
A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry

Martin Lindström 1 Borja Rodrı́guez-Gálvez 1 Ragnar Thobaben 1 Mikael Skoglund 1

Editors: S. Vadgama, E.J. Bekkers, A. Pouplin, S.O. Kaba, H. Lawrence, R. Walters, T. Emerson, H. Kvinge, J.M. Tomczak, S. Jegelka

Abstract
Hyperspherical Prototypical Learning (HPL) is
a supervised approach to representation learning
that designs class prototypes on the unit hyper-
sphere. The prototypes bias the representations to
class separation in a scale invariant and known ge-
ometry. Previous approaches to HPL have either
of the following shortcomings: (i) they follow
an unprincipled optimisation procedure; or (ii)
they are theoretically sound, but are constrained
to only one possible latent dimension. In this pa-
per, we address both shortcomings. To address
(i), we present a principled optimisation proce-
dure whose solution we show is optimal. To ad-
dress (ii), we construct well-separated prototypes
in a wide range of dimensions using linear block
codes. Additionally, we give a full characterisa-
tion of the optimal prototype placement in terms
of achievable and converse bounds, showing that
our proposed methods are near-optimal.

GitHub: martinlindstrom/coding theoretic hpl

1. Introduction
Representation learning addresses the problem of learning
a mapping from a high-dimensional input space to a
lower-dimensional representation space subject to suitable
inductive biases. These biases are imposed on learning
algorithms as additional constraints on, for example, the
network architecture or the optimisation algorithm (Goyal
& Bengio, 2022). Geometry-based inductive biases have
long been popular in representation learning. For instance,
imposing unit norm constraints on the representations has

1Division of Information Science and Engineering, KTH Royal
Institute of Technology, Stockholm, Sweden. Correspondence
to: Martin Lindström <martin12@kth.se>, Ragnar Thobaben
<ragnart@kth.se>.

Proceedings of the Geometry-grounded Representation Learning
and Generative Modeling at the 41 st International Conference
on Machine Learning, Vienna, Austria. PMLR Vol Number 251,
2024. Copyright 2024 by the author(s).

been employed in different unsupervised learning methods,
either through explicit normalisation or norm-invariant loss
functions in variational autoencoders (Davidson et al., 2018;
Xu & Durrett, 2018), or in self-supervised learning (Wang &
Isola, 2020; Wang et al., 2017; Wu et al., 2018; Chen et al.,
2020; Bachman et al., 2019; Caron et al., 2020). Imposing
representation separation is another common inductive bias
used, for example, in contrastive learning (Wang & Isola,
2020; Rodrı́guez-Gálvez et al., 2023; Chen et al., 2020; Tian
et al., 2020) and supervised representation learning (Khosla
et al., 2020; Guerriero et al., 2018; Hasnat et al., 2017).

In the supervised learning setting, one way to impose repre-
sentation separation is through prototypical learning (Snell
et al., 2017; Jetley et al., 2015). Each class is assigned a
prototype, and these are specified a priori to maximise their
separation and are held fixed during training, where the
algorithm attempts to map input samples to their class pro-
totypes. Therefore, the representations are biased towards
being separated based on their class. Recently, Hyper-
spherical Prototypical Learning (HPL) (Mettes et al., 2019;
Kasarla et al., 2022) started imposing unit norm constraints
to prototypical learning. This places the representations
on the hypersphere and thus enhances representation
separation bias in a scale invariant and known geometry.

To illustrate the idea behind HPL, consider the naı̈ve
approach of selecting prototypes as the familiar one-hot en-
coding that, for K classes, picks the canonical basis vectors
{e1, . . . , eK} in dimension K as prototypes. As illustrated
in Figure 1 (left), this results in a suboptimal class separa-
tion on the hypersphere. Instead, HPL attempts at placing
K maximally separated prototypes on the n-dimensional hy-
persphere Sn−1, hopefully with n < K. This combinatorial
and non-convex problem is well-studied (Conway & Sloane,
1999), but even on S2 the problem is unsolved for general K,
and optimal solutions are only known for K = 1, . . . , 14,
and 24 (Musin & Tarasov, 2015). Despite this, approximate
solutions have been proposed. Mettes et al. (2019) propose
a relaxation of the problem that however only achieves sub-
optimal separation. Kasarla et al. (2022), on the other hand,
propose a closed-form solution that we show to be optimal;
however, it is only applicable in dimension n = K − 1.

1

https://github.com/martinlindstrom/coding_theoretic_hpl

A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry

x

− 1
√3

1
√3 y− 1

√3

1
√3

z

− 1
√3

1
√3

e3

e2

e1

x

− 1
√3

1
√3 y− 1

√3

1
√3

z

− 1
√3

1
√3

(0,0,0)

(1,1,1)

x

− 1
√3

1
√3 y− 1

√3

1
√3

z

− 1
√3

1
√3

(0,0,0)

(0,1,1)

(1,0,1)

(1,1,0)

Figure 1. Prototypes on S2. The left image shows the naı̈ve one-hot encoding approach, which has cosine similarity 0. One can do much
better with binary code-based prototypes. In the centre image, by reducing to two prototypes, the optimal distance with cosine similarity
−1 is achieved. The right image shows how one can fit four prototypes with a better separation, arriving at a cosine similarity of −1/3.

In this paper, we propose two new methods for designing
hypershperical prototypes and present sharp bounds on the
optimal separation that can be achieved by placing an arbi-
trary number of prototypes K ≤ 2n on a hypershpere of di-
mension n. Our approach rests on theory and concepts from
error correcting codes, and our contributions are threefold:

(i) We provide a new design approach for hyperspheri-
cal prototypes that maps binary linear codes defined
over the n-dimensional Hamming space onto the n-
dimensional hypersphere Sn−1. Our approach pro-
vides guarantees on the class separation by design, at
the same time that it enables a more flexible trade-off
between separation and the dimension n for a given
number of classes K.

(ii) We derive a converse bound on the guaranteed min-
imum prototype separation as well as an achievable
bound that certifies that well-separated code-based pro-
totypes exist. These bounds imply that for a large num-
ber of classes K and in high dimensions n, the worst-
case cosine similarity converges to zero. The bounds
also show that our code-based prototypes closely ap-
proach optimal separation for n ≈ K/2.

(iii) Finally, we provide alternative optimization-based hy-
perspherical prototypes which achieve the converse
bound through a convex relaxation. These improve on
the prototypes obtained by Mettes et al. (2019), which
do not achieve the converse bound.

The paper is organised as follows. In Section 2, we motivate
the connection between binary codes and hyperspherical
prototypes and give a primer on the theory of error correct-
ing codes. In Section 3, we apply this theory in order to give
both coding-theoretic prototype constructions and bounds
thereon. Also in Section 3, we provide a novel optimisation-
based prototype scheme. The performance of the proposed
schemes is evaluated and compared to the state of the art in
HPL in Section 4, and Section 5 concludes the paper.

