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Abstract

Generative adversarial networks (GANs) learn a latent space whose samples can be mapped
to real-world images. Such latent spaces are difficult to interpret. Some earlier super-
vised methods aim to create an interpretable latent space or discover interpretable direc-
tions, which requires exploiting data labels or annotated synthesized samples for training.
However, we propose using a modification of vector quantization called space-filling vector
quantization (SFVQ), which quantizes the data on a piece-wise linear curve. SFVQ can
capture the underlying morphological structure of the latent space, making it interpretable.
We apply this technique to model the latent space of pre-trained StyleGAN2 and BigGAN
networks on various datasets. Our experiments show that the SFVQ curve yields a general
interpretable model of the latent space such that it determines which parts of the latent
space correspond to specific generative factors. Furthermore, we demonstrate that each line
of the SFVQ curve can potentially refer to an interpretable direction for applying intelligible
image transformations. We also demonstrate that the points located on an SFVQ line can
be used for controllable data augmentation.

1 Introduction
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Figure 1: Codebook vectors (blue points)
of a 6 bit (a) vector quantization, and (b)
space-filling vector quantization (curve in
black) on a pentagon distribution (gray
points). Voronoi regions for VQ are shown
in green.

Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are powerful generative models applied to various appli-
cations, e.g., data augmentation (Antoniou et al., 2017; Shorten
& Khoshgoftaar, 2019), image editing (Härkönen et al., 2020;
Yüksel et al., 2021; Shen & Zhou, 2021; Voynov & Babenko,
2020; Tzelepis et al., 2021; Aoshima & Matsubara, 2023; Abdal
et al., 2021; Wang et al., 2018b; Alaluf et al., 2022; Roich et al.,
2022; Pehlivan et al., 2023; Liu et al., 2023; Jahanian et al.,
2019; Plumerault et al., 2020; Yang et al., 2021; Goetschalckx
et al., 2019; Shen et al., 2020; Wu et al., 2021), and video gener-
ation (Wang et al., 2018a). For image data, GANs map a latent
space to an output image space by learning a non-linear map-
ping (Voynov & Babenko, 2020). After learning such mapping,
GANs can create realistic high-resolution images by sampling
from the latent space (Karras et al., 2019). However, this la-
tent space is a black box, making it difficult to interpret the
mapping between the latent space and generative factors such
as gender and age (Shen et al., 2020). In addition, the interpretable directions to change these factors are
not known (Voynov & Babenko, 2020). Hence, having a comprehensive interpretation of the latent space is
an important research problem that, if solved, leads to more controllable generations.
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In the literature, both supervised and unsupervised methods exist to find interpretable directions in the latent
space. Supervised methods (Jahanian et al., 2019; Plumerault et al., 2020; Yang et al., 2021; Goetschalckx
et al., 2019; Shen et al., 2020; Wu et al., 2021; Shen et al., 2022) require data collections together with the
use of pre-trained classifiers or human labelers to label the collected data with respect to the user-predefined
directions (Shen & Zhou, 2021). In addition, these methods only find the directions that the user defines
(Voynov & Babenko, 2020). On the other hand, in unsupervised methods (Härkönen et al., 2020; Shen &
Zhou, 2021; Voynov & Babenko, 2020; Yüksel et al., 2021; Tzelepis et al., 2021; Aoshima & Matsubara, 2023;
Song et al., 2023b;a), the user has to choose the hyper-parameter K (the number of interpretable directions to
discover) before training, where a large value for K results in discovering repetitive directions (Yüksel et al.,
2021). In all these unsupervised methods, there is no prior knowledge about the specific transformation each
of these K discovered directions yields. Hence, the user should do an exhaustive search over all available K
directions to determine which directions are practical and what they refer to. For instance, as GANSpace
(Härkönen et al., 2020) applies principal component analysis (PCA) on the latent space, the number of
directions (K) to be examined is large (equal to the latent space dimension). Additionally, as stated in
Härkönen et al. (2020), not all PCA directions are necessarily useful for changing a generative factor.

In this paper, we use a modification of vector quantization, called space-filling vector quantization (SFVQ)
(Vali & Bäckström, 2023), to interpret the latent spaces of the pre-trained StyleGAN2 (Karras et al., 2020)
and BigGAN (Brock et al., 2018) models using FFHQ, AFHQ, LSUN Cars, CIFAR10, and ImageNet datasets.
Regarding the intrinsic arrangement of SFVQ codebook vectors (or codewords), index-wise adjacent code-
words model the same locality of a distribution (see Fig. 1(b)). Hence, SFVQ can be used to capture the
underlying structure of the GANs’ latent spaces, given that subsequent codewords refer to similar contents.
In contrast to supervised approaches, our unsupervised method neither requires human labeling nor imposes
any constraints on the learned latent space, as it uses the original learned latent spaces from pre-trained
models. Moreover, our method does not need any hyper-parameter tuning, e.g., choosing the number of
directions (K) as in Shen & Zhou (2021); Voynov & Babenko (2020); Yüksel et al. (2021); Tzelepis et al.
(2021); Aoshima & Matsubara (2023); Song et al. (2023b;a) or tuning the coefficients of the training loss
terms as in Voynov & Babenko (2020); Yüksel et al. (2021); Tzelepis et al. (2021); Aoshima & Matsubara
(2023). In our proposed method, to explore the latent space structure and find its interpretable directions,
the only required effort is that the user should visually observe the generated images from the learned SFVQ
codebook vectors (Fig. 6(a), Fig. 8(a)) only once. By observing the generated images, the user would have
prior knowledge of the potential edit type for a discovered direction in advance, contrary to other unsuper-
vised methods. Therefore, we reduce the search effort to achieve the desired edit by only searching for the
suitable layers in StyleGAN2 or BigGAN to modify. Our method implementation is publicly available at
https://github.com/Speech-Interaction-Technology-Aalto-U/Interpretable-GANs-by-SFVQ.git.

In Vali & Bäckström (2023), SFVQ training is prone to outlier codewords, i.e., there might be some codebook
vectors that end up outside the data distribution, which is an issue. In this paper, we resolve this issue by
improving the initialization (Sec. 3.2.1) and codebook expansion (Sec. 3.2.2) procedures of SFVQ such that
we do not encounter any outlier codewords throughout our experiments. We show that our trained SFVQ
codebook (or curve) can capture a universal interpretation of the StyleGAN2’s latent space such that the user
can identify what type of generations to expect from each part of the latent space regarding age, gender, pose,
accessories for FFHQ, color, breed, pose for AFHQ, and class of data for CIFAR10 (see Sec. 5.1). Further-
more, we explore SFVQ from a new viewpoint and discover that SFVQ lines (the lines connecting SFVQ’s
subsequent codewords) can refer to interpretable directions leading to meaningful image transformations
(see Sec. 5.2 and Sec. 5.3). This SFVQ property was not explored in Vali & Bäckström (2023). Qualitative
(Sec. 5.4) and Quantitative (Sec. 5.5) evaluations show that the discovered interpretable directions by our
proposed method outperform the directions of GANSpace (Härkönen et al., 2020), LatentCLR (Yüksel et al.,
2021), and SeFa (Shen & Zhou, 2021) methods. In addition, our proposed method is capable of finding joint
interpretable directions that can change multiple attributes simultaneously (see Sec. 5.7). By improving the
SFVQ training, we observe that the learned SFVQ curve (or space-filling lines) are mainly located inside the
latent space. Hence, we have a large number of meaningful latent vectors located on the SFVQ curve that
can be used for controllable data augmentation. We observe that by sampling latent vectors from the line
connecting two subsequent codewords, we can generate images that visually share the attributes of those
codewords (see Sec. 5.8).
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2 Related Work

Prior works can be categorized into three principal approaches that aim to make the latent space of generative
models more interpretable.

1. Introducing structure into the latent space using data labels. The main rationale behind these
approaches (Klys et al., 2018; Xue et al., 2019; An et al., 2021) is that they take advantage of labeled
data (with respect to the features of interest) and train the generative model in a supervised manner to
learn a structured latent space in which data with specific labels reside in isolated subspaces of the latent
distribution. Hence, this structured latent space can be interpretable, allowing the user to have control over
data generation and manipulation with respect to the labels. However, these supervised methods suffer from
two main drawbacks. First, they require human labeling, whose cost can increase excessively as the dataset
size increases (Voynov & Babenko, 2020). Second, they might prevent the latent space from learning some
intrinsic structures that a human labeler is unaware of (Voynov & Babenko, 2020).

