
Analyze Feature Flow to Enhance Interpretation and Steering in Language
Models

Daniil Laptev 1 2 Nikita Balagansky 1 2 Yaroslav Aksenov 1 Daniil Gavrilov 1

Abstract
We introduce a new approach to systematically
map features discovered by sparse autoencoder
across consecutive layers of large language mod-
els, extending earlier work that examined inter-
layer feature links. By using a data-free cosine
similarity technique, we trace how specific fea-
tures persist, transform, or first appear at each
stage. This method yields granular flow graphs
of feature evolution, enabling fine-grained inter-
pretability and mechanistic insights into model
computations. Crucially, we demonstrate how
these cross-layer feature maps facilitate direct
steering of model behavior by amplifying or sup-
pressing chosen features, achieving targeted the-
matic control in text generation. Together, our
findings highlight the utility of a causal, cross-
layer interpretability framework that not only clar-
ifies how features develop through forward passes
but also provides new means for transparent ma-
nipulation of large language models.

1. Introduction
Large language models (LLMs) excel at generating coher-
ent text but remain largely opaque in how they store and
transform semantic information. Previous research has re-
vealed that neural networks often encode concepts as linear
directions within hidden representations (Mikolov et al.,
2013), and that sparse autoencoders (SAEs) can disentangle
these directions into monosemantic features in the case of
LLMs (Bricken et al., 2023; Cunningham et al., 2023). Yet,
most methods analyze a single layer or focus solely on the
residual stream, leaving the multi-layer nature of feature
emergence and transformation underexplored (Balagansky
et al., 2024; Balcells et al., 2024).

In this paper, we propose a data-free approach, based on

1T-Tech 2Moscow Institute of Physics and Technology. Corre-
spondence to: Nikita Balagansky <n.n.balaganskiy@tbank.ru>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

cosine similarity, that aligns SAE features across multiple
modules (MLP, attention, and residual) at each layer, captur-
ing how features originate, propagate, or vanish throughout
the model in a form of “flow graphs”.

1. Cross-Layer Feature Evolution. Using the pretrained
SAEs that can isolate interpretable monosemantic di-
rections, we utilize information obtained from cosine
similarity between their decoder weights to track how
these directions evolve or appear across layers. This
reveals distinct patterns of feature birth and refinement
not seen in single-layer analyses.

2. Mechanistic Properties of Flow Graph. By building
a flow graph, we uncover an evolutionary pathway,
which is also an internal circuit-like computational
pathway, where MLP and attention modules introduce
new features to already existing ones or change them.

3. Multi-Layer Model Steering. We show that flow
graphs can improve the quality of model steering by
targeting multiple SAE features at once, and also offer
a better understanding of the steering outcome. This
framework provides the first demonstration of such
multi-layer steering via SAE features.

Our method helps to discover the lifespan of SAE features,
understand their evolution across layers, and shed light on
how they might form computational circuits, thereby en-
abling more precise control over model behavior.

2. Preliminaries
2.1. Linear representation hypothesis

To understand how models encode and process the infor-
mation they learn, one can examine the geometric struc-
ture of their hidden representations and weights. Research
has shown (Mikolov et al., 2013; Marks & Tegmark, 2024;
Gurnee & Tegmark, 2024; Engels et al., 2025) that linear
directions carry semantically meaningful information and
may be used by models to represent learned concepts. Ob-
servations of this kind led to the development of the linear
representation hypothesis, which can be stated as follows.

1

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

Hidden states h ∈ Rd can be represented as sparse linear
combinations of features f ∈ Rd that lie in linear subspaces
F ⊂ Rd. The impact of each feature is encoded by its mag-
nitude ∥f∥. The total number of these linear subspaces with
unique semantics greatly exceeds d, forcing the model to
build an overcomplete basis in the feature space embedded
in Rd. During a forward pass, the model typically uses only
a small fraction of them. These subspaces are usually one-
dimensional lines, but more complex structures can appear
(Engels et al., 2025).1

2.2. SAE and Transcoders

To retrieve such linear directions, Sparse Autoencoders
(SAEs) (Bricken et al., 2023; Cunningham et al., 2023)
were introduced. They decompose the model’s hidden state
into a sparse weighted sum of interpretable features.

Let F (P) = {F (P)
i | i ∈ {1, ..., D}}, where D ≫ d is the

dictionary size, be a collection of one-dimensional features
learned by an SAE at position P in the model (e.g., after the
MLP block). Then the SAE can be represented as

z = σ(Wench+ benc),

ĥ = Wdecz+ bdec,

where Wenc,benc,Wdec,bdec are SAE parameters, σ(·) is a
nonlinear activation function, h ∈ Rd is a model’s hidden
state, z ∈ R|F| is the feature activation, and ĥ is the SAE’s
reconstruction of the hidden state.

Sparse autoencoders are usually trained to reconstruct model
hidden states while enforcing sparse feature activations:

L = Lrec(h, ĥ) + Lreg(z).

Typically, Lrec = ∥h− ĥ∥22, while Lreg(z) is an l0 proxy.

