervonenkis dimension (VC-dimension) of H , denoted by VCdim(H), is the largest m
such that ΠH(m) = 2m. For a class G of real-valued functions, define VCdim(G) := VCdim(sgn(G)),
where sgn(G) := {sgn(f) : f ∈ G} and sgn(x) = 1[x > 0].
Definition 2 (pseudo-dimension [32]). Let F be a class of functions from X to R. The
pseudo-dimension of F , denoted by Pdim(F), is the largest integer m for which there exists
(x1, x2, . . . , xm, y1, y2, . . . , ym) ∈ Xm × Rm such that for any (b1, . . . , bm) ∈ {0, 1}m there
is f ∈ F such that ∀i : f (xi) > yi ⇐⇒ bi = 1.

The main contribution of this paper is to estimate nearly optimal bounds of the VC-dimension and
pseudo-dimension of DNN derivatives. Based on these bounds, we can prove the optimality of our
DNN approximation, as measured by Sobolev norms (Theorem 3), and obtain a tighter generalization
error of loss functions defined by Sobolev norms. Our results facilitate the understanding of Sobolev
training and the performance of DNNs in Sobolev spaces.

Bounds for the VC-dimension and pseudo-dimension of DNNs have been established in [16, 5, 3, 4,
6, 41, 20]. However, these approaches and findings cannot be applied to Sobolev training, as they do
not account for the derivatives of DNNs, which represent a key difference between Sobolev training
and classical methods. Obtaining such bounds for DNN derivatives is much more difficult due to their
complex compositional structures. DNN derivatives consist of a series of interdependent parts that are
multiplied together via the chain rule, rendering existing methods for estimating bounds inapplicable.
Estimating the VC-dimension and pseudo-dimension of DNN derivatives is the most crucial and
challenging problem addressed in this paper. In [11], the VC-dimension and pseudo-dimension of
DNN derivatives were analyzed, but the results were suboptimal due to a lack of consideration for the
relationships between the multiplied terms in a DNN derivative. As a result, their findings do not
provide the optimal approximation of DNNs in Sobolev spaces and can only give a generalization
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error that is much larger than the actual error that may arise from Sobolev training. In this paper, we
introduce a novel method that investigates these relationships, resulting in a simplified complexity of
DNN derivatives. This, in turn, allows us to obtain nearly optimal bounds on their VC-dimension and
pseudo-dimension.

The paper is divided into two parts. In the first part, we establish a nearly optimal bound on the
VC-dimension of DNN derivatives with the ReLU activation function σ1(x) := max{0, x}:
Theorem 1. For any N,L, d ∈ N+, there exists a constant C̄ independent with N,L such that

VCdim(DΦ) ≤ C̄N2L2 log2 L log2N, (2)

for

DΦ := {ψ = Diϕ : ϕ ∈ Φ, i = 1, 2, . . . , d} , (3)

where Φ :=
{
ϕ : ϕ is a σ1-NN in Rd with width≤ N and depth≤ L

}
, and Di is the weak derivative

in the i-th variable.

By utilizing Theorem 1, we prove that our DNN approximation rate for approximating functions in
Sobolev spaces Wn,∞((0, 1)d) using Sobolev norms in W 1,∞((0, 1)d) is nearly optimal. We present
our construction of DNNs for this approximation in Theorem 3, and we demonstrate the optimality
of such approximation in Theorem 4. Furthermore, we generalize our method to approximate DNNs
in Sobolev spaces measured by Sobolev norms Wm,∞((0, 1)d) for m ≥ 2. The details of this
generalization are presented in Corollaries 1 and 2. The Sobolev spaces, equipped with Sobolev
(semi) norms, are defined as follows:
Definition 3 (Sobolev Spaces [13]). Denote Ω as (0, 1)d,D as the weak derivative of a single variable
function and Dα = Dα1

1 Dα2
2 . . . Dαd

d as the partial derivative where α = [α1, α2, . . . , αd]
T and Di

is the derivative in the i-th variable. Let n ∈ N and 1 ≤ p ≤ ∞. Then we define Sobolev spaces

Wn,p(Ω) :=
{
f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all α ∈ Nd with |α| ≤ n

}
with a norm ∥f∥Wn,p(Ω) :=

(∑
0≤|α|≤n ∥Dαf∥pLp(Ω)

)1/p
, if p < ∞, and ∥f∥Wn,∞(Ω) :=

max0≤|α|≤n ∥Dαf∥L∞(Ω). Furthermore, for f = (f1, f2, . . . , fd), f ∈ W 1,∞(Ω,Rd) if and
only if fi ∈W 1,∞(Ω) for each i = 1, 2, . . . , d and ∥f∥W 1,∞(Ω,Rd) := maxi=1,...,d{∥fi∥W 1,∞(Ω)}.
Definition 4 (Sobolev semi-norm [13]). Let n ∈ N+ and 1 ≤ p ≤ ∞. Then we define

Sobolev semi-norm |f |Wn,p(Ω) :=
(∑

|α|=n ∥Dαf∥pLp(Ω)

)1/p
, if p < ∞, and |f |Wn,∞(Ω) :=

max|α|=n ∥Dαf∥L∞(Ω). Furthermore, for f ∈ W 1,∞(Ω,Rd), we define |f |W 1,∞(Ω,Rd) :=

maxi=1,...,d{|fi|W 1,∞(Ω)}.

In the second part of our paper, we utilize our previous work on estimating the VC-dimension of
DNN derivatives to obtain an upper bound on the pseudo-dimension of DNN derivatives:

Theorem 2. For any N,L, d ∈ N+, there exists a constant Ĉ independent with N,L such that

Pdim(DΦ) ≤ ĈN2L2 log2 L log2N, (4)

where DΦ is defined in Theorem 1.

Based on Theorem 2, we can estimate the generalization error of loss functions defined
by Sobolev norms, as demonstrated in Theorem 5. Specifically, the error is bounded by
O(NL(log2N log2 L)

1/2) with respect to the width N and depth L of DNNs. This bound is
significantly smaller than the previously reported bound of O(NL5/2(log2N log2 L)

1/2) in [11].
We attribute this improvement to our more accurate estimation of the pseudo-dimension of DNN
derivatives. Our findings indicate that learning target functions with loss functions defined by Sobolev
norms does not require substantially more sample points than those defined by L2-norms [14], as
their generalization error orders are equivalent with respect to the width N and depth L of DNNs.

Our main contributions are:

• We propose a method to achieve nearly optimal estimations of the VC-dimension and pseudo-
dimension of DNN derivatives.
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• By utilizing our estimation of the VC-dimension of DNN derivatives, we demonstrate the optimality
of our DNN approximation, as measured by Sobolev norms.

• By applying our estimation of the pseudo-dimension of DNN derivatives, we obtain a bound for the
generalization error measured by the Sobolev norm. Importantly, our results demonstrate that the
degree of generalization error defined by Sobolev norms is equivalent to that defined by L2-norms,
corresponding to the width N and depth L of DNNs.

2 Preliminaries

Let us summarize all basic notations used in the DNNs as follows:

1. Matrices are denoted by bold uppercase letters. For example, A ∈ Rm×n is a real matrix of size
m× n and A⊺ denotes the transpose of A.

2. Vectors are denoted by bold lowercase letters. For example, v ∈ Rn is a column vector of size n.
Furthermore, denote v(i) as the i-th elements of v.

3. For a d-dimensional multi-index α = [α1, α2, · · ·αd] ∈ Nd, we denote several related notations
as follows: (a) |α| = |α1| + |α2| + · · · + |αd|; (b) xα = xα1

1 xα2
2 · · ·xαd

d , x = [x1, x2, · · · , xd]⊺;
(c) α! = α1!α2! · · ·αd!.

4. Let Br,|·|(x) ⊂ Rd be the closed ball with a center x ∈ Rd and a radius r measured by the
Euclidean distance. Similarly, Br,∥·∥ℓ∞

(x) ⊂ Rd be the closed ball with a center x ∈ Rd and a
radius r measured by the ℓ∞-norm.

5. Assume n ∈ Nn
+, then f(n) = O(g(n)) means that there exists positive C independent of n, f, g

such that f(n) ≤ Cg(n) when all entries of n go to +∞.

6. Define σ1(x) := σ(x) = max{0, x} and σ2 := σ2(x). We call the neural networks with
activation function σt with t ≤ i as σi neural networks (σi-NNs). With the abuse of notations, we

define σi : Rd → Rd as σi(x) =

 σi(x1)
...

σi(xd)

 for any x = [x1, · · · , xd]T ∈ Rd.

7. Define L,N ∈ N+, N0 = d and NL+1 = 1, Ni ∈ N+ for i = 1, 2, . . . , L, then a σi-NN ϕ with
the width N and depth L can be described as follows:

x = h̃0
W1,b1−→ h1

σi−→ h̃1 . . .
WL,bL−→ hL

σi−→ h̃L
WL+1,bL+1−→ ϕ(x) = hL+1,

where Wi ∈ RNi×Ni−1 and bi ∈ RNi are the weight matrix and the bias vector in the i-th linear
transform in ϕ, respectively, i.e., hi := Wih̃i−1+bi, for i = 1, . . . , L+1 and h̃i = σi (hi) , for i =
1, . . . , L. In this paper, an DNN with the width N and depth L, means (a) The maximum width of
this DNN for all hidden layers less than or equal to N . (b) The number of hidden layers of this DNN
less than or equal to L.

3 Nearly Optimal Approximation Results of DNNs in Sobolev Spaces
Measured by Sobolev Norms

3.1 Approximation of functions in Wn,∞ with W 1,∞ norm by ReLU neural networks

In this subsection, we construct deep neural networks (DNNs) with a width of O(N logN) and a
depth of O(L logL) to approximate functions in the Sobolev space Wn,∞, as measured by Sobolev
norms in W 1,∞. The approximation rate achieved by these networks is O(N−2(n−1)/dL−2(n−1)/d).

Theorem 3. For any f ∈ Wn,∞((0, 1)d) with n ≥ 2 and ∥f∥Wn,∞((0,1)d) ≤ 1, any N,L ∈
N+, there is a σ1-NN ϕ with the width (34 + d)2dnd+1(N + 1) log2(8N) and depth 56d2n2(L +
1) log2(4L) such that

∥f(x)− ϕ(x)∥W 1,∞((0,1)d) ≤ C9(n, d)N
−2(n−1)/dL−2(n−1)/d,

where C9 is the constant independent with N,L.
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The proof of Theorem 3 can be outlined in five parts, and the complete proof is provided in Appendix
7.2:

(i): First of all, define a sequence of subsets of Ω:
Definition 5. Given K, d ∈ N+, and for any m = (m1,m2, . . . ,md) ∈ {1, 2}d, we define Ωm :=∏d

j=1 Ωmj , where Ω1 :=
⋃K−1

i=0

[
i
K ,

i
K + 3

4K

]
, Ω2 :=

⋃K
i=0

[
i
K − 1

2K ,
i
K + 1

4K

]
∩ [0, 1].

Then we define a partition of unity {gm}m∈{1,2}d on (0, 1)d with supp gm ∩ (0, 1)d ⊂ Ωm for each
m ∈ {1, 2}d:
Definition 6. Given K, d ∈ N+, we define

g1(x) :=


1, x ∈

[
i
K + 1

4K ,
i
K + 1

2K

]
0, x ∈

[
i
K + 3

4K ,
i+1
K

]
4K

(
x− i

K

)
, x ∈

[
i
K ,

i
K + 1

4K

]
−4K

(
x− i

K − 3
4K

)
, x ∈

[
i
K + 1

2K ,
i
K + 3

4K

] , g2(x) := g1

(
x+

1

2K

)
, (5)

for i ∈ Z. For any m = (m1,m2, . . . ,md) ∈ {1, 2}d, define gm(x) =
∏d

j=1 gmj
(xj), x =

(x1, x2, . . . , xd).

Figure 1: The schematic diagram of gi for i = 1, 2.

(ii): Then we use the following proposition to approximate {gm}m∈{1,2}d by σ1-NNs and construct
a sequence of σ1-NNs {ϕm}m∈{1,2}d :

Proposition 1. Given any N,L, n ∈ N+ for K = ⌊N1/d⌋2⌊L2/d⌋, then for any m =
(m1,m2, . . . ,md) ∈ {1, 2}d, there is a σ1-NN with the width smaller than (9+d)(N+1)+d−1 and
depth smaller than 15d(d− 1)nL such as ∥ϕm(x)− gm(x)∥W 1,∞((0,1)d) ≤ 50d

5
2 (N + 1)−4dnL.

The proof of Proposition 1 is presented in Appendix 7.2.1.

(iii): For each Ωm ⊂ [0, 1]d, where m ∈ {1, 2}d, we find a function fK,m satisfying

∥f − fK,m∥W 1,∞(Ωm) ≤ C1(n, d)K
−(n−1),

∥f − fK,m∥L∞(Ωm) ≤ C1(n, d)K
−n, (6)

where C1 is a constant independent of K. Moreover, each fK,m can be expressed as fK,m =∑
|α|≤n−1 gf,α,m(x)xα, where gf,α,m(x) is a piecewise constant function on Ωm. The proof of

this result is based on the Bramble-Hilbert Lemma [7, Lemma 4.3.8], and the details are provided in
Appendix 7.2.2.

(iv): The fourth step involves approximating fK,m using neural networks ψm, following the approach
outlined in [28]. This method is suitable for our work because gf,α,m(x) is a piecewise constant
function on Ωm, and the weak derivative of gf,α,m(x) on Ωm is zero. This property allows for the
use of the L∞ norm approximation method presented in [28]. Thus, we obtain a neural network ψm

with width O(N logN) and depth O(L logL) such that

∥fK,m − ψm(x)∥W 1,∞(Ωm) ≤ C5(n, d)N
−2(n−1)/dL−2(n−1)/d

∥fK,m − ψm(x)∥L∞(Ωm) ≤ C5(n, d)N
−2n/dL−2n/d, (7)
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where C5 is a constant independent of N and L.

By combining (iii) and (iv) and setting K = ⌊N1/d⌋2⌊L2/d⌋, we obtain that for each m ∈ {1, 2}d,
there exists a neural network ψm with width O(N logN) and depth O(L logL) such that

∥f(x)− ψm(x)∥W 1,∞(Ωm) ≤ C6(n, d)N
−2(n−1)/dL−2(n−1)/d

∥f(x)− ψm(x)∥L∞(Ωm) ≤ C6(n, d)N
−2n/dL−2n/d, (8)

where C6 is a constant independent of N and L. Further details are provided in Appendix 7.2.3.