2. Disentangling the latent space dimensions. These methods (Chen et al., 2016; Higgins et al.,
2017; Ramesh et al., 2018; Lee et al., 2020; Liu et al., 2020) train the generative model in an unsupervised
way to obtain a disentangled latent space. In a disentangled latent space, changes in each latent dimension
make variations only in one specific generative factor while keeping the other generative factors unchanged.
In other words, these approaches aim to model various generative factors existing in the data to different
latent dimensions and make these dimensions (generative factors) independent of each other. Therefore,
these methods are interpretable in that they allow control over data generation with respect to the gener-
ative factors. However, the downside of these techniques is their low efficiency in generating quality and
diversity (Voynov & Babenko, 2020).

3. Exploring interpretable directions in the latent space. The main goal of these techniques is to
find the directions in the latent space which lead to intelligible data transformations such as changing the
age, pose, hairstyle in face synthesis task (Härkönen et al., 2020; Voynov & Babenko, 2020; Shen et al.,
2020; Jahanian et al., 2019; Yüksel et al., 2021; Shen & Zhou, 2021; Abdal et al., 2021; Wang et al.,
2018b; Plumerault et al., 2020; Yang et al., 2021; Goetschalckx et al., 2019; Alaluf et al., 2022; Roich et al.,
2022; Pehlivan et al., 2023; Liu et al., 2023; Tzelepis et al., 2021; Aoshima & Matsubara, 2023). Here, the
interpretability of the latent space refers to the user’s control over the generation process by manipulating
latent vectors along these discovered interpretable directions. This category is the main focus of this paper,
as we also use our proposed method to discover interpretable directions and compare these directions with
those of other methods in the literature.

Some supervised methods (Jahanian et al., 2019; Plumerault et al., 2020; Yang et al., 2021; Goetschalckx
et al., 2019; Shen et al., 2020; Wu et al., 2021; Shen et al., 2022) find interpretable directions guided by
human supervision or pre-trained classifiers used to label the directions of the edited images, which are going
to be used for training. For instance, InterFaceGAN (Shen et al., 2020) extracts a large set of latent vectors
from the latent spaces of pre-trained PGGAN (Karras et al.) and StyleGAN (Karras et al., 2019). It used
SVM to find the hyperplanes of the attributes, such that the normal vector of each hyperplane is considered
the interpretable direction. To label the generated images along interpretable directions, InterFaceGAN
uses pre-trained classifiers. The downside of these supervised methods is that they require sufficient data
collection to discover convincing, interpretable directions. Some methods bypass these hassles by discovering
interpretable directions in an unsupervised manner from the latent space of pre-trained models, without
requiring training of any modules. GANSpace(Härkönen et al., 2020) applied principal component analysis
(PCA) on the latent spaces of StyleGAN, StyleGAN2, and BigGAN and found that PCA directions can be
used as interpretable directions. Similarly, in Shen & Zhou (2021); Song et al. (2023b), the eigenvectors
of the affine transformation of the pre-trained model weights are considered interpretable directions. In a
somehow different technique, methods of Voynov & Babenko (2020); Yüksel et al. (2021); Yang et al. (2021);
Tzelepis et al. (2021); Aoshima & Matsubara (2023) train a transformation function f that shifts a latent
vector z in various directions and use a pre-trained generator G to generate images (or new latent vectors
w) corresponding to the original (z) and shifted latent vector (f(z) = z + α · d⃗). Then, a reconstructor R
(or attribute assessor) is trained to estimate or rate the direction d⃗ proposed by the transformation function
f given the pair of generated images (or latent vectors). When trained, the directions d⃗ are considered as
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interpretable directions. In contrast to methods of Voynov & Babenko (2020); Yüksel et al. (2021); Yang
et al. (2021) which only find linear directions, methods of Tzelepis et al. (2021); Aoshima & Matsubara
(2023) are supposed to find non-linear directions.

GAN inversion methods (Alaluf et al., 2022; Liu et al., 2023; Katsumata et al., 2024; Dere et al., 2024;
Zhu et al., 2024) revert the generation process by mapping real images to the latent space of pre-trained
GANs. They take a real image as input and learn to find a latent vector for it such that the pre-trained
GAN generator can reconstruct an image as close to the real image as possible. After computing the new
latent space Winv of pre-trained GANs, these methods mainly discover interpretable directions from Winv

using InterFaceGAN (Shen et al., 2020) and GANSpace (Härkönen et al., 2020) techniques. All the above-
mentioned methods provide interpretable directions for image editing tasks in the latent space of GANs,
such as BigGAN, PGGAN, and various versions of StyleGAN. However, in a completely different case,
recent approaches have emerged for image editing in diffusion models (Park et al., 2023; Zhang et al., 2023;
Dalva & Yanardag, 2024; Haas et al., 2024; Shi et al., 2024; Chen et al., 2024; Joseph et al., 2024; Sajnani
et al., 2025; Feng et al., 2025). This paper does not focus on image editing using diffusion models; instead,
it concentrates only on interpreting the latent space of the StyleGAN2 and BigGAN pre-trained models.

3 Methods

3.1 Space-filling vector quantization (SFVQ)

Figure 2: First six recursion steps (r) of a Hilbert
space-filling curve. The curve is color-coded, i.e., it
starts in light and ends in dark colors. Corner points
are shown as blue points.

A space-filling curve is a piece-wise continuous curve
created by recursion, and if the recursion repeats
infinitely, the curve fills a multi-dimensional space
(Sagan, 2012). Fig. 2 shows the first six recursion
steps of the Hilbert curve (a well-known space-filling
curve) that fills a square space. The curve is color-
coded, i.e., it starts in light and ends in dark colors.
It is clearly shown that there is an inherent structure
in the Hilbert curve and a good arrangement in the position of its corner points (shown in blue). For
instance, adjacent corner points refer to the same locality of the space, as they are shown with similar colors.
Motivated by space-filling curves, space-filling vector quantization (SFVQ) (Vali & Bäckström, 2023) designs
vector quantization (VQ) as a mapping of data on a space-filling curve, whose corner points are the codebook
vectors of a VQ process. SFVQ uses a dithering technique for training its codebook, i.e., it maps the input
vector onto the line connecting subsequent codewords, but not necessarily onto the codewords. For an input
vector x ∈ R1×D and a codebook C = {c1, · · · , cN } ∈ RN×D containing N codewords, SFVQ first generates
a dithered codebook matrix Cd = {cd

1, · · · , cd
N−1} ∈ RN−1×D by interpolation at random places on the line

connecting two subsequent codewords of the codebook C (see Fig. 3). Then, it quantizes (or maps) x to the
closest element from the dithered codebook Cd as

x̂ = arg min
cd

i

∥x − cd
i ∥2 ; 1 ≤ i ≤ N − 1 ⇒ x̂ = cd

j = (1 − λ)cj + λcj+1, (1)

where cj and cj+1 represent two subsequent codewords from the base codebook C which their interpolation
cd

j is the the closest dithered codeword to x, and λ is the dithering (or interpolation) factor. To generate
the dithered codebook during training (Fig. 3), SFVQ samples λ values from the uniform distribution of
U(0, 1) that ensures random interpolations between subsequent vectors of the base codebook C. When
sampling different λ values for different training batches, this type of randomized interpolation imposes a
sense of continuity between subsequent vectors of C. Because the codebook C is trained such that the line
connecting its subsequent codewords should be a valid quantization point. The mean squared error (MSE)
between the input vector x and its quantized form x̂ is used as the training loss function

MSE(x, x̂) = ∥x − x̂∥2
2 = ∥x − (1 − λ)cj − λcj+1∥2

2 . (2)
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Figure 3: Example of generating dithered codebook
Cd from the base codebook C for one typical training
batch of space-filling vector quantization (SFVQ) in
its first recursion step, where SFVQ starts with N = 4
codewords.

Similar to space-filling curves, SFVQ is trained re-
cursively. SFVQ first starts with N = 4 code-
words (2 bit) and after training these codewords
for a while, it expands the codebook by doubling
the number of codewords at each recursion step.
The recursion continues until SFVQ reaches N =
log2 (Btarget) codewords, where Btarget is the SFVQ
target bitrate. Fig. 1 illustrates a 6 bit (N = 64) VQ
and SFVQ applied on a 2D pentagon distribution.
To clarify more, both VQ and SFVQ have a code-
book containing N = 64 codewords. However, the
codewords of SFVQ are in clear arrangement be-
cause their index-wise adjacent codewords refer to
the same locality of the distribution, and also the
line connecting subsequent codewords is valid for
quantization. Whereas, these two properties do not hold for VQ (in general, not in this uniform pentagon
2D distribution).