2. Background
We start with a formal problem formulation for designing a
codebook of hyperspherical prototypes in the HPL setting.
Then, we connect binary error correcting codes defined
in the Hamming space to hyperspherical prototypes. After
that, we provide a brief overview of fundamental concepts in
coding theory that are used in this paper to derive code-based
hyperspherical prototypes with good separation properties.
The interested reader is encouraged to consult MacWilliams
& Sloane (1977) for a more detailed treatment.

2.1. Problem Formulation

We consider the HPL setting with K classes and n dimen-
sions; that is, we are interested in placing K prototypes
c1, . . . , cK on the n-dimensional unit hypersphere Sn−1,
where the dimension n is a hyperparameter. Our objective
is maxmising the Euclidean distance between every pair of
prototypes ci, cj ∈ Sn−1 (i ̸= j). Clearly, the Euclidean
distance dE(ci, cj) is bounded in the range [0, 2] and satis-
fies that ∥ci − cj∥2 = 2 − 2⟨ci, cj⟩ for all ci, cj ∈ Sn−1.
Hence, maximising the Euclidean distance is equivalent
to minimising the cosine similarity ⟨ci, cj⟩. In turn, this
is equivalent to maximising the angle α between ci and
cj since α = arccos ⟨ci, cj⟩. Therefore, we will use the
cosine similarity as a notion of separation throughout this
paper. The objective in HPL is then designing a codebook
C := {ci ∈ Sn−1 : i = 1, . . . ,K} of K well-separated
hyperspherical prototypes, which can be summarized in the
following optimisation problem:

min
C

max
i ̸=j

⟨ci, cj⟩. (P)

Unfortunately, this problem is both non-convex due to the
unit norm constraint, and combinatorial due to the search
of the worst pair of prototypes ci, cj (i ̸= j), requiring
tractable relaxations that yield approximate solutions.

2

A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry

2.2. Connecting Codes to Protypes

The approach in this paper leverages coding theory to de-
sign n-dimensional binary vectors (that is, members of the
n-dimensional Hamming space), which are mapped onto
the n-dimensional hypersphere Sn−1, thereby creating pro-
totypes with good separation. To provide some intuition
as to how error correcting codes relate to placing proto-
types that are maximally spaced apart, consider the mapping
π : {0, 1}n → Sn−1 that maps n-dimensional binary vec-
tors b from the n-dimensional Hamming space to points c
on the hypersphere. More precisely, the mapping is defined
as

c = π(b) :=
2(b− 1/2)√

n
(1)

and enforces that c(ℓ) ∈ {−1/
√
n,+1/

√
n} and ∥c∥2 = 1.

This approach allows us to place 2n points on the unit hy-
persphere Sn−1 with a cosine similarity of at most ⟨c, c′⟩ ≤
1− 2/n for every pair c = π(b) and c′ = π(b′) with b ̸= b′.
For K < 2n, we can improve the separation guarantees by
carefully selecting the K binary vectors placed on the hyper-
sphere via the mapping π. Error correcting codes provide a
systematic way to achieve this, and the concept is illustrated
for n = 3 in Figure 1.

As a baseline, consider one-hot encoding (Figure 1, left),
which provides K = 3 orthogonal prototypes. Using care-
fully selected corners of the unit cube and the mapping π,
we can substantially improve on one-hot encoding. Reduc-
ing to K = 2 prototypes (Figure 1, centre), the unit cube
corners corresponding to b1 = (0, 0, 0) and b2 = (1, 1, 1)
are diametrically opposed with a cosine similarity of −1,
which is optimal. From a coding theory perspective, this
corresponds to a repetition code with Hamming distance
dH(b1, b2) = 3 between codewords; that is, the codewords
differ in 3 bits. Increasing to K = 4 prototypes (Figure 1,
right), the unit cube corners corresponding to b1 = (0, 0, 0),
b2 = (0, 1, 1), b3 = (1, 0, 1), and b4 = (1, 1, 0) have
a mutual cosine similarity of −1/3, which is an improve-
ment over one-hot encoding (Figure 1, left) while increasing
the number of classes at the same time. Again, the set
B = {b1, b2, b3, b4} constitutes a binary linear code with
Hamming distance dH(bi, bj) = 2 between its codewords.

This example demonstrates that due to the definition of the
mapping function π, there exists a relation between the
separation of vectors c = π(b) and c′ = π(b′) on the unit
hypersphere and the Hamming distance dH(b, b

′) of the
binary vectors b and b′ in the sense that a large Hamming
distance implies a large separation. We will make this result
explicit in Section 3.1. Error correcting codes, designed
to have a large Hamming distance dH(b, b

′) between every
pair of codewords b and b′, are hence a well suited tool
for designing hyperspherical prototypes, and coding theory
provides us with useful bounds on the achievable separation.

2.3. A Primer on Coding Theory

The systematic study of error correcting codes dates back
to the seminal work of Hamming (1950). By introducing
redundancy in a structured way, error correcting codes allow
for error detection and correction in messages and data,
and are essential for guaranteeing the reliability of today’s
digital communication, computation, and storage systems.
Linear codes defined over the Galois field GF(q), where
q = pm and p is a prime, are of special interest as they offer
a structure that can be used for efficient encoding, decoding,
and analysis of the distance properties of the code.

In this paper, we mainly restrict ourselves to binary linear
block codes (that is, q = p = 2), and only briefly discuss
extensions to q-ary codes with q > 2. A binary block
code with parameters [n, k] is specified by a codebook B
of 2k binary codewords of length n and a bijective encoder
mapping that maps the set of all length-k binary vectors into
the code B. This adds n− k bits of redundancy, which we
can use to detect and correct errors in the codeword. The
rate of the code is defined as R = k/n, where a low rate
corresponds to a high redundancy. The error detection and
correction capabilities rely on the separation of codeword
pairs bi, bj ∈ B in Hamming distance, namely

dH(bi, bj) :=

n∑
ℓ=1

I{bi(ℓ) ̸= bj(ℓ)}.

A binary code with minimum Hamming distance

dmin := min
bi,bj∈B,i̸=j

dH(bi, bj)

can detect dmin − 1 errors and correct ⌊(dmin−1)/2⌋ errors.

In this paper, we fix k = ⌈log2(K)⌉ given K classes, sug-
gesting that we are in the low-rate or high-redundancy
regime if n is of the order of K. Noting that low-rate
codes offer large separation in terms of minimum Ham-
ming distance, we can expect good separation by adopting
a code-based approach. To this end, a fundamental result in
coding theory is that good codes exist. This is formalised by
the well-known Gilbert-Varshamov bound (MacWilliams &
Sloane, 1977, Chapter 1, Theorem 12).