(v): The final step is to combine the sequences {ϕm}m∈{1,2}d and {ψm}m∈{1,2}d to construct a
network that can approximate f over the entire space [0, 1]d. We define the sequence {ϕm}m∈{1,2}d

because ψm may not accurately approximate f on [0, 1]d\Ωm. The purpose of ϕm is to remove this
portion of the domain and allow other networks to approximate f on [0, 1]d\Ωm. Further details on
this step are provided in Appendix 7.2.4.

While recent works [28, 23, 39, 18, 31, 9, 19] have studied the approximation of smooth functions or
functions in Sobolev spaces by DNNs measured in the norm of Lp(Ω) or W s,p(Ω), they typically
present results that are not optimal or are measured in Lp-norms. For example, in [28], they applies
Taylor’s expansion to approximate smooth functions but cannot be applied directly in Sobolev spaces.
In [39], they improve on this by using the Bramble–Hilbert Lemma to approximate functions in
Sobolev spaces, but their error is still measured in Lp-norms. In [18], the authors show that there
exists a ReLU neural network that can approximate f ∈ W 1,p(Ω), but their approximation rate is
not optimal and is the same as that in traditional methods such as the finite element theory. Our
work provides a superior approximation rate. Later, a rigorous proof of optimality of Theorem 3 is
discussed in Appendix 7.2.4 and Subsection 3.3.

3.2 Approximation of functions in Wn,∞ measured by Wm,∞ norm with m > 1 by neural
networks (sketches of the proofs of the Corollaries 1 and 2)

In this subsection, we utilize neural networks to approximate functions inWn,∞ measured byWm,∞,
where m > 1. The proof strategy is similar to the approximation measured in the norm of W 1,∞.
However, we cannot rely on ReLU neural networks alone to achieve this goal, as ReLU neural
networks are piece-wise linear functions that do not belong to Wm,∞ with m > 1. Note that the
Bramble-Hilbert Lemma is still applicable in higher-order approximation. Therefore, we need to
approximate the function fK,m =

∑
|α|≤n−1 gf,α,m(x)xα within each domain Ωm using DNNs,

where gf,α,m(x) represents a piece-wise constant function within Ωm. Consequently, ReLU-based
DNNs can effectively approximate gf,α,m(x) within Ωm when measured by higher-order Sobolev
spaces, since both the higher-order derivatives of gf,α,m(x) and ReLU-based DNNs are zero. The
parts of ReLU-based DNNs that do not have high-order derivatives appear in the domain Ω\Ωm, and
we will use the partition of unity to ensure that this part disappears in the final presentation, this is
the reason why it is still acceptable to have ReLU activations appearing in the network. However,
when it comes to approximating xα for |α| > 1 based on high-order Sobolev norms, ReLU-based
DNNs fail to provide accurate results. Therefore, we require DNNs that utilize the square of ReLU
activation in this specific scenario. This is how we construct our approach and the reason why we
employ both ReLU and the square of ReLU activation functions.

Instead, we examine the use of σ2 neural networks for approximating functions measured in the
norm of W 2,∞. As per Corollary 1, a neural network with O(N logN) width and O(L logL)
depth can achieve a nonasymptotic approximation rate of O(N−2(n−2)/dL−2(n−2)/d) with respect
to the W 2,∞((0, 1)d) norm. Moreover, our method can be extended to approximations measured
in the norm of Wm,∞ with m > 2, as shown in Corollary 2. The proof strategy is similar to that
used in Subsection 3.1, except that we need to construct a smoother partition of unity rather than
{gm}m∈{1,2}d . The corollaries are presented below, and further details are provided in Appendix
7.3.
Corollary 1. For any f ∈ Wn,∞((0, 1)d) with ∥f∥Wn,∞((0,1)d) ≤ 1, any N,L ∈ N+ with NL +

2⌊log2 N⌋ ≥ max{d, n} and L ≥ ⌈log2N⌉, there is a σ2-NN γ(x) with the width 2d+6nd+1(N +
d) log2(8N) and depth 15n2(L+ 2) log2(4L) such that

∥f(x)− γ(x)∥W 2,∞((0,1)d) ≤ 2d+7C10(n, d)N
−2(n−2)/dL−2(n−2)/d,
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where C10 is the constant independent with N,L.
Corollary 2. For any f ∈ Wn,∞((0, 1)d) with ∥f∥Wn,∞((0,1)d) ≤ 1, any N,L,m ∈ N+ with
NL+2⌊log2 N⌋ ≥ max{d, n} and L ≥ ⌈log2N⌉, there is a σ2-NN φ(x) with the width O(N logN)
and depth O(L logL) such that

∥f(x)− φ(x)∥Wm,∞((0,1)d) ≤ C11(n, d,m)N−2(n−m)/dL−2(n−m)/d,

where C11 is the constant independent with N,L.

3.3 Optimality of Theorem 3 via estimation of VC-dimension of DNN derivatives (Theorem 1)

In this section, we demonstrate that the approximation rate presented in Theorem 3 is nearly asymp-
totically optimal:
Theorem 4. Given any ρ, C1, C2, C3, J0 > 0 and n, d ∈ N+, there exist N,L ∈ N with NL ≥ J0
and f with ∥f∥Wn,∞(((0,1)d)) ≤ 1, satisfying for any σ1-NN ϕwith the width smaller thanC1N logN
and depth smaller than C2L logL, we have

|ϕ− f |W 1,∞((0,1)d) > C3L
−2(n−1)/d−ρN−2(n−1)/d−ρ. (9)

In other words, the approximation rate of O(N−2(n−1)/d−ρK−2(n−1)/d−ρ) cannot be achieved
asymptotically when ReLU σ1-NNs with width O(N logN) and depth O(L logL) to approximate
functions in Fn,d :=

{
f ∈Wn,∞((0, 1)d) : ∥f∥Wn,∞((0,1)d) ≤ 1

}
. The proof of Theorem 4 is

based on the estimation of the VC-dimension of DNN derivatives, which is provided in Theorem 1.

Theorem 1 plays a crucial role in our proof of Theorem 4, which is established through a proof by
contradiction following the approach outlined in Ref. [28]. Further details on the proof can be found
in Appendix 7.4. The main idea behind the proof is that Theorem 1 characterizes the complexity
of DNN derivatives, which in turn limits the ability of DNNs to approximate functions in Sobolev
spaces.

In this paper, we focus on the optimality of approximation rate with respect to width N and depth L
of DNNs. The dimensionality d is not the focus that we consider in our research. Addressing the
question about mitigating the exponential dependence of width on dimensionality, we have observed
that this arises from the utilization of methods like Taylor’s expansion or average Taylor polynomials
in our approximation techniques. It remains an open question for future research to explore alternative
approaches to address the challenge of getting the dependence of d in the lower bounds.

4 Generalization Analysis in Sobolev Spaces via Estimation of
Pseudo-dimension of DNN Derivatives (Theorem 2)

In a typical supervised learning algorithm, the objective is to learn a high-dimensional target function
f(x) defined on (0, 1)d with ∥f∥Wn,∞((0,1)d) ≤ 1 from a finite set of data samples {(xi, f(xi))}Mi=1.
When training a DNN, we aim to identify a DNN ϕ(x;θS) that approximates f(x) based on random
data samples {(xi, f(xi))}Mi=1. We assume that {xi}Mi=1 is an i.i.d. sequence of random variables
uniformly distributed on (0, 1)d in this section. Denote

θD := arg inf
θ

RD(θ) := arg inf
θ

∫
(0,1)d

|∇(f(x)− ϕ(x;θ))|2 + |f(x)− ϕ(x;θ)|2 dx, (10)

θS := arg inf
θ

RS(θ) := arg inf
θ

1

M

M∑
i=1

[
|∇(f(xi)− ϕ(xi;θ))|2 + |f(xi)− ϕ(xi;θ)|2

]
. (11)

The overall inference error is ERD(θS), which can be divided into two parts:

ERD(θS) =RD(θD) +ERS(θD)−RD(θD) +ERS(θS)−ERS(θD) +ERD(θS)−ERS(θS)

≤ RD(θD)︸ ︷︷ ︸
approximation error

+ERS(θD)−RD(θD) +ERD(θS)−ERS(θS),︸ ︷︷ ︸
generalization error

(12)

where the last inequality is due to ERS(θS) ≤ ERS(θD) by the definition of θS .
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Due to Theorem 3, we know that the approximation error RD(θD) is a O(N−4(n−1)/dL−4(n−1)/d)
term since ∥f(x) − ϕ(x)∥H1((0,1)d) ≤ ∥f(x) − ϕ(x)∥W 1,∞((0,1)d). In this section, we bound
generalization error in the H1((0, 1)d) sense:

Theorem 5. For any N,L, d,B,C1, C2, if ϕ(x;θD), ϕ(x;θS) ∈ Φ̃, we will have that there are
constants C5 = C5(B, d,C1, C2) and J = J(d,N,L,C1, C2) such that for any M ≥ J , we have

ERS(θD)−RD(θD) +ERD(θS)−ERS(θS) ≤ 2 sup
θ,ϕ(x;θ)∈Φ̃

|E(RS(θ))−RD(θ)|

≤ C5
NL(log2 L log2N)

1
2

√
M

logM. (13)

where Φ̃ := {ϕ : ϕ with the width ≤ C1N logN and depth ≤ C2L logL, ∥ϕ∥W 1,∞((0,1)d) ≤ B},
and RS ,RD,θS ,θD are defined in Eqs. (10,11).

The proof of Theorem 5 is based on the works of [3, 11, 26]. We begin by bounding the generalization
error using the Rademacher Complexity and then bound the Rademacher Complexity by the uniform
covering number. We further bound the uniform covering number by the pseudo-dimension. Finally,
we estimate the pseudo-dimension by Theorem 2. The proof of Theorem 5 is presented in Appendix
7.5

Theorem 2 helps to control the degree of the generalization error with respect to N and L in Theorem
5. In [11], the generalization error is bounded by O(NL

5
2 ). In [24], the authors estimate the

covering number using the Lipschitz condition of DNNs instead of the pseudo-dimension, leading to
a generalization error that is exponentially dependent on the depth of the DNNs. Our result is much
better than them due to the optimal estimation of pseudo-dimension of DNN derivatives (Theorem 2).

5 Proof Sketches for Theorems 1 and 2

As Theorems 1 and 2 address the estimation of VC-dimension and pseudo-dimension of DNN
derivatives, which is the main contribution of this paper, we provide the proofs for these theorems in
this section. The distinction in our approach compared to that of [4] lies in the fact that the application
of the chain rule requires the consideration of correlations among distinct segments of the deep neural
networks, as opposed to treating them as independent components multiplied together.

In the proof of Theorem 1, we use the following lemmas:
Lemma 1 ([4, Lemma 17],[3, Theorem 8.3]). Suppose W ≤M and let P1, . . . , PM be polynomials
of degree at most D in W variables. Define K :=

∣∣{(sgn(P1(a)), . . . , sgn(PM (a))) : a ∈ RW }
∣∣,

then we have K ≤ 2(2eMD/W )W .
Lemma 2 ([4, Lemma 18]). Suppose that 2m ≤ 2t(mr/w)w for some r ≥ 16 and m ≥ w ≥ t ≥ 0.
Then, m ≤ t+ w log2(2r log2 r).

As the proof of Theorem 1 represents the most critical and challenging question in our work, we
present a sketch of it below.

Proof Sketch of Theorem 1. An element in Φ can be represented as ϕ =
WL+1σ1(WLσ1(. . . σ1(W1x + b1) . . .) + bL) + bL+1. Therefore, an element in DΦ can
be represented as

ψ(x) = Diϕ(x) =WL+1σ0(WLσ1(. . . σ1(W1x+ b1) . . .) + bL)

·WLσ0(. . . σ1(W1x+ b1) . . .) . . .W2σ0(W1x+ b1)(W1)i, (14)

where Wi ∈ RNi×Ni−1 ((W )i is i-th column of W ) and bi ∈ RNi are the weight matrix and the
bias vector in the i-th linear transform in ϕ, and σ0(x) = sgn(x) = 1[x > 0], which is the derivative
of the ReLU function and σ0(x) = diag(σ0(xi)).

Let x ∈ Rd be an input and θ ∈ RW be a parameter vector in ψ. We denote the output of ψ with
input x and parameter vector θ as f(x,θ). For fixed x1,x2, . . . ,xm in Rd, we aim to bound

K :=
∣∣{(sgn(f(x1,θ)), . . . , sgn(f(xm,θ))) : θ ∈ RW }

∣∣ . (15)
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The proof is inspired by [4, Theorem 7]. For any partition S = {P1, P2, . . . , PT } of the parameter
domain RW , we have K ≤

∑T
i=1 |{(sgn(f(x1,θ)), . . . , sgn(f(xm,θ))) : θ ∈ Pi}|. We choose the

partition such that within each region Pi, the functions f(xj , ·) are all fixed polynomials of bounded
degree. This allows us to bound each term in the sum using Lemma 1.

The partition of RW is constructed layer by layer through successive refinements denoted by
S0,S1, . . . ,SL. These refinements possess the following properties:

1. We have |S0| = 1, and for each n = 1, . . . , L, we have |Sn|
|Sn−1| ≤ 2

(
2emnNk∑n

i=1 Wi

)∑n
i=1 Wi

.

2. For each n = 0, . . . , L− 1, each element S of Sn, when θ varies in S, the output of each term in
Fn is a fixed polynomial function in

∑n
i=1Wi variables of θ, with a total degree no more than n+ 1.

3. For each element S of SL, when θ varies in S, the h-th term in FL for h ∈ {1, 2, . . . , L+ 1} is a
fixed polynomial function in Wh variables of θ, with a total degree no more than 1. The sequence of
sets of functions {Fj}Lj=0 with respect to parameters θ ∈ RW is defined as:

F0 := {(W1)i,W1x+ b1}
F1 := {(W1)i,W2σ0(W1x+ b1),W2σ1(W1x+ b1) + b2}
F2 := {(W1)i,W2σ0(W1x+ b1),W3σ0(W2σ1(W1x+ b1) + b2),

W3σ1(W2σ1(W1x+ b1) + b2) + b3}
...