The choice of activation function σ(·) is crucial for achiev-
ing the desired representation properties. JumpReLU (Ra-
jamanoharan et al., 2024) introduces a threshold parameter
θ ∈ R|F| that controls how large each pre-activation must
be for the feature to become active:

σ(z) = zH(z− θ),

where H is the Heaviside function.

Top-K (Makhzani & Frey, 2014; Gao et al., 2025), allows
one to control the desired sparsity level by fixing k:

σ(h) = topk(Wh+ b).

Instead of taking the top-k per sample, BatchTopK selects
the top k× b activations over all samples in the batch (Buss-
mann et al., 2024).

1There is a distinction between the weak and strong LRH. The
strong version posits that there are only linear representations,
while the weak version says that representations are mostly linear
and one-dimensional.

Transcoders (Jermyn et al., 2024) are very similar to SAEs,
but they reconstruct a different target. Typically, they are
trained as interpretable approximations of MLPs:

ĥpost = TC(hpre),

Lrec = ∥hpost − ĥpost∥2,

where hpre is the pre-MLP hidden state, hpost is the post-
MLP hidden state, and ĥpost is the transcoder’s prediction.

2.3. Features On Different Layers

Interconnections among SAE features trained on different
layers of the same model have been reported and studied
(Balagansky et al., 2024; Balcells et al., 2024; Ghilardi et al.,
2024). Features in earlier layers tend to be low-level, often
indicating word characteristics (e.g., words starting with
certain letters), while features in later layers are typically
more high-level and guide model behavior.

Sparse autoencoders are typically trained at three points
in each layer: the output of the attention mechanism, the
output of the MLP, and the residual stream. The latter is
the main conduit of information within a transformer; MLP
and attention modules read from it, process the data, and
write their outputs back into it. According to Balagansky
et al. (2024), most features in the residual stream remain
relatively unchanged across layers. To identify similar fea-
tures between different layers, one can define a permutation
matrix P(A→B) that maps feature indices from layer A to
layer B, both having the same number of features |F|:

P(A→B) = argmin
P∈P|F|

d∑
i=1

∥∥∥W(B)
deci,:

−W
(A)
deci,:

P(A→B)
∥∥∥2 ,

where W
(A)
(·) ∈ Rd×|F| is a parameter of the SAE trained

on the residual stream after layer A, and P|F| is the set of
permutation matrices of size |F| × |F|.

Dunefsky et al. (2024) finds a computational graph through
the MLP layers by training transcoders:

z(hpre)i
(
W

(A)⊺
dec W(B)⊺

enc

)
i,:
. (1)

Here, W(A)⊺

dec W
(B)⊺

enc ∈ R|F|×|F| serves as a transition oper-
ator between the feature spaces of layers A and B, revealing
which features in B are ancestors for the ith feature in A.

Matrices P(A→B) and W
(A)⊺
dec W

(B)⊺
enc are in some sense

similar. We explore this further in Appendix F.

3. Method
3.1. Motivation

Although SAEs provide human-interpretable features, they
do not explain how these features interact or how the

2

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

++

Attention
Attention

SAE
MLP

MLP

SAE

Residual

SAE

Residual

SAE
+

..
.

..
.

...
...

Figure 1. Schematic illustration of inner-layer matching. We select a feature with index i on the SAE trained at the layer output. Its
embedding f , which is the ith column of this SAE’s decoder weight, is compared to every column of other SAEs on the same layer (after
the MLP and attention blocks, as well as with the SAE on the residual stream before some layer). These comparisons indicate the feature’s
source. See Section 3.3 for more details.

model’s computation is carried out. Understanding this
is crucial for more precise model manipulation.

A key principle is that such understanding can be obtained
by linking features at different levels of a model (Balagansky
et al., 2024; Dunefsky et al., 2024). If we want to find
features shared by two SAEs trained at positions A and B,
we need to discover a mapping

TA→B : F (A) → F (B).

This drives methods (Balagansky et al., 2024; Balcells et al.,
2024) for finding these shared features and architectures
(Lindsey et al., 2024) that ensure persistent collections of
features by design.

By grouping similar features, we can find those that remain
the same across different positions (by repeatedly applying
mapping rules) or uncover those unique to specific points in
the model. This helps us understand how semantic structure
and computational modes evolve, while SAE features serve
as an interpretable proxy.

3.2. Feature matching

Several methods exist for matching features between lay-
ers and modules. One approach uses correlations between
activations (Wang et al., 2025; Balcells et al., 2024), but
it requires considerable data to compute activation statis-
tics. Another is a data-free approach based on SAE weights
(Dunefsky et al., 2024; Balagansky et al., 2024). We found
that cosine similarity between decoder weights is a valuable
similarity metric, and we focus on this approach.

Let f ∈ Rd be the embedding of some feature F (A)
i , trained

at position A. This vector is the ith column of W(A)
dec . Also

let W(B)
dec ∈ Rd×|F| be the decoder weights of an SAE

trained at position B. We find the matched feature index as

j = argmax
k

(
f ·W(B)

dec:,k

)
.