Lemma 2.1 (Gilbert-Varshamov Bound). There exists an
[n, k] code with minimum distance at least dmin, provided
that

2n−k >

dmin−2∑
i=0

(
n− 1

i

)
. (2)

The Gilbert-Varshamov bound for the largest dmin gives a
lower bound on dmin. However, the bound only guarantees
that good codes exist, but not how to find them. Luckily, as
we will show in Section 3, several linear binary codes with
better minimum distance exist.

3

A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry

Remark 2.2. To derive some of our results, the bound in (2)
needs to be evaluated carefully in order to avoid overflow
problems. Notice that the bound can be rewritten as

2−k >

dmin−2∑
i=0

(
n− 1

i

)(
1

2

)i(
1

2

)n−i

= Fbin

(
dmin − 2;n− 1, 1

2

)
,

where Fbin(· ;n−1, 1/2) denotes the cumulative distribution
function of a binomial distribution with n−1 trials with suc-
cess probability 1/2. This is implemented in a numerically
stable manner in many computational libraries.

3. Hyperspherical Prototype Design
In this section, we present our main contributions towards
solving the optimization problem (P). As mentioned ear-
lier, this problem is both non-convex due to the unit norm
constraint, and combinatorial due to the search of the worst
pair of prototypes ci and cj with i ̸= j. Our contributions
are focused on relaxations to the problem (P) and bounds
on the optimal solution. Section 3.1 formalises the coding-
theoretic approach introduced with the example in Figure 1;
Section 3.2 uses coding-theoretic tools to bound the optimal
solution to (P); and Section 3.4 presents a relaxation to (P)
which achieves the bound on the optimal solution.

3.1. Coding-Theoretic Prototypes

We begin by formalising the intuition provided in Sec-
tion 2.2, namely that a binary [n, k] code with the codebook
B and a large minimum distance dmin gives good proto-
types. Firstly, notice that if we want K prototypes, then we
need |B| = 2k ≥ K. Additionally, recall that the mapping
c = π(b) defined in (1) produces a unit-norm vector for
any binary vector b. Then, we can guarantee that binary
code-based constructions guarantee good separation.
Proposition 3.1. Assume that B is the codebook of a binary
[n, k] code with minimum distance dmin. Then, for every
pair bi, bj ∈ B with i ̸= j, the cosine similarity between
ci = π(bi) and cj = π(bj) is upper bounded by

⟨ci, cj⟩ = 1− 2dH(bi, bj)

n
≤ 1− 2dmin

n
.

Proof. To show the bound on the cosine similarity, notice
that two binary vectors differing in dH(bi, bj) positions
obey that

∑n
ℓ=1(bi(ℓ)− bj(ℓ))

2 = dH(bi, bj). Expanding
∥ci − cj∥2 in two ways gives

∥ci − cj∥2 = 2− 2⟨ci, cj⟩

=

n∑
ℓ=1

(
2(bi(ℓ)− 1/2)− 2(bj(ℓ)− 1/2)√

n

)2

.

Rearranging this and recalling that dH(bi, bj) ≥ dmin yields
the desired result.

Since good codes exist (see Lemma 2.1), we provide two
examples of binary codes whose minimum distance is close
to dmin = n/2 in dimensions where n < K. That is, there
exist no worse than orthogonal prototypes with zero worst-
case cosine similarity in dimensions n ≈ K/2. Additionally,
these codes are easy to implement in Python, and hence
are easily integrable in modern machine learning software.
The codes are the Bose–Chaudhuri–Hocquenghem (BCH)
and Reed–Muller (RM) codes. Other code families like
low-density parity-check (LDPC) codes and sparse graph
codes are not competitive in terms of minimum distance
guarantees since their minimum distance is usually lower
than the one predicted by the Gilbert-Varshamov bound,
see e.g., Mitchell et al. (2015, Figure 9). These popular
code families are hence not further considered in this paper.
Polar codes, on the other hand, belong to the same code
family as RM codes, see e.g., Abbe et al. (2021, Section
IV-D), and are hence implicitly covered.

Prototypes from BCH Codes BCH codes are known
to have good minimum distance in low dimensions
(MacWilliams & Sloane, 1977, pp. 258), and although
the exact minimum distance is not known in general (Li,
2017), we find empirically that it approaches dmin = n/2 in
dimensions n < K. They are implemented in the Galois
Python library (Hostetter, 2020, v0.3.8).

Prototypes from RM Codes The distance properties of
RM codes are easier to characterise. Their construction is
simple and gives straight-forward distance guarantees (Abbe
et al., 2021). In fact, they provide no worse than orthogonal
prototypes in dimension n ≈ K/2.

Lemma 3.2 (Separation Guarantees for RM Codes). Let
K̃ be the smallest power of 2 such that K̃ ≥ K. Then,
RM codes in dimension n ≥ K̃/2 have minimum distance
dmin = n/2 and guarantee that ⟨ci, cj⟩ ≤ 0.

Proof. By construction, RM codes are [n, k] codes with n =
2m, k =

∑r
i=0

(
m
i

)
, and minimum distance dmin = 2m−r.

Hence, we have cosine similarity ⟨ci, cj⟩ ≤ 0 if r = 1,
namely if 1 +m = 1 + log2 n = k ≥ log2 K̃ ≥ log2 K or
if n ≥ K̃/2 ≥ K/2.

Remark 3.3. It is important to note that the cosine similarity
guarantee ⟨ci, cj⟩ ≤ 0 is not equivalent to pairwaise orthog-
onality. However, every codeword is locally orthogonal to
all its minimum-distance neighbours and has no worse than
orthogonal separation globally. We investigate the global
cosine similarity distribution for all prototype generation
schemes in Figure 3.

4

A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry

Realisable Dimensions with Codes As has been shown,
binary codes provide a flexible way to derive prototypes.
However, there is a restriction on the dimensions which are
realisable: RM codes are defined for n = 2m, and BCH
codes are defined for n = 2m − 1 for every m ∈ N+.
Moreover, additional dimensions are realisable: codes can
be punctured by removing dimensions, thereby creating a
lower-dimensional code, and they can be extended by adding
more dimensions (MacWilliams & Sloane, 1977, Chapter
1, §9). In general, puncturing a code by 1 bit will reduce
its minimum distance by 1. Similarly, extending a code can
(but is not guaranteed to) increase the minimum distance.
Therefore, RM and BCH codes can have good distance
properties around dimensions n = 2m and n = 2m − 1,
respectively, but not for general n. Compared to Kasarla
et al. (2022), which is only valid in n = K − 1, coding-
based prototypes hence improve flexibility by guaranteeing
good separation for a larger set of admissible dimensions.