FL := {(W1)i,W2σ0(W1x+ b1), . . . ,WL+1σ0(WLσ1(. . . σ1(W1x+ b1) . . .) + bL)}. (16)

The details of the refinements required to obtain the partitions are presented in the appendix. By

leveraging Property 3 and Lemma 1, we can deduce that K ≤ 2L+1
(

2em(L+2)(L+1)N
2U

)U
where

U = O(N2L2),N is the width of the network, and the last inequality is due to weighted AM-GM. For

the definition of the VC-dimension, we have 2VCdim(DΦ) ≤ 2L+1
(

eVCdim(DΦ)(L+1)(L+2)N
U

)U
. Due

to Lemma 2, we obtain that VCdim(DΦ) ≤ L+1+U log2[2(L+1)(L+2) log2(L+1)(L+2)] =
O(N2L2 log2 L log2N) since U = O(N2L2).

Note that the VC-dimension estimation achieved in Theorem 1 is nearly optimal, as demonstrated
in Corollary 3 combined with the upper bound in Theorem 1. If the polynomial degree in the
VC-dimension bound as a function of N and L were any smaller, it would contradict Theorem 3,
which is based on our proof of Theorem 4.
Corollary 3. For any d ∈ N+, C, J0, ε > 0, there exists N,L ∈ N with NL ≥ J0 such that

VCdim(DΦ) > CN2−εL2−ε, (17)
where DΦ is defined in Theorem 1.

We discuss the proof of Corollary 3 at the end of Section 7.4. Next we now present the proof for
Theorem 2.

The proof of Theorem 2 can be found in the appendix. The key idea behind the proof is to reformulate
the pseudo-dimension of DNN derivatives as the VC-dimension of a larger set. Based on the definition
of pseudo-dimensions, it follows that Pdim(DΦ) ≥ VCdim(DΦ). Consequently, we can derive the
following corollary, utilizing Corollary 3, to demonstrate the near optimality of the pseudo-dimension
estimate presented in Theorem 2:
Corollary 4. For any d ∈ N+, C, J0, ε > 0, there exists N,L ∈ N with NL ≥ J0 such that

Pdim(DΦ) > CN2−εL2−ε, (18)
where DΦ is defined in Theorem 1.

6 Conclusions and Discussions

In this paper, we establish nearly optimal bounds for the VC-dimension and pseudo-dimension of
DNN derivatives. Based on these bounds, two contributions to Sobolev training [8, 40, 46] are made in
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this paper. Firstly, we show that the optimal approximation rate of DNNs with a width of O(N logN)
and a depth of O(L logL) is O(N−2(n−1)/dL−2(n−1)/d) in Sobolev spaces. This demonstrates the
ability of DNNs to learn target functions well in Sobolev training. Secondly, we find that the degree
of the pseudo-dimension of DNN derivatives is the same as that for DNNs corresponding to the
width N and depth L of DNNs. This result suggests that despite the apparent complexity of DNN
derivatives, the degree of generalization error of loss functions containing derivatives of DNNs is
equivalent to that without derivatives, corresponding to the width N and depth L of DNNs. As a
result, we do not need to use a significantly larger number of sample points to learn the target function
in Sobolev training compared to regular training.

The estimations of the VC-dimension and pseudo-dimension of DNN derivatives have broad applica-
tions in deep learning research. For example, in classification tasks, the VC-dimension characterizes
the uniform convergence of misclassification frequencies to probabilities and asymptotically deter-
mines the sample complexity of PAC learning [4, 44, 6]. These applications can be explored in
the further work. Our focus in this paper is on the Sobolev training with loss functions containing
first-order derivatives, and we also obtain the approximation rate of σ2-NNs described by higher-order
Sobolev norms (Corollaries 1 and 2). The optimality of these results and the generalization error
of Sobolev training with loss functions containing higher-order derivatives of DNNs remain open
problems, as estimating the VC-dimension and pseudo-dimension of higher-order derivatives of
σ2-NNs requires further investigation.
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7 Supplementary Material

7.1 Proofs of Theorems 1 and 2.

Proof of Theorem 1. An element in Φ can be represented as ϕ = WL+1σ1(WLσ1(. . . σ1(W1x +
b1) . . .) + bL) + bL+1. Therefore, an element in DΦ can be represented as

ψ(x) = Diϕ(x) =WL+1σ0(WLσ1(. . . σ1(W1x+ b1) . . .) + bL)

·WLσ0(. . . σ1(W1x+ b1) . . .) . . .W2σ0(W1x+ b1)(W1)i, (19)

where Wi ∈ RNi×Ni−1 ((W )i is i-th column of W ) and bi ∈ RNi are the weight matrix and the
bias vector in the i-th linear transform in ϕ, and σ0(x) = sgn(x) = 1[x > 0], which is the derivative
of the ReLU function and σ0(x) = diag(σ0(xi)). Denote Wi as the number of parameters in Wi, bi,
i.e., Wi = NiNi−1 +Ni.

Let x ∈ Rd be an input and θ ∈ RW be a parameter vector in ψ. We denote the output of ψ with
input x and parameter vector θ as f(x,θ). For fixed x1,x2, . . . ,xm in Rd, we aim to bound

K :=
∣∣{(sgn(f(x1,θ)), . . . , sgn(f(xm,θ))) : θ ∈ RW }

∣∣ . (20)

The proof is inspired by [4, Theorem 7]. For any partition S = {P1, P2, . . . , PT } of the parameter
domain RW , we have K ≤

∑T
i=1 |{(sgn(f(x1,θ)), . . . , sgn(f(xm,θ))) : θ ∈ Pi}|. We choose the

partition such that within each region Pi, the functions f(xj , ·) are all fixed polynomials of bounded
degree. This allows us to bound each term in the sum using Lemma 1.

We define a sequence of sets of functions {Fj}Lj=0 with respect to parameters θ ∈ RW :

F0 := {(W1)i,W1x+ b1}
F1 := {(W1)i,W2σ0(W1x+ b1),W2σ1(W1x+ b1) + b2}
F2 := {(W1)i,W2σ0(W1x+ b1),W3σ0(W2σ1(W1x+ b1) + b2),

W3σ1(W2σ1(W1x+ b1) + b2) + b3}
...

FL := {(W1)i,W2σ0(W1x+ b1), . . . ,WL+1σ0(WLσ1(. . . σ1(W1x+ b1) . . .) + bL)}. (21)

The partition of RW is constructed layer by layer through successive refinements denoted by
S0,S1, . . . ,SL. These refinements possess the following properties:

1. We have |S0| = 1, and for each n = 1, . . . , L, we have |Sn|
|Sn−1| ≤ 2

(
2emnNk∑n

i=1 Wi

)∑n
i=1 Wi

.

2. For each n = 0, . . . , L− 1, each element S of Sn, when θ varies in S, the output of each term in
Fn is a fixed polynomial function in

∑n
i=1Wi variables of θ, with a total degree no more than n+ 1.

3. For each element S of SL, when θ varies in S, the h-th term in FL for h ∈ {1, 2, . . . , L+ 1} is a
fixed polynomial function in Wh variables of θ, with a total degree no more than 1.

We define S0 = {RW }, which satisfies properties 1,2 above, since W1xj + b1 and (W1)i are affine
functions of W1, b1.

To define Sn, we use the last term of Fn−1 as inputs for the last two terms in Fn. Assuming that
S0,S1, . . . ,Sn−1 have already been defined, we observe that the last two terms are new additions to
Fn when comparing it to Fn−1. Therefore, all elements in Fn except the last two are fixed polynomial
functions in Wn variables of θ, with a total degree no greater than n when θ varies in S ∈ Sn. This
is because Sn is a finer partition than Sn−1.

We denote pxj ,n−1,S,k(θ) as the output of the k-th node in the last term of Fn−1 in response to xj

when θ ∈ S. The collection of polynomials

{pxj ,n−1,S,k(θ) : j = 1, . . . ,m, k = 1, . . . , Nn}

can attain at most 2
(

2emnNn∑n
i=1 Wi

)∑n
i=1 Wi

distinct sign patterns when θ ∈ S due to Lemma 1 for

sufficiently large m. Therefore, we can divide S into 2
(

2emnNn∑n
i=1 Wi

)∑n
i=1 Wi

parts, each having the
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property that pxj ,n−1,S,k(θ) does not change sign within the subregion. By performing this for all
S ∈ Sn−1, we obtain the desired partition Sn. This division ensures that the required property 1 is
satisfied.

Additionally, since the input to the last two terms in Fn is pxj ,n−1,S,k(θ), and we have shown that
the sign of this input will not change in each region of Sn, it follows that the output of the last two
terms in Fn is also a polynomial without breakpoints in each element of Sn. Therefore, the required
property 2 is satisfied.

In the context of DNNs, the last layer is characterized by all terms containing the activation function
σ0. Consequently, for any element S of the partition SL, when the vector of parameters θ varies
within S, the h-th term in FL for h ∈ {1, 2, . . . , L+1} can be expressed as a polynomial function of
at most degree 1, which depends on at most Wh variables of θ. Hence, the required property 3 is
satisfied.

Due to property 3, we multiply all the terms in FL and obtain a term inDΦ. Hence, the output of each
term in DΦ is a polynomial function in

∑L+1
i=1 Wi variables of θ ∈ S ∈ SL, of total degree no more

than L+1. Therefore, for each S ∈ SL we have |{(sgn(f(x1,θ)), . . . , sgn(f(xm,θ))) : θ ∈ S}| ≤

2
(
2em(L+ 1)/

∑L+1
i=1 Wi

)∑L+1
i=1 Wi

. Then

K ≤2

(
2em(L+ 1)/

L+1∑
i=1

Wi

)∑L+1
i=1 Wi

·
L∏

n=1

2

(
2emnNn∑n

i=1Wi

)∑n
i=1 Wi

≤
L+1∏
n=1

2

(
2emnNn∑n

i=1Wi

)∑n
i=1 Wi

≤2L+1

(
2em(L+ 2)(L+ 1)N

2U

)U

(22)

where U :=
∑L+1

n=1

∑n
i=1Wi = O(N2L2), N is the width of the network, and the last inequality is

due to weighted AM-GM. For the definition of the VC-dimension, we have

2VCdim(DΦ) ≤ 2L+1

(
eVCdim(DΦ)(L+ 1)(L+ 2)N

U

)U

. (23)

Due to Lemma 2, we obtain that

VCdim(DΦ) ≤ L+ 1 + U log2[2(L+ 1)(L+ 2) log2(L+ 1)(L+ 2)] = O(N2L2 log2 L log2N)
(24)

since U = O(N2L2).

Proof of Theorem 2. Denote DΦN := {η(x, y) : η(x, y) = ψ(x) − y, ψ ∈ DΦ, (x, y) ∈ Rd+1}.
Based on the definition of VC-dimension and pseudo-dimension, we have that

Pdim(DΦ) ≤ VCdim(DΦN ). (25)

For the VCdim(DΦN ), it can be bounded by O(N2L2 log2 L log2N). The proof is similar to that
for the estimate of VCdim(DΦ) as given in Theorem 1.

We establish that Pdim(DΦ) ≤ VCdim(DΦN ), where ΦN represents DNNs with N + 1 width
and L+ 1 depth. This implies that Pdim(DΦ) is upper bounded by C̄(N + 1)2(L+ 1)2 log2(L+

1) log2(N + 1) ≤ 64C̄N2L2 log2 L log2N . Therefore, we conclude that 64C̄ ≥ Ĉ.

7.2 Proof of Theorem 3

7.2.1 Propositions of Sobolev spaces and ReLU neural networks

The following two lemmas estimate the Sobolev norms and Sobolev semi-norms for the composition
and product, which will be used in later proof.
Lemma 3 ([18, Corollary B.5]). Let d,m ∈ N+ and Ω1 ⊂ Rd and Ω2 ⊂ Rm both be open, bounded,
and convex. Then for f ∈W 1,∞(Ω1,Rm) and g ∈W 1,∞(Ω2) with ranf ⊂ Ω2, we have

∥g ◦ f∥W 1,∞(Ω2) ≤
√
dmmax{∥g∥L∞(Ω2), |g|W 1,∞(Ω2)|f |W 1,∞(Ω1,Rm)}.
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Lemma 4 ([18, Corollary B.6]). Let d ∈ N+ and Ω ⊂ Rd. Then for f, g ∈W 1,∞(Ω), we have

∥gf∥W 1,∞(Ω) ≤ ∥g∥L∞(Ω)|f |W 1,∞(Ω) + ∥f∥L∞(Ω)|g|W 1,∞(Ω).

Then we collect and establish some propositions for ReLU neural networks.

Proposition 2 ([28, Proposition 4.3]). Given any N,L ∈ N+ and δ ∈
(
0, 1

3K

]
for K =

⌊N1/d⌋2⌊L2/d⌋, there exists a σ1-NN ϕ with the width 4N + 5 and depth 4L+ 4 such that

ϕ(x) = k, x ∈
[
k

K
,
k + 1

K
− δ · 1k<K−1

]
, k = 0, 1, . . . ,K − 1.

Proposition 3. [28, Proposition 4.4] Given anyN,L, s ∈ N+ and ξi ∈ [0, 1] for i = 0, 1, . . . N2L2−
1, there exists a σ1-NN ϕ with the width 16s(N + 1) log2(8N) and depth (5L+ 2) log2(4L) such
that

1. |ϕ(i)− ξi| ≤ N−2sL−2s for i = 0, 1, . . . N2L2 − 1.

2. 0 ≤ ϕ(x) ≤ 1, x ∈ R.
Proposition 4. For any N,L ∈ N+ and a > 0, there is a σ1-NN ϕ with the width 15N and depth 2L
such that ∥ϕ∥W 1,∞((−a,a)2) ≤ 12a2 and

∥ϕ(x, y)− xy∥W 1,∞((−a,a)2) ≤ 6a2N−L. (26)

Furthermore,

ϕ(0, y) =
∂ϕ(0, y)

∂y
= 0, y ∈ (−a, a). (27)

Proof. We first need to construct a neural network to approximate x2 on (−1, 1), and the idea is
similar with [23, Lemma 3.2] and [28, Lemma 5.1]. The reason we do not use [23, Lemma 3.4] and
[28, Lemma 4.2] directly is that constructing ϕ(x, y) by translating a neural network in W 1,∞[0, 1]
will lose the proposition of ϕ(0.y) = 0. Here we need to define teeth functions Ti on x̃ ∈ [−1, 1]:

T1(x̃) =

{
2|x̃|, |x̃| ≤ 1

2 ,

2(1− |x̃|), |x̃| > 1
2 ,

and
Ti = Ti−1 ◦ T1, for i = 2, 3, · · · .