Then we say that F (A)
i corresponds to F (B)

j . We assume

that both f and the columns of W(B)
dec have unit norm.

More generally, we define

T(A→B) = Ix>0

(
topk

(
W

(A)⊺
dec W

(B)
dec

))
,

where Ix>0 is an indicator function and topk(·) zeroes out
values below the kth order statistic. When k = 1, this
many-to-one matching extends the one-to-one approach in
Balagansky et al. (2024). Although top-k handles many-
to-many cases, we focus on many-to-one as a substantial
extension of previous work.

This technique assumes SAEs are trained on hidden states
whose structure is aligned. For instance, Gemma Scope
(Lieberum et al., 2024) attention SAEs are trained before a
nonlinear transformation at dimension 2048, whereas MLP
and residual SAEs are trained on dimension 2304, so our
method cannot be applied there. As shown in Section 5.1,
the data distribution can also affect these results.

3.3. Tracking the evolution of feature

There are four main computational points in a standard
transformer layer: the layer output RL, the MLP output M ,
the attention output A, and the previous layer output RL−1

3

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

phrases or structures indicating actions, often ...

attends to the token "paint" from ...

attends to object member access tokens ...

attends to relational tokens from corresponding ...
attends to the terms "that," "when," ...

references to gauge symmetries in theoretical ...

0 5 10 15 20 25

MLP

Residual Stream

Attention

Scientific Concepts and Entities Graph

Layer

scientific terminology related to study results and causes terms related to particle physics and ...

 terms and references related to particle physics and standard model parameters terms and references related to particle physics and standard model parameters

 technical terminologies related to particle physics measurements

Figure 2. An illustration of the resulting flow graph, which we also use in the deactivation experiment (section 5.2). As a starting point,
we select the feature on the 24th-layer residual with index 14548. For a detailed explanation of this graph, see Appendix E.

(the layer input). MLP and attention modules read from
RL−1 and their outputs produce RL.

We pick a feature from the SAE trained on RL with embed-
ding f ∈ Rd. Let W(P)

dec ∈ Rd×|F| for P ∈ {M,A,R ≡
RL−1} be the corresponding decoder weights. We com-
pute the similarity between the target feature and P as the
maximum cosine similarity over the columns of W(P)

dec :

s(P) = max
k

(
f ·W(P)

dec:,k

)
,

as illustrated in Figure 1. From these scores, we can infer
how the feature relates to the previous layer or modules:

A) High s(R) and low s(M), s(A): The feature likely ex-
isted in RL−1 and was translated to RL.

B) High s(R) and high s(M) or s(A): The feature was
likely processed by the MLP or attention.

C) Low s(R) but high s(M) or s(A): The feature may be
newborn, created by the MLP or attention.

D) Low s(R) and low s(M), s(A): The feature cannot be
easily explained by maximum cosine similarity alone.

Thresholds for “high” and “low” are specific for each layer.

We use a backward-matching approach because it naturally
answers, “Where did this feature come from?” Forward-
matching answers, “Where does this feature go?” but is less
helpful for finding novel or transformed features.

Long-range feature flows. As we progress through the
model, semantics undergo substantial changes, making di-
rect long-range matching challenging. We address this by
performing short-range matching in consecutive layers and
composing the resulting transformations. For a given fea-
ture, we construct a flow graph from the initial layer to the
final layer. This flow graph traces a path that reveals how
the feature’s semantic properties evolve. An example of
such a graph is presented in Figure 2.

Currently, individual SAE features or their groups (Engels
et al., 2025) are treated as units for study. However, we
believe that these flow graphs may also become a compelling
area for future research.

3.4. Identification of linear feature circuits

Model behavior can be decomposed into computational
subnetworks, called circuits, which perform task-specific
operations (Elhage et al., 2021; Marks et al., 2025). Our
method helps identify potential circuits where MLP and
attention modules add or remove features in a mostly linear
way. High values of s(M) or s(A) are strong indicators of
these circuits. We validate this in our experiments, focusing
on how a feature’s meaning evolves. Examples appear in
Appendix E.

3.5. Model steering

Flow graphs can also help steer the model toward desired
behaviors by identifying feature sets we want to manipulate.
By carefully selecting them, one can preserve both align-
ment and core model capabilities, and our method facilitates

4

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

discovery of such feature groups. By examining flow graphs
built from those features, one can better understand and
predict the behavior of the model after steering. Section 5.3
and Appendix B illustrate this process.

4. Experimental Setup
4.1. Models and SAEs

We conduct our main experiments with the Gemma 2 2B
model (Gemma Team, 2024) and the Gemma Scope SAE
pack (Lieberum et al., 2024) with a JumpReLU activation
function and dictionary size of 16k features. We also test
our approach on LLama Scope (He et al., 2024) (see Ap-
pendix D), which was trained with TopK activation function
and was converted to a JumpReLU after training. In addi-
tion, we train our own JumpReLU SAEs for the attention
output (before it is added back to the residual stream) on
every layer of the Gemma model, following the Gemma
Scope training pipeline.