3.2. Coding-Theoretic Bounds

In this section, we provide both upper and lower bounds the
worst-case cosine similarity of hyperspherical prototypes in
(P). Our achievable (upper) bound is based on Lemma 2.1,
which states that good binary codes exist. Our converse
(lower) bound is based on results from spherical coding
theory, which shows that the minimum separation cannot be
improved beyond near orthogonality. We begin by recalling
the Rankin bound from spherical coding theory (Ericson &
Zinoviev, 2001, Theorem 1.4.1).

Lemma 3.4 (Rankin Bound). Any set of K hyperspherical
prototypes C satisfies that

max
C

min
i̸=j

∥ci − cj∥2 ≤ 2K

K − 1
.

Now, we may state the achievable and converse bounds.

Theorem 3.5. There exists a set of hyperspherical proto-
types C with cosine similarity at most (separation at least)

max
i ̸=j

⟨ci, cj⟩ ≤ 1− 2dGV

n
, (3)

where dGV denotes the largest solution to the Gilbert-
Varshamov bound in (2). Conversely, no set of prototypes
exists with maximum cosine similarity smaller (better sepa-
ration) than

max
i ̸=j

⟨ci, cj⟩ ≥
−1

K − 1
. (4)

Proof. The achievable bound (3) follows directly from com-
bining Proposition 3.1 and Lemma 2.1. For the converse
bound, recalling that ∥ci − cj∥2 = 2− 2⟨ci, cj⟩, applying
Lemma 3.4, and simplifying yields (4).

The bounds are numerically evaluated in Section 4. A num-
ber of remarks are in order. In many practical settings, the
converse bound −1/(K−1) is close to 0. It is therefore impos-
sible to achieve a maximum cosine similarity that is notably
better than one-hot encoding. However, as Lemma 3.2
shows, it is possible to have no worse than orthogonal pro-
totypes in low dimension n = K̃/2. Moreover, as we will
show with numerical examples, it is possible to have approx-
imately orthogonal prototypes in much lower dimension
than n = K. Finally, we note that the upper bound can be
tightened for n ≥ K by recalling one-hot encoding. The
bounds are therefore sharp, meaning that orthogonal proto-
types are achievable and near-optimal for a large number of
classes K. Finally, it is interesting to note that the mapping
proposed by Kasarla et al. (2022) is optimal since it achieves
the converse bound.

3.3. Beyond Binary Codes

In this section, we briefly discuss the generalisation of our
results to the case of q-ary codes and motivate the choice of
restricting our attention to binary codes.

Assume a construction that combines an [nq, kq] code U
over the Galois field GF(q), with minimum Hamming dis-
tance d

(U)
H,min, with a mapping π

(l)
q that maps q-ary sym-

bols u ∈ {0, . . . , q − 1} to points c̃ = π
(l)
q (u) on the

l-dimensional unit hypersphere Sl−1, and with pairwise Eu-

clidean distance of at least d
(π(l)

q)

E,min. Then, an nq-dimensional
q-ary vector u can be mapped to the unit hypersphere Sn−1

in n = nq · l dimensions by realising the mapping

c = πq(u) :=
1

√
nq

(
π(l)
q (u(1)), . . . , π(l)

q (u(nq))
)
. (5)

Then, similarly to the binary case, by a proper choice of
the code parameters, hyperspherical prototypes with good
separation guarantees can be obtained.

Proposition 3.6. Assume U is the codebook of a q-ary
[kq, nq] code with a minimum Hamming distance d

(U)
H,min

that is mapped into the unit hyperspehere Sn−1 in n = nq · l
dimensions with the mapping πq from (5). Furthermore, let

d
(π(l)

q)

E,min be the minimum Euclidean distance achieved by the

component mapping π
(l)
q . Then, for every codeword pair

ui,uj ∈ U with i ̸= j, the cosine similarity between ci and
cj is upper bounded by

⟨ci, cj⟩ ≤ 1−
d
(U)
H,min

nq

[
d
(π(l)

q)

E,min

]2
2

.

Proof. The proof follows along the same lines as the proof
of Proposition 3.1.

5

A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry

Assume we want to minimise the upper bound on the co-
sine similarity. We then want to find a q-ary code with as
large minimum distance as possible. The Singleton bound
(MacWilliams & Sloane, 1977, Chapter 1, Theorem 11)
states that every [nq, kq] linear code has minimum distance
dmin ≤ nq−kq+1. Reed-Solomon (RS) codes with param-
eters logq K ≤ kq ≤ nq ≤ q achieve the Singleton bound
with equality, and the only binary code achieving the Sin-
gleton bound is the repetition code (MacWilliams & Sloane,
1977, Chapter 11) (see Figure 1, middle and Section 2.2).

Consider now combining RS codes with the Kasarla et al.

(2022) mapping, which has
[
d
(π(l)

q)

E,min

]2
= 2q/(q−1). Then,

the cosine similarity for this prototype construction is guar-
anteed to be upper bounded by

⟨ci, cj⟩ ≤ 1− q

q − 1
· nq − kq + 1

nq
.

From this result, it follows that the cosine similarity of
this construction becomes strictly negative if, and only if
kq < nq/q + 1 ≤ 2, where the second inequality comes
from the requirement nq ≤ q on the length of RS codes.
That is, RS codes only guarantee a strictly negative cosine
similarity for kq = 1, given that q ≥ K. However, in that
case, the mapping by Kasarla et al. (2022) already guar-
antees the optimal separation, and there is no benefit by
further extending the dimensions beyond nq = 1 with an ad-
ditional code. For kq = 2, nq = q, and under the condition
q2 ≥ K, we can guarantee a cosine similarity ⟨ci, cj⟩ ≤ 0
for n = (q − 1) · q dimensions. In the favourable case
where q = 2m and K = 22m, the construction achieves
⟨ci, cj⟩ ≤ 0 for n = 22m − 2m = K −

√
K, which for

m > 1 is larger than n=22m−1=K/2. n=K/2 is however
obtained by the RM-code-based construction as demon-
strated in Lemma 3.2. Hence, there is no benefit employing
RS codes in conjunction with the mapping by Kasarla et al.
(2022) compared to the RM-code-based construction.

3.4. Optimisation-Based Prototypes

In this section, we compare numerical approaches to approx-
imately solve the non-convex and combinatorial problem
(P). Throughout, we employ projected gradient descent to
deal with the non-convexity introduced by the unit norm
constraint, and compare different relaxations to the combi-
natorial part of the problem.