Define

ψ̃(x̃) = x̃−
s∑

i=1

Ti(x̃)

22i
,

According to [23, Lemma 3.2] and [28, Lemma 5.1], we know ψ is a neural network with the
width 5N and depth 2L such that ∥ψ̃(x̃)∥W 1,∞((−1,1)) ≤ 2, ∥ψ̃(x̃)− x̃2∥W 1,∞((−1,1)) ≤ N−L and
ψ(0) = 0.

By setting x = ax̃ ∈ (−a, a) for x̃ ∈ (−1, 1), we define

ψ(x) = a2ψ̃
(x
a

)
.

Note that x2 = a2
(
x
a

)2
, we have

∥ψ(x)− x2∥W1,∞(−a,a) = a2
∥∥∥∥ψ̃ (xa)− (xa)2

∥∥∥∥
W1,∞((−a,a))

≤ a2N−L,

and ψ(0) = 0, which will be used to prove Eq. (27).

Then we can construct ϕ(x, y) as

ϕ(x, y) = 2

[
ψ

(
|x+ y|

2

)
− ψ

(
|x|
2

)
− ψ

(
|y|
2

)]
(28)
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where ϕ(x) is a neural network with the width 15N and depth 2L such that ∥ϕ∥W 1,∞((−a,a)2) ≤ 12a2

and
∥ϕ(x, y)− xy∥W 1,∞((−a,a)2) ≤ 6a2N−L. (29)

For the last equation Eq. (27) is due to ϕ(x, y) in the proof can be read as Eq. (28) with ψ(0) = 0.

Proposition 5. For any N,L, s ∈ N+with s ≥ 2, there exists a σ1-NN ϕ with the width 9(N + 1) +
s− 1 and depth 14s(s− 1)L such that ∥ϕ∥W1,∞((0,1)s) ≤ 18 and

∥ϕ(x)− x1x2 · · ·xs∥W1,∞((0,1)s) ≤ 10(s− 1)(N + 1)−7sL. (30)

Furthermore, for any i = 1, 2, . . . , s, if xi = 0, we will have

ϕ(x1, x2, . . . , xi−1, 0, xi+1, . . . , xs) =
∂ϕ(x1, x2, . . . , xi−1, 0, xi+1, . . . , xs)

∂xj
= 0, i ̸= j. (31)

Proof. The proof of the first inequality Eq. (30) can be found in [23, Lemma 3.5]. The proof of
Eq. (31) can be obtained via induction. For s = 2, based on Proposition 4, we know there is a neural
network ϕ2 satisfied Eq. (31).

Now assume that for any i ≤ n − 1, there is a neural network ϕi satisfied Eq. (31). ϕn in [23] is
constructed as

ϕn(x1, x2, . . . , xn) = ϕ2(ϕn−1(x1, x2, . . . , xn−1), σ(xn)), (32)
which satisfies Eq. (30). Then ϕn(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn) = 0 for any i = 1, 2, . . . , n.
For i = n, we have

ϕ(x1, x2, . . . , 0)

∂xj
=
∂ϕ2(ϕn−1(x1, x2, . . . , xn−1), 0)

∂ϕn−1(x1, x2, . . . , xn−1)︸ ︷︷ ︸
=0, by the property of ϕ2.

·∂ϕn−1(x1, x2, . . . , xn−1)

∂xj
= 0. (33)

For i < n and j < n, we have

ϕ(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn)

∂xj

=
∂ϕ2(ϕn−1(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn−1), σ(xn))

∂ϕn−1(x1, . . . , 0, xi+1, . . . , xn−1)
· ∂ϕn−1(x1, . . . , 0, xi+1, . . . , xn−1)

∂xj︸ ︷︷ ︸
=0, via induction.

= 0.

(34)

For i < n and j = n, we have

ϕ(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn)

∂xn

=
∂ϕ2(ϕn−1(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn−1), σ(xn))

∂σ(xn)︸ ︷︷ ︸
=0, by the property of ϕ2.

· dσ(xn)
dxn

= 0. (35)

Therefore, Eq. (31) is valid.

Proposition 6 ([23, Propositiion 3.6]). For any N,L, s ∈ N+ and |α| ≤ s , there is a σ1-NN ϕ with
the width 9(N + 1) + s− 1 and depth 14s2L such that ∥ϕ∥W 1,∞((0,1)d) ≤ 18 and

∥ϕ(x)− xα∥W 1,∞((0,1)d) ≤ 10s(N + 1)−7sL. (36)

Proposition 7 ([39, Proposition 1]). Given a sequence of the neural network {pi}Mi=1, and each pi is
a σ1-NN from R → R with the width N and depth Li, then

∑M
i=1 pi is a σ1-NN with the width N +4

and depth
∑M

i=1 Li.

We present the proof of Proposition 1 below.
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Proof of Proposition 1. First, we construct g1 and g2 by neural networks in [0, 1]. Note that ⌊L2/d⌋ ≤
L2/d ≤

(
⌊L1/d⌋+ 1

)2
. We first construct a σ1-NN in the small set

[
0, ⌊N1/d⌋⌊L2/d⌋

]
. It is easy to

check there is a neural network ψ̂ with the width 4 and one layer such as

ψ̂(x) :=


1, x ∈

[
1

8K ,
3

8K

]
4K

(
x− 1

8K

)
, x ∈

[
1

8K ,
3

8K

]
−4K

(
x− 7

8K

)
, x ∈

[
5

8K ,
7

8K

]
0, Otherwise.

(37)

Figure 2: ψ1

Hence, we have a network ψ1 with the width 4⌊N1/d⌋ and one layer such as

ψ1(x) :=

⌊N1/d⌋−1∑
i=0

ψ̂

(
x− i

K

)
.

Next, we construct ψi for i = 2, 3, 4 based on the symmetry and periodicity of gi. ψ2 is the function
with period 2

⌊N1/d⌋⌊L2/d⌋ in
[
0, 1

⌊L2/d⌋

]
, and each period is a hat function with gradient 1. ψ3 is

the function with period 2
⌊L2/d⌋ in

[
0, ⌊L

1/d⌋+1
⌊L2/d⌋

]
, and each period is a hat function with gradient 1.

ψ4 is the function with period
2(⌊L1/d⌋+1)

⌊L2/d⌋ in
[
0,

(⌊L1/d⌋+1)
2

⌊L2/d⌋

]
, and each period is a hat function

with gradient 1. The schematic diagram is in Fig. 3 (The diagram is shown the case for ⌊N1/d⌋ and
⌊L1/d⌋+ 1 is a even integer.).

Note that ψ2 ◦ ψ3 ◦ ψ4(x) is the function with period 2
⌊N1/d⌋⌊L2/d⌋ in [0, 1] ⊂

[
0,

(⌊L1/d⌋+1)
2

⌊L2/d⌋

]
, and

each period is a hat function with gradient 1. Then function ψ1 ◦ ψ2 ◦ ψ3 ◦ ψ4(x) is obtained by

repeating reflection ψ1 in
[
0,

(⌊L1/d⌋+1)
2

⌊L2/d⌋

]
, which is the function we want.

Similar with ψ1, ψ2 is a network with 4⌊N1/d⌋ width and one layer. Due to Proposition 7, we know
that ψ3 and ψ4 is a network with 7 width and ⌊L1/d⌋+ 1 depth. Hence

ψ(x) := ψ1 ◦ ψ2 ◦ ψ3 ◦ ψ4(x) (38)

is a network with 4⌊N1/d⌋ width and 2⌊L1/d⌋ + 4 depth and g1 = ψ
(
x+ 1

8K

)
and g1 =

ψ
(
x+ 5

8K

)
.

Now we can construct gm for m ∈ {1, 2}d based on Proposition 5: There is a neural network ϕprod
with the width 9(N + 1) + d− 1 and depth 14d(d− 1)nL such that ∥ϕprod∥W1,∞((0,1)d) ≤ 18 and

∥ϕprod(x)− x1x2 · · ·xd∥W1,∞((0,1)d)
≤ 10(d− 1)(N + 1)−7dnL.
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Figure 3: ψi for i = 2, 3, 4

Then denote ϕm(x) := ϕprod(gm1 , gm2 , . . . , gmd
) which is a neural network with the width smaller

than (9 + d)(N + 1) + d− 1 and depth smaller than 15d(d− 1)nL. Furthermore, due to Lemma 3,
we have

∥ϕm(x)− gm(x)∥W1,∞((0,1)d) ≤d
3
2 ∥ϕprod(x)− x1x2 · · ·xd∥L∞((0,1)d)

+ d
3
2 ∥ϕprod(x)− x1x2 · · ·xd∥W1,∞((0,1)d)

|ψ|W 1,∞(0,1)

≤d 3
2 10(d− 1)(N + 1)−7ndL

(
1 + 4⌊N1/d⌋2⌊L2/d⌋

)
≤50d

5
2 (N + 1)−4dnL, (39)

where the last inequality is due to

⌊N1/d⌋2⌊L2/d⌋
(N + 1)3dnL

≤ N2L2

(N + 1)3dnL
≤ L2

(N + 1)3dnL−2
≤ L2

2dnL
≤ 1.

In the final of this subsection, we establish three lemmas for {Ωm}m∈{1,2}d , {gm}m∈{1,2}d and
{ϕm}m∈{1,2}d defined in Subsection 3.1.

Lemma 5. For {Ωm}m∈{1,2}d defined in Definition 5, we have⋃
m∈{1,2}d

Ωm = [0, 1]d.

Proof. We prove this lemma via induction. d = 1 is valid due to Ω1 ∪ Ω2 = [0, 1]. Assume that the
lemma is true for d− 1, then⋃

m∈{1,2}d

Ωm =[0, 1]d =
⋃

m∈{1,2}d−1

Ωm × Ω1 +
⋃

m∈{1,2}d−1

Ωm × Ω2

=
(
[0, 1]d−1 × Ω1

)⋃(
[0, 1]d−1 × Ω2

)
= [0, 1]d, (40)

hence the case of d is valid, and we finish the proof of the lemma.
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Lemma 6. {gm}m∈{1,2}d defined in Definition 6 satisfies:

(i):
∑

m∈{1,2}d gm(x) = 1 for every x ∈ [0, 1]d.

(ii): supp gm ∩ [0, 1]d ⊂ Ωm, where Ωm is defined in Definition 5.

(ii): For any m = (m1,m2, . . . ,md) ∈ {1, 2}d and x = (x1, x2, . . . , xd) ∈ [0, 1]d\Ωm, there

exists j such as gmj
(xj) = 0 and

dgmj
(xj)

dxj
= 0.

Proof. (i) can be proved via induction as Lemma 5, and we leave it to readers.

As for (ii) and (iii), without loss of generality, we show the proof for m∗ := (1, 1, . . . , 1). For any
x ∈ [0, 1]d\Ωm∗ , there is xj ∈ [0, 1]\Ω1. Then g1(xj) = 0 and gm∗(x) =

∏d
j=1 g1(xj) = 0,

therefore supp gm∗ ∩ [0, 1]d ⊂ Ωm∗ . Furthermore,
dgmj

(xj)

dxj
= 0 for xj ∈ [0, 1] ∈ Ω1 due to the

definition of g1 (Definition 6), then we finish this proof.

The following lemma demonstrates that ϕm, as defined in Proposition 1, can restrict the Sobolev
norm of the entire space to Ωm.
Lemma 7. For any χ(x) ∈W 1,∞((0, 1)d), denote

M = max{∥χ∥W 1,∞((0,1)d), ∥ϕm∥W 1,∞((0,1)d)},
then we have

∥ϕm(x) · χ(x)∥W 1,∞((0,1)d) =∥ϕm(x) · χ(x)∥W 1,∞(Ωm)

∥ϕm(x) · χ(x)− ϕM (ϕm(x), χ(x))∥W 1,∞((0,1)d) =∥ϕm(x) · χ(x)− ϕM (ϕm(x), χ(x))∥W 1,∞(Ωm)

(41)

for any m ∈ {1, 2}d, where ϕm(x) and Ωm is defined in Proposition 1 and Definition. 5, and ϕM is
from Proposition 4 (choosing a =M in the proposition).

Proof. For the first equality, we only need to show that

∥ϕm(x) · χ(x)∥W 1,∞((0,1)d\Ωm) = 0. (42)

According to the Proposition 1, we have ϕm(x) = ϕprod(gm1
, gm2

, . . . , gmd
), and for any x =

(x1, x2, . . . , xd) ∈ (0, 1)d\Ωm, there is mj such as gmj
(xj) = 0 and

dgmj
(xj)

dxj
= 0 due to Lemma

6. Based on Eq. (31) in Proposition 5, we have

ϕm(x) =
∂ϕm(x)

∂xs
= 0, x ∈ (0, 1)d\Ωm, s ̸= j.

Furthermore,
∂ϕm(x)

∂xj
=
∂ϕprod(gm1

, gm2
, . . . , gmd

)

∂gmj

dgmj
(xj)

dxj
= 0. (43)

Hence we have

|ϕm(x) · χ(x)|+
d∑

q=1

∣∣∣∣∂ [ϕm(x) · χ(x)]
∂xq

∣∣∣∣ = 0 (44)

for all x ∈ (0, 1)d\Ωm.

Similarly, for the second equality in this lemma, we have

|ϕM (ϕm(x), χ(x))|+
d∑

q=1

∣∣∣∣∂ [ϕM (ϕm(x), χ(x))]

∂xq

∣∣∣∣
=|ϕM (0, χ(x))|+

d∑
q=1

[∣∣∣∣∂ [ϕM (0, χ(x))]

∂χ(x)
· ∂χ(x)
∂xq

∣∣∣∣+ ∣∣∣∣∂ [ϕM (ϕm(x), χ(x))]

∂ϕm(x)
· ∂ϕm(x)

∂xq

∣∣∣∣]
=0, (45)
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for all x ∈ (0, 1)d\Ωm based on

ϕM (0, y) =
∂ϕM (0, y)

∂y
= 0, y ∈ (−M,M),

and ∂ϕm(x)
∂xq

= 0. Hence we finish our proof.

7.2.2 An approximation of functions in Sobolev spaces based on the Bramble–Hilbert Lemma
[7, Lemma 4.3.8]

In this subsection, we establish {fK,m}m∈{1,2}d as mentioned in Subsection 3.1, which is presented
in Theorem 6. To prove this result, we build upon the work of [18], which leverages the average
Taylor polynomials and the Bramble-Hilbert Lemma to approximate functions in Sobolev spaces.

Before we show Theorem 6, we define subsets of Ωm for simplicity notations.