3.2 Proposed method

3.2.1 SFVQ initialization

(a) Random Initialization (b) Proposed Initialization

Figure 4: Two learned SFVQ curves with N = 512
codewords on a 3D moon dataset using random and
our proposed initialization methods. The curves are
color-coded, i.e., they start in light and end in dark
colors.

As mentioned, SFVQ training starts with N = 4
codewords. The initialization of these four code-
words significantly impacts the final learned SFVQ
curve obtained at the end of training. In Vali &
Bäckström (2023), these codewords were initialized
randomly (from a normal distribution N (0, 1)), and
as the SFVQ codebook was expanded to reach the
target bitrate, there were some unfavorable jumps
(lines outside the distribution or lines breaking the
codebook arrangement) in the learned curve (see
Fig. 4(a)).

To address this issue, in this paper, we change the
codebook initialization. Since pre-trained models
are available, we sample 103 random vectors z from the normal distribution and generate their corresponding
latent vectors in the layer where we intend to train the SFVQ (e.g., intermediate W space in StyleGAN2).
Then, we compute the Euclidean norm (ℓ2) of all latent vectors and sort them in ascending order. We split
these sorted latent vectors into four groups and initialize the codebook vectors with the mean of these four
groups. From a geometrical viewpoint, our proposed initial SFVQ curve spans from one end of the Euclidean
latent space to its other end and brings a desirable order to SFVQ codewords, which aligns with the intrinsic
SFVQ codebook arrangement, as the curve starts from low norm to high norm latent vectors. To confirm
this fact, Fig. 4 shows two learned SFVQ curves (with N = 512 codewords) using random and our proposed
initialization methods on a 3D moon dataset. The SFVQ curves are color-coded, i.e., they start in light and
end in dark colors. As shown, our proposed initialization results in a perfect codebook arrangement with
only one jump (which is inevitable as the curve should pass to the other cluster of the data). Whereas, the
random initialization causes several unfavorable jumps that break the codebook arrangement.

3.2.2 SFVQ codebook expansion

When training SFVQ, codebook expansion occurs at the beginning of each recursion step by doubling the
codebook size. In Vali & Bäckström (2023), the new codebook vectors are defined in the center of the line
connecting two adjacent codewords (which already exist on the curve), i.e., cnew = (ci + ci+1) /2, where ci is
the i-th codeword. cnew can be useless if it is located outside the latent space, as in the case of undesirable
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jumps (as shown in Fig. 4(a)), and it takes a long time (or many training batches) to be pushed inside. As
discussed in Sec. 3.2.1, Vali & Bäckström (2023) uses random initialization that incurs unfavorable jumps,
and hence, it can result in creating new codewords (cnew) out of the latent distribution in the codebook
expansion step. To address this issue, in this paper, we define the new codeword by shifting the existing
codebook vectors slightly such that cnew = 0.99 ci + 0.01 ci+1. Now, the new codewords most likely reside
inside the latent space, and thus, after being selected actively during training, they will be optimized to
their optimum locations. In contrast to Vali & Bäckström (2023), our proposed codebook expansion and
initialization for SFVQ lead to no outlier codewords throughout our experiments.

3.2.3 Why are SFVQ lines likely to refer to interpretable directions?

SFVQ 3

Figure 5: Directions found
by SFVQ technique (in red)
and PCA-based method of
GANSpace (in orange) on an
example distribution (shown
in gray). The SFVQ curve is
shown in black with its code-
words shown in blue.

After training SFVQ with only N = 4 codewords on W space of Style-
GAN2 pre-trained on FFHQ dataset, the obtained images from learned
codewords are shown in Fig. 8(b). From the images, it can be inferred that
SFVQ lines refer to two directions of gender and rotation (see Fig. 8(c)).
Fig. 8(b) and Fig. 8(c) remind us of the PCA-based method of GANSpace
(Härkönen et al., 2020) that finds PCA directions as interpretable direc-
tions. Similar to the first two PCA directions of GANSpace, which refer
to changes in gender and rotation, the SFVQ lines are also located along
the directions in which the training data has the most variance, i.e., gen-
der and rotation. The reason is that SFVQ trains the codebook such
that the points on the line connecting subsequent codewords should be
valid quantization points. Hence, to minimize the MSE loss (Eq. (2)),
SFVQ locates the codewords to some corners of the distribution so that
their connecting lines lie along the directions that the distribution has the
highest variances (see Fig. 5).

Fig. 5 shows directions found by two methods of SFVQ and GANSpace on an example distribution (shown
in gray). According to the figure, the number of directions that GANSpace can find is restricted to the data
dimension (in this case D = 2). In contrast, SFVQ can potentially find N − 1 distinct directions where N is
the number of codewords. Furthermore, the PCA directions of GANSpace are constrained to be orthogonal,
meaning that they are perpendicular to each other. However, in the pre-trained W space of StyleGAN2,
the interpretable directions are not necessarily orthogonal to each other, and that is why only the first 100
(out of 512) GANSpace’s PCA orthogonal directions lead to noticeable changes (Härkönen et al., 2020). In
contrast, in the SFVQ curve, the directions do not have an orthogonality constraint, and thus, each direction
(or each SFVQ line) can potentially work for a meaningful and obvious change (see Fig. 5). Therefore, with
regard to interpretable directions, SFVQ is somewhat similar to the PCA technique, but it has more degrees
of freedom. Because SFVQ directions do not have the orthogonality constraint, SFVQ can potentially find
N −1 distinct meaningful directions. These observations and discussions motivate us to use the SFVQ curve
to discover interpretable directions, which we study in Sec. 5.2.

3.2.4 How to find SFVQ interpretable directions?

!! !!"#
#⃗ = !!"# − !!

!!"# − !! $

!! !!"##⃗
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& + (. #⃗

(a) (b) (c)

Figure 6: (a) Observation of generated images from
learned SFVQ codebook (similar to Fig. 8(a)) to find
a sensible direction between ci and ci+1. (b) Compu-
tation of the direction d⃗. (c) Applying the direction
on a random latent vector w by shift magnitude of σ.

After training SFVQ on the latent space and ob-
taining the learned codebook, we generate the im-
ages corresponding to SFVQ codewords (Fig. 6(a)
and similarly Fig. 7(a), Fig. 8(a)). This visualiza-
tion reveals the underlying structure of the latent
space in terms of generative factors, which we refer
to as the universal interpretation of the latent space
(Sec. 5.1). Similar to space-filling curves (Fig. 2),
adjacent codewords of SFVQ refer to similar con-
tents in the latent space. Hence, the learned SFVQ
codebook (with its intrinsic arrangement) can cap-
ture the underlying structure of the latent space.
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(a)

Cat & Dog

(b)

Figure 7: (a) Generated images from the codebook of a 6 bit SFVQ (N = 64) trained on W space of
StyleGAN2 pre-trained on the CIFAR10 dataset. (b) Heatmap of Euclidean distances between all codebook
vectors.

In this paper, we take a step forward in extracting more information from the SFVQ codebook, which results
in finding interpretable directions. Fig. 6 shows how we find the interpretable directions using SFVQ. Due to
the intrinsic arrangement of SFVQ codebook vectors, subsequent images refer to similar content, i.e., they
share many similar features while differing in minimal attributes. For example, in Fig. 6(a), the images for
two subsequent codewords of ci and ci+1 share most of the attributes except the rotation. Hence, we can
infer that the direction (d⃗) connecting these two codewords (Fig. 6(b)) refers to the rotation direction. Then,
by shifting any latent vector along this direction (Fig. 6(c)), we can observe the change in rotation attribute
for that latent vector.

By a quick observation of the subsequently generated images from the SFVQ codebook (Fig. 6(a)), the user
can readily spot the interpretable direction. Hence, the user has prior knowledge of the direction, and the
only required action is to find the proper layers of the GAN to edit along this direction (Härkönen et al.,
2020). In this way, the user achieves the desired edit with less search effort compared to other unsupervised
methods (Härkönen et al., 2020; Shen & Zhou, 2021; Voynov & Babenko, 2020; Yüksel et al., 2021; Tzelepis
et al., 2021; Aoshima & Matsubara, 2023), in which apart from the layer-wise search, they should do an
exhaustive search over all K discovered directions to inspect whether they are practical and what directions
they refer to.