Minimising the Average Worst-Case Similarity Mettes
et al. (2019) note that solving the combinatorial minimi-
sation in (P) is numerically inefficient. Instead, they min-
imise the average maximum cosine similarity per proto-
type. More specifically, they define the matrix of prototypes
C := [c1, . . . , cK] ∈ Rn×K describing the codebook C

and propose the problem

min
C

1

K

K∑
i=1

max
j

Mi,j ,

s.t. M = CTC − 2I,

∥ci∥ = 1,

(PAVG)

where Mi,j denotes the (i, j)-th element of the matrix M
and I denotes the identity matrix. Since the diagonal el-
ements of CTC are always 1, subtracting twice the iden-
tity matrix avoids selecting these. The improvement over
the original problem (P) is that multiple prototypes are up-
dated at each gradient step, which improves the convergence
speed. However, no proof of convergence or optimality is
presented.

Log-Sum-Exp Relaxation We propose a convex relax-
ation to the combinatorial problem, which we show numeri-
cally that it closely approximates the converse bound in The-
orem 3.5. Specifically, we propose to use the log-sum-exp
approximation of the maximum. It is folklore knowledge
that for x ∈ Rn we have

max
i

xi ≤
1

t
log

(
n∑

i=1

exp(txi)

)
≤ max

i
xi +

log n

t
,

for any temperature t > 0. Moreover, the function is con-
vex. For a large temperature t, this problem approaches the
original problem (P). By carefully choosing a scheduler
for the temperature, we are able to balance the need to up-
date multiple prototypes, and to approximate the original
problem. Hence, we propose the problem

min
C

1

t
log
∑
i ̸=j

exp(t⟨ci, cj⟩), (PLSE)

which can be rewritten as a sum over the upper (or lower)
triangular part of exp(tCTC), excluding the diagonal.

3.5. Computational Complexity

In this section, we comment on the computational complex-
ity of the prototype generation schemes in order to give a
complete characterisation of the methods. We note however
that the computational complexity of generating prototypes
is negligible in comparison to network training.

Optimisation-Based Prototypes The optimisation-based
prototypes from (PLSE) and (PAVG) both require O(nK2)
operations per gradient step, since all the K2 inner products
⟨ci, cj⟩ of n-dimensional vectors need to be calculated. In
practice, the wall-clock time spent on these calculations is
small: Even on a laptop, the computations take on the order
of seconds even for K = 1000 and n ≈ K.

6

A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry

Coding-Theoretic Prototypes Very efficient implemen-
tations of error correcting codes exist: They are imple-
mented and run in real time on billions of light-weight
wireless devices. Since the codebooks are fixed, they need
only be computed once, and can later be re-used across
runs. For BCH codes, tables of their so called genera-
tor polynomials are available, and with those, all the K
codewords can be enumerated quickly with a complex-
ity of O(nK log(K)) operations. As an example, the
generator polynomials of BCH codes are tabulated up to
n = 210 − 1 = 1023 in Lin & Costello (2004, Appendix
C), and up to n = 216 − 1 = 65 535 in the MATLAB func-
tion bchgenpoly (The MathWorks Inc., 2024). For RM
codes, due to their simple structure, it is fast to generate the
entire codebook, again with a complexity of O(nK log(K))
operations. This is done in fractions of a second even for
K = 1000 and n ≈ K on a laptop.

Kasarla et al. (2022) Prototypes The prototypes from
Kasarla et al. (2022) also take less than a second to generate
on a laptop. However, their implementation is recursive, and
therefore requires increasing the recursion limit for large
K. Similar to the coding-theoretic prototypes, they can be
pre-computed and re-used across runs.

4. Experiments
In this section, we evaluate the separation in terms of maxi-
mum cosine similarity for the considered prototype genera-
tion schemes and present numerical results on CIFAR-100
(Krizhevsky, 2009). We also present supplementary results
on MNIST (LeCun et al., 1998) in Appendix C. We empha-
sise that our aim with these experiments is to investigate the
relation between prototype separation and performance, and
not necessarily to find the best performing realisations of
the algorithms.

4.1. Experimental Setup

For optimisation-based prototypes, we follow Mettes et al.
(2019) and use stochastic gradient descent (SGD) with learn-
ing rate 0.1 and momentum 0.9 over 1 000 epochs. For the
log-sum-exp prototypes, we scale the temperature linearly
with epochs from 1 to K. For CIFAR-100, we use a ResNet-
34 backbone (He et al., 2016) as implemented by Kasarla
et al. (2022), and we also use the same hyperparameters
(SGD with a cosine annealing learning rate scheduler, learn-
ing rate 0.1, momentum 0.9, weight decay 5 × 10−4, and
batch size 512 over 200 epochs), with standard data aug-
mentation schemes (random 32 × 32 crops with padding
4, random horizontal flips with probability 1/2, and ran-
dom rotations with up to 15◦). We use cross-entropy loss
on the cosine similarities CTz between the prototypes C
and the output z from the ResNet-34 backbone. At test

101 102

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
ax

i6=
j
〈c

i,
c j
〉

BCH Codes
Log-sum-exp (PLSE)

Mettes et al. (2019)
RM Codes
Kasarla et al. (2022)
Bounds

Figure 2. Maximum pairwise cosine similarity of K = 100 pro-
totypes in various latent space dimensions (logarithmic scale).
Coding-theoretic approaches provide additional flexibility over the
Kasarla et al. (2022) mapping. The optimisation-based (PLSE) pro-
totypes achieve slightly better separation than the (PAVG) scheme.
All schemes (except for RM codes with n = 32) fall within the
achievable and converse bounds from Theorem 3.5. For large n,
the BCH, RM, and (PAVG) prototypes yield no worse than othog-
onal prototypes. The (PLSE) and Kasarla et al. (2022) prototypes
achieve the converse bound and perform therefore slightly better.

time, classification is done via nearest-neighbour decoding,
or equivalently, maximum cosine similarity decoding, by
choosing the class of the nearest prototype. All our results
are averaged over 5 runs, and we use a randomised valida-
tion set (20 % of the training set) for every run. For MNIST,
we use the lightweight network proposed by Simard et al.
(2003), with the same hyperparameters and data augmenta-
tions as for CIFAR-100, except that we rotate by up to 30◦

(instead of 15◦) and do not flip horizontally.

Some additional remarks on prototype generation are in
order. For BCH and RM codes, the mapping between class
and prototype is fixed, while the optimisation-based map-
pings from (PLSE) and (PAVG) randomises the assignment
across different runs. Therefore, for a fair comparison for
BCH and RM codes, we both average over different class to
prototype mappings, as well as over a fixed class to proto-
type mapping. Note that for both one-hot encoding and the
Kasarla et al. (2022) mapping, the mutual cosine similarity
is constant for all prototype pairs, and hence the class to
prototype mapping does not matter.