For any m ∈ {1, 2}d, we define

Ωm,i := [0, 1]d ∩
d∏

j=1

[
2ij − 1mj≤2

2K
,
3 + 4ij − 2 · 1mj≤2

4K

]
(46)

i = (i1, i2, . . . , id) ∈ {0, 1 . . . ,K}d, and it is easy to check
⋃

i∈{0,1...,K}d Ωm,i = Ωm.

Theorem 6. Let K ∈ N+ and n ≥ 2. Then for any f ∈ Wn,∞((0, 1)d) with ∥f∥Wn,∞((0,1)d) ≤ 1

and m ∈ {1, 2}d, there exist piece-wise polynomials function fK,m =
∑

|α|≤n−1 gf,α,m(x)xα on
Ωm (Definition 5) with the following properties:

∥f − fK,m∥W 1,∞(Ωm) ≤ C1(n, d)K
−(n−1),

∥f − fK,m∥L∞(Ωm) ≤ C1(n, d)K
−n. (47)

Furthermore, gf,α,m(x) : Ωm → R is a constant function with on each Ωm,i for i ∈ {0, 1 . . . ,K}d.
And

|gf,α,m(x)| ≤ C2(n, d) (48)
for all x ∈ Ωm, where C1 and C2 are constants independent with K.

This proof is similar to that of [18, Lemma C.4.], but we provide detailed proof as follows for
readability. Before the proof, we must introduce the partition of unity, average Taylor polynomials,
and a lemma.
Definition 7 (The partition of unity). Let d,K ∈ N+, then

Ψ =
{
hi : i ∈ {0, 1, . . . ,K}d

}
with hi : Rd → R for all i ∈ {0, 1, . . . ,K}d is called the partition of unity [0, 1]d if it satisfies

(i): 0 ≤ hi(x) ≤ 1 for every hi ∈ Ψ.

(ii):
∑

hi∈Ψ hi = 1 for every x ∈ [0, 1]d.

Definition 8. Let n ≥ 1 and f ∈ Wn,∞((0, 1)d), x0 ∈ ((0, 1)d) and r > 0 such that for the ball
B(x0) := B(x0)r,|·| which is a compact subset of ((0, 1)d). The corresponding Taylor polynomial
of order n of f averaged over B is defined for

Qnf(x) :=

∫
B

Tn
y f(x)br(y) dy (49)

where

Tn
y f(x) :=

∑
|α|≤n−1

1

α!
Dαf(y)(x− y)α,

br(x) :=

{
1
cr
e−(1−(|x−x0|/r)2)

−1

, |x− x0| < r,

0, |x− x0| ≤ r,

cr =

∫
Rd

e−(1−(|x−x0|/r)2)
−1

dx. (50)
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Lemma 8. Let n ≥ 1 and f ∈Wn,∞((0, 1)d), x0 ∈ Ω and r > 0 such that for the ball B(x0) :=
Br,|·|(x0) which is a compact subset of ((0, 1)d). The corresponding Taylor polynomial of order n of
f averaged over B can be read as

Qnf(x) =
∑

|α|≤n−1

cf,αx
α.

Furthermore,

|cf,α| ≤ C2(n, d)∥f∥Wn−1,∞(B). (51)

where C2(n, d) =
∑

|α+β|≤n−1
1

α!β! .

Proof. Based on [18, Lemma B.9.], Qnf(x) can be read as

Qnf(x) =
∑

|α|≤n−1

cf,αx
α (52)

where
cf,α =

∑
|α+β|≤n−1

1

(β +α)!
aβ+α

∫
B

Dα+βf(x)yβbr(y) dy (53)

for aβ+α ≤ (α+β)!
α!β! . Note that∣∣∣∣∫

B

Dα+βf(x)yβbr(y) dy

∣∣∣∣ ≤ ∥f∥Wn−1,∞(B)∥br(x)∥L1(B) = ∥f∥Wn−1,∞(B). (54)

Then

|cf,α| ≤ C2(n, d)∥f∥Wn−1,∞(Bm,N ). (55)

where C2(n, d) =
∑

|α+β|≤n−1
1

α!β! .

The proof of Theorem 6 is based on average Taylor polynomials and the Bramble–Hilbert Lemma [7,
Lemma 4.3.8].
Definition 9. Let Ω, B ∈ Rd. Then Ω is called stared-shaped with respect to B if

conv ({x} ∪B ⊂ Ω) , for all x ∈ Ω.

Definition 10. Let Ω ∈ Rd be bounded, and define

R :=

{
r > 0 :

there exists x0 ∈ Ω such that Ω is
star-shaped with respect to Br,|·| (x0)

}
.

Then we define

r⋆max := supR and call γ :=
diam(Ω)

r⋆max

the chunkiness parameter of Ω if R ≠ ∅.

Lemma 9 (Bramble–Hilbert Lemma [7, Lemma 4.3.8]). Let Ω ∈ Rd be open and bounded, x0 ∈ Ω
and r > 0 such that Ω is the stared-shaped with respect to B := Br,|·| (x0), and r ≥ 1

2r
⋆
max.

Moreover, let n ∈ N+, 1 ≤ p ≤ ∞ and denote by γ by the chunkiness parameter of Ω. Then there is
a constant C(n, d, γ) > 0 such that for all f ∈Wn,p(Ω)

|f −Qnf |Wk,p(Ω) ≤ C(n, d, γ)hn−k|f |Wn,p(Ω) for k = 0, 1, . . . , n

where Qnf denotes the Taylor polynomial of order n of f averaged over B and h = diam(Ω).

Proof of Theorem 6. Without loss of generalization, we prove the case for m = (1, 1, . . . , 1) =: m∗.

Denote E :Wn,∞((0, 1)d) →Wn,∞(Rd) be an extension operator [43] and set f̃ := Ef and CE is
the norm of the extension operator.
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Define pf,i as the average Taylor polynomial Definition 8 in Bi,K := B 1
4K ,|·|

(
8i+3
8K

)
i.e.

pf,i :=

∫
Bi,K

Tn
y f̃(x)b 1

4K
(y) dy. (56)

Based on Lemma 8, pf,i can be read as

pf,i =
∑

|α|≤n−1

cf,i,αx
α (57)

where
|cf,i,α| ≤ C2(n, d). (58)

The reason to define average Taylor polynomial on Bi,K is to use the Bramble–Hilbert Lemma 9 on

Ωm∗,i = B 3
8K ,∥·∥ℓ∞

(
8i+ 3

8K

)
=

d∏
j=1

[
ij
K
,
3 + 4ij
4K

]
.

Note that
1

4K
≥ 1

2
· 3

8K
=

1

2
r⋆max(Ωm∗,i), γ(Ωm∗,i) =

diam(Ωm∗,i)

r⋆max(Ωm∗,i)
= 2

√
d.

Therefore we can apply the Bramble–Hilbert Lemma 9 and have

∥f̃ − pf,i∥L∞(Ωm∗,i) ≤ CBH(n, d)K−n

|f̃ − pf,i|W 1,∞(Ωm∗,i) ≤ CBH(n, d)K−(n−1) (59)

where CBH(n, d) = |{|α| = n}| 1

d
∫ 1
0
xd−1e−(1−x2)−1

dx

(
2 + 4

√
d
)d
CE by following the proof of

Lemma [7, Lemma 4.3.8]. Therefore,

∥f̃ − pf,i∥W 1,∞(Ωm∗,i) ≤ C1(n, d)K
−(n−1)

where C1(n, d) = 2CBH(n, d).

Now we construct a partition of unity that we use in this theorem. First of all, given any integer K,
define {hi}Ki=0 from R → R:

hi(x) := h

(
4K

(
x− 8i+ 3

8K

))
, h(x) :=


1, |x| < 3

2

0, |x| > 2

4− 2|x|, 3
2 ≤ |x| ≤ 2.

(60)

It is easy to check that {hi}Ki=0 is a partition of unity of [0, 1] and hi(x) = 1 for x ∈
[

i
K ,

3+4i
4K

]
. Hence

we can define hi(x) for i = (i1, i2, . . . , id) ∈ {0, 1, . . . ,K}d and x = (x1, x2, . . . , xd) ∈ Rd:

hi(x) =

d∏
j=1

hij (xj), (61)

and
{
hi : i ∈ {0, 1, . . . ,K}d

}
is a partition of unity of [0, 1]d and hi(x) = 1 for x ∈∏d

j=1

[
ij
K ,

3+4ij
4K

]
= Ωm∗,i and i = (i1, i2, . . . , id) ∈ {0, 1, . . . ,K}d.

Furthermore,

∥hi(f̃ − pf,i)∥L∞(Ωm∗,i) ≤ ∥f̃ − pf,i∥L∞(Ωm∗,i) ≤ CBH(n, d)K−n (62)

and

|hi(f̃ − pf,i)|W 1,∞(Ωm∗,i) ≤|f̃ − pf,i|W 1,∞(Ωm∗,i) ≤ CBH(n, d)K−(n−1) (63)

which is due to hi = 1 on Ωm∗,i.

Then
∥hi(f̃ − pf,i)∥W 1,∞(Ωm∗,i) ≤ C1(n, d)K

−(n−1).
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Finally, ∥∥∥∥∥∥f −
∑

i∈{0,1,...,K}d

hipf,i

∥∥∥∥∥∥
W 1,∞(Ωm∗ )

≤ max
i∈{0,1,...,K}d

∥hi(f̃ − pf,i)∥W 1,∞(Ωm∗,i)

≤ C1(n, d)K
−(n−1), (64)

which is due to ∪i∈{0,1,...,K}dΩm∗,i = Ωm∗ and supp hi ∩ Ωm∗ = Ωm∗,i.

Similarly, ∥∥∥∥∥∥f −
∑

i∈{0,1,...,K}d

hipf,i

∥∥∥∥∥∥
L∞(Ω1,d)

≤ C1(n, d)K
−n. (65)

Last of all,

fk,m∗(x) :=
∑

i∈{0,1,...,K}d

hipf,i =
∑

i∈{0,1,...,K}d

∑
|α|≤n−1

hicf,i,αx
α

=
∑

|α|≤n−1

∑
i∈{0,1,...,K}d

hicf,i,αx
α

=:
∑

|α|≤n−1

gf,α,m∗(x)x
α (66)

with |gf,α,m∗(x)| ≤ C2(n, d) for x ∈ Ωm∗ . Note that gf,α,m∗(x) is a step function from Ωm∗ →
R:

gf,α,m∗(x) = cf,i,α (67)

for x ∈
∏d

j=1

[
ij
K ,

3+4ij
4K

]
and i = (i1, i2, . . . , id) since hi(x) = 0 for x ∈ Ωm∗\

∏d
j=1

[
ij
K ,

3+4ij
4K

]
and hi(x) = 1 for x ∈

∏d
j=1

[
ij
K ,

3+4ij
4K

]
.

7.2.3 Approximation of functions in Wn,∞ with W 1,∞ norm by ReLU neural networks in the
whole space except a small set

Theorem 7. For any f ∈ Wn,∞((0, 1)d) with ∥f∥Wn,∞((0,1)d) ≤ 1, any N,L ∈ N+, and m =

(m1,m2, . . . ,md) ∈ {1, 2}d, there is a neural network ψm with the width 25nd+1(N +1) log2(8N)
and depth 27n2(L+ 2) log2(4L) such that

∥f(x)− ψm(x)∥W 1,∞(Ωm) ≤ C6(n, d)N
−2(n−1)/dL−2(n−1)/d

∥f(x)− ψm(x)∥L∞(Ωm) ≤ C6(n, d)N
−2n/dL−2n/d, (68)

where C6 is the constant independent with N,L.

Proof. Without loss of the generalization, we consider the case for m∗ = (1, 1, . . . , 1). Due to
Theorem 6 and setting K = ⌊N1/d⌋2⌊L2/d⌋, we have

∥f − fK,m∗∥W 1,∞(Ωm∗ )
≤ C1(n, d)K

−(n−1) ≤ C1(n, d)N
−2(n−1)/dL−2(n−1)/d

∥f − fK,m∗∥L∞(Ωm∗ )
≤ C1(n, d)K

−n ≤ C1(n, d)N
−2n/dL−2n/d, (69)

where fK,m∗ =
∑

|α|≤n−1 gf,α,m∗(x)x
α for x ∈ Ωm∗ . Note that gf,α,m∗(x) is a constant

function for x ∈
∏d

j=1

[
ij
K ,

3+4ij
4K

]
and i = (i1, i2, . . . , id) ∈ {0, 1, . . . ,K − 1}d. The remaining

part is to approximate fK,m∗ by neural networks.

The way to approximate gf,α,m∗(x) is similar with [23, Theorem 3.1]. First of all, due to Proposition
2, there is a neural network ϕ1(x) with the width 4N + 5 and depth 4L+ 4 such that

ϕ(x) = k, x ∈
[
k

K
,
k + 1

K
− 1

4K

]
, k = 0, 1, . . . ,K − 1. (70)
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Note that we choose δ = 1
4K ≤ 1

3K in Proposition 2. Then define

ϕ2(x) =

[
ϕ1(x1)

K
,
ϕ1(x2)

K
, . . . ,

ϕ1(xd)

K

]⊺
.

For each p = 0, 1, . . . ,Kd − 1, there is a bijection

η(p) = [η1, η2, . . . , ηd] ∈ {0, 1, . . . ,K − 1}d

such that
∑d

j=1 ηjK
j−1 = p. Then define

ξα,p =
gf,α,m∗

(
η(p)
K

)
+ C2(n, d)

2C2(n, d)
∈ [0, 1],

where C2(n, d) is the bounded of gf,α,m∗ defined in Theorem 6. Therefore, based on Proposition 3,
there is a neural network ϕ̃α(x) with the width 16n(N + 1) log2(8N) and depth (5L+ 2) log2(4L)

such that |ϕ̃α(p)− ξα,p| ≤ N−2nL−2n for p = 0, 1, . . .Kd − 1. Denote

ϕα(x) = 2C2(n, d)ϕ̃α

 d∑
j=1

xjK
j

− C2(n, d)

and obtain that∣∣∣∣ϕα(η(p)

K

)
− gf,α,m∗

(
η(p)

K

)∣∣∣∣ = 2C2(n, d)|ϕ̃α(p)− ξα,p| ≤ 2C2(n, d)N
−2nL−2n.

Then we obtain that

∥ϕα (ϕ2(x))− gf,α,m∗ (x) ∥W 1,∞(Ωm∗ )
=∥ϕα (ϕ2(x))− gf,α,m∗ (x) ∥L∞(Ωm∗ )

≤2C2(n, d)N
−2nL−2n (71)

which is due to ϕα (ϕ2(x))− gf,α,m∗ (x) is a step function, and the first order weak derivative is 0
in Ωm∗ .