4 Experiments

To evaluate how SFVQ can be used to interpret the latent spaces in GANs, similarly to GANSpace (Härkönen
et al., 2020), we chose the intermediate latent space (W) of StyleGAN2 (Karras et al., 2020) and the first
linear layer of BigGAN512-deep (Brock et al., 2018), and then trained the SFVQ on these layers. These
layers are more favorable for interpretation because they render more disentangled representations, are not
constrained to any specific distribution, and suitably model the structure of real data (Karras et al., 2019;
Härkönen et al., 2020; Shen et al., 2020). For StyleGAN2, we employ the pre-trained models on FFHQ
(Karras et al., 2019), AFHQ (Choi et al., 2020), LSUN Cars (Yu et al., 2015), CIFAR10 (Krizhevsky et al.,
2009) datasets, and also the pre-trained BigGAN on ImageNet datset (Deng et al., 2009).

We trained the SFVQ with various bitrates ranging from 2 to 12 bit (N = 4 to N = 4096 codebook vectors).
Since the training of SFVQ is not sensitive to hyper-parameter tuning, we adopt a general setup that works
for all pre-trained models and datasets. In this setup, we trained SFVQ with a batch size of 64 over 100 k
number of training batches (for each recursion step) using the Adam optimizer with the initial learning rate
of 1e−3. We used a learning rate scheduler such that during each recursion step, we halve the learning rate
after 60 k and 80 k training batches. To show that SFVQ and its interpretation ability are not sensitive to
the training hyper-parameters, we trained the SFVQ on the intermediate latent space (W) of StyleGAN2
pre-trained on CIFAR10 dataset over different SFVQ bitrates, batch sizes, and learning rates. The results
are provided in Appendix A.8.
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Figure 8: (a) Generated images from the codebook of a 5 bit SFVQ (N = 32) trained on W space of
StyleGAN2 pre-trained on the FFHQ dataset. (b) Similar generated images for a 2 bit SFVQ (N = 4), and
(c) their semantic directions. Numbers (in blue) show the angle between directions.

5 Results and discussions

5.1 StyleGAN2: universal interpretation

To explore a universal interpretation of the latent space, we apply the SFVQ on the latent space and plot the
generated images from the obtained SFVQ codebook vectors. According to the inherent arrangement of the
SFVQ codebook (see Sec. 3.1), adjacent codewords refer to similar contents of the latent space. Therefore,
we expect the SFVQ learned codebook to capture a universal morphology of the latent space. As the first
experiment, we apply the SFVQ on the intermediate latent space (W) of StyleGAN2 (Karras et al., 2020)
pre-trained on the CIFAR10 dataset. During training, the number of extracted latent vectors is unbiased
for all CIFAR10 classes. In Fig. 7(a), we plot the generated images corresponding to 6 bit SFVQ codebook
(N = 64), i.e., each image corresponds to a codebook vector. At first glance, we observe a clear arrangement
with respect to the image class, where images from the same category are organized into groups. Also, apart
from the horse class, all animal types and industrial vehicles are located next to each other. Furthermore,
there are some visible similarities for subsequent codewords within a class, such as similar objects’ rotation,
scale, color, and background.

We also see these clear interpretations consistently when training SFVQ with different bitrates (see Ap-
pendix A.8). Furthermore, when increasing the SFVQ bitrate by one (doubling the codebook size), the
number of specified codewords to each CIFAR10 class will be approximately doubled, and as a result, the
proportion of different classes from the codebook remains unchanged. For instance, the horse class is always
the dominant class of data in the StyleGAN2 latent space by occupying about 25% of the codewords (see
Appendix A.8). The reason is that the latent vectors of the horse class have the highest diversity compared
to other classes (see Appendix A.1). As a result, when training SFVQ with N = 4 initial codewords, and
then expanding the codebook from N = 4 to a larger codebook, a big portion of codewords tend to model the
latent vectors of the horse class to minimize the MSE loss (Eq. (2)). However, when initializing the SFVQ
with N = {8, 16} codewords, the horse class would not take up to 25% of the learned SFVQ codebook
vectors (see Appendix A.1).

To inspect the learned SFVQ from another viewpoint, we plotted the heatmap of Euclidean distances between
all SFVQ codebook vectors in Fig. 7(b). Again, we observe a clear separation between different classes, as
each dark box shows a data class. It is essential to note that the SFVQ captures this class separation
property due to its inherent orderliness and in a completely unsupervised manner. Additionally, we observe
a larger dark box shared between the cat and dog classes, as they are the most similar classes and reside
close to each other in the latent space.

In the second experiment, we applied a 5 bit SFVQ (N = 32) on the W space of the pre-trained StyleGAN2
on the FFHQ dataset. Images corresponding to the SFVQ codebook are represented in Fig. 8(a). We observe
similarities among neighboring codebook vectors, such as baby-aged faces for indices 6-7, hat accessory for
indices 13-16, eyeglasses for indices 18-19, rotation from right to left from index 17 to 20, and rotation
from left to right from index 27 to 31. Based on our investigations, the StyleGAN2’s W space for FFHQ,
AFHQ, and LSUN Cars are much denser and entangled than CIFAR10 because they are trained on not very
diverse data like CIFAR10. That is why the learned SFVQ curve shown in Fig. 8(a) does not show a perfect
distinctive universal interpretation. We provided a similar figure for a 6 bit SFVQ for the AFHQ dataset in
Appendix A.2.
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Figure 9: SFVQ inter-
pretable directions.

As the third experiment, we examine a 2 bit SFVQ (N = 4) applied to the W
space of StyleGAN2, pre-trained on the FFHQ dataset, and display the generated
images in Fig. 8(b). We observe a clear separation between females and males,
with only two unique identities, each representing the average face for females
and males. From this SFVQ curve, we can infer some more interesting properties.
We hypothesize that each SFVQ line corresponds to an interpretable direction
shown in Fig. 8(c). Direction I (the direction from codebook vectors 1 to 2) is for
changing rotation to the right, direction II refers to the gender change, and direc-
tion III is for changing rotation to the left. We also compute the angles between
these directions in degrees, which somehow confirms our hypothesis. Direction
II is almost orthogonal to the two other directions, and directions I and III are
approximately inverse.

5.2 StyleGAN2: interpretable directions

As discussed in Sec. 3.2.3, SFVQ lines that connect the subsequent codewords can
refer to meaningful interpretable directions. Hence, we apply SFVQ curves (from
2 to 12 bit) to the W space of StyleGAN2, pre-trained on the FFHQ, AFHQ,
and LSUN Cars datasets, and observe the generated images corresponding to the
SFVQ curves. By observation, we spot some useful interpretable directions, shown
in Fig. 9. Columns (a) and (b) represent the discovered direction from two SFVQ
subsequent codebook vectors, column (c) is the test vector in the latent space to
which we apply the direction, and column (d) is the final result after applying
the direction. Similar to the GANSpace naming convention, the term Wi-Wj
means we only manipulate the style blocks within the range [i-j]. Note that
we take the directions only from SFVQ’s subsequent codebook vectors, but not
from two necessarily similar, though far apart, codebook vectors. Otherwise, one
can accidentally find directions by taking two codebook vectors from an ordinary
VQ that might lead to a meaningful direction. To show the practicality of the
directions better, we applied them only on one identical test image (except for
the Beard and Bald directions, which are specified to males).

One significant advantage of our proposed method over other approaches is that
it maintains the identity of the test image (column (c)) to a great extent when
applying the interpretable directions. Another advantage is that we could find
some new and unique directions that were not found in previous methods, such
as Hat, Beard for FFHQ, Age, Bicolor for AFHQ, and Classic for LSUN Cars.
These unique directions are not limited only to these, as users can find other di-
rections by their own observations. More importantly, our approach detects an
inclusive set of directions, whereas other methods in the literature can only find a
portion of them. It is important to note that the directions for the AFHQ dataset
are class-agnostic (see Appendix A.3), i.e., the direction for one animal works for
other animal species because in Fig. 9 we find the directions from Wolf and Cat
classes, but we apply them to a Dog class. However, some directions do not nec-
essarily work for all animal species in the AFHQ because the transformations are
restricted by the dataset bias of individual animal classes (Jahanian et al., 2019)
(see Appendix A.3). Another interesting observation is how the Hat direction
(discovered for males) works logically but differently for females.