We obtain interpretations from Neuronpedia2, which also
serves as an additional evaluation tool. Interpretations for
newly trained attention features were not available, and none
were provided for LLama Scope.

4.2. Overview of experiments

We design our experiments to analyze how residual features
emerge, propagate, and can be manipulated across model
layers. Specifically, we aim to: (i) determine how features
originate in different model components, (ii) assess whether
deactivating a predecessor feature truly deactivates its de-
scendant, and (iii) use these insights to steer the model’s
generation toward or away from specific topics.

Below is a concise summary of each experiment. See Ap-
pendices A and B for detailed setup.

Identification of feature predecessors. We first verify
that cosine similarity relations used for single-layer analysis
align with actual activation correlations. A target feature in
the residual stream RL is matched with the previous residual
RL−1, the MLP output M , or the attention output A features.
If none are active, we label it “From nowhere.” By applying
this process on four diverse datasets, we confirm the above-
stated relation, and we also analyze how these groups are
distributed across layers.

Feature Deactivation. We measure causal relationships
by intervening on hidden states: if deactivating a predeces-
sor also deactivates target feature, we infer a causal link.

Given hidden states h at the predecessor’s position (previous
residual, MLP, or attention output), we apply transformation

2https://www.neuronpedia.org/gemma-2-2b

0.0

0.2

0.4

0.6

0.8

1.0

s(M
)

Layer 8 Layer 18

0.2 0.4 0.6 0.8 1.0
s(R)

0.0

0.2

0.4

0.6

0.8

1.0

s(A
)

From nowhere
From RES

From MLP
From ATT

0.2 0.4 0.6 0.8 1.0
s(R)

Figure 3. Example of cosine similarity vs. simultaneous activa-
tion with a predecessor (350 features were sampled per layer).
“From MLP” and “From RES” groups are notably different: high
s(M) and low s(R) suggest simultaneous activation with an MLP-
module match. Cosine similarity serves as a good proxy for shared
semantic and mechanistic properties.

h← h+ a(r− 1)v, where a is the predecessor’s activation
strength, v its embedding, and r a rescaling coefficient (r =
0 for deactivation). We expect this to remove the feature
from the hidden state, preventing further propagation.

We evaluate four matching strategies: (1) random sam-
pling from top-5 cosine-similarity matches, (2) permutation-
based (Balagansky et al., 2024), (3) top1 cosine similarity
(our method), and (4) top5 cosine similarity where all five
matched features must be inactive to treat this predeces-
sor as inactive. Effectiveness is quantified via successful
deactivation rate and activation change (higher when new
strength approaches 0).

Model Steering. We test whether multi-layer feature ac-
tivation/deactivation can control theme generation. For a
target topic, we intervene on relevant features across layers
and assess text quality.

As a baseline we use initial features from which we build
flow graphs. We compare single-layer (layer l only) and
cumulative (layers 0 to l) interventions, applying the same
rescaling for deactivation. For activation, we add scaled
embeddings. Multi-layer strategies include linear and ex-
ponential decay of steering coefficients with respect to the
layer index, and constant scale for all layers (Appendix B).

We measure Behavioral (topic presence) and Coherence
(language quality) scores, and use their product as final
metric (for deactivation (1− Behavioral)× Coherence).

5

https://www.neuronpedia.org/gemma-2-2b

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

AO AB IB
0.75

0.80

0.85

0.90

0.95

1.00

1.05
RES module

AO AB IB

MLP module

AO AB IB

ATT module

s(R) s(M) s(A)

Figure 4. Percentage of statistically significant differences between
groups for each module’s similarity scores. AO means module
P is active in only one group, AB means active in both, and IB
means inactive in both. For MLP, two groups differ in s(R) only
87% of the time when MLP is active in both groups.

5. Results
5.1. Identification of feature predecessors

In this experiment, we validate the single-layer analysis
patterns from Section 3.3 by checking when target residual
features and their predecessors activate simultaneously. For
each activated residual feature, we assign it to a group based
on which predecessors are also active. For example, if both
the previous residual and MLP predecessors are active, the
feature is categorized as “From RES & MLP.” We then
examine the distributions of scores within these groups.

Figure 3 reveals visually distinct score distributions across
different groups. We quantify these differences with a Mann-
Whitney U test on every pair of groups, for each dataset and
layer, and then compute the fraction of tests with p < 0.001.

We observe that two groups may differ with respect to
s(P) if module P is active only in one group (and indis-
tinguishable if P is active or inactive in both groups). For
example, “From MLP” and “From MLP & ATT” differ by
s(R), s(M), s(A) in 67%, 72%, and 100% of tests, respec-
tively. Figure 4 shows the total percentage of passed tests.

Figure 5 shows how these groups spread across layers, sug-
gesting conceptual formation in earlier layers. From layers
0–5, “From nowhere” and “From RES” may reflect a high-
entropy, early-stage process that stabilizes by about layer
5. After layer 18, where we see a bump for “From MLP”,
fewer new features emerge, and most features propagate
from preceding layers.