Due to Proposition 6, there is a neural network ϕ3,α with the width 9(N + 1) + n − 1 and depth
14n2L such that ∥ϕ3,α∥W 1,∞((0,1)d) ≤ 18 and

∥ϕ3,α(x)− xα∥W 1,∞((0,1)d) ≤ 10n(N + 1)−7nL. (72)

Due to Proposition 4, there is a neural network ϕ4 with the width 15(N + 1) and depth 4n(L+ 1)
such that ∥ϕ4∥W 1,∞(−C3,C3)2 ≤ 12(C2(n, d))

2 and

∥ϕ4(x, y)− xy∥W 1,∞((−C3,C3)2)
≤ 6(C2(n, d))

2(N + 1)−2n(L+1). (73)

where C3(n, d) = max{3C2(n, d), 18}.

Now we define the neural network ϕm∗(x) to approximate fK,m∗(x) in Ωm∗ :

ψm∗(x) =
∑

|α|≤n−1

ϕ4 [ϕα(ϕ2(x)), ϕ3,α(x)] . (74)

24



The remaining question is to find the error E :

E :=

∥∥∥∥∥∥
∑

|α|≤n−1

ϕ4 [ϕα(ϕ2(x)), ϕ3,α(x)]− fK,m∗(x)

∥∥∥∥∥∥
W 1,∞(Ωm∗ )

≤
∑

|α|≤n−1

∥ϕ4 [ϕα(ϕ2(x)), ϕ3,α(x)]− gf,α,m∗(x)x
α∥W 1,∞(Ωm∗ )

≤
∑

|α|≤n−1

∥ϕ4 [ϕα(ϕ2(x)), ϕ3,α(x)]− ϕα(ϕ2(x))ϕ3,α(x)∥W 1,∞(Ωm∗ )︸ ︷︷ ︸
=:E1

+
∑

|α|≤n−1

∥ϕα(ϕ2(x))ϕ3,α(x)− gf,α,m∗(x)ϕ3,α(x)∥W 1,∞(Ωm∗ )︸ ︷︷ ︸
=:E2

+
∑

|α|≤n−1

∥gf,α,m∗(x)ϕ3,α(x)− gf,α,m∗(x)x
α∥W 1,∞(Ωm∗ )︸ ︷︷ ︸

=:E3

. (75)

As for E1, due to Lemma 3, we have

E1 ≤
∑

|α|≤n−1

2
√
dmax

{
∥ϕ4(x, y)− xy∥L∞((−C3,C3)2)

, ∥ϕ4(x, y)− xy∥W 1,∞((−C3,C3)2)

·max{∥ϕα(ϕ2(x))∥W 1,∞(Ωm∗ )
, ∥ϕ3,α(x)∥W 1,∞(Ωm∗ )

}
}

≤
∑

|α|≤n−1

2
√
dmax

{
∥ϕ4(x, y)− xy∥L∞((−C3,C3)2)

, C3(n, d) ∥ϕ4(x, y)− xy∥W 1,∞((−C3,C3)2)

}
≤

∑
|α|≤n−1

12
√
d [C3(n, d) + 1] (C2(n, d))

2(N + 1)−2n(L+1)

≤C4(n, d)(N + 1)−2n(L+1) (76)

where C4(n, d) = 12
√
dnd [C3(n, d) + 1] (C2(n, d))

2.

As for E2, due to Lemma 4, we have

E2 ≤
∑

|α|≤n−1

2 ∥ϕα(ϕ2(x))− gf,α,m∗(x)∥W 1,∞(Ωm∗ )
· ∥ϕ3,α(x)∥W 1,∞(Ωm∗ )

≤72ndC2(n, d)N
−2nL−2n. (77)

The estimation of E3 is similar with that of E2 which is

E3 ≤
∑

|α|≤n−1

∥gf,α,m∗∥W 1,∞(Ωm∗ )
· ∥ϕ3,α(x)− xα∥W 1,∞(Ωm∗ )

≤ 10ndC2(n, d)n(N + 1)−7nL. (78)

Therefore, using
(N + 1)−7nL ≤ (N + 1)−2n(L+1) ≤ N−2nL−2n

the total error is

E ≤ E1 + E2 + E3 ≤ C5(n, d)K
−2nL−2n, (79)

where C5(n, d) = C4(n, d) + 72ndC2(n, d) + 10ndC2(n, d)n.

At last, we finish the proof by estimating the network’s width and depth, implementing ψm∗(x).
From Eq. (74), we know that ψm∗(x) consists of the following subnetworks:

1. ϕ3,α(x) with the width 9(N + 1) + n− 1 and depth 14n2L.
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2. ϕ2(x) with the width 4N + 5 and depth 4L+ 4.

3. ϕα with the width 16n(N + 1) log2(8N) and depth (5L+ 2) log2(4L).

4. ϕ4(x, y) with the width 15(N + 1) and depth 4n(L+ 1).

Therefore ϕ(x) is a neural network with the width 25nd+1(N + 1) log2(8N) and depth 27n2(L+
2) log2(4L).

Combining Eqs. (69) and (79), we have that there is a neural network ψm∗ with the width 25nd+1(N+
1) log2(8N) and depth 27n2(L+ 2) log2(4L) such that

∥f(x)− ψm∗(x)∥W 1,∞(Ωm∗ )
≤ C6(n, d)N

−2(n−1)/dL−2(n−1)/d

∥f(x)− ψm∗(x)∥L∞(Ωm∗ )
≤ C6(n, d)N

−2n/dL−2n/d, (80)

where C6 = C1 + C5 is the constant independent with N,L.

Similarly, we can construct a neural network ψm with the width 25nd+1(N +1) log2(8N) and depth
27n2(L+ 2) log2(4L) which can approximate f on Ωm with same order of Eq. (80).

7.2.4 Proof of Theorem 3

Now we can prove Theorem 3 based on Theorem 7 and Proposition 1.

Proof of Theorem 3. Based on Theorem 7, there is a sequence of the neural network
{ψm(x)}m∈{1,2}d such that

∥f(x)− ψm(x)∥W 1,∞(Ωm) ≤ C6(n, d)N
−2(n−1)/dL−2(n−1)/d

∥f(x)− ψm(x)∥L∞(Ωm) ≤ C6(n, d)N
−2n/dL−2n/d, (81)

where C6 = C1 + C5 is the constant independent with N,L, and each ψm is a neural network with
the width 25nd+1(N + 1) log2(8N) and depth 27n2(L+ 2) log2(4L). According to Proposition 1,
there is a sequence of the neural network {ϕm(x)}m∈{1,2}d such that

∥ϕm(x)− gm(x)∥W 1,∞((0,1)d) ≤ 50d
5
2 (N + 1)−4dnL,

where {gm}m∈{1,2}d is defined in Definition 6 with
∑

m∈{1,2}d gm(x) = 1 and supp gm∩[0, 1]d =

Ωm. For each ϕm, it is a neural network with the width smaller than (9 + d)(N + 1) + d− 1 and
depth smaller than 15d(d− 1)nL.

Due to Proposition 4, there is a neural network ϕ̂ with the width 15(N + 1) and depth 14n2L such
that ∥ϕ̂∥W 1,∞(−C7,C7)2 ≤ 12(C7(n, d))

2 and∥∥∥ϕ̂(x, y)− xy
∥∥∥
W 1,∞(−C7,C7)2

≤ 6(C7)
2(N + 1)−7n(L+1), (82)

where C7 = C6 + 50d
5
2 + 1.

Now we define
ϕ(x) =

∑
m∈{1,2}d

ϕ̂(ϕm(x), ψm(x)). (83)

Note that

R :=∥f(x)− ϕ(x)∥W 1,∞((0,1)d) =

∥∥∥∥∥∥
∑

m∈{1,2}d

gm · f(x)− ϕ(x)

∥∥∥∥∥∥
W 1,∞((0,1)d)

≤

∥∥∥∥∥∥
∑

m∈{1,2}d

[gm · f(x)− ϕm(x) · ψm(x)]

∥∥∥∥∥∥
W 1,∞((0,1)d)

+

∥∥∥∥∥∥
∑

m∈{1,2}d

[
ϕm(x) · ψm(x)− ϕ̂(ϕm(x), ψm(x))

]∥∥∥∥∥∥
W 1,∞((0,1)d)

. (84)
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As for the first part,∥∥∥∥∥∥
∑

m∈{1,2}d

[gm · f(x)− ϕm(x) · ψm(x)]

∥∥∥∥∥∥
W 1,∞((0,1)d)

≤
∑

m∈{1,2}d

∥gm · f(x)− ϕm(x) · ψm(x)∥W 1,∞((0,1)d)

≤
∑

m∈{1,2}d

[
∥(gm − ϕm(x)) · f(x)∥W 1,∞((0,1)d) + ∥(fm − ψm(x)) · ϕm(x)∥W 1,∞((0,1)d)

]
=

∑
m∈{1,2}d

[
∥(gm − ϕm(x)) · f(x)∥W 1,∞((0,1)d) + ∥(fm − ψm(x)) · ϕm(x)∥W 1,∞(Ωm)

]
,

(85)

where the last equality is due to Lemma 7. Based on Lemma 4 and ∥f∥W 1,∞((0,1)d) ≤ 1, we have

∥(gm − ϕm(x)) · f(x)∥W 1,∞((0,1)d) ≤ ∥(gm − ϕm(x))∥W 1,∞((0,1)d) ≤ 50d
5
2 (N + 1)−4dnL.

(86)

And

∥(fm − ψm(x)) · ϕm(x)∥W 1,∞(Ωm)

≤∥(fm − ψm(x))∥W 1,∞(Ωm) · ∥ϕm∥L∞(Ωm) + ∥(fm − ψm(x))∥L∞(Ωm) · ∥ϕm∥W 1,∞(Ωm)

≤C6(n, d)N
−2(n−1)/dL−2(n−1)/d ·

(
1 + 50d

5
2

)
+ C6(n, d)N

−2n/dL−2n/d · 54d 5
2 ⌊N1/d⌋2⌊L2/d⌋

≤C7(n, d)N
−2(n−1)/dL−2(n−1)/d, (87)

where the second inequality is due to

∥ϕm∥L∞(Ωm) ≤ ∥ϕm∥L∞([0,1]d) ≤ ∥gm∥L∞([0,1]d) + ∥ϕm − gm∥L∞([0,1]d) ≤ 1 + 50d
5
2

∥ϕm∥W 1,∞(Ωm) ≤ ∥ϕm∥W 1,∞([0,1]d) ≤ ∥gm∥W 1,∞([0,1]d) + ∥ϕm − gm∥W 1,∞([0,1]d)

≤ 4⌊N1/d⌋2⌊L2/d⌋+ 50d
5
2 . (88)

Therefore∥∥∥∥∥∥
∑

m∈{1,2}d

[gm · f(x)− ϕm(x) · ψm(x)]

∥∥∥∥∥∥
W 1,∞((0,1)d)

≤ 2d(C7(n, d) + 50d
5
2 )N−2(n−1)/dL−2(n−1)/d

(89)

due to (N + 1)−4dnL ≤ N−2nL−2n.

For the second part, due to Lemma 7, we have∥∥∥∥∥∥
∑

m∈{1,2}d

[
ϕm(x) · ψm(x)− ϕ̂(ϕm(x), ψm(x))

]∥∥∥∥∥∥
W 1,∞((0,1)d)

≤
∑

m∈{1,2}d

∥∥∥ϕm(x) · ψm(x)− ϕ̂(ϕm(x), ψm(x))
∥∥∥
W 1,∞((0,1)d)

=
∑

m∈{1,2}d

∥∥∥ϕm(x) · ψm(x)− ϕ̂(ϕm(x), ψm(x))
∥∥∥
W 1,∞(Ωm)

. (90)

Similarly with the estimation of E1 (76), we have that∥∥∥ϕm(x) · ψm(x)− ϕ̂(ϕm(x), ψm(x))
∥∥∥
W 1,∞(Ωm)

≤C8(n, d)(N + 1)−7n(L+1) ≤ C8(n, d)N
−2(n−1)/dL−2(n−1)/d. (91)
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Combining (89) and (91), we have that there is a σ1-NN ϕ with the width (34 + d)2dnd+1(N +
1) log2(8N) and depth 56d2n2(L+ 1) log2(4L) such that

∥f(x)− ϕ(x)∥W 1,∞((0,1)d) ≤ C9(n, d)N
−2(n−1)/dL−2(n−1)/d,

where C9 is the constant independent with N,L.

The method proposed in [28, 23, 39, 38, 37] may not be applied to prove Theorems 3. These
works approximate the target function f using a deep neural network ϕ in the unit cube except
for an arbitrarily small region Ωδ, as per [36, Lemma 2.2]. Since ∥ϕ∥L∞(Ω) can be bounded and
is independent of the size of Ωδ, ∥f − ϕ∥Lp(Ω) can be well estimated across the entire space for
p ∈ [1,+∞). For approximations measured in the L∞(Ω) norm, [28] translates the deep neural
network ϕ, while [39] constructs different neural networks in the unit cube away from various
negligible regions. Both methods aim to find neural networks {ϕi(x)}i = 1N that approximate the
target function f well in different regions. They then observe that the middle value of {ϕi(x)}Ni=1 is
close to f(x) for all x∗ ∈ Ω, and construct the middle-value function using a ReLU neural network.
However, these methods may not be generalized to prove the theorems presented in this paper.

Neither of the methods previously proposed can be applied to the approximation measured in Sobolev
space. In the first method, ∥ϕ∥W 1,∞(Ω) depends on the length of Ωδ, and the derivative is substantial
in the negligible region, as shown in [36, Lemma 2.2]. Thus, ∥f − ϕ∥W 1,p(Ω) will be excessively
large. In the second method, median value functions can only identify the median values, not the
median values of functions and their derivatives simultaneously. In this paper, we overcome this
difficulty using a partition of unity. We construct a partition of unity of Ω and approximate them
using ReLU DNNs denoted as {ϕm}m∈{1,2}d . For each ϕm, its support set is the unit cube away
from a small region, and we can construct a deep neural network ψm that approximates the target
function f well on supp ϕm. We then combine {ϕm}m∈{1,2}d and {ψm}m∈{1,2}d to obtain a deep
neural network that can approximate the target function f well across the entire space. This approach
resolves the issue of simultaneous approximation of both functions and their derivatives in Sobolev
spaces.