5.3 BigGAN: interpretable directions

BigGAN (Brock et al., 2018) samples a random vector z from a normal prior
distribution p(z) and maps it to an image. Since BigGAN’s intermediate layers
also take the random vector z as input (i.e., skip-z connections), the vector z
has the most significant effect on the generated output image. Hence, we should
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find the semantic directions in p(z) space. However, as p(z) is an isotropic distribution, it is difficult to
find useful directions from it (Härkönen et al., 2020). Therefore, similar to GANSpace, we first train the
SFVQ on the first linear layer (L) of BigGAN to search for interpretable directions within this space, and
afterward, we transfer these directions back to p(z) space. To this end, we sample 106 random vectors from
p(z) and generate their corresponding vectors in L space. We map these vectors (in L) to the learned SFVQ
codebook vectors such that each sample will be mapped to its closest codebook vector using Euclidean
distance. Therefore, for each codebook vector in L, we have its corresponding samples in p(z). Finally, for
each codebook vector in L, we compute its corresponding codebook vector in p(z) by taking the mean of
the vectors in p(z) which get mapped to this SFVQ codebook vector. We obtain the corresponding SFVQ
curve in p(z) by doing this operation for all codebook vectors. Now, we use this computed SFVQ codebook
(in p(z)) to interpret the latent space of BigGAN. Note that to compute the SFVQ curve for BigGAN, we
select a class label and keep it fixed.

We computed the SFVQ curve over different bitrates (from 2 to 12 bit) in the p(z) space of BigGAN for
golden retriever class and discovered some interpretable directions, which are shown in Fig. 9. Columns (a)
and (b) represent the discovered direction from two SFVQ subsequent codebook vectors, column (c) is the
test vector in the p(z) to which we apply the direction, and column (d) is the final result after applying
the direction. Similar to the GANSpace naming convention, the term Zi-Zj means we only manipulate the
skip-z connections within the range [i-j]. Apart from basic geometrical directions (Rotation and Zoom In),
we discovered some more specific directions such as Lay Down and Open Mouth as found in Yüksel et al.
(2021), and Add Grass as found in Härkönen et al. (2020). Note that the discovered directions by SFVQ for
golden retriever class are class-agnostic, i.e., they also work for other classes (see Appendix A.4).

5.4 Qualitative comparison

We compared our interpretable directions with GANSpace (Härkönen et al., 2020), LatentCLR (Yüksel
et al., 2021), and SeFa (Shen & Zhou, 2021) qualitatively and quantitatively. The reason for choosing these
methods is that their interpretable directions for StyleGAN2-FFHQ were readily available in their GitHub
repositories. Hence, we skipped other methods that were not trained on StyleGAN2-FFHQ or did not share
their directions. We focus on StyleGAN2-FFHQ for comparisons, as we planned to use the pre-trained
networks of Zhang et al. (2017); Karkkainen & Joo (2021); Jiang et al. (2021); Doosti et al. (2020); Deng
et al. (2019) for face attribute rating in our quantitative comparisons. For SeFa, there were no annotations
for the discovered directions of StyleGAN2-FFHQ. Hence, we used their interactive tool to examine their first
K = 25 semantics and identify their interpretable directions. In SeFa interactive tool, there were only three
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Figure 10: Subjective test results by asking 20 human subjects to rate the interpretable directions of our
proposed method, GANSpace, SeFa, and LatentCLR from best (Rank 1) to worst (Rank 4). These seven
directions are assessed using 100 random latent vectors, with 5 latent vectors assigned to each human subject.
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Smile: 𝜎 = 4

Hair Color: 𝜎 = 4

Rotation: 𝜎 = 4

Age: 𝜎 = 4

Gender: 𝜎 = 4

Bald: 𝜎 = 4

Race: 𝜎 = 4

Figure 11: Qualitative Com-
parison.

possible options for the layer-wise edits (W0-W1, W2-W5, W6-W13), but
to have a fair comparison, we further searched precisely and found the best
layer-wise edits for each direction. We provided the information of SeFa
interpretable directions in Appendix A.6.

Fig. 11 shows the qualitative comparison. We provided a similar compari-
son over 50 different random vectors in the Supplementary Material (shown
as SM in the rest of the paper). To have a fair comparison, we use the
same amount of shift (σ) toward each direction because, as mentioned in
Tzelepis et al. (2021), it is the advantage of a direction if it reaches the
desired change in the attribute within a shorter path. The image in the red
square is the initial test image to which we apply the changes. For the Smile
direction, our method effectively opens and closes the smile in both positive
and negative paths while maintaining the identity and age attributes with
minimal changes. Whereas GANSpace is highly entangled with the age at-
tribute and SeFa changes the identity. In Hair Color direction, our method
keeps the identity better than the others. However, GANSpace and SeFa
alter the face highlights, LatentCLR is highly entangled with gender, and
SeFa is highly entangled with age. For Age direction, our method covers a
wider range of ages than LatentCLR, while LatentCLR and SeFa are highly
entangled with gender, and SeFa alters the identity too much. For Gender
direction, GANSpace and SeFa are entangled with age, and our method
remains in the valid range of generations better than GANSpace. In Bald
direction, our method keeps the identity better than SeFa, while SeFa adds
beard to the face, and our method renders a better baldness than Latent-
CLR. To see a more comprehensive qualitative comparison, we encourage
the readers to make subjective comparisons with different random vectors
using our GitHub repository or to inspect subjective comparisons over 50
random vectors in SM.

We conducted a subjective test to compare the interpretable directions of
various methods over 100 different random vectors. For each random vector
and each direction, we generated the edited images with the steps of {−3σ,
−2σ, −1σ, 0σ, 1σ, 2σ, 3σ} for all methods, where σ = 2.67. We delivered
the generated images of 5 different random vectors to each of 20 human
subjects, and asked them to rate the interpretable directions by answering
this question: "Sort the methods that apply the desired change on the test
image convincingly, and simultaneously keep the other attributes of the test
image (especially the identity) fixed". In the case of M different methods,
the subject would rate them by assigning a number from {1, . . . , M}, where
the best is ranked 1 and the worst is ranked M . Fig. 10 shows the results of
the subjective test. Based on the results, our method clearly outperforms
the other methods for Smile, Hair Color, Age, Bald, and Race directions.
For Rotation and Gender directions, our method performs comparably to
GANSpace and SeFa, respectively.

5.5 Quantitative comparison
For quantitative comparison, we adopted the evaluation criteria and pre-
trained networks used in Tzelepis et al. (2021) and Aoshima & Matsubara
(2023)to rate an image’s attributes. We use Zhang et al. (2017) to spot
the face bounding box, FairFace (Karkkainen & Joo, 2021) to rate the age,
race, and gender attributes, CelebA-HQ (Jiang et al., 2021) to measure
the smile attribute, Hopenet (Doosti et al., 2020) to find the face direction
(yaw, pitch, roll attributes), and ArcFace (Deng et al., 2019) to evaluate
how much the face identity is preserved after shifting along a direction.
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Table 1: Quantitative comparison of interpretable di-
rections. Values in each row show the L1-normalized
correlation of each direction to the attributes. Best
values are shown in Bold, and values in red mean the
direction is correlated the most with a wrong attribute.
Direction Method Gender Age Smile Race Yaw Pitch Roll

Gender
GANSpace 0.63 0.12 0.047 0.13 0.0093 0.05 0.0074
SeFa 0.74 0.11 0.06 0.06 0.018 0.0056 0.01
SFVQ (Ours) 0.87 0.0027 0.037 0.039 0.011 0.031 0.0052

Age
LatentCLR 0.31 0.38 0.034 0.24 0.014 0.0049 0.0067
SeFa 0.48 0.25 0.081 0.14 0.0074 0.029 0.013
SFVQ (Ours) 0.11 0.37 0.14 0.018 0.09 0.24 0.057

Smile

GANSpace 0.047 0.53 0.0052 0.36 0.0005 0.057 0.0008
LatentCLR 0.15 0.15 0.17 0.1 0.052 0.32 0.056
SeFa 0.26 0.12 0.46 0.023 0.0011 0.12 0.0047
SFVQ (Ours) 0.31 0.078 0.4 0.077 0.022 0.052 0.061

Race SeFa 0.066 0.17 0.34 0.37 0.0057 0.027 0.025
SFVQ (Ours) 0.037 0.07 0.33 0.52 0.0015 0.031 0.0011

Rotation

GANSpace 0.11 0.037 0.0023 0.022 0.76 0.063 0.0032
LatentCLR 0.12 0.051 0.11 0.0027 0.67 0.032 0.01
SeFa 0.3 0.024 0.01 0.0049 0.51 0.15 0.0036
SFVQ (Ours) 0.084 0.013 0.16 0.021 0.58 0.07 0.072

Bald
LatentCLR 0.25 0.083 0.17 0.16 0.032 0.23 0.073
SeFa 0.24 0.32 0.053 0.31 0.024 0.013 0.043
SFVQ (Ours) 0.47 0.14 0.12 0.019 0.059 0.16 0.027

HairColor

GANSpace 0.006 0.084 0.47 0.4 0.012 0.014 0.0083
LatentCLR 0.33 0.099 0.27 0.22 0.0009 0.03 0.046
SeFa 0.027 0.4 0.43 0.08 0.02 0.013 0.027
SFVQ (Ours) 0.11 0.015 0.47 0.38 0.0022 0.012 0.019

We sample 103 vectors from N (0, 1) and generate
their corresponding latent vectors in the W space
of StyleGAN2. Following Tzelepis et al. (2021), to
assess a discovered direction for each latent vector,
we create a sequence of images by shifting the la-
tent vector for 20 steps in both positive and neg-
ative paths along that direction. Therefore, each
sequence contains 41 images, with the original in-
tact image positioned in the middle. Then, for
each image within this sequence, we use the above-
mentioned pre-trained networks to measure its at-
tributes. Next, we calculate the correlation between
the step indices (from 1 to 41) and each attribute’s
scores. Thus, for each direction, we obtain a vector
of seven correlation values (one per each attribute)
which is then L1-normalized, similar to Tzelepis
et al. (2021). Table 1 shows the results averaged
over 103 latent vectors for our method, GANSpace,
LatentCLR and SeFa. Values are shown in red if
the direction is correlated the most with a wrong
attribute.

