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Abstract

Vision-Language-Action (VLA) models, particularly diffusion-based architectures,
demonstrate transformative potential for embodied intelligence but are severely
hampered by high computational and memory demands stemming from extensive
inherent and inference-time redundancies. While existing acceleration efforts often
target isolated inefficiencies, such piecemeal solutions typically fail to holistically
address the varied computational and memory bottlenecks across the entire VLA
pipeline, thereby limiting practical deployability. We introduce EfficientVLA,
a structured and training-free inference acceleration framework that systemati-
cally eliminates these barriers by cohesively exploiting multifaceted redundancies.
EfficientVLA synergistically integrates three targeted strategies: (1) pruning of
functionally inconsequential layers from the language module, guided by an anal-
ysis of inter-layer redundancies; (2) optimizing the visual processing pathway
through a task-aware strategy that selects a compact, diverse set of visual tokens,
balancing task-criticality with informational coverage; and (3) alleviating temporal
computational redundancy within the iterative diffusion-based action head by strate-
gically caching and reusing key intermediate features. We apply our method to a
standard VLA model CogACT, yielding a 1.93× inference speedup and reduces
FLOPs to 28.9%, with only a 0.6% success rate drop in the SIMPLER benchmark.

1 Introduction

Building upon advances in multimodal understanding from models integrating vision and language [1,
2, 3, 4, 5], Vision-Language-Action (VLA) models enable transformative embodied intelligence.
These systems, such as OpenVLA [6], CogACT [7], π0 [8] and RT-2 [9], directly translate multimodal
inputs into executable actions, successfully tackling complex robotic manipulation and reasoning
tasks using large-scale datasets [10, 11]. Many cutting-edge VLAs couple a Vision-Language
Model (VLM) for scene and instruction parsing with a diffusion model to handle multi-modal action
distribution [7, 12, 13, 14]. However, the significant computational and memory overheads of these
Diffusion-based VLA architectures during the inference time pose critical barriers to their practical
deployment, particularly for real-time interaction on resource-constrained robotic platforms.

Diffusion-based VLA architectures typically comprise a vision encoder to extract features, a large
language model (LLM) [15, 16, 17, 18, 19] core for multimodal reasoning, and a diffusion-based
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Table 1: Module-wise inference characteristics of a baseline VLA model (CogACT, Left) compared to
our proposed EfficientVLA (Right). EfficientVLA demonstrates significant improvements in overall
inference speed and computational efficiency (FLOPs).

Vision Module Language Module Action Module
#Param (M) 802.3 6738.9 89.0

Vision Token 256 256 -
Denoising Steps - - 10

Inference Time (ms) 24.9 134.5 51.5
FLOPs (G) 405.50 3726.55 57.96

Vision Module Language Module Action Module
#Param (M) 802.3 3971.1 (↓41%) 89.0

Vision Token 256 56 (↓78%) -
Denoising Steps - - 2 (↓80%)

Inference Time (ms) 24.9 58.9 (↓56%) 26.2 (↓49%)
FLOPs (G) 405.50 792.58 (↓78%) 11.72 (↓80%)

(b) Layer-wise output cosine similarity (c) Timestep-wise output cosine similarity
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(a) Token-wise inference bottlenecks
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Figure 1: VLA inference bottleneck and redundancy analysis: (a) Visual token pruning impact on
FLOPs and inference time, revealing computation-bound and memory-bound regimes. (b) High
inter-layer cosine similarity of LLM hidden states, indicating depth-wise redundancy. (c) Temporal
cosine similarity of MLP/attention features in diffusion steps, showing computational redundancy.

action decoder to predicts the final actions through multiple denoising steps. While this modular
design underpins their powerful capabilities, it inherently results in substantial computational and
memory overhead. Our findings (Table 1) indicate that the language module and the iterative diffusion
head are primary contributors to overall latency and computational load. Furthermore, as illustrated
in Figure 1 (a), while visual token pruning initially reduces inference time in computation-bound
scenarios, its efficacy quickly diminishes as the system becomes memory-bound by the LLM.

Prior VLA acceleration efforts have largely focused on isolated tweaks, delivering minimal overall
gains. These fragmented approaches often fail because they ignore the integrated nature of VLA,
where optimizing one module in isolation merely shifts bottlenecks. Gains are limited by unaddressed
inefficiencies elsewhere, such as the memory demands of LLM or the computational intensity of
action head. For example, methods like TinyVLA [14] and DeeR-VLA [20] focus on specialized
model architectures rather than broadly applicable inference acceleration frameworks for pre-trained
VLAs. Other approaches, such as Mole-VLA [21], tackle LLM layer redundancy but require costly
retraining and overlook other pipeline stages. Similarly, VLA-Cache [22] caches static visual
tokens but provides limited speedup, constrained by the significant memory footprint of LLM and
computational demands of the action head. Consequently, these existing approaches fall short of
providing a truly holistic solution to navigate the complex landscape of VLA inefficiencies.

To develop a more effective acceleration strategy, we systematically analyze the inference characteris-
tics and multifaceted redundancies within each VLA module. In many Diffusion-based VLAs, the
diffusion action head operates as a separate module, guided by features extracted from the VLM. This
separation may underutilize the full reasoning capacity of VLM for action generation, questioning the
necessity of its entire scale. As illustrated in Figure 1 (b), the language module demonstrates shows
considerable depth-wise representational redundancy with high inter-layer hidden state similarity. The
visual processing pathway exacerbates this issue by processing superfluous tokens, characterized by
low task-relevance or high informational overlap due to visual similarity, which strains computational
resources and intensifies the memory-bound condition of LLM. As shown in Figure 1 (c), the iterative
diffusion action head displays significant temporal redundancy. The high similarity of its intermediate
features across adjacent denoising steps implies extensive and near-static recomputations.