4.2. Prototype Separation Guarantees

We evaluate the achieved prototype separation in terms
of maximum cosine similarity over the dimension n for
K ∈ {10, 100, 1 000} classes. The results for K = 100,
corresponding to the models trained on CIFAR-100 in Sec-

7

A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry

Random Code

Mettes et al. (2019)

R
el

at
iv

e
Fr

eq
ue

nc
y

Log-sum-exp (PLSE)

BCH Code

−0.50 −0.25 0.00 0.25 0.50
〈ci,c j〉

RM Code

Figure 3. Cosine similarity histograms for different prototype gen-
eration schemes for K = 100 classes in dimension n = 16. All
schemes have average cosine similarity close to 0. Note that there
are K/2 RM code-based prototype pairs with cosine similarity −1
which have been omitted for clarity.

tion 4.3, are presented in Figure 2 along with the achievable
and converse bounds from Theorem 3.5. Plots for K = 10
and K = 1 000 classes are provided in Appendix A.

For K = 100, the results confirm our theoretical analysis in
Sections 3.1 and 3.2. For n = 99, the mapping by Kasarla
et al. (2022) achieves the lower bound as expected. RM
codes achieve zero worst-case cosine similarity for n ≥ 64,
and the maximum cosine similarity achieved by BCH codes
for n ≥ 63 is slightly above zero. That is, the code-based
designs give close-to-optimal separation guarantees with
only approximately half the number of dimensions. Below
n = 63, the optimisation-based schemes outperform the
code-based designs, where the proposed log-sum-exp relax-
ation gives a slight advantage over Mettes et al. (2019). For
fewer classes (K = 10, see Appendix A), the optimisation-
based methods outperform coding-based approaches, and
solving the proposed relaxation (PLSE) instead of (PAVG)
results in a big improvement. For a large number of classes
(K = 1 000, see Appendix A), the optimisation-based meth-
ods perform poorly, and coding-theoretic methods guarantee
better separation in lower dimensions n < K. We therefore
conclude that code-based prototypes are beneficial if the
number of classes is large, in which case the achievable
dimension compression also becomes an attractive feature.

To provide further insights, we provide histograms of the
cosine similarities for the different prototype schemes in
Figure 3. We compare the schemes for K = 100 classes in
dimension n = 16 and, for the sake of illustration, include
prototypes created uniformly at random as a baseline. As
the histograms show, the optimisation moves probability
mass from the right tails towards lower cosine similarity,

102

n

62

64

66

68

70

72

74

A
cc

ur
ac

y[
%

]

One-hot
Kasarla et al. (2022)
Mettes et al. (2019)
Log-sum-exp (PLSE)

BCH Codes (fixed map)
BCH Codes (avg. map)
RM Codes (fixed map)
RM Codes (avg. map)

Figure 4. Top-1 accuracy results for CIFAR-100 for different pro-
totype generation schemes, averaged over 5 runs, with errorbars
corresponding to one standard deviation.

where the log-sum-exp relaxation achieves a slightly lower
maximum cosine similarity. For the coding-based methods,
the cosine similarities concentrate in a few different values
which can be directly calculated from the weight distribu-
tion (or weight-enumerator) function of the linear codes
(MacWilliams & Sloane, 1977, Chapter 2, §1).

4.3. Experiments on CIFAR-100

We now turn to results on CIFAR-100, where we compare
the performance of different prototype schemes. Figure 4
shows classification accuracy on the test set for different pro-
totype schemes in different dimensions. We notice a thresh-
olding effect around n = K, indicating that little is gained
by adding dimensions, which is consistent with the observed
worst-case similarity in Figure 2. For n ∈ {31, 63, 127},
the performance of BCH-code-based prototypes averaged
over the label mapping dominates the optimization-based
schemes. For n = 63, the performance is close to the per-
formance of one-hot encoding. The mapping by Kasarla
et al. (2022) still performs best at n = 99, which can be ex-
pected since it guarantees a slightly lower worst-case cosine
similarity.

To illustrate the separation/accuracy tradeoff for the different
prototype schemes, Figure 5 plots the accuracy over the
maximum cosine similarity across all our trained models.
Through linear regression we find that, as expected, more
dissimilar prototypes tend to yield better results. However,
there is a significant variance in the accuracy within models
trained with the same class of prototypes, and moreover,
across different methods with the same maximum similarity.
Part of the variance is explained by our use of a randomised
validation set. However, as the difference in BCH code
performance between the fixed mapping and the average

8

A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry

0.0 0.1 0.2 0.3 0.4 0.5
max
i 6= j
〈ci,c j〉

60

62

64

66

68

70

72

74

A
cc

ur
ac

y
[%

]

BCH at n = 63 BCH at n = 31

RM Codes (fixed map)
BCH Codes (fixed map)
Log-sum-exp (PLSE)

Kasarla et al. (2022)
RM Codes (avg. map)

Mettes et al. (2019)
BCH Codes (avg. map)
One-hot
Lin. reg., r = -0.68
Converse Bound

Figure 5. Comparison of accuracy on CIFAR-100 and maximum cosine similarity between the K = 100 prototypes. More dissimilar
prototypes are correlated with higher accuracy, but there is significant variance within, and between, models corresponding to different
prototype generation schemes. Note that the same maximum similarity may correspond to different n, see Figure 2. Interestingly, some
BCH codes in lower dimension and with worse cosine similarity yield better performance than BCH codes in higher dimension.

mappings, and the lower performance of RM codes show
(see Figure 4), the alignment of prototype similarities with
semantic similarities of classes appears important.

In particular, the lower accuracy of RM codes in dimen-
sions n = 64 and n = 128 is insightful. In these dimen-
sions, they provide no worse than orthogonal prototypes
(see Lemma 3.2), as well as K/2 prototype pairs which are
diametrically opposed with cosine similarity −1. Investi-
gating pairs of classes which were assigned diametrically
opposed prototypes, we find several pairs with high semantic
similarity, for example leopard and lion; shrew and
skunk; and seal and shark. Compared to Mettes et al.
(2019), who argued for the importance of the maximum and
average similarity, our results indicate that additional proper-
ties beyond maximum and average similarity are important.
Hence, we argue that further investigation on incorporating
the semantics in the data in the labelling of the prototypes is
needed.

5. Conclusion
In this paper, we have analysed the geometry of hyperspher-
ical prototypical learning with tools from coding theory.
Firstly, we have presented new code-based constructions to
generate hyperspherical prototypes with strong minimum
separation guarantees (in terms of worst-case cosine sim-
ilarity). Secondly, we fully characterised the worst-case
cosine similarity of these prototypes (in terms of achiev-

able and converse bounds). Our prototypes are flexible and
near-optimal in low dimension, thereby enabling a trade-
off between dimension and separation for a given number
of classes. Our experimental results furthermore indicate
that the classification accuracy does not only depend on the
worst-case separation of prototypes, but also depends on the
mapping from class labels to prototypes. We thus conclude
that the alignment of semantic similarity with prototype
separation is an important problem for further investigation.
Additionally, the impact of prototype distance on prototype-
based self-supervised learning schemes is also an important
future consideration.