There is also a three-part partition in the distribution of
groups: approximately [0, 5] where uncertainty dominates,
[6, 15] with somewhat stable dynamics, and [16, 25] where
“From RES” group presence starts to rise and “From MLP”
group diminishes after layer 18, implying that fewer new
features appear in later layers.

We observe differences between datasets in the latter layers.
The Python code dataset contains the least amount of natural

0

10

20

30

40

50

60
FineWeb

From nowhere
From RES

From MLP
From ATT

TinyStories

From RES & MLP
From RES & ATT

From MLP & ATT
From RES & MLP & ATT

0 5 10 15 20 25

0

10

20

30

40

50

60
Python Code

0 5 10 15 20 25

AutoMathText

Figure 5. Percentages of each group at each layer of Gemma 2 2B,
illustrating how feature formation proceeds in the model.

random permutation top-1 top-k
30

35

40

45

50

55

60

65

70
Successful deactivations (%)

res mlp att res & mlp res & att mlp & att res & mlp & att

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Activation change

random permutation top-1 top-k

Figure 6. Deactivation methods compared. Group labels show
which active predecessors were deactivated. The random approach
underperforms, suggesting that choosing the top1 feature is al-
ready meaningful for causal analysis.

language, and TinyStories has the most natural and simple
language structure. The rarity of groups with activated
attention could stem from our SAE training rather than an
inherent property of Gemma. However, in the LLama Scope
case (Figure 19(b)), we observe a slightly similar pattern,
which indicates that this is indeed the property they share.

We have observed that group identification performance is
on par with Pearson correlation-based matching methodol-
ogy. The latter reduced the ”From nowhere” group pres-
ence, but did not consistently outperform our method and
performed worse on out-of-distribution Python code. See
more details in Appendix C.4.

5.2. Deactivation of features

We compare the top1 approach (choosing the most similar
predecessor by cosine similarity) with randomly picking
one of the top5 candidates. Figure 6 shows that the random
method sharply reduces deactivation success, confirming
that top1 is informative for causal analysis.

For MLP and attention predecessors, top1 and top5 per-

6

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

2 1 0 1 2 3
Scale

2.0

1.5

1.0

0.5

0.0

0.5

1.0
Activation change

res
mlp
att
res & mlp
res & att
mlp & att
res & mlp & att

2 1 0 1 2 3
Scale

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Relative loss change

2 1 0 1 2 3
Scale

0

20

40

60

80

100
Percentage of deactivated

Figure 7. Impact of different r values on deactivation success, with
rescaling of all available predecessors. When r < 1, the activation
change grows nonlinearly, indicating alternative causal pathways
still convey information. Relative loss change measured as (Lnew−
Lold)/Lold is a proxy for forward pass impact.

res
0.00

0.25

0.50

0.75

1.00

Ac
tiv

at
io

n
ch

an
ge

From RES

mlp

From MLP

att

From ATT
random
permutation

top-1
top-k

res mlp res & mlp
0.00

0.25

0.50

0.75

1.00

Ac
tiv

at
io

n
ch

an
ge

From RES & MLP

res att res & att

From RES & ATT

mlp att mlp & att

From MLP & ATT

res mlp att res & mlp res & att mlp & att res & mlp & att
Deactivated

0.00

0.25

0.50

0.75

1.00

Ac
tiv

at
io

n
ch

an
ge

From RES & MLP & ATT

Figure 8. Mean activation changes when deactivating one prede-
cessor at a time. Deactivation of some predecessor causes less
impact if this predecessor is not activated alone, which leads to the
conclusion that combined groups exhibit circuit-like behavior.

form similarly. Differences arise mainly when a residual
predecessor combines with another module, indicating that
we might miss other types of causal relations.

Finally, we vary the rescaling coefficient r to see how it
affects deactivation results (Figure 7). Different groups react
differently to rescaling. Positive rescaling (boosting active
features) matters most when residual features mix with MLP
or attention. Negative rescaling most strongly affects “From
RES.” Reducing “From RES & MLP” or “From RES &
MLP & ATT” increases the loss change more than reducing
“From RES” alone, highlighting MLP’s critical role in these
circuit-like interactions.

Figure 8 further shows that deactivating a single predecessor
causes a greater activation strength drop if it is a group with a
single predecessor, which may indicate circuit-like behavior
in combined groups.

To compare our method with optimal performance, we test
three approaches: (1) top-1 cosine similarity matching, (2)
top-1 Pearson correlation matching, and (3) an exhaustive
search for maximum achievable performance. The search
procedure deactivates each active predecessor feature indi-
vidually, with activation change computed only for target

Mean AC Success rate

Top-1 Cosine 0.75 65%
Top-1 Pearson 0.74 65%
Exhaustive Search 0.83 73%

Table 1. Comparison of deactivation methods. The exhaustive
search evaluates all activated predecessor features individually
and reports maximum performance. The similar results between
correlation-based and our data-free method validate our approach.