Motivated by this, we introduce EfficientVLA, a structured, training-free acceleration framework for
Diffusion-based VLAs that systematically targets these issues. Using a similarity-derived importance
metric to target the primary memory bottleneck of the language module and its observed depth-wise
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redundancy (Figure 1 (b)), EfficientVLA employs a similarity-derived importance metric to prune
functionally inconsequential layers, thus reducing the depth of the model and the demands for memory
without retraining. To manage the initial computational load from visual inputs before the memory
of LLM limit is reached (Figure 1 (a)), our visual token pruning strategy tackles both task-relevant
and inherent image redundancies by first selecting critical task-aligned tokens, then augmenting this
set to ensure representational diversity while maintaining high task relevance. Lastly, EfficientVLA
addresses temporal redundancy in the compute-intensive action generator (highlighted by high feature
similarity across timesteps, Figure 1 (c)) by caching and reusing intermediate attention and MLP
outputs, thus curtailing redundant computations. This synergistic, structured approach provides a
more holistic alleviation of GPU compute and memory bottlenecks than isolated optimizations.

The main contributions of this work are summarized as follows:

1. We present a systematic analysis identifying critical computational and memory-bound bottlenecks,
alongside multifaceted redundancies within contemporary Diffusion-based Vision-Language-
Action (VLA) architectures, thereby motivating the need for structured acceleration.

2. We propose EfficientVLA, a novel training-free, structured inference acceleration framework that
synergistically prunes redundant layers from the language module based on their informational
impact and strategically selects a compact, task-focused subset of visual tokens by considering
both VLA task relevance and inherent image feature diversity.

3. Our framework further enhances efficiency by exploiting temporal redundancies in the diffusion-
based action head, introducing a caching mechanism for intermediate attention and MLP computa-
tions during the iterative denoising process.

4. We demonstrate the efficacy of EfficientVLA through extensive experiments on the CogACT in
the SIMPLER environment [23], achieving a 1.93× inference speedup and reducing FLOPs to
28.9%, all while incurring a minimal accuracy degradation of only 0.6%. This will facilitate the
application of large-scale VLAs on the resource-constrained robotics platforms in the real world.

2 Related Work

Vision-Language-Action (VLA) Models. Vision-Language-Action models [6, 20, 24, 25, 26, 27, 28,
29] extend Vision-Language Models (VLMs) [3, 30, 31, 32, 33] by incorporating action generation,
bridging the gap between perception and action. These models enable machines to understand visual
and textual inputs and generate corresponding actions for tasks [24, 34] such as robotic manipulation
and object retrieval. VLA models typically use pretrained VLMs [31] to encode visual and linguistic
data into a shared representation, from which actions are generated either as discrete tokens or
continuous values. A prominent recent trend within VLA is the adoption of diffusion models for
generating coherent continuous action sequences. This paradigm is exemplified by models such as
CogACT [7], DexVLA [13], DiVLA [12], π0 [8], and TinyVLA [14]. Many of these diffusion-based
VLAs employ a componentized design: the foundational VLM processes visual and linguistic inputs
to produce a condensed feature representation, which then conditions a distinct diffusion-based action
module responsible for the iterative generation of precise action trajectories. This often involves the
VLM output steering the denoising process within the specialized action decoder.

Efficient Vision-Language-Action Models. The computational complexity of VLMs [35, 36, 37, 38]
poses significant challenges for their real-time deployment, particularly in applications such as robotic
control that require rapid decision-making. To address this issue, recent efforts to accelerate VLA
models have been primarily categorized into training-aware and training-free methods. Training-aware
approaches, such as RoboMamba [39], EfficientVLM [40], and DeeR-VLA [20], focus on optimizing
model architectures or applying compression techniques followed by retraining, achieving significant
speedups while maintaining performance. For instance, DeeR-VLA reduces computational costs by
leveraging dynamic reparameterization and efficient pruning strategies, which enable more flexible
and scalable model deployment. Similarly, For example, Mole-VLA [21] reduces computational costs
by dynamically activating only a subset of model layers based on task-specific needs. In contrast,
training-free methods, such as VLA-Cache [22], enhance efficiency by reusing previously computed
results for unchanged tokens between consecutive frames, which is particularly beneficial in scenarios
with minimal variation in visual input.
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Figure 2: Overview of the EfficientVLA framework, our training-free, structured approach to
accelerate Diffusion-based VLAs. It employs: (1) pruning of redundant language module layers; (2)
VLA task-aware visual token selection balancing task relevance and informational diversity; and (3)
temporal caching of intermediate featuresin the diffusion action head.

3 Method

3.1 Preliminaries: Vision-Language-Action Models

Vision-Language-Action (VLA) models represent a class of multimodal systems designed to bridge
perception, language understanding, and robotic action. These models typically process image
observations and natural language instructions through a sequence of specialized modules to generate
executable action sequences. The initial stage of our basic VLA model employs a Vision Module,
comprising powerful pre-trained encoders DINOv2 [41] and SigLIP [42], to transform the raw
visual input Oimg into a set of rich feature embeddings FV . These visual features FV , along with
tokenized language instructions, are then ingested by a language model backbone. This LLM
performs multimodal fusion and contextual reasoning to derive a task-oriented representation or
conditioning signal, FV L, which encapsulates the understanding of the scene and the instructed goal.
Finally, a Diffusion-based Action Head takes the cognition feature extracted from the output feature
FV L as input and predicts the final action space of a gripper with 7 degrees of freedom (DoF).