7.3 Proofs of Corollaries 1 and 2

7.3.1 Preliminaries

First, we list a few basic lemmas of σ2 neural networks repeatedly applied in our main analysis.
Lemma 10 ([23, Lemma 3.7]). The following basic lemmas of σ2 neural networks hold:

(i) σ1 neural networks are σ2 neural networks.

(ii) Any identity map in Rd can be realized exactly by a σ2 neural network with one hidden layer and
2d neurons.

(iii) f(x) = x2 can be realized exactly by a σ2 neural network with one hidden layer and two neurons.

(iv) f(x, y) = xy = (x+y)2−(x−y)2

4 can be realized exactly by a σ2 neural network with one hidden
layer and four neurons.

(v) Assume xα = xα1
1 xα2

2 · · ·xαd

d for α ∈ Nd. For any N,L ∈ N+ such that NL+ 2⌊log2 N⌋ ≥ |α|,
there exists a σ2 neural network ϕ(x) with the width 4N + 2d and depth L+ ⌈log2N⌉ such that

ϕ(x) = xα

for any x ∈ Rd.

(vi) Assume P (x) =
∑J

j=1 cjx
αj for αj ∈ Nd. For any N,L, a, b ∈ N+such that ab ≥ J

and (L− 2b− b log2N)N ≥ bmaxj |αj |, there exists a σ2 neural network ϕ(x) with the width
4Na+ 2d+ 2 and depth L such that

ϕ(x) = P (x) for any x ∈ Rd.

Next, we define a function which will be repeatly used in the proof of Corollary 1 in this section.
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Definition 11. Define s(x) from R → [0, 1] as

s(x) :=



2x2, x ∈
[
0, 12

]
−2(x− 1)2 + 1, x ∈

[
1
2 , 1
]

1, x ∈ [1, 2]

−2(x− 2)2 + 1, x ∈
[
2, 52

]
2(x− 3)2, x ∈

[
5
2 , 3
]

0, Otherwise.

(92)

Figure 4: s(x) in R.

Definition 12. Given K ∈ N+, then we define two functions in R:

s1(x) =

K∑
i=0

s (4Kx+ 1− 4i) , s2(x) = s1

(
x+

1

2K

)
. (93)

Then for any m = (m1,m2, . . . ,md) ∈ {1, 2}d, we define

sm(x) :=

d∏
j=1

smj
(xj) (94)

for any x = (x1, x2, . . . , xd) ∈ Rd.

Proposition 8. Given N,L, d ∈ N+ with NL + 2⌊log2 N⌋ ≥ d and L ≥ ⌈log2N⌉, and setting
K = ⌊N1/d⌋⌊L2/d⌋, {sm(x)}m∈{1,2}d defined in Definition 12 satisfies:

(i): ∥sm(x)∥L∞((0,1)d) ≤ 1, ∥sm(x)∥W 1,∞((0,1)d) ≤ 8K and ∥sm(x)∥W 1,∞((0,1)d) ≤ 64K2 for
any m ∈ {1, 2}d.

(ii): {sm(x)}m∈{1,2}d is a partition of the unity [0, 1]d with supp sm(x) ∩ [0, 1]d = Ωm defined in
Definition 5.

(iii):For any m ∈ {1, 2}d, there is a σ2 neural network λm(x) with the width 16N + 2d and depth
4L+ 5 such as

λm(x) =

d∏
j=1

smj
(xj) = sm(x),x ∈ [0, 1]d.

Proof. (i) and (ii) are proved by direct calculation. The proof of (iii) follows:

First, we architect s(x) by a σ2 neural network. The is a σ1 neural network g(x) with 3 the width
and one layer such that:

g(x) :=


x, x ∈

[
0, 12

]
1
2 , x ∈

[
1
2 ,+∞

)
0, Otherwise.

(95)

Based on (iii) in Lemma 10, g2(x) is a σ2 neural network with 3 the width and two layers. Then by
direct calculation, we notice that

s(x) = 2g2(x)− 2g2(−x+ 1) + 2g2 (3− x)− 2g2 (2 + x) +
1

2
, (96)
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which is a σ2 neural network with 12 the width and two layers. The g̃(x) defined as

g̃(x) =

⌊N1/d⌋−1∑
i=0

s

(
4Kx− 4i− 1

2

)
(97)

is a σ2 neural network with 12(⌊N1/d⌋) the width and two layers.

Similar with Lemma 1, we know that

ĝ = g̃ ◦ ψ2 ◦ ψ3 ◦ ψ4(x)

is a σ2 neural network with 12(⌊N1/d⌋) the width and 5 + 2⌊L1/d⌋, and

s1(x) = ĝ

(
x+

1

8K

)
, s2(x) = s1

(
x+

1

2K

)
, x ∈ [0, 1]. (98)

Based on (v) in Lemma 10, we have there is a σ2 neural network λm(x) with the width 16N + 2d
and depth 4L+ 5 such as

λm(x) =

d∏
j=1

smj
(xj) = sm(x),x ∈ [0, 1]d.

7.3.2 Proof of Corollaries 1 and 2

The proof is comprised of three parts, which include Theorem 8 and 9, followed by the combination
of these results. Theorem 8 is to apply the Bramble–Hilbert Lemma 9 measured in the norm of
W 2,∞:

Theorem 8. Let K ∈ N+ and n ≥ 2. Then for any f ∈ Wn,∞((0, 1)d) with ∥f∥Wn,∞((0,1)d) ≤ 1

and m ∈ {1, 2}d, there exist piece-wise polynomials function fK,m =
∑

|α|≤n−1 gf,α,m(x)xα on
Ωm (Definition 5) with the following properties:

∥f − fK,m∥W 2,∞(Ωm) ≤ C1(n, d)K
−(n−2),

∥f − fK,m∥W 1,∞(Ωm) ≤ C1(n, d)K
−(n−1),

∥f − fK,m∥L∞(Ωm) ≤ C1(n, d)K
−n. (99)

Furthermore, gf,α,m(x) : Ωm → R is a constant function with on each Ωm,i for i ∈ {0, 1 . . . ,K}d.
And

|gf,α,m(x)| ≤ C2(n, d) (100)

for all x ∈ Ωm, where C1 and C2 are constants independent with K.

The proof is the same as that of Theorem 6. Note that {fK,m}m∈{1,2}d will be same in two theorems
if f ∈Wn,∞((0, 1)d) in two theorem are same.

Theorem 9 is to establish σ2 neural networks {γm}{1,2}d , and each γm can approximate f well on
Ωm.

Theorem 9. For any f ∈ Wn,∞((0, 1)d) with ∥f∥Wn,∞((0,1)d) ≤ 1, any N,L ∈ N+ with NL +

2⌊log2 N⌋ ≥ n and L ≥ ⌈log2N⌉, and m = (m1,m2, . . . ,md) ∈ {1, 2}d, there is a σ2 neural
network γm with the width 28nd+1(N + d) log2(8N) and depth 11n2(L+ 2) log2(4L) such that

∥f(x)− γm(x)∥W 2,∞(Ωm) ≤ C10(n, d)N
−2(n−2)/dL−2(n−2)/d

∥f(x)− γm(x)∥W 1,∞(Ωm) ≤ C10(n, d)N
−2(n−1)/dL−2(n−1)/d

∥f(x)− γm(x)∥L∞(Ωm) ≤ C10(n, d)N
−2n/dL−2n/d, (101)

where C10 is the constant independent with N,L.
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Proof. The proof is similar to that of Theorem 7; the difference is that xy and xα can be architected
precisely by σ2 neural networks.

Without loss of the generalization, we consider the case for m∗ = (1, 1, . . . , 1). Due to Theorem 8
and setting K = ⌊N1/d⌋2⌊L2/d⌋, we have

∥f − fK,m∗∥W 2,∞(Ωm∗ )
≤ C1(n, d)K

−(n−2) ≤ C1(n, d)N
−2(n−2)/dL−2(n−2)/d

∥f − fK,m∗∥W 1,∞(Ωm∗ )
≤ C1(n, d)K

−(n−1) ≤ C1(n, d)N
−2(n−1)/dL−2(n−1)/d

∥f − fK,m∗∥L∞(Ωm∗ )
≤ C1(n, d)K

−n ≤ C1(n, d)N
−2n/dL−2n/d, (102)

where fK,m∗ =
∑

|α|≤n−1 gf,α,m∗(x)x
α for x ∈ Ωm∗ . Note that gf,α,m∗(x) is a constant

function for x ∈
∏d

j=1

[
ij
K ,

3+4ij
4K

]
and i = (i1, i2, . . . , id) ∈ {0, 1, . . . ,K − 1}d. The remaining

part is to approximate fK,m∗ by neural networks.

The way to approximate gf,α,m∗(x) is same with Theorem 7, and we have that

∥ϕα (ϕ2(x))− gf,α,m∗ (x) ∥W 2,∞(Ωm∗ )
=∥ϕα (ϕ2(x))− gf,α,m∗ (x) ∥W 1,∞(Ωm∗ )

=∥ϕα (ϕ2(x))− gf,α,m∗ (x) ∥L∞(Ωm∗ )

≤2C2(n, d)N
−2nL−2n (103)

which is due to ϕα (ϕ2(x))− gf,α,m∗ (x) is a step function, and the first order weak derivative is 0
in Ωm∗ .

Due to (v) in Lemma 10, there is a σ2 neural network ϕ5,α(x) with the width 4N + 2d and depth
L+ ⌈log2N⌉ such that

ϕ5,α(x) = xα, x ∈ Rd. (104)

Due to (iv) in Lemma 10, there is a σ2 neural network ϕ6(x) with the width 4 and depth 1 such that

ϕ6(x, y) = xy, x, y ∈ R. (105)

Now we define the neural network γm∗(x) to approximate fK,m∗(x) in Ωm∗ :

γm∗(x) =
∑

|α|≤n−1

ϕ6 [ϕα(ϕ2(x)), ϕ5,α(x)] . (106)

The remaining question is to find the error E :

Ẽ :=

∥∥∥∥∥∥
∑

|α|≤n−1

ϕ6 [ϕα(ϕ2(x)), ϕ5,α(x)]− fK,m∗(x)

∥∥∥∥∥∥
W 2,∞(Ωm∗ )

≤
∑

|α|≤n−1

∥ϕ6 [ϕα(ϕ2(x)), ϕ5,α(x)]− gf,α,m∗(x)x
α∥W 2,∞(Ωm∗ )

=
∑

|α|≤n−1

∥ϕα(ϕ2(x))x
α − gf,α,m∗(x)x

α∥W 2,∞(Ωm∗ )

≤n2
∑

|α|≤n−1

∥ϕα(ϕ2(x))− gf,α,m∗(x)∥W 2,∞(Ωm∗ )

≤2nd+2C2(n, d)N
−2nL−2n. (107)

At last, we finish the proof by estimating the network’s the width and depth, implementing γm∗(x).
From Eq. (106), we know that γm∗(x) consists of the following subnetworks:

1. ϕ5,α(x) with the width 4N + 2d and depth L+ ⌈log2N⌉.

2. ϕ2(x) with the width 4N + 5 and depth 4L+ 4.

3. ϕα with the width 16n(N + 1) log2(8N) and depth (5L+ 2) log2(4L).

4. ϕ6(x, y) with the width 4 and depth 1.
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Therefore ϕ(x) is a neural network with the width 28nd+1(N + d) log2(8N) and depth 11n2(L+
2) log2(4L).

Combining Eqs. (102) and (107), we have that there is a neural network γm∗ with the width
28nd+1(N + d) log2(8N) and depth 11n2(L+ 2) log2(4L) such that

∥f(x)− ψm∗(x)∥W 2,∞(Ωm∗ )
≤ C10(n, d)N

−2(n−2)/dL−2(n−2)/d

∥f(x)− ψm∗(x)∥W 1,∞(Ωm∗ )
≤ C10(n, d)N

−2(n−1)/dL−2(n−1)/d

∥f(x)− ψm∗(x)∥L∞(Ωm∗ )
≤ C10(n, d)N

−2n/dL−2n/d, (108)

where C10 = C1 + 2nd+2C2 is the constant independent with N,L.

Similarly, we can construct a neural network γm with the width 28nd+1(N + d) log2(8N) and depth
11n2(L+ 2) log2(4L) which can approximate f on Ωm with same order of Eq. (108).

The last part is to combine {λm}m∈{1,2}d and {γm}m∈{1,2}d in [0, 1]d and obtain a σ2 neural
network to approximate f measured in the norm of W 2.

Proof of Corollary 1. Based on Theorem 9, there is a sequence of the neural network
{γm(x)}m∈{1,2}d such that

∥f(x)− γm(x)∥W 2,∞(Ωm) ≤ C10(n, d)N
−2(n−2)/dL−2(n−2)/d

∥f(x)− γm(x)∥W 1,∞(Ωm) ≤ C10(n, d)N
−2(n−1)/dL−2(n−1)/d

∥f(x)− γm(x)∥L∞(Ωm) ≤ C10(n, d)N
−2n/dL−2n/d, (109)

where C10 is the constant independent with N,L, and each γm is a neural network with the width
28nd+1(N + d) log2(8N) and depth 11n2(L+ 2) log2(4L). According to Proposition 8, there is a
sequence of the neural network {sm(x)}m∈{1,2}d satisfies:

(i): ∥sm(x)∥L∞((0,1)d) ≤ 1, ∥sm(x)∥W 1,∞((0,1)d) ≤ 8K and ∥sm(x)∥W 1,∞((0,1)d) ≤ 64K2 for
any m ∈ {1, 2}d.

(ii): {sm(x)}m∈{1,2}d is a partition of the unity [0, 1]d with supp sm(x) ∩ [0, 1]d = Ωm defined in
Definition 5.

For each sm, it is a σ2 neural network with the width 16N + 2d and depth 4L+ 5.

Due to (iv) in Lemma 10, there is a σ2 neural network ϕ6(x) with the width 4 and depth 1 such that

ϕ6(x, y) = xy, x, y ∈ R. (110)

Now we define
γ(x) =

∑
m∈{1,2}d

ϕ6(sm(x), γm(x)). (111)

Note that

R̃ :=∥f(x)− γ(x)∥W 2,∞((0,1)d) ≤
∑

m∈{1,2}d

∥sm(x) · f(x)− sm(x)γm(x)∥W 2,∞((0,1)d)

=
∑

m∈{1,2}d

∥sm(x) · f(x)− sm(x)γm(x)∥W 2,∞(Ωm) . (112)

where the last equality is due to supp sm(x) ∩ [0, 1]d = Ωm.