Table 1 shows that for Gender direction, our method
works better than the others with a higher correla-
tion to gender attribute, whereas GANSpace and
SeFa are correlated with age and race attributes.
For the Age direction, our method has almost the
same correlation with the age attribute as LatentCLR, but is higher than SeFa. However, LatentCLR and
SeFa remarkably alter the gender and race attributes, which is undesirable. In contrast, our method modifies
the smile and pitch attributes, which are visually more acceptable (see Fig. 11). For Smile direction, SeFa
renders a higher correlation to the smile attribute than others. However, the smile direction of GANSpace
and LatentCLR methods are improperly correlated the most with age and pitch attributes, respectively. In
Rotation direction, similar to other methods, our method is mainly correlated with the yaw attribute but
with less correlation than GANSpace and LatentCLR. At the same time, it changes other face rotations’
attributes (i.e., pitch and roll) more than they do. Our Rotation direction causes fewer changes in gender
attributes compared to others, specifically SeFa. Note that in Table 1, if a method is not listed for a direction,
it means that direction does not exist for the method.

We also compare our method with others on how they preserve identity when shifting latent vectors for
various shift values in different directions. Table 2 provides the identity scores (averaged over 103 latent
vectors) that range from 0 to 1, such that a higher value means a higher similarity to the original test image
in terms of identity. We observe that our method maintains the identity better than others by a significant
margin for Smile, Race, and Hair Color directions. For the Gender direction, our method outperforms
GANSpace and is comparable to SeFa. In Age direction, our method performs comparably to LatentCLR
and SeFa. Based on qualitative comparisons (Fig. 11), since LatentCLR applies minimal changes to the face
compared to others, it gives higher identity scores for Rotation and Bald directions. Ignoring the LatentCLR
scores, our method performs comparably to GANSpace and SeFa in Rotation direction, and better than SeFa
for Bald direction. Furthermore, we computed the commutativity error (defined in Aoshima & Matsubara
(2023)) for our method, GANSpace, LatentCLR, and SeFa over all directions. As expected, all four methods
are commutative because they all apply linear transformations on the latent vectors. Ultimately, we believe
that the most effective way to compare the interpretable directions between different methods remains
subjective comparisons. Therefore, to better assess the efficiency of our discovered directions compared to
other methods, we encourage readers to make subjective comparisons with different random vectors using
our GitHub demo directory or to inspect subjective comparisons over 50 random vectors in SM.
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5.6 Ablation study on SFVQ bitrate

Table 2: Identity preservation scores of
interpretable directions for our proposed
method, GANSpace, LatentCLR, and SeFa.
Values in a row show the identity scores for
different shifts (σ). Best values are shown
in Bold.

Direction Method 1-4σ 5-8σ 9-12σ 13-16σ 17-20σ

Gender
GANSpace 0.85 0.58 0.39 0.22 0.078
SeFa 0.94 0.78 0.63 0.51 0.4
SFVQ (Ours) 0.93 0.76 0.61 0.47 0.35

Age
LatentCLR 0.93 0.73 0.53 0.39 0.29
SeFa 0.95 0.78 0.59 0.42 0.29
SFVQ (Ours) 0.94 0.76 0.56 0.39 0.25

Smile

GANSpace 0.94 0.76 0.57 0.41 0.29
LatentCLR 0.95 0.8 0.63 0.47 0.32
SeFa 0.93 0.78 0.62 0.47 0.35
SFVQ (Ours) 0.96 0.85 0.72 0.59 0.48

Race SeFa 0.93 0.7 0.48 0.33 0.22
SFVQ (Ours) 0.98 0.88 0.74 0.6 0.48

Rotation

GANSpace 0.93 0.77 0.62 0.51 0.42
LatentCLR 0.98 0.92 0.85 0.79 0.75
SeFa 0.93 0.77 0.62 0.5 0.4
SFVQ (Ours) 0.93 0.76 0.61 0.49 0.4

Bald
LatentCLR 0.96 0.86 0.73 0.61 0.51
SeFa 0.95 0.8 0.64 0.49 0.36
SFVQ (Ours) 0.96 0.84 0.7 0.55 0.41

HairColor

GANSpace 0.98 0.88 0.75 0.62 0.51
LatentCLR 0.96 0.81 0.63 0.47 0.36
SeFa 0.97 0.86 0.71 0.56 0.44
SFVQ (Ours) 0.99 0.97 0.94 0.89 0.83

We conducted an ablation study on the effect of different SFVQ
bitrates (ranging from 2 to 12 bit) on the interpretations of pre-
trained StyleGAN2 models on the FFHQ, AFHQ, and LSUN
Cars datasets. Regarding universal interpretation, for all bi-
trates, we observe the inherent structure in SFVQ’s subse-
quent codebook vectors, which share similar generative fac-
tors, such as rotation, background, and accessories, for FFHQ.
When increasing the bitrate, we see more diversity in the im-
ages (e.g., more identities for FFHQ) because we model the
latent space with more clusters (or codebook vectors). We
provide images corresponding to SFVQ codebooks from 2 to
8 bit in Appendix A.7.

Regarding the interpretable directions, a higher SFVQ bitrate
allows the curve to get more turned and twisted in the latent
space, increasing the chance of spotting more detailed or in-
tricate directions. Based on our investigations, the directions
that alter images more structurally can be found from lower
bitrates and vice versa. For example, for StyleGAN2-FFHQ,
we found rotation, gender and age directions from 2, 5, and
6 bit SFVQ, respectively. On the other hand, we detected the
directions that cause a partial change on the face, such as smile,
hair color, makeup, race, and bald from 12 bit SFVQ.

5.7 Joint interpretable directions

Rotation + Gender | W0-W2 & W4-W7 | 𝜎 = 2.4

Smile + Hair Color | W4-W4 & W8-W8 | 𝜎 = 2.6

Eyeglass + Anti-Bald | W2-W2 & W3-W6 | 𝜎 = 2.4

1𝜎 2𝜎 3𝜎

1𝜎 2𝜎 3𝜎

1𝜎 2𝜎 3𝜎

Test Image
Direction

Figure 12: Some examples of SFVQ joint
interpretable directions.

By observing images of the learned SFVQ curve (Fig. 8(a))
to find interpretable directions, we can also discover joint in-
terpretable directions from subsequent codebook vectors that
differ in multiple attributes. By joint, we mean to change, for
example, rotation and gender attributes simultaneously. Joint
directions are the directions in which multiple attributes are
entangled. Supervised methods cannot find joint directions
because they use pre-trained networks or labeled data with
respect to only one attribute. Furthermore, finding joint direc-
tions will be laborious for the unsupervised methods of Härkö-
nen et al. (2020); Shen & Zhou (2021); Voynov & Babenko
(2020); Yüksel et al. (2021); Tzelepis et al. (2021); Aoshima
& Matsubara (2023) because 1) their training strategy is not
designed for this task, 2) they have to blindly search over all
K detected directions and hope to find the direction to change
their desirable joint attributes. However, in our method, the
prior knowledge of potential directions obtained by observing the SFVQ curve helps to quickly identify the
desirable joint directions. Fig. 12 shows some joint directions found by our proposed method. Note that
the joint directions are not limited to these, as users can discover their desired directions by their own
inspections.