3.2 Vision-Language Model Pruning

3.2.1 Layer Redundancy Analysis

The language module within VLA models, typically a multi-layer Transformer decoder, is critical
for multimodal reasoning but often introduces substantial computational overhead. Each layer ℓ
in such a transformer updates its input hidden state x(ℓ) ∈ Rd×S via a residual transformation:
x(ℓ+1) = x(ℓ) + f(x(ℓ), θ(ℓ)), where f(·) is the layer-specific function with parameters θ(ℓ), d is the
hidden dimension, and S is the sequence length. Our empirical analysis, illustrated in Figure 1 (b),
reveals significant depth-wise representational redundancy within this language module component.
Specifically, we observe high cosine similarity between the input x(ℓ) and output x(ℓ+1) states for
numerous, particularly deeper layers. This indicates that the effective transformation f(x(ℓ), θ(ℓ))
imparted by these layers is minimal, rendering them functionally less critical and prime candidates
for pruning to enhance inference efficiency with negligible impact on task performance.

3.2.2 Importance-Driven Non-Contiguous Layer Pruning

To address the identified depth-wise redundancy within the language module of VLA models, we first
rigorously quantify the functional importance of each layer. Our approach aims to identify layers that
contribute minimally to the transformation of hidden state representations, rendering them candidates
for pruning. We define the importance score I(ℓ) for a given layer ℓ based on the principle that a layer
effecting substantial change to its input is more critical than one whose output closely mirrors its
input. Specifically, I(ℓ) is quantified as one minus the average cosine similarity between its input
and output hidden states across a representative dataset D of VLA training samples and all L token
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positions within each sample:

I(ℓ) = 1− 1

|D|

|D|∑
i=1

 1

L

L∑
j=1

x
(ℓ)
i,j · x

(ℓ+1)
i,j

∥x(ℓ)
i,j ∥2∥x

(ℓ+1)
i,j ∥2

 (1)

where x
(ℓ)
i,j ,x

(ℓ+1)
i,j ∈ Rd denote the input and output hidden state vectors, respectively, at position j

of sample i for layer ℓ. A high cosine similarity signifies a minimal transformative effect by the layer
function f(x(ℓ), θ(ℓ)), resulting in a low importance score I(ℓ) and indicating functional redundancy.

Based on these importance scores, we employ a non-contiguous pruning strategy. For an LLM
comprising N layers, the importance score I(ℓ) is computed for every layer ℓ ∈ {1, . . . , N}. These
scores are then sorted in ascending order, yielding an ordered list of layer indices Lranked =
[ℓ(1), ℓ(2), . . . , ℓ(N)] such that I(ℓ(1)) ≤ I(ℓ(2)) ≤ · · · ≤ I(ℓ(N)). Subsequently, the first n layers from
this list, {ℓ(1), ℓ(2), . . . , ℓ(n)}, are selected for removal from the model.

3.3 Task-Relevance and Diversity-Driven Visual Token Pruning

Visual token streams processed by VLA models, despite their rich informational content, frequently
exhibit significant redundancy, imposing substantial computational and memory overhead. This
redundancy typically manifests in two primary forms: (i) tokens possessing low relevance to the
specific VLA task objectives and (ii) tokens that are informationally duplicative due to inherent visual
similarities within the input. To counteract these distinct forms of superfluity, we introduce a novel,
training-free, VLA task-aware visual token pruning methodology. Our approach strategically distills
a compact yet maximally informative subset of visual tokens, Vpruned ⊂ V of a predetermined size
Kfinal (from an initial set of Ntotal token embeddings V = {v1, v2, . . . , vNtotal

} derived from the
input image). This is achieved by first anchoring the selection with task-critical tokens identified via
attention analysis, and subsequently augmenting this core set by judiciously balancing continued task
relevance with the explicit promotion of feature diversity through similarity measures. The retained
visual tokens for inference can be found in the supplementary material.

3.3.1 Quantifying Task Relevance

To guide visual token pruning, we quantify the task relevance for each initial visual token vi (from a
set of Ntotal) by leveraging cross-attention scores from selected VLM layers. These scores capture
the attention from vi towards Lctx task-defining contextual embeddings (e.g., language instructions).
Let A(h)

i,j denote the attention from visual token vi to the jth contextual token in the hth attention
head (of H total heads). The raw task relevance score ri for vi is computed by first averaging
attention contributions across all H heads for each visual-contextual pair (i, j), and then summing
these averaged attentions over all Lctx contextual elements:

ri =

Lctx∑
j=1

(
1

H

H∑
h=1

A
(h)
i,j

)
(2)

These raw scores ri, signifying each token’s overall engagement with the task context, are sub-
sequently normalized (e.g., via min-max scaling) to standardized scores si ∈ [0, 1] for robust
comparison and subsequent token selection.

3.3.2 Selection of Key Task-Relevant Tokens

Armed with the normalized task relevance scores {si}, the first phase of pruning identifies an initial
set of Kkey visual tokens (e.g., Kkey empirically set between 4 and 8) that demonstrate the highest
relevance to the VLA task. These tokens constitute the core and indispensable visual token set, Vkey:

Vkey = {vi ∈ V | si is among the top Kkey scores in {sk}Ntotal

k=1 } (3)

The tokens in Vkey are unconditionally retained in Vpruned, forming a foundational scaffold of
visual cues deemed essential for task comprehension and successful execution. The set of remaining
candidate tokens for further consideration is denoted as Vrem = V \ Vkey .
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3.3.3 Augmentative Selection Balancing Relevance and Diversity

To supplement the core set Vkey and achieve the target final token count Kfinal, an additional
Kaug = Kfinal − Kkey tokens are meticulously selected from Vrem. This crucial augmentation
phase is guided by a ratio α ∈ [0, 1], which orchestrates a hybrid selection strategy that concurrently
promotes continued emphasis on task relevance and the introduction of informational diversity.