Then due to chain rule, for each m ∈ {1, 2}d, we have

∥sm(x) · f(x)− sm(x)γm(x)∥W 2,∞(Ωm)

≤∥sm(x)∥W 2,∞(Ωm) ∥f(x)− γm(x)∥L∞(Ωm) + 2 ∥sm(x)∥W 1,∞(Ωm) ∥f(x)− γm(x)∥W 1,∞(Ωm)

+ ∥sm(x)∥L∞(Ωm) ∥f(x)− γm(x)∥W 2,∞(Ωm) + ∥sm(x)∥W 1,∞(Ωm) ∥f(x)− γm(x)∥L∞(Ωm)

+ ∥sm(x)∥L∞(Ωm) ∥f(x)− γm(x)∥W 1,∞(Ωm) + ∥sm(x)∥L∞(Ωm) ∥f(x)− γm(x)∥L∞(Ωm)

≤91C10(n, d)N
−2(n−2)/dL−2(n−2)/d. (113)
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Hence
R̃ ≤ 2d+7C10(n, d)N

−2(n−2)/dL−2(n−2)/d.

At last, we finish the proof by estimating the network’s width and depth, implementing γ(x). From
Eq. (111), we know that γ(x) consists of the following subnetworks:

1. γm(x) with the width 28nd+1(N + d) log2(8N) and depth 11n2(L+ 2) log2(4L).

2. sm(x) with the width 16N + 2d and depth 4L+ 5.

3. ϕ6(x, y) with the width 4 and depth 1.

Therefore γ(x) is a neural network with the width 2d+6nd+1(N + d) log2(8N) and depth 15n2(L+
2) log2(4L).

Our method can easily extend to approximations measured by the norm of Wm,∞. The primary
difference in the proof lies in the need to establish a differential {sm(x)}{1,2}d , which can be
achieved by constructing architected sm(x) as piece-wise m-degree polynomial functions. By
extanding this approach, we can obtain Corollary 2 using our method.

7.4 Proof of Theorem 4

Proof. The Theorem 4 will be proved by contradiction. The idea of the proof is inspired by Ref. [28].

Claim 1. There exist ρ, C1, C2, C3, J0 > 0 and s, d ∈ N+ such that, for any f ∈ Fn,d, we have

inf
ϕ∈Φ̂

|ϕ− f |W 1,∞((0,1)d) ≤ C3L
−2(n−1)/d−ρN−2(n−1)/d−ρ. (114)

for all NL ≥ J0, where

Φ̂ := {ϕ : ReLU FNNs ϕ with the width ≤ C1N logN and depth ≤ C2L logL}.

The remaining question is to show Claim 1 is invalid.

Denote
DΦ̂ := {ψ : ψ = Diϕ, ϕ ∈ Φ̂, i = 1, . . . , d},

Due to Theorem 1, we obtain

VCDim(DΦ̂) ≤ C4N
2L2 log2 L log2N =: bu. (115)

Now we will use Claim 1 to estimate a lower bound

bl := ⌊(NL)
2
d+

ρ
2(n−1) ⌋d

of VCDim(DΦ̂). In other words, we will construct {ψβ(x) : ψβ(x) ∈ DΦ̂, β ∈ B} to scatter bl
points. B will be defined later.

First, fix i = 1, . . . , d, and there exists g̃ ∈ C∞ (0, 1)
d such that ∂g̃(0)

∂xi
= 1 and g̃(x) = 0 for

∥x∥2 ≥ 1/3. And we can find a constant C5 > 0 such that g := g̃/C5 ∈ Fn,d.

Denote M = ⌊(NL)
2
d+

ρ
2(n−1) ⌋. Divide [0, 1]d into Md non-overlapping sub-cubes {Qθ}θ as

follows:

Qθ :=

{
x = [x1, x2, · · · , xd]T ∈ [0, 1]d : xi ∈

[
θi − 1

M
,
θi
M

]
, i = 1, 2, · · · , d

}
,

for any index vector θ = [θ1, θ2, · · · , θd]T ∈ {1, 2, · · · ,M}d. Denote the center of Qθ by xθ for all
θ ∈ {1, 2, · · · ,M}d. Define

B :=
{
β : β is a map from {1, 2, · · · ,M}d to {−1, 1}

}
.
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For each β ∈ B, we define, for any x ∈ Rd,

hβ(x) :=
∑

θ∈{1,2,··· ,M}d

M−nβ(θ)gθ(x), where gθ(x) = g (M · (x− xθ)) .

Due to |suppg̃(x)| ≤ 2
3 and |Dαhβ(x)| ≤M−n+|α|∥g∥Wn,∞ ≤ 1, we obtain that

|Dαfβ(x)| ≤ 1

for any |α| ≤ n Therefore, fβ ∈ Fn,d. And it is easy to check {Dihβ = hβ : β ∈ B} can scatters bl
points since ∂g̃(0)

∂xi
= 1 and g̃(x) = 0 for ∥x∥2 ≥ 1/3.

Note that for any hβ ∈ Fn,d, there is a ϕβ ∈ Φ̂ such that C3(NL)
−2(n−1)

d − ρ
2 ≥ |Dihβ(xθ) −

Diϕβ(xθ)| for any Jβ ≤ NL due to Claim 1. Denote J1 = maxβ∈B{Jβ}. There is a constant
J2 such that M−n+1

C5
≥ C3(NL)

−2(n−1)
d −ρ for J2 ≤ NL. Define J := max{J1, J2}, then for any

J ≤ NL, we have

|Dihβ(xθ)| =
∣∣∣∣M−n+1 ∂g(xθ)

∂xi

∣∣∣∣ = M−n+1

C5
≥ C3(NL)

−2(n−1)
d −ρ ≥ |Dihβ(xθ)−Diϕβ(xθ)|.

(116)

In other words, for any β ∈ B and θ ∈ {1, 2, · · · ,M}d, Difβ (xθ) and Diϕβ (xθ) have the same
sign. Then {Diϕβ : β ∈ B} shatters

{
xθ : θ ∈ {1, 2, · · · ,M}d

}
since {Dihβ : β ∈ B} shatters{

xθ : θ ∈ {1, 2, · · · ,M}d
}

as discussed above. Hence,

VCDim ({ϕβ : β ∈ B}) ≥Md = bl, (117)

for N,L ∈ N with NL ≥ J .

By Eqs. (115,117), for any N,L ∈ N with NL ≥ J , we have bl ≤ VCDim ({ϕβ : β ∈ B}) ≤
VCDim(DΦ̂) ≤ bu, implying that

⌊(NL)
2
d+

ρ
2(n−1) ⌋d ≤ C4N

2L2 log2 L log2N (118)

which is a contradiction for sufficiently large N,L ∈ N. So we finish the proof of Theorem 4.

Based on the proof of Theorem 4, we can easily check that the estimation of VC-dimension of
DNN derivatives (Theorem 1) is nearly optimal and prove Corollary 3. Assume VCDim(DΦ̂) ≤
bu = O(N2−εL2−ε) in Eq. (118) for ε > 0, and bl must be larger than ⌊(NL) 2

d ⌋d according the
construction in the proof of Theorem 4 and Theorem 3. Hence we still obtain a contradiction in
Eq. (118), and the estimation in Theorem 1 is nearly optimal.

7.5 Proof of Theorem 5

7.5.1 Bounding generalization error by Rademacher complexity

Definition 13 (Rademacher complexity [3]). Given a sample set S = {z1, z2, . . . , zM} on a domain
Z , and a class F of real-valued functions defined on Z , the empirical Rademacher complexity of F
in S is defined as

RS(F) :=
1

M
EΣM

[
sup
f∈F

M∑
i=1

σif(zi)

]
,

where ΣM := {σ1, σ2, . . . , σM} are independent random variables drawn from the Rademacher
distribution, i.e., P(σi = +1) = P(σi = −1) = 1

2 for i = 1, 2, . . . ,M. For simplicity, if S =
{z1, z2, . . . , zM} is an independent random variable set with the uniform distribution, denote

RM (F) := ESRS(F).

The following lemma will be used to bounded generalization error by Rademacher complexities:
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Lemma 11 ([47], Proposition 4.11). Let F be a set of functions. Then

EX sup
u∈F

∣∣∣∣∣ 1M
M∑
i=1

u(xj)−Ex∼PΩu(x)

∣∣∣∣∣ ≤ 2RM (F),

where X := {x1, . . . , xM} is an independent random variable set with the uniform distribution.

Now we can show that generalization error can be bounded by Rademacher complexities of two
function sets.
Lemma 12. Let d,N,L,M ∈ N+, B,C1, C2 ∈ R+. For any f ∈ W 1,∞((0, 1)d) with
∥f∥W 1,∞((0,1)d) ≤ 1, set

Φ̃ := {ϕ : ϕ with the width ≤ C1N logN and depth ≤ C2L logL, ∥ϕ∥W 1,∞((0,1)d) ≤ B}

DΦ̃ := {ψ : ψ = Diϕ, i = 1, . . . , d}. (119)

We have
2 sup
θ,ϕ(x;θ)∈Φ̃

|E(RS(θ))−RD(θ)| ≤ 4(B + 1)(dRM (DΦ̃) + RM (Φ̃)),

where E is expected responding to X , and X := {x1, . . . ,xM} is an independent random variables
set uniformly distributed on (0, 1)d.

Proof. For any ϕ(x;θ) ∈ Φ̃, we have

|E(RS(θ))−RD(θ)|

=

d∑
j=1

(
E

1

M

M∑
i=1

∣∣∣∣∂(f(xi)− ϕ(xi;θ))

∂xj

∣∣∣∣2 − ∫
(0,1)d

∣∣∣∣∂(f(x)− ϕ(x;θ))

∂xj

∣∣∣∣2 dx

)

+E
1

M

M∑
i=1

|(f(xi)− ϕ(xi;θ))|2 −
∫
(0,1)d

|(f(x)− ϕ(x;θ))|2 dx

≤(B + 1)

d∑
j=1

(
E

∣∣∣∣∣ 1M
M∑
i=1

∂(f(xi)− ϕ(xi;θ))

∂xj
−
∫
(0,1)d

∂(f(x)− ϕ(x;θ))

∂xj
dx

∣∣∣∣∣
)

+ (B + 1)E

∣∣∣∣∣ 1M
M∑
i=1

(f(xi)− ϕ(xi;θ))−
∫
(0,1)d

(f(x)− ϕ(x;θ)) dx

∣∣∣∣∣
≤2(B + 1)(dRM (DΦ̃) + RM (Φ̃)) (120)

where the last inequality is due to Lemma 12.

7.5.2 Bounding the Rademacher complexity and the proof of Theorem 5

In this subsection, we aim to estimate the Rademacher complexity using the covering number. We
then estimate the covering number using the pseudo-dimension.
Definition 14 (covering number [3]). Let (V, ∥ · ∥) be a normed space, and Θ ∈ V . {V1, V2, . . . , Vn}
is an ε-covering of Θ if Θ ⊂ ∪n

i=1Bε,∥·∥(Vi). The covering number N (ε,Θ, ∥ · ∥) is defined as

N (ε,Θ, ∥ · ∥) := min{n : ∃ε-covering over Θ of size n}.

Definition 15 (Uniform covering number [3]). Suppose the F is a class of functions from F to R.
Given n samples Zn = (z1, . . . , zn) ∈ Xn, define

F|Zn
= {(u(z1), . . . , u(zn)) : u ∈ F}.

The uniform covering number N (ε,F , n) is defined as

N (ε,F , n) = max
Zn∈Xn

N (ε,F|Zn
, ∥ · ∥∞) ,

where N (ε,F|Zn
, ∥ · ∥∞) denotes the ε-covering number of F|Zn

w.r.t the L∞-norm.
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Then we use a lemma to estimate the Rademacher complexity using the covering number.
Lemma 13 (Dudley’s theorem [3]). Let F be a function class such that supf∈F ∥f∥∞ ≤ B. Then
the Rademacher complexity Rn(F) satisfies that

Rn(F) ≤ inf
0≤δ≤B

{
4δ +

12√
n

∫ B

δ

√
log 2N (ε,F , n) dε

}

To bound the Rademacher complexity, we employ Lemma 13, which bounds it by the uniform
covering number. We estimate the uniform covering number by the pseudo-dimension based on the
following lemma.
Lemma 14 ([3]). Let F be a class of functions from X to [−B,B]. For any ε > 0, we have

N (ε,F , n) ≤
(

2enB

εPdim(F)

)Pdim(F)

for n ≥ Pdim(F).

The remaining problem is to bound Pdim(Φ̃) and Pdim(DΦ̃). Based on [4], Pdim(Φ̃) =

O(L2N2 log2 L log2N). For the Pdim(DΦ̃), we can estimate it by Theorem 2.

Now we can estimate generalization error based on Lemma 12.

Proof of Theorem 5. Let J = max{Pdim(DΦ̃),Pdim(Φ̃)}. Due to Lemma 13, 14 and Theorem 2,
for any M ≥ J , we have

RM (DΦ̃) ≤4δ +
12√
M

∫ B

δ

√
log 2N (ε,DΦ̃,M) dε

≤4δ +
12√
M

∫ B

δ

√√√√√log 2

(
2eMB

εPdim(DΦ̃)

)Pdim(DΦ̃)

dε

≤4δ +
12B√
M

+ 12

(
Pdim(DΦ̃)

M

) 1
2 ∫ B

δ

√√√√log

(
2eMB

εPdim(DΦ̃)

)
dε. (121)

By the direct calculation for the integral, we have∫ B

δ

√√√√log

(
2eMB

εPdim(DΦ̃)

)
dε ≤ B

√√√√log

(
2eMB

δPdim(DΦ̃)

)
.

Then choosing δ = B
(

Pdim(DΦ̃)
M

) 1
2 ≤ B, we have

RM (DΦ̃) ≤ 28B

(
Pdim(DΦ̃)

M

) 1
2

√√√√log

(
2eM

Pdim(DΦ̃)

)
. (122)

Therefore, due to Theorem 2, there is a constant C4 independent with L,N,M such as

RM (DΦ̃) ≤ C4
NL(log2 L log2N)

1
2

√
M

logM. (123)

RM (Φ̃) can be estimate in the similar way. Due to Lemma 12, we have that there is a constant
C5 = C5(B, d,C1, C2) such that

ERS(θD)−RD(θD) +ERD(θS)−ERS(θS) ≤ C5
NL(log2 L log2N)

1
2

√
M

logM. (124)
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