Acknowledgements
This work was funded in part by the Swedish Research
Council (VR) through grant agreements 2019-03606 and
2021-05266. The computations were enabled by resources
provided by the National Academic Infrastructure for Su-
percomputing in Sweden (NAISS) at Chalmers Centre for
Computational Science and Engineering (C3SE), partially
funded by the Swedish Research Council through grant
agreement 2022-06725.

References
Abbe, E., Shpilka, A., and Ye, M. Reed–Muller Codes: The-

ory and Algorithms. IEEE Transactions on Information
Theory, 67(6):3251–3277, June 2021.

9

A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry

Bachman, P., Hjelm, R. D., and Buchwalter, W. Learn-
ing Representations by Maximizing Mutual Information
Across Views. In Advances in Neural Information Pro-
cessing Systems, 2019.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P.,
and Joulin, A. Unsupervised Learning of Visual Features
by Contrasting Cluster Assignments. In Advances in
Neural Information Processing Systems, volume 33, pp.
9912–9924, 2020.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
Simple Framework for Contrastive Learning of Visual
Representations. In Proceedings of the 37th International
Conference on Machine Learning, November 2020.

Conway, J. and Sloane, N. J. A. Sphere Packings, Lattices,
and Groups. Springer-Verlag, New York, 3rd edition,
1999.

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., and Tom-
czak, J. M. Hyperspherical Variational Auto-Encoders.
34th Conference on Uncertainty in Artificial Intelligence
(UAI-18), 2018.

Ericson, T. and Zinoviev, V. Codes on Euclidean Spheres.
Elsevier Science, Amsterdam, 2001.

Goyal, A. and Bengio, Y. Inductive biases for deep learning
of higher-level cognition. Proceedings of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences,
478:20210068, October 2022. doi: 10.1098/rspa.2021.
0068.

Guerriero, S., Caputo, B., and Mensink, T. DeepNCM:
Deep Nearest Class Mean Classifiers. ICLR - Workshop
Track, 2018.

Hamming, R. W. Error Detecting and Error Correcting
Codes. The Bell System Technical Journal, 29(2):147–
160, 1950. doi: 10.1002/j.1538-7305.1950.tb00463.x.

Hasnat, M. A., Bohné, J., Milgram, J., Gentric, S., and Chen,
L. von Mises-Fisher Mixture Model-based Deep learning:
Application to Face Verification, December 2017. URL
http://arxiv.org/abs/1706.04264.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, June 2016.

Hostetter, M. Galois: A performant NumPy extension
for Galois fields, November 2020. URL https://
github.com/mhostetter/galois.

Jetley, S., Romera-Paredes, B., Jayasumana, S., and Torr,
P. Prototypical Priors: From Improving Classification to

Zero-Shot Learning. In Proceedings of the British Ma-
chine Vision Conference (BMVC). BMVA Press, Septem-
ber 2015. doi: 10.5244/C.29.120.

Kasarla, T., Burghouts, G., van Spengler, M., van der Pol, E.,
Cucchiara, R., and Mettes, P. Maximum Class Separation
as Inductive Bias in One Matrix. In Advances in Neural
Information Processing Systems, 2022.

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola,
P., Maschinot, A., Liu, C., and Krishnan, D. Supervised
Contrastive Learning. In Advances in Neural Information
Processing Systems, 2020.

Krizhevsky, A. Learning Multiple Layers of Features from
Tiny Images. Technical report, University of Toronto,
2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Li, S. The Minimum Distance of Some Narrow-Sense Primi-
tive BCH Codes. SIAM Journal on Discrete Mathematics,
31(4):2530–2569, January 2017.

Lin, S. and Costello, D. J. Error Control Coding: Fun-
damentals and Applications. Pearson Prentice Hall, 2
edition, 2004.

MacWilliams, F. J. and Sloane, N. J. A. The Theory of Error-
Correcting Codes. North-Holland Publishing Company,
1977.

Mettes, P., van der Pol, E., and Snoek, C. Hyperspherical
Prototype Networks. In Advances in Neural Information
Processing Systems, 2019.

Mitchell, D. G. M., Lentmaier, M., and Costello, D. J.
Spatially Coupled LDPC Codes Constructed From Pro-
tographs. IEEE Transactions on Information Theory, 61
(9):4866–4889, 2015. doi: 10.1109/TIT.2015.2453267.

Musin, O. R. and Tarasov, A. S. The Tammes Problem
for N = 14. Experimental Mathematics, 24(4):460–468,
October 2015.

Rodrı́guez-Gálvez, B., Blaas, A., Rodriguez, P., Golinski,
A., Suau, X., Ramapuram, J., Busbridge, D., and Zap-
pella, L. The Role of Entropy and Reconstruction in
Multi-View Self-Supervised Learning. In Proceedings of
the 40th International Conference on Machine Learning,
July 2023.

Simard, P. Y., Steinkraus, D., and Platt, J. C. Best Practices
for Convolutional Neural Networks Applied to Visual
Document Analysis. In Proceedings of the Seventh Inter-
national Conference on Document Analysis and Recogni-
tion, volume 3. IEEE Computer Society, 2003.

10

http://arxiv.org/abs/1706.04264
https://github.com/mhostetter/galois
https://github.com/mhostetter/galois

A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry

Snell, J., Swersky, K., and Zemel, R. Prototypical Net-
works for Few-shot Learning. In Advances in Neural
Information Processing Systems, 2017.

The MathWorks Inc. bchgenpoly, 2024. URL
https://www.mathworks.com/help/comm/
ref/bchgenpoly.html. Accessed 4 July, 2024.

Tian, Y., Krishnan, D., and Isola, P. Contrastive Multiview
Coding. In Computer Vision – ECCV 2020. Springer
International Publishing, 2020.

Wang, F., Xiang, X., Cheng, J., and Yuille, A. L. NormFace:
L2 Hypersphere Embedding for Face Verification. In
Proceedings of the 25th ACM International Conference
on Multimedia, 2017.

Wang, T. and Isola, P. Understanding Contrastive Represen-
tation Learning through Alignment and Uniformity on the
Hypersphere. In Proceedings of the 37th International
Conference on Machine Learning, November 2020.

Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. Unsupervised
Feature Learning via Non-Parametric Instance Discrimi-
nation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2018.