5.8 Controllable data augmentation

According to the training objective of SFVQ, to map input vectors onto the line connecting subsequent
codebook vectors, SFVQ has the property that its lines are mainly located within the distribution’s space.
This property is desirable for controllable data augmentation because we have many meaningful points
(located on the SFVQ curve) available to generate valid images. By looking at images corresponding to
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Figure 13: Generated images from 20 equally-spaced points on the line connecting two neighboring codebook
vectors of VQ and two subsequent codebook vectors of SFVQ trained on the W space of StyleGAN2 pre-
trained on FFHQ dataset.

the SFVQ curve in Fig. 8(a), we have an idea of the possible generations from each part of the curve. For
instance, to generate baby-aged faces, we select 20 equally-spaced points on the line connecting codebook
vectors of indices 6 to 7 in Fig. 8(a), and we plot the generations corresponding to these 20 points in the
middle row of Fig. 13. Similarly, we take 20 equally-spaced points on the line connecting two subsequent
codebook vectors of indices 15 and 16 in Fig. 8(a) and generate their corresponding images in the bottom
row of Fig. 13. We observe that all 20 generations contain the hat accessory for a male person.

We also take the line connecting two neighboring codebook vectors (under Euclidean distance) of a 5 bit VQ
and plot similar generations in the top row of Fig. 13. To obtain a more diverse representation of generations,
for all generations in Fig. 13, we added normal noise (N (0, 0.3)) to the selected points. As expected, all
generations of SFVQ consistently follow the properties of their corner points, such that they are all faces
of babies or males wearing hats. However, the generations for two neighboring codebook vectors of VQ do
not follow any specific rule as we observe changes in gender, age, and race among them. Thus, here, by
controllable, we mean that the users have control over what type of images with specific characteristics they
intend to generate.

6 Conclusions

Generative adversarial networks (GANs) are well-known image synthesis models widely used to generate
high-quality images. However, there is still insufficient control over generations in GANs because their latent
spaces act as a black box, making them hard to interpret. In this paper, we use the unsupervised space-filling
vector quantizer (SFVQ) technique to obtain a universal interpretation of the latent spaces of GANs and to
find their interpretable directions. Our experiments demonstrate that the SFVQ can capture the underlying
morphological structure of the latent space and discover more effective and consistent interpretable directions
compared to GANSpace, LatentCLR, and SeFa methods. SFVQ provides the user with proper control over
generating and manipulating images, and reduces the effort required to find the desired direction of a change.
SFVQ is a generic tool for modeling distributions that is neither restricted to any specific neural network
architecture nor any data type (e.g., image, video, speech, etc.).
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A Appendices

A.1 StyleGAN2: universal interpretation of the CIFAR10 dataset

As discussed in Sec. 5.1, when we initialize the SFVQ with N = 4 initial codewords and train it on the W
space of StyleGAN2 pre-trained on CIFAR10 dataset, about 25% of the learned codewords would model the
horse class (see Fig. 7(a)). To find out the reason, for each CIFAR10 class, we extracted 10 k latent vectors,
and computed three metrics: the mean and variance of Euclidean distances among all latent vectors, and the
sum of the eigenvalues of the latent vectors. Fig. 14 shows the computations of these three metrics for all
CIFAR10 different classes. According to the figure, the horse class takes the widest area of the latent space
while its latent vectors have the highest diversity compared to other classes. However, the computed metrics
for the horse class do not show a significant difference from other classes, and thus it does not conform to
the fact that it accounts for 25% of the learned codewords. Therefore, we train SFVQ with higher numbers
of initial codewords (N = {8, 16}), and we plot the generated images corresponding to the learned SFVQ
codebook in Fig. 15 and Fig. 16 where SFVQ was initialized with N = 8 and N = 16 codewords, respectively.
In these cases, we observe a more normalized proportion of CIFAR10 classes occupying the codebook, which
better aligns with the computed metrics in Fig. 14.
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Figure 14: (a) Mean and (b) variance of Euclidean distances among 10 k latent vectors of each CIFAR10
class, and (c) sum of the eigenvalues of the latent vectors in W space of pre-trained StyleGAN2.

Figure 15: Generated images from the codebook of a 6 bit SFVQ (N = 64) trained on W space of StyleGAN2
pre-trained on the CIFAR10 dataset, when SFVQ is initialized by N = 8 codewords.
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Figure 16: Generated images from the codebook of a 6 bit SFVQ (N = 64) trained on W space of StyleGAN2
pre-trained on the CIFAR10 dataset, when SFVQ is initialized by N = 16 codewords.

A.2 StyleGAN2: universal interpretation of the AFHQ dataset

Similar to what is discussed in Sec. 5.1 of the paper, we apply the SFVQ to capture a universal morphology
of the latent space, and we expect that subsequent codebook vectors in SFVQ refer to similar images. Hence,
we applied a 6 bit SFVQ on the W space of the StyleGAN2 model, which was pre-trained on the AFHQ
dataset. Images corresponding to the SFVQ’s codebook vectors are represented in Fig. 17. We can observe
that similar animal species are typically located adjacent to one another. In addition, there are some other
similarities among neighboring codebook vectors, such as change in rotation (from right to left) when moving
from index 0 to index 10, change in rotation (from left to right) when moving from index 26 to index 34,
light-colored animals for indices 22-25, bi-colored animals for indices 26-29, and baby-aged cats for indices
61-62.

Figure 17: Generated images from the codebook of a 6 bit SFVQ (N = 64) trained on W space of StyleGAN2
pre-trained on the AFHQ dataset.
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A.3 Class-agnostic directions for StyleGAN2 pre-trained on the AFHQ dataset

Direction

W6-W7

Figure 18: Applying Bicolor direction to
different animal species of AFHQ dataset.

According to what is discussed in Sec. 5.2 of the paper, in this
section, we aim to test whether and how the discovered direc-
tion of Bicolor (in Fig. 9 of the paper) is class-agnostic across
different AFHQ animal classes. To this end, we applied this di-
rection to all existing animal species in the AFHQ dataset and
represented the results in Fig. 18. We observe that this direc-
tion works well for the Cat and Dog classes because there is suf-
ficient data (i.e., cats and dogs with bicolored faces) within the
AFHQ dataset. Therefore, the learned latent space supports
this transformation. In addition, this transformation more or
less works for Wolf class, since Wolf looks like Siberian husky
(which exists in AFHQ dataset), and this transformation leads
the Wolf class to become similar to a Siberian husky. However,
the Bicolor direction does not work for other animal classes of
Fox, Leopard, Cheetah, Tiger, and Lion. The reason is that
the learned latent space is constrained by the dataset bias of
individual classes (Jahanian et al., 2019). In other words, the
learned latent space does not support this transformation for
them, as there are no images with a bicolored face from these
animal classes within the AFHQ dataset. The σ value deter-
mines the magnitude of the step we take toward the Bicolor
direction. To make sure whether this direction works for these
five animal classes, we used a larger σ value (bigger steps) for
them. We observe that even with larger steps, not only is
there no meaningful transformation effect in the desired direc-
tion, but also, in the very last step (3σ), the images become
unrealistic due to the presence of artifacts.

A.4 Class-agnostic directions for BigGAN pre-trained on the ImageNet dataset

As discussed in Sec. 5.3 of the paper, we find out that the discovered directions by SFVQ (in p(z) space
of BigGAN) for the golden retriever class are class-agnostic. It means that the detected directions also
work when applied to other data classes within the ImageNet dataset. To confirm this, we applied all five
directions found for the golden retriever (in Fig. 9 of the paper) on the husky class, and we illustrated the
results in Fig. 19. The image in the middle column (in red square) is the initial test image to which we apply
the directions, such that we step along both sides of a direction. According to the figure, all five directions
are valid for the husky class, resulting in meaningful and expected transformations.
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Figure 19: Class-agnostic directions; applying five SFVQ’s discovered directions for the golden retriever class
on the husky class using BigGAN pre-trained on the ImageNet dataset.

A.5 Subsidiary study: traveling salesman problem

Space-filling vector quantization (SFVQ) has some parallels with the classic traveling salesman problem
(TSP) (Flood, 1956) in bringing order to a set of codebook vectors. One could ask whether we can achieve a
better codebook arrangement than SFVQ by applying an ordinary vector quantization (VQ) and afterward,
use one of the traveling salesman solutions to reorganize VQ codebook vectors. The scenario of TSP involves
a list of cities (codebook vectors) and the distances between them, with the goal of discovering the shortest
possible route to visit each city only once. TSP is an NP-hard problem to solve. We can interpret these
cities as the codewords of a VQ codebook. If we learn an 8 bit VQ as usual and intend to rearrange the
codebook vectors to achieve the shortest route, then there are 256 ! possible permutations for rearrangement.
This is an astronomically large number (8.5 × 10506). It is thus practically infeasible to do an exhaustive
search for all possible permutations in most relatively high-bitrate cases of VQ. Hence, it is recommended
to use heuristic TSP solvers that have lower computational complexity, such as nearest neighbor (Johnson
& McGeoch, 1997), greedy (Johnson & McGeoch, 1997), and Christofides (Christofides, 1976).