Task-Driven Augmentation. A fraction of the augmentation quota, specifically Ktask = ⌊α·Kaug⌋
tokens, is selected from Vrem by further prioritizing tokens based on their high task relevance scores
si. Vtask reinforces the task-centric nature of the pruned representation by incorporating additional
tokens that, while not part of the initial Kkey elite, still exhibit strong relevance signals. These tokens
are added to the selection, and the pool of remaining candidates is updated: Vrem ← Vrem \ Vtask.

Diversity-Driven Augmentation. The remaining Kdiv = Kaug − Ktask tokens are selected
from the updated Vrem with the explicit objective of maximizing feature diversity relative to the
key selected tokens. This step is vital for capturing a broader spectrum of visual information and
mitigating inherent redundancies not addressed by task relevance alone. For each candidate token
vj ∈ Vrem, its dissimilarity to the set Vkey is computed. A common measure is the cosine distance,
ensuring that selected tokens are distinct in the embedding space:

Diversity(vj , Vkey) = 1− max
vk∈Vkey

vj · vk
∥vj∥2∥vk∥2

(4)

The Kdiv tokens from Vrem exhibiting the highest dissimilarity scores (i.e., those maximally different
from already selected tokens) are chosen to form the set Vdiv . This targeted inclusion of diverse tokens
ensures the final selection is not overly specialized and retains a richer contextual understanding.

Final Pruned Visual Token Set. The comprehensive set of visual tokens retained after pruning is
the union of these strategically selected components:

Vpruned = Vkey ∪ Vtask ∪ Vdiv (5)

This final set Vpruned, of cardinality Kfinal, is subsequently utilized for all downstream processing
within the VLA model. This systematic reduction in visual sequence length significantly alleviates
computational demands while preserving critical task-specific and diverse visual information.

3.4 Caching Intermediate Features in Action Prediction

Generating high-fidelity action sequences with Diffusion-based VLA models involves an iterative
denoising process that demands significant computation due to repeated self-attention and MLP
computations over T timesteps. We observe strong temporal coherence in the intermediate features
produced during action generation (Figure 1 (c)), indicating substantial redundancy across timesteps.
To address this inefficiency and accelerate the action generation phase, we propose a static caching
mechanism. This strategy periodically recomputes and caches critical intermediate attention and
MLP output at a fixed interval N , reusing these cached values for the intervening time steps in
the generation of action sequences. This selective computation aims to significantly reduce the
computational cost associated with generating the action sequence while preserving its quality.

3.4.1 Feature Generation and Temporal Coherence in DiT Blocks

Let t denote the current denoising timestep, typically iterating from an initial Tstart down to 1. Within
each DiT block at timestep t, the input features zt (which may incorporate cognitive features ft from
upstream VLM modules and the current noise estimate) are processed sequentially by a self-attention
module and an MLP module to produce intermediate hidden states:

hattn
t = Self-Attn(zt) (6)

hmlp
t = MLP(hattn

t + zt) (7)

These features, hattn
t and hmlp

t , are fundamental to the denoising capacity of the diffusion model. Our
observation of their high temporal coherence—meaning hmodule

t ≈ hmodule
t−1 for many t and module

types—motivates their periodic caching and reuse.
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Table 2: Performance of EfficientVLA on the CogACT versus the other baselines in the SIMPLER
environment. Settings vary by retained LLM layers (L) and visual tokens (T). Random Dropping
denotes a method involving the random retention of 112 visual tokens.

SIMPLER Method Training-free PickCan MoveNear Drawer DrawerApple Average FLOPs↓ Speedup↑ Params (B)

Visual
Matching

CogACT - 91.3% 85.0% 71.8% 50.9% 74.8% 100.0% 1.00× 7.63
Random Dropping ✓ 9.7% 20.4% 53.5% 0.0% 20.9% 58.5% 1.20× 7.63

FastV ✓ 92.6% 81.4% 69.8% 52.4% 74.1% 42.0% 1.21× 7.63
VLA-Cache ✓ 92.0% 83.3% 70.5% 51.6% 74.4% 80.1% 1.38× 7.63

EfficientVLA (L=28, T=112) ✓ 95.3% 83.3% 70.3% 56.5% 76.4% 45.1% 1.59× 5.87
EfficientVLA (L=28, T=56) ✓ 94.7% 82.4% 69.8% 55.4% 75.5% 32.9% 1.71× 5.87

EfficientVLA (L=22, T=112) ✓ 94.0% 82.1% 69.2% 54.6% 75.0% 38.2% 1.78× 4.86
EfficientVLA (L=22, T=56) ✓ 93.3% 81.3% 68.2% 53.8% 74.2% 28.9% 1.93× 4.86

Variant
Aggregation

CogACT - 89.6% 80.8% 28.3% 46.6% 61.3% 100.0% 1.00× 7.63
Random Dropping ✓ 4.0% 16.1% 15.6% 0.0% 8.9% 58.5% 1.20× 7.63

FastV ✓ 91.4% 78.6% 27.6% 50.6% 62.1% 42.0% 1.19× 7.63
VLA-Cache ✓ 91.7% 79.3% 32.5% 45.8% 62.3% 82.6% 1.37× 7.63

EfficientVLA(L=28, T=112) ✓ 94.8% 77.6% 28.4% 51.9% 63.2% 45.1% 1.57× 5.87
EfficientVLA (L=28, T=56) ✓ 94.4% 77.2% 27.6% 51.3% 62.6% 32.9% 1.69× 5.87

EfficientVLA (L=22, T=112) ✓ 93.9% 76.4% 27.3% 50.6% 62.1% 38.2% 1.76× 4.86
EfficientVLA (L=22, T=56) ✓ 93.2% 75.8% 26.9% 49.2% 61.2% 28.9% 1.91× 4.86