0.0

0.1

0.2

0.3

0.4

0.5

Be
ha

vi
or

al

Per-layer Cumulative

0 5 10 15 20 25
Layer

0.2

0.4

0.6

0.8

Co
he

re
nc

e

0 5 10 15 20 25
Layer

r = 0
r = -2
r = -4

r = -8
r = -16
r = -64

Figure 9. Deactivating the “Scientific concepts and entities” theme.
The dashed black line shows the default generation score. Red
points mark the best layer for each r in the single-layer method.
Larger r boosts performance but shifts the optimal layer earlier.

features identified by either cosine or Pearson matching as
”From RES”, ”From MLP”, or ”From ATT” to ensure fair
comparison and computational feasibility. Testing 1,894
features across two layers (each deactivated via all three
methods) yields the results in Table 1, showing comparable
performance between cosine and Pearson methods, addi-
tionally validating our data-free approach.

5.3. Model steering

To evaluate interventions based on flow graphs, we use
them to suppress or activate topics in generation. Figure 10
demonstrates that our method identifies more effective steer-
ing features across layers compared to single-feature inter-
ventions on the initial feature set. The cumulative approach
additionally provides two key advantages: (1) reduced sen-
sitivity to hyperparameter choices, and (2) improved perfor-
mance with smaller hidden state perturbations.

Figure 9 analyzes the impact of rescaling coefficient r on
deactivation effectiveness. We observe that larger r values
shift the optimal intervention point toward earlier layers,
while smaller r values distribute the intervention effect more
evenly across the network depth.

7

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

0 -1 -2 -4 -8 -16 -32 -64
r

0.50

0.55

0.60

0.65

0.70

Sc
or

e

0 5 10 15 20 25
Layer

One-layer
Cumulative

Figure 10. Comparison of best deactivation scores. The green line
indicates deactivation using only the initial feature set. Interven-
tions on layers detected by our method (orange, blue) perform
better across different r values, suggesting additional discovered
features reduce hyperparameter sensitivity.

0.0

0.2

0.4

0.6

To
ta

l

baseline single constant exponential linear

Anger and frustration Mental health issues Wedding and marriage Religion and God
0.0

0.2

0.4

0.6

0.8

Be
ha

vi
or

al

Figure 11. Activation of specific topics. We compare single-layer
steering and cumulative approaches with three rescaling strategies
(Appendix B). Activating multiple similar features amplifies a
topic’s presence but may degrade overall text coherence.

Figure 10 shows that cumulative intervention outperforms
the single-layer approach in a low r regime, suggesting that
small interventions distributed over multiple layers may be
more effective for controllable generation.

For activation tasks, we boost topic presence by activating
multiple similar directions. Figure 11 shows that cumulative
methods typically strengthen the topic signal but can reduce
text quality. In some cases, the effect is clear: steering a
feature tied to “Religion and God” can shift outputs toward
biblical text, and if we examine the flow graph for that
feature, we see that earlier layers are indeed linked to it.

6. Discussion
Identification of feature predecessors. Our results indi-
cate that (i) similarity of linear directions is indeed a good
proxy for activation correlation, and (ii) the structure of
these groups differs across layers, possibly reflecting the
properties of information processing within the model.

We suspect that “From MLP,” “From ATT,” and “From MLP
& ATT” primarily contain newborn features introduced at
their respective layers, whereas groups that combine the

residual stream with a module tend to hold processed fea-
tures. The decline of “From MLP” and the rise of “From
RES” groups shown in Figure 5 may indicate that later
layers form fewer new features than intermediate layers.

Deactivation of features. We (i) confirm that top1 sim-
ilarity provides valuable information about causal depen-
dencies, and (ii) conclude that groups respond differently
to the deactivation of certain predecessors, indicating that
they have distinct mechanistic properties and may exhibit
circuit-like behavior. The fact that residual predecessors
are the most influential could be explained by the nature
of the residual stream as the main communication channel,
so removing the feature at module will not prevent it from
further propagation if it already exists in the residual stream.

Model steering. If we want to reduce a particular feature
at inference, we typically adjust its magnitude. However,
achieving a significant reduction may require large adjust-
ment scales, which can alter the distribution of hidden states.
Because we know which features contribute to the appear-
ance of the feature we want to reduce, we can also adjust
those. From this perspective, it is possible to make multi-
ple smaller adjustments rather than one large one, avoiding
dramatic changes to the overall distribution of hidden states.

Flow graphs may help to understand the effect of steer-
ing and identify related features, but the downstream result
depends on the properties of the specific graph. Overall,
we conclude that they allow to find impactful features for
intervention. We hypothesize that removing topic-related
information early allows later layers to recover general lin-
guistic information, aligning with the ability of LLMs to
“self-repair” after “damaging” the information processing
flow by pruning or, in our case, intervention into the struc-
ture of hidden states (McGrath et al., 2023).

Overall, our method provides a straightforward way to iden-
tify and interpret the computational graph of the model
without relying on additional data, achieving performance
similar to Pearson correlation matching; the resulting graph
can then be used for precise control over the model’s in-
ternal structure. To the best of our knowledge, we are the
first to use SAE features from different layers to control
LLM generation. We believe that this work opens a new
perspective for zero-shot steering.