To compare the performance of TSP heuristic solutions with the SFVQ, we examine their ability to model
three sparse sample distributions of circles, moons, and spiral in 3D space. We chose the distributions to
be sparse because it makes the task more challenging. We trained ordinary VQ and SFVQ with 9 bit (with
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identical initialization and hyper-parameter settings). After training the VQ, we rearranged its codebook
vectors using the nearest neighbor (NN) and Christofides TSP heuristic solvers. Fig. 20 demonstrates the
results such that the order in the space-filling line is shown with color coding (light to dark color = first to last
codebook vector) for both methods of VQ+TSP and SFVQ. Since the training objective of SFVQ is different
from VQ, SFVQ locates the codebook vectors such that the line connecting the subsequent codebook vectors
mainly desires to fill up the distribution space. As a result, the line ends up landing inside the distribution
space. To affirm this fact, compare the upper and lower parts of spiral dataset arranged by VQ+Christofides
and VQ+NN methods. VQ locates fewer codebook vectors for these two parts of the spiral data, and thus
we observe a narrow line that does not fill the distribution’s space appropriately. Furthermore, we notice
more unfavorable jumps (lines outside the distribution or lines breaking the arrangement) for VQ+TSP
methods than the SFVQ due to their improper codebook arrangement. Therefore, we generally observe that
the SFVQ achieves a much better codebook arrangement than VQ+TSP for all three distributions.

Figure 20: Comparison of the codebook arrangement property of SFVQ with ordinary VQ which is post-
processed by traveling salesman heuristic solvers over three sparse distributions.
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A.6 SeFa interpretable directions

Table 3: SeFa (Shen & Zhou, 2021) inter-
pretable directions.

Direction Semantic Index StyleGAN2 Layers
Gender 2 [4-6]
Rotation 5 [0-2]
Eyeglasses 8 [0-1]
Race 8 [6-11]
Age 9 [3-4]
Bald 15 [4-5]
Hair Color 18 [7-8]
Smile 21 [4-5]
Beard 21 [8-9]
Fat 22 [2-5]
Makeup 24 [6-7]

There were no annotations for SeFa (Shen & Zhou, 2021) in-
terpretable directions for StyleGAN2, which was pre-trained
on the FFHQ dataset. Therefore, we used the interactive tool
provided in SeFa’s GitHub repository and examined the first
K = 25 semantics of the StyleGAN2-FFHQ model. In the in-
teractive tool, there were only three options available (W0-W1,
W2-W5, W6-W13) to do the layer-wise edits and manipulate
the latent vector only for those layers. Hence, to obtain more
precise interpretable directions, we further searched for the best
layer-wise edits for each semantic (or interpretable direction).
We provided the details of SeFa’s interpretable directions in
Table 3.

A.7 Learned SFVQ codebooks for StyleGAN2 pre-trained on the FFHQ dataset

As mentioned in Sec. 5.6, we provide the learned SFVQ curves trained on the W space of pre-trained
StyleGAN2 on the FFHQ dataset here. Fig. 21 to Fig. 27 demonstrate the generated images from learned
SFVQ codebooks with the bitrates from 2 to 8 bit. We also provided similar figures for bitrates of 9 to
12 bit in our GitHub repository. The learned SFVQ codebooks and their corresponding generated images
for pre-trained StyleGAN2 on the FFHQ, AFHQ, and LSUN Cars for bitrates ranging from 2 to 12 bit are
available in our GitHub repository.

1 2 3 4
Figure 21: Codebook of a 2 bit SFVQ trained on W space of StyleGAN2 pre-trained on the FFHQ dataset.

1 2 3 4 5 6 7 8
Figure 22: Codebook of a 3 bit SFVQ trained on W space of StyleGAN2 pre-trained on the FFHQ dataset.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 23: Codebook of a 4 bit SFVQ trained on W space of StyleGAN2 pre-trained on the FFHQ dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 24: Codebook of a 5 bit SFVQ trained on W space of StyleGAN2 pre-trained on the FFHQ dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Figure 25: Codebook of a 6 bit SFVQ trained on W space of StyleGAN2 pre-trained on the FFHQ dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

Figure 26: Codebook of a 7 bit SFVQ trained on W space of StyleGAN2 pre-trained on the FFHQ dataset.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

Figure 27: Codebook of a 8 bit SFVQ trained on W space of StyleGAN2 pre-trained on the FFHQ dataset.
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A.8 SFVQ is not sensitive to training hyper-parameters

As discussed in Sec. 4, training of SFVQ and its interpretation ability is not sensitive to the training hyper-
parameters. To prove this claim, we trained the SFVQ on the intermediate latent space (W) of StyleGAN2
pre-trained on the CIFAR10 dataset over different SFVQ bitrates {6, 7, 8}, batch sizes {32, 64, 128}, and
learning rates {5.5e−4, 1e−3}. After learning the SFVQ codebook over these different hyper-parameter
settings, we plotted the generated images corresponding to the learned codebook in the figures from Fig. 28
to Fig. 45. Apart from the generated images, we also plotted the heatmap of distances between different
SFVQ codebook entries. According to all these figures, we see a clear arrangement in the SFVQ codebook
over all different settings, as there is an obvious order and distinction between different CIFAR10 data
classes, both in the generated images and the heatmaps. In other words, images from an identical data class
are organized into groups in both generated images and heatmap plots.

Figure 28: (a) Generated images from codebook of a 6 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=32 and learning rate=5.5e−4. (b) Heatmap of Eu-
clidean distances between all codebook vectors.

Figure 29: (a) Generated images from codebook of a 6 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=64 and learning rate=5.5e−4. (b) Heatmap of Eu-
clidean distances between all codebook vectors.

Figure 30: (a) Generated images from codebook of a 6 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=128 and learning rate=5.5e−4. (b) Heatmap of
Euclidean distances between all codebook vectors.
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Figure 31: (a) Generated images from codebook of a 6 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=32 and learning rate=1e−3. (b) Heatmap of Euclidean
distances between all codebook vectors.

Figure 32: (a) Generated images from codebook of a 6 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=64 and learning rate=1e−3. (b) Heatmap of Euclidean
distances between all codebook vectors.

Figure 33: (a) Generated images from codebook of a 6 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=128 and learning rate=1e−3. (b) Heatmap of Eu-
clidean distances between all codebook vectors.

Figure 34: (a) Generated images from codebook of a 7 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=32 and learning rate=5.5e−4. (b) Heatmap of Eu-
clidean distances between all codebook vectors.
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Figure 35: (a) Generated images from codebook of a 7 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=64 and learning rate=5.5e−4. (b) Heatmap of Eu-
clidean distances between all codebook vectors.

Figure 36: (a) Generated images from codebook of a 7 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=128 and learning rate=5.5e−4. (b) Heatmap of
Euclidean distances between all codebook vectors.

Figure 37: (a) Generated images from codebook of a 7 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=32 and learning rate=1e−3. (b) Heatmap of Euclidean
distances between all codebook vectors.

Figure 38: (a) Generated images from codebook of a 7 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=64 and learning rate=1e−3. (b) Heatmap of Euclidean
distances between all codebook vectors.
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Figure 39: (a) Generated images from codebook of a 7 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=128 and learning rate=1e−3. (b) Heatmap of Eu-
clidean distances between all codebook vectors.

Figure 40: (a) Generated images from codebook of a 8 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=32 and learning rate=5.5e−4. (b) Heatmap of Eu-
clidean distances between all codebook vectors.

Figure 41: (a) Generated images from codebook of a 8 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=64 and learning rate=5.5e−4. (b) Heatmap of Eu-
clidean distances between all codebook vectors.

Figure 42: (a) Generated images from codebook of a 8 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=128 and learning rate=5.5e−4. (b) Heatmap of
Euclidean distances between all codebook vectors.
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Figure 43: (a) Generated images from codebook of a 8 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=32 and learning rate=1e−3. (b) Heatmap of Euclidean
distances between all codebook vectors.

Figure 44: (a) Generated images from codebook of a 8 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=64 and learning rate=1e−3. (b) Heatmap of Euclidean
distances between all codebook vectors.

Figure 45: (a) Generated images from codebook of a 8 bit SFVQ trained on W space of StyleGAN2 pre-
trained on the CIFAR10 dataset when batch size=128 and learning rate=1e−3. (b) Heatmap of Eu-
clidean distances between all codebook vectors.
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