3.4.2 Static N-Step Caching Implementation

We define a cache interval N (1 ≤ N < Tstart). At the initial timestep t = Tstart, the features
hattn
Tstart

and hmlp
Tstart

are computed via Equations 6 and 7 and stored in a persistent cache, denoted
Cattn and Cmlp. For any subsequent timestep t < Tstart, these features are recomputed and the
caches are updated if and only if t (mod N) = 0 (assuming t > 0 and t aligns with desired multiples
for caching, e.g., Tstart, Tstart −N,Tstart − 2N, . . . ). Thus, for such recomputation timesteps:

Cattn ← Self-Attn(zt) (8)
Cmlp ← MLP(Cattn + zt) (9)

And the outputs for this step are hattn
t = Cattn and hmlp

t = Cmlp. In all other timesteps, where t
(mod N) ̸= 0, the computationally intensive Self-Attn and MLP operations are entirely bypassed.
Instead, the required features are directly retrieved from the most recently populated cache:

hattn
t ← Cattn (when t (mod N) ̸= 0) (10)

hmlp
t ← Cmlp (when t (mod N) ̸= 0) (11)

This static caching schedule effectively prunes the execution of these core modules for N − 1 out of
every N timesteps post-initialization, leading to a substantial reduction in floating-point operations
and latency for the action generation component of the VLA. The choice of N allows for a tunable
trade-off between acceleration and the fidelity of the generated actions, as reusing features for longer
intervals might introduce slight deviations if underlying representations were to change rapidly.

4 Experiment

4.1 Experimental Settings

Simulation Implementation Details. To assess our VLA model, we utilize the SIMPLER environ-
ment [23], a simulation-based benchmark for table-top manipulation. SIMPLER is designed to closely
emulate real-world dynamics for robots such as the Google Robot and WidowX, demonstrating robust
alignment between simulation and real-world performance. The VLA model in this setup takes
224×224 RGB image observations and natural language task instructions (e.g., "Pick coke can")
as input and outputs a sequence of actions in 7-DoF Cartesian space. The SIMPLER supports two
evaluation configurations: Visual Matching, which prioritizes fidelity to real-world appearances, and
Variant Aggregations, which incorporates diverse conditions such as altered lighting, backgrounds,
and surface textures. For the Google robot, SIMPLER provides both two evaluation settings, each
featuring the same four tasks: 1) Pick coke can; 2) Move near; 3) Open/close drawer; and 4) Open
top drawer and place apple. Success rate is used as the evaluation metric.

Baselines. Our primary experimental validation of EfficientVLA is performed on the CogACT [43],
which integrates powerful vision encoders (DINOv2 [41] and SigLIP [42]), a Llama2-7B [15]
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Table 3: Scalability Analysis: We evaluate mean success rate and inference time in a simulation
environment of visual matching across various model sizes. Our EfficientVLA configuration maintains
L = 22 and T = 56.

SIMPLER Model Action-Params Methods Average Inference time (s) Total-Params (B)

Visual
CogACT-Small 13M

CogACT 73.3% 0.2156 7.55
EfficientVLA 72.6% 0.1173 4.78

Matching
CogACT-Base 89M

CogACT 74.8% 0.2342 7.63
EfficientVLA 74.2% 0.1213 4.86

CogACT-Large 308M
CogACT 76.7% 0.2628 7.85

EfficientVLA 76.1% 0.1312 5.08

language module for multimodal reasoning, and a Diffusion Transformer (DiT) for generating action
trajectories. We benchmark against relevant baseline methodologies. These include a Random
Dropping approach, where 112 visual tokens are retained uniformly at random, to evaluate the
benefits of our guided vision token pruning. We further compare with FastV [44], a notable approach
focused on accelerating inference by pruning redundant visual tokens, and VLA-Cache [22], which
leverages temporal analysis to cache static tokens across timesteps. The experimental results and
model details for π0 on the LIBERO [45] can be found in the Appendix.

Implementation Details. For EfficientVLA, in addition to layer pruning, we further compressed the
model parameters by adopting the PruneNet [46] configuration for LLM compression. Specifically,
we applied a sparsity of 25% to the MLP layers of all Transformer blocks. For visual token pruning,
we started from the 2nd Transformer layer with a ratio α = 50% and Kkey = 4 for key task-critical
tokens. Furthermore, the cache interval was set to 5. All experiments were conducted on NVIDIA
A40 GPUs, and the inference time was measured as the average single-step inference duration. More
details can be found in the supplementary material.

4.2 Results on Simulation Environment

Main Results on SIMPLER. Table 2 details the performance of our structured, entirely training-free
pruning method in the SIMPLER environment. Our approach consistently excels across configurations
retaining 22/28 layers and 56/112 visual tokens. For instance, pruning 10 layers with 112 tokens
surpasses both CogACT and VLA-cache in success rate and inference speed. Remarkably, on the pick
coke can task, pruning 36% of parameters paradoxically improved the success rate from 91.3% to
94.0%, highlighting significant parameter redundancy in the VLA model. Conversely, random token
dropping to 112 tokens drastically reduces the average success rate to 20.9%, affirming the superiority
of our guided selection strategy. Furthermore, a 22-layer, 56-token setup achieved a 71.1% reduction
in FLOPs with merely a 0.6% drop in average success rate, demonstrating exceptional efficiency. In
comparision, approaches like FastV [44] (T = 56) show that solely optimizing visual tokens yields
only a 1.21× speedup due to unaddressed memory bottlenecks, despite acceptable task performance.

Efficiency Analysis. As demonstrated in Table 2 and Figure 3, our proposed method significantly
outperforms previous baselines, achieving a 71.1% reduction in FLOPs and a 1.93× speedup in
inference time. In stark contrast, VLA-cache, when applied to the CogACT model, only reduces
FLOPs by 19.9% and achieves a mere 1.38× speedup. This disparity substantiates our prior anal-
ysis: VLA-cache, functioning solely as a cache for visual tokens between adjacent time steps, is
inherently constrained by memory bounds, thereby limiting the efficacy of token-only acceleration.
Consequently, the structured framework of our system offers distinct advantages, highlighting our
method’s superior capability in balancing computational efficiency with robust performance.