7. Related Work
Multiple works have investigated feature circuits in lan-
guage models. Conmy et al. (2023) proposed pruning con-
nections between modules that do not affect the output. Ge
et al. (2024) suggested using gradients to decide whether to
prune connections between modules; they also demonstrated
that their method can be used to find circuits on the feature

8

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

level with skip SAE, which is equivalent to transcoders.
Dunefsky et al. (2024) showed that circuits can be found
without a backward pass, relying solely on activations and
transcoders’ weights. Balagansky et al. (2024); Balcells
et al. (2024) studied feature dynamics in the residual stream
during the forward pass; however, these works focus exclu-
sively on residual stream features and do not investigate the
properties of the resulting computational graph or its appli-
cation to steering. Additionally, SAE features as steering
vectors were explored in Chalnev et al. (2024), but their ap-
proach is data-dependent and does not involve a multi-layer
steering procedure. In contrast, our work advances these
findings by introducing a straightforward and interpretable
data-free method for multi-layer steering, which also en-
ables the tracking of concept evolution across layers and the
identification of computational circuits through targeting
the weights of pretrained SAEs.

8. Conclusion
In our work, we propose using SAEs trained on different
modules and layers of the base model to find a computa-
tional graph consisting of SAE features. Through our ex-
periments, we validate that these graphs can describe most
of the feature dynamics. Finally, we show that such graphs
can be used for steering model behavior, thereby improving
steering of LLMs with SAEs.

Advancements in model steering suggest focusing on more
sophisticated steering approaches. For example, while we
can reconstruct feature predecessors from multiple blocks
in previous layers, it is evident that features are somewhat
tangled across layers (when reducing the magnitude of a
predecessor feature, all subsequent computations change).
Thus, it may be helpful to concentrate on disentangling these
connections across different layers. Other directions for bet-
ter steering could also exist, thus opening new possibilities
on further enhancing LLM controllable generation.

Impact statement
Our work offers a method to systematically identify and ma-
nipulate latent features in large language models, thereby ad-
vancing the field of controllable generation. This improved
controllability has positive implications for alignment, in-
terpretability, and safe deployment of AI systems, as it can
allow developers to steer models away from harmful or bi-
ased outputs. At the same time, similar techniques could
be repurposed for unsafe or malicious behavior by those
aiming to bypass safeguards or exploit hidden model path-
ways. These dual-use concerns highlight the importance
of continued research and open discussion on controllable
generation, rather than a cessation of study. By deepening
our collective understanding, we are better equipped to de-

velop robust norms, policies, and technical safeguards that
promote beneficial applications while mitigating the risks
of misuse.

References
Balagansky, N., Maksimov, I., and Gavrilov, D. Mecha-

nistic permutability: Match features across layers. In
The Thirteenth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=MDvecs7EvO.

Balcells, D., Lerner, B., Oesterle, M., Ucar, E., and
Heimersheim, S. Evolution of sae features across lay-
ers in llms, 2024. URL https://arxiv.org/abs/
2410.08869.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A.,
Conerly, T., Turner, N., Anil, C., Denison, C., Askell, A.,
Lasenby, R., Wu, Y., Kravec, S., Schiefer, N., Maxwell,
T., Joseph, N., Hatfield-Dodds, Z., Tamkin, A., Nguyen,
K., McLean, B., Burke, J. E., Hume, T., Carter, S.,
Henighan, T., and Olah, C. Towards monosemanticity:
Decomposing language models with dictionary learning.
Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Bussmann, B., Leask, P., and Nanda, N. Batchtopk sparse
autoencoders. arXiv preprint arXiv: 2412.06410, 2024.

Chalnev, S., Siu, M., and Conmy, A. Improving steering
vectors by targeting sparse autoencoder features, 2024.
URL https://arxiv.org/abs/2411.02193.

Conmy, A., Mavor-Parker, A. N., Lynch, A., Heimersheim,
S., and Garriga-Alonso, A. Towards automated circuit dis-
covery for mechanistic interpretability. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023.

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and
Sharkey, L. Sparse autoencoders find highly interpretable
features in language models, 2023. URL https://
arxiv.org/abs/2309.08600.

Dunefsky, J., Chlenski, P., and Nanda, N. Transcoders find
interpretable llm feature circuits. arXiv preprint arXiv:
2406.11944, 2024.

Eldan, R. and Li, Y. Tinystories: How small can language
models be and still speak coherent english?, 2023. URL
https://arxiv.org/abs/2305.07759.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph†,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly,
T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-
Dodds, Z., Hernandez, D., Jones, A., Kernion, J.,

9

https://openreview.net/forum?id=MDvecs7EvO
https://openreview.net/forum?id=MDvecs7EvO
https://arxiv.org/abs/2410.08869
https://arxiv.org/abs/2410.08869
https://arxiv.org/abs/2411.02193
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2305.07759

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

Lovitt, L., Ndousse, K., Amodei, D., Brown, T.,
Clark, J., Kaplan, J., McCandlish, S., and Olah, C.
A mathematical framework for transformer circuits,
2021. URL https://transformer-circuits.
pub/2021/framework/index.html.