Xu, J. and Durrett, G. Spherical Latent Spaces for Stable
Variational Autoencoders. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, 2018.

11

https://www.mathworks.com/help/comm/ref/bchgenpoly.html
https://www.mathworks.com/help/comm/ref/bchgenpoly.html

A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry

A. Separation Guarantees for K = 10 and K = 1 000 Prototypes
In this section, we provide additional results for prototype generation schemes for K = 10 and K1 000 prototypes, see
Figures 6 and 7. For K = 10 prototypes, the optimisation-based approaches work well: in particular, solving (PLSE)
provides no worse than orthogonal prototypes in dimension n = 8, and optimally separated prototypes in n = 16. However,
the improvement over one-hot encoding and the Kasarla et al. (2022) mapping is small. On the other hand, for K = 1 000
prototypes, the coding-theoretic approaches can guarantee no worse than orthogonal (and therefore near-optimal) separation
in n ≈ K/2, while optimisation-based prototypes require high dimension to give approximately orthogonal prototypes.

101

n

−0.1

0.0

0.1

0.2

0.3

0.4

0.5
m

ax
i6=

j
〈c

i,
c j
〉

BCH Codes
Log-sum-exp (PLSE)

Mettes et al. (2019)
RM Codes
Kasarla et al. (2022)
Bounds

Figure 6. Maximum pairwise cosine similarity of K = 10 prototypes in various latent space dimensions (logarithmic scale). The
optimisation-based (PLSE) prototypes achieve better separation than the (PAVG) scheme. One-hot encoding and the Kasarla et al. (2022)
are competitive in this regime. All schemes fall within the achievable and converse bounds from Theorem 3.5. For large n, the the BCH
and RM prototypes yield no worse than othogonal prototypes. The (PLSE) and Kasarla et al. (2022) prototypes achieve the converse
bound, and are therefore better. The (PAVG) prototypes are more than orthogonal, but do not achieve the converse bound.

102 103

n

0.0

0.1

0.2

0.3

0.4

0.5

m
ax

i6=
j
〈c

i,
c j
〉

BCH Codes
Log-sum-exp (PLSE)

Mettes et al. (2019)
RM Codes
Random Prototypes
Kasarla et al. (2022)
Bounds

Figure 7. Maximum pairwise cosine similarity of K = 1 000 prototypes in various latent space dimensions (logarithmic scale). Coding-
theoretic approaches give near-optimal separation in low dimension n ≥ 511, and offer better flexibility than the Kasarla et al. (2022)
mapping. The optimisation schemes require high dimension to be competitive, while the coding-theoretic prototypes are no worse than
orthogonal in low dimension. In very high dimensions, even uniformly random prototypes are near-orthogonal.

12

A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry

B. Cosine Similarity Histograms for K = 10 and K = 1 000 prototypes
In this section, we show cosine similarity histograms for K = 10 and K = 1 000 prototypes, see Figures 8 and 9. The
figures illustrate that optimisation-based methods are effective for a small number of prototypes, where the density can be
moved around effectively to create good maximum cosine similarity properties. The coding-theoretic approaches concentrate
the density in a few cosine similarities, which is beneficial for a large number of prototypes K, where they outperform the
optimisation-based approaches in lower dimensions n.

Random Code

Mettes et al. (2019)

R
el

at
iv

e
Fr

eq
ue

nc
y

Log-sum-exp (PLSE)

BCH Code

−0.50 −0.25 0.00 0.25 0.50
〈ci,c j〉

RM Code

Figure 8. Cosine similarity histogram for different prototype generation schemes for K = 10 classes and dimension n = 8. For a small
number of classes, the optimisation-based approaches are more efficient in moving probability mass to lower similarities. Note that there
is a low but non-zero density for the RM code at similarity −1, which has been omitted for clarity.

Random Code

Mettes et al. (2019)

R
el

at
iv

e
Fr

eq
ue

nc
y

Log-sum-exp (PLSE)

BCH Code

−0.50 −0.25 0.00 0.25 0.50
〈ci,c j〉

RM Code

Figure 9. Cosine similarity histogram for different prototype generation schemes for K = 1 000 classes and dimension n = 128. The
coding-based approaches concentrate density at a few similarities, which outperforms optimisation-based methods for a large number of
classes. Note that for the RM code there is non-zero density at similarity −0.5 and 0.5 which are too small to be visible, and that there is
density at similarity −1 which has been omitted for clarity.

13

A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry

C. Results on MNIST
In this section, we provide results on MNIST, similar to the ones on CIFAR-100, in Figures 10 and 11. We notice that while
all the schemes perform well on MNIST, we are able to beat one-hot encoding and the Kasarla et al. (2022) mapping using
prototypes obtained from solving (PLSE) in lower dimension. We also find that a smaller maximum cosine similarity is
correlated with better performance, although the correlation is weaker here than for CIFAR-100.

Similar to CIFAR-100, we notice a high variance. In particular, notice the averaged mappings outperforms the fixed
mappings for both BCH and RM codes. This again indicates that the semantic class to prototype mapping is important.
Again, investigating mappings for RM codes for n = 8, where the prototypes are no worse than orthogonal, we find the
following diametrically opposed pairs in the first trained model. For the fixed mapping, the pairs 4 and 5; and 8 and 9 were
diametrically opposed. These pairs are semantically similar, especially when hand-written. A randomised class to prototype
assignment has a chance of avoiding these semantically similar pairings.

101

n

98.7

98.8

98.9

99.0

99.1

99.2

99.3

99.4

A
cc

ur
ac

y[
%

]

One-hot
Kasarla et al. (2022)
Mettes et al. (2019)
Log-sum-exp (PLSE)

BCH Codes (fixed map)
BCH Codes (avg. map)
RM Codes (fixed map)
RM Codes (avg. map)

Figure 10. Top-1 accuracy results for MNIST over different prototype generation schemes, averaged over 5 runs, with error bars
corresponding to one standard deviation.

−0.1 0.0 0.1 0.2 0.3 0.4 0.5
max
i 6= j
〈ci,c j〉

98.7

98.8

98.9

99.0

99.1

99.2

99.3

99.4

A
cc

ur
ac

y
[%

]

RM Codes (fixed map)
BCH Codes (fixed map)
Log-sum-exp (PLSE)

Kasarla et al. (2022)
RM Codes (avg. map)

Mettes et al. (2019)
BCH Codes (avg. map)
One-hot
Lin. reg., r = -0.34
Converse Bound

Figure 11. Comparison of accuracy on MNIST and maximum cosine similarity between the K = 10 prototypes. Higher accuracy is
correlated with smaller maximum cosine similarity. However, there is a large variance within, and between, different prototype generation
scheme. Note that the same maximum similarity may correspond to different n, see Figure 6.

14