Scalability Evaluation. Table 3 illustrates the scalability of our proposed method across different
sizes of the CogACT model. With the primary difference among the three models being the param-
eter size of their action modules, the results reveal that our method’s effectiveness becomes more
pronounced with larger models. Specifically, on the CogACT-Large model, our approach achieves a
2.0× inference speedup, while performance only marginally decreases from 76.7% to 76.1%. This
increased impact is because action modules in larger models, having more parameters, inherently
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CogACTCogACT

EfficientVLA-28

EfficientVLA-22

EfficientVLA-28

EfficientVLA-22

FLOPs (T)Inference Time (s)

1.93×

1.71×

↓71.1%

↓67.1%

Figure 3: Efficiency analysis in simulation, comparing FLOPs and inference time of our Effi-
cientVLA variants against the original model backbone. EfficientVLA-22 and EfficientVLA-28
denote configurations retaining 22 and 28 LLM layers, respectively.

Table 4: Performance impact of varying visual token reduction ratios (Left) and diffusion action head
cache intervals (Right) as applied within our EfficientVLA framework.

Token 56 72 96 112 256
Ratio 77.8% 71.8% 62.5% 56.2% 100.0%

Accuracy 95.0% 95.3% 95.0% 96.0% 91.3%
Inference time (s) 0.1866 0.1870 0.1889 0.1956 0.2342
FLOPs (T) 1.76 1.96 2.25 2.45 4.19

Cache Interval 1 2 3 4 5

Accuracy 91.3% 94.0% 93.7% 90.3% 93.7%
Inference time (s) 0.2342 0.2031 0.1987 0.1953 0.1909
FLOPs (T) 4.190 4.161 4.155 4.150 4.144

Table 5: Ablation study on our EfficientVLA, where ’Layer’ denotes applying only the LLM layer
pruning component, and ’MLP’ refers to a distinct strategy of compressing 25% of MLP weights
within each layer.

Model Compression Visual Token Action Success Inference Speedup↑
Layer MLP Pruning Cache Rate Time (s)

Ex0 ✗ ✗ ✗ ✗ 91.3% 0.2342 1.00×
Ex1 ✗ ✗ ✓ ✗ 95.6% 0.1866 1.25×
Ex2 ✗ ✗ ✗ ✓ 93.7% 0.1909 1.23×
Ex3 ✓ ✗ ✓ ✗ 85.7% 0.1604 1.46×
Ex4 ✓ ✓ ✗ ✗ 92.3% 0.1638 1.43×
Ex5 ✓ ✓ ✗ ✓ 93.3% 0.1387 1.69×
Ex6 ✗ ✗ ✓ ✓ 95.3% 0.1592 1.47×
Ex7 ✓ ✓ ✓ ✓ 93.3% 0.1213 1.93×

exhibit longer inference times, thus allowing our method to yield more significant accelerations.
These findings also underscore the robustness of our method across models of various scales.

Impact of Token Reduction Ratio and Cache Interval. Table 4 details our experiments on the pick
coke can task reveal distinct impacts of component-specific optimizations. Aggressively pruning
visual tokens, down to retaining only 22%, effectively lessens computational load for substantial,
near-lossless acceleration. However, inference speed gains largely saturate beyond this point, with
further token reduction yielding only marginal improvements, thereby revealing dominant system-
level performance bottlenecks. Separately, for the diffusion-based action generator, we observed that
increasing the cache reuse interval N for intermediate attention and MLP features progressively and
significantly accelerates action trajectory generation.

4.3 Ablation Study

We conducted an ablation study on the components of our proposed framework, using the pick
coke can task as an illustrative example. As suggested by prior analysis (e.g., Figure 1 (a), solely
optimizing visual tokens for VLA inference tasks yields limited acceleration; retaining just 56 tokens
resulted in a mere 1.23× speedup, although the success rate paradoxically rose from 91.3% to 95.6%.
This underscores the inherent limitations of token-centric optimization methods, such as VLA-cache,
and affirms that achieving substantial VLA inference acceleration viable for hardware deployment ne-
cessitates a more model-centric strategy. In contrast, our model compression approach—concurrently
pruning layers and compressing MLP in the remaining layers—achieved a 1.43× speedup. Critically,
when all components were integrated, a 1.93× speedup was realized, and the overall task success
rate still saw an improvement of 2% points. These collective results highlight the imperative and
significance of adopting a structured framework for effective VLA inference acceleration.
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5 Conclusion

In this paper, we addressed the critical challenge of high computational and memory overheads
that impede the practical deployment of powerful Diffusion-based Vision-Language-Action (VLA)
models. We proposed EfficientVLA, a novel training-free, structured framework to accelerate
VLA models. Our framework enhances efficiency by synergistically pruning redundant layers of
language module identified by their minimal impact on transforming hidden states and by strategically
selecting a compact set of visual tokens that balances VLA task relevance with inherent feature
diversity. Furthermore, it optimizes the action module by caching critical intermediate computations
across its iterative denoising steps. We demonstrate the efficacy of EfficientVLA through extensive
experiments on the CogACT in the SIMPLER environment [23], achieving a 1.93× inference speedup
and reducing FLOPs to 28.9%, all while incurring a minimal accuracy degradation of only 0.6%.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We believe that our abstract and introduction accurately reflect and highlight
the contributions of our paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have discussed the limitations and future work in supplementary material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper focuses on experimental approaches and acceleration effect, and it
does not include theoretical proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided the detailed experimental settings in the Section 4.1 and also in
the supplementary material to ensure reproducibility of our method.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This paper uses public datasets and models, and the specific links are given in
the additional materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided the detailed experimental settings in the Section 4.1 and also in
the supplementary material to ensure reproducibility of our method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We follow the settings of previous methods where the result of a single run is
provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided the detailed experiments compute resources in the Section 4.1.
All of our experiments were conducted on a single NVIDIA A40 GPUs.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics in preparing our manuscript.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Provided in the supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: This article is a training-free acceleration method, using open source and
secure models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the relevant papers and acknowledge the checkpoints we use
in the supplementary material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper proposes a training-free inference acceleration method. The specific
implementation of the method has been detailed in the paper, and no new datasets or software
models are introduced that are intended to be released as independent assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The relevant aspect of our research is solely focused on accelerating a pre-
trained model.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The relevant aspect of our research is solely focused on accelerating a pre-
trained model.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our research does not involve LLMs as any important components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Experimental Settings

A.1 SIMPLER Environment

The SIMPLER simulation environment serves as our primary benchmark for evaluating CogACT
models. It is specifically designed to closely mirror real-world robotic setups, thereby facilitating
more realistic evaluations and bridging the real-to-sim control and visual gap.

SIMPLER offers two distinct evaluation settings:

• Visual Matching (VM): This setting closely replicates real-world tasks by minimizing
discrepancies between the simulated and real environments, prioritizing fidelity to real-world
appearances.

• Variant Aggregation (VA): This setting builds upon Visual Matching by introducing varia-
tions to elements such as background, lighting, distractors, and table texture, challenging
models to generalize across diverse conditions.

For the Google robot setup, SIMPLER provides both evaluation settings, each featuring the same
four tasks: 1) Pick coke can, 2) Move near, 3) Open/close drawer, and 4) Open top drawer and place
apple. These four tasks for the Google robot are also illustrated in Figure 4.

(a) Pick coke can (b) Move near (c) Open/close drawer (d) Open top drawer and 

place apple

Figure 4: Representative robotic manipulation tasks for the Google robot in the SIMPLER environ-
ment: (a) Pick coke can, (b) Move near, (c) Open/close drawer, and (d) Open top drawer and place
apple.

A.2 Baselines

We benchmark our EfficientVLA against the following relevant baseline and backbone methodologies:

• CogACT: This model serves as our primary experimental validation platform. CogACT
integrates powerful vision encoders (DINOv2 and SigLIP) to process raw visual input, a
Llama2-7B language module for multimodal reasoning, and a Diffusion Transformer (DiT)
as a specialized action module for generating precise action trajectories. It aims to synergize
"cognition" (VLM output) with "action" capabilities by conditioning the diffusion-based
action module on the VLM’s extracted features, addressing the continuous, multimodal, and
temporally correlated nature of robot actions.

• π0: This model is a prototype generalist robot policy developed by prior research to address
the versatility gap between human and machine intelligence. Built upon a pre-trained
vision-language model to harness Internet-scale image-text corpora for semantic reasoning
and problem-solving, π0 is extended into a VLA model through cross-embodiment training,
integrating diverse data from various robot types to enhance generalization and mitigate
data scarcity. Featuring an action chunking architecture with flow matching, it enables
high-frequency control up to 50 Hz for dexterous tasks such as laundry folding, and is
pre-trained on over 10,000 hours of robot data before fine-tuning on curated datasets to
optimize dexterity, efficiency, and robustness, serving as a robust reference for evaluating
our proposed EfficientVLA framework.

• VLA-Cache: This is a training-free acceleration method designed to improve VLA model
efficiency in robotic manipulation. VLA-Cache operates on the principle that visual inputs in
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sequential robotic tasks often exhibit minimal variation between successive steps, particularly
in background regions. It incorporates a token-selection mechanism that identifies visually
static tokens with minimal changes from the previous step and reuses their computational
results via KV-cache. Additionally, it includes a fine-grained selection scheme to filter out
critical task-relevant tokens, ensuring they undergo full computation to preserve accuracy,
and employs a layer-adaptive strategy to adjust reuse ratios based on attention concentration.

• FastV: This approach focuses on accelerating inference in Large Vision-Language Models
(LVLMs) by pruning redundant visual tokens. FastV’s core insight is the identification of
inefficient attention phenomena in deeper layers of popular LVLMs, where image tokens
receive significantly less attention despite accounting for a large portion of input tokens. It
proposes a plug-and-play method that dynamically prunes a percentage of these less impact-
ful visual tokens after a specific layer, guided by attention scores, to reduce computational
costs (FLOPs) without sacrificing performance.

B More Experimental Results

B.1 Results on Vision-Language Tasks

Table 6 illustrates the performance of our EfficientVLA token pruning strategy in comparison to
the vanilla LLaVA-1.5-7B baseline and the conventional FastV method across a suite of multimodal
vision-language benchmarks. Our approach, which employs an advanced token pruning mechanism
tailored to preserve semantically critical visual tokens while aggressively reducing redundancy,
consistently outperforms FastV at equivalent token retention levels. Specifically, at 192 tokens, Effi-
cientVLA achieves an average performance of 98.0%, retaining nearly all baseline efficacy, whereas
FastV drops to 91.2%; similarly, at 128 tokens, our method yields 96.6% average accuracy, markedly
superior to FastV’s 86.4%. This superior retention of multimodal understanding capabilities under-
scores EfficientVLA’s efficacy in mitigating information loss during pruning, enabling substantial
inference acceleration in vision-language tasks without compromising downstream task performance.

Table 6: Performance evaluation of the EfficientVLA token pruning strategy compared to the vanilla
LLaVA-1.5-7B baseline and the traditional FastV method across diverse multimodal vision-language
benchmarks.

Benchmarks
Method GQA MMB MMB-CN MME POPE SQA VQA-v2 VQA-Text VizWiz OCRBench Avg

LLaVA-1.5-7B (Vanilla, 576 tokens) 61.9 64.7 58.1 1862 85.9 69.5 78.5 58.2 50.0 297 100.0%
+FastV (192 tokens) 52.7 61.2 57.0 1612 64.8 67.3 67.1 52.5 50.8 291 91.2%
+Ours (192 tokens) 58.5 62.3 57.0 1823 82.8 69.6 76.7 57.6 51.0 292 98.0%
+FastV (128 tokens) 49.4 56.1 56.4 1490 56.0 60.2 61.8 50.6 51.3 285 86.4%
+Ours (128 tokens) 58.2 61.5 56.6 1763 79.8 68.5 75.7 56.1 51.4 289 96.6%

B.2 More Generalizability Experiments

To validate the generalizability of our proposed method, we conducted additional experiments on the
model using the LIBERO [45] benchmark, fine-tuning it for 30k steps as a baseline and performing
inference on a NVIDIA 4090. The LIBERO benchmark evaluates lifelong robotic manipulation in
four challenging task suites, LIBERO Spatial, LIBERO-Object, LIBERO-Goal and LIBERO-10,
introducing variations in spatial layouts, object selection, task goals, and long-horizon planning,
which test a model’s ability to generalize across diverse manipulation scenarios. As shown in Table 7,
our training-free approach was evaluated on these four tasks. Random Dropping, which randomly
prunes 112 visual tokens, achieved a success rate of only 18.5% with limited acceleration (1.14×).
FastV provided a modest 1.16× speedup but incurred performance loss. In contrast, EfficientVLA
without pruning already achieved a 1.46× speedup with only a 1.8% performance drop. With pruning,
EfficientVLA delivered a 1.71× speedup, increasing inference frequency from 11.65 Hz to 19.96 Hz,
while outperforming FastV in success rate. These results demonstrate the method’s robustness and
scalability across diverse VLA models and datasets.
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Table 7: Quantitative assessment of performance and efficiency metrics for the π0 baseline model
and comparative methods on the LIBERO benchmark, evaluating task-specific success rates (Spatial,
Object, Goal, 10), average accuracy, latency, speedup, and operational frequency.

Method Spatial Object Goal 10 Avg. Latency/s Speedup Freq. (Hz)

π0 98.2 98.2 94 83.2 93.4 0.0858 - 11.65
Random Dropping 36.8 21.4 15.8 0 18.5 0.0753 1.14× 13.28
FastV 95.2 96.6 90.2 79.2 90.3 0.0739 1.16× 13.53
EfficientVLA w/o prune 95.8 97.8 91.6 81.2 91.6 0.0588 1.46× 17.01
EfficientVLA 95.2 97.2 90.6 78.6 90.4 0.0501 1.71× 19.96

C Related Work on Inference Acceleration Techniques

A variety of training-free methods have emerged to expedite inference in large-scale models by
leveraging layer pruning, token pruning, and temporal caching mechanisms, thereby reducing compu-
tational overhead without necessitating model retraining. In the context of layer pruning for large
language models (LLMs), Yuan et al. [47] mitigate redundancy by collapsing multiple redundant
layers into a single effective layer, preserving essential functionalities; SlimGPT [48] applies batched
greedy pruning coupled with incremental pruning ratios to systematically minimize error accumu-
lation during compression; and TrimLLM [49] enables progressive and targeted layer dropping by
exploiting layer-wise specialization, allowing for adaptive model thinning tailored to specific tasks.
For visual token pruning in large vision-language models (LVLMs), FastV [44] executes dynamic
token elimination guided by real-time attention scores to streamline processing; SparseVLM [50]
introduces a text-guided paradigm for rank-based pruning, further enhanced by token recycling to
retain informative elements; PruMerge [51] adaptively merges redundant tokens by capitalizing on
inherent attention sparsity patterns; and MustDrop [52] refines token selection and retention strategies
across distinct phases including encoding, prefilling, and decoding, ensuring minimal performance
degradation. Regarding temporal caching in diffusion transformers, FORA [53] supports seamless
direct reuse of cached intermediate features in a training-free manner, accelerating iterative generation
processes; while ToCa [54] employs token-wise caching with dynamically adaptive retention ratios,
optimizing memory usage and inference speed across varying sequence lengths.

D Impact Statement

This paper introduces EfficientVLA, a crucial contribution to Vision-Language-Action (VLA) models
by directly addressing their significant computational and memory demands through a novel training-
free framework. EfficientVLA synergistically prunes redundant language layers, optimizes visual
token selection for task-relevance and diversity, and caches intermediate features in the diffusion-
based action head, thereby significantly boosting VLA model efficiency and speed. This enables the
practical deployment of powerful VLA models on resource-constrained robotic platforms for real-
time interaction, accelerating progress in robotic manipulation and reasoning tasks, and contributing
to more development by reducing computational load. We intend this work for ethical academic
research and authorized commercial applications and strictly prohibit its use for harmful, unethical,
or unlawful robotic actions, underscoring our responsibility to ensure societal benefit aligned with
fundamental ethical principles.

E Limitations

While EfficientVLA significantly advances VLA model acceleration, certain limitations warrant
discussion. Our training-free approach, may not achieve the maximal compression or speedup
attainable by training-aware methods. The fixed cache interval N in the action head introduces a
trade-off between acceleration and action fidelity and future work could explore adaptive caching.
Furthermore, due to the limited availability of open-source diffusion-based VLA models, our current
demonstrations are primarily on CogACT. In the future, we aim to validate scalability and effective-
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ness of EfficientVLA across a wider range of models and tasks as more such architectures become
available.
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