Engels, J., Michaud, E. J., Liao, I., Gurnee, W.,
and Tegmark, M. Not all language model features
are one-dimensionally linear. In The Thirteenth In-
ternational Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=d63a4AM4hb.

Gao, L., la Tour, T. D., Tillman, H., Goh, G., Troll, R.,
Radford, A., Sutskever, I., Leike, J., and Wu, J. Scaling
and evaluating sparse autoencoders. In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=tcsZt9ZNKD.

Ge, X., Zhu, F., Shu, W., Wang, J., He, Z., and Qiu, X. Auto-
matically identifying local and global circuits with linear
computation graphs. arXiv preprint arXiv: 2405.13868,
2024.

Gemma Team. Gemma 2: Improving open language models
at a practical size, 2024. URL https://arxiv.org/
abs/2408.00118.

Ghilardi, D., Belotti, F., Molinari, M., and Lim, J. Ac-
celerating sparse autoencoder training via layer-wise
transfer learning in large language models. In Be-
linkov, Y., Kim, N., Jumelet, J., Mohebbi, H., Mueller,
A., and Chen, H. (eds.), Proceedings of the 7th Black-
boxNLP Workshop: Analyzing and Interpreting Neu-
ral Networks for NLP, pp. 530–550, Miami, Florida,
US, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.blackboxnlp-1.
32. URL https://aclanthology.org/2024.
blackboxnlp-1.32/.

Gurnee, W. and Tegmark, M. Language models represent
space and time, 2024. URL https://arxiv.org/
abs/2310.02207.

Gurnee, W., Nanda, N., Pauly, M., Harvey, K., Troit-
skii, D., and Bertsimas, D. Finding neurons in a
haystack: Case studies with sparse probing. Transac-
tions on Machine Learning Research, 2023. ISSN 2835-
8856. URL https://openreview.net/forum?
id=JYs1R9IMJr.

He, Z., Shu, W., Ge, X., Chen, L., Wang, J., Zhou, Y., Liu,
F., Guo, Q., Huang, X., Wu, Z., Jiang, Y.-G., and Qiu,
X. Llama scope: Extracting millions of features from
llama-3.1-8b with sparse autoencoders. arXiv preprint
arXiv: 2410.20526, 2024.

Jermyn, A., Batson, J., and Olah, C. Random open prob-
lems. Transformer Circuits Thread, 2024. URL https:
//transformer-circuits.pub/2024/
jan-update/index.html#open-problems.

Lieberum, T., Rajamanoharan, S., Conmy, A., Smith, L.,
Sonnerat, N., Varma, V., Kram’ar, J., Dragan, A., Shah,
R., and Nanda, N. Gemma scope: Open sparse autoen-
coders everywhere all at once on gemma 2. BlackboxNLP
Workshop on Analyzing and Interpreting Neural Networks
for NLP, 2024. doi: 10.48550/arXiv.2408.05147.

Lindsey, J., Templeton, A., Marcus, J., Conerly, T.,
Batson, J., and Olah, C. Sparse crosscoders
for cross-layer features and model diffing, 2024.
URL https://transformer-circuits.pub/
2024/crosscoders/index.html.

Makhzani, A. and Frey, B. k-sparse autoencoders, 2014.
URL https://arxiv.org/abs/1312.5663.

Marks, S. and Tegmark, M. The geometry of truth: Emer-
gent linear structure in large language model represen-
tations of true/false datasets, 2024. URL https://
arxiv.org/abs/2310.06824.

Marks, S., Rager, C., Michaud, E. J., Belinkov, Y., Bau, D.,
and Mueller, A. Sparse feature circuits: Discovering and
editing interpretable causal graphs in language models.
In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=I4e82CIDxv.

McGrath, T., Rahtz, M., Kramar, J., Mikulik, V., and Legg,
S. The hydra effect: Emergent self-repair in language
model computations, 2023. URL https://arxiv.
org/abs/2307.15771.

Mikolov, T., Yih, W.-t., and Zweig, G. Linguistic regular-
ities in continuous space word representations. In Pro-
ceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 746–751, At-
lanta, Georgia, June 2013. Association for Computational
Linguistics. URL https://aclanthology.org/
N13-1090/.

Penedo, G., Kydlı́cek, H., allal, L. B., Lozhkov, A., Mitchell,
M., Raffel, C., Werra, L. V., and Wolf, T. The fineweb
datasets: Decanting the web for the finest text data at
scale. In The Thirty-eight Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track,
2024. URL https://openreview.net/forum?
id=n6SCkn2QaG.

Rajamanoharan, S., Lieberum, T., Sonnerat, N., Conmy, A.,
Varma, V., Kramár, J., and Nanda, N. Jumping ahead:

10

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://openreview.net/forum?id=d63a4AM4hb
https://openreview.net/forum?id=d63a4AM4hb
https://openreview.net/forum?id=tcsZt9ZNKD
https://openreview.net/forum?id=tcsZt9ZNKD
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://aclanthology.org/2024.blackboxnlp-1.32/
https://aclanthology.org/2024.blackboxnlp-1.32/
https://arxiv.org/abs/2310.02207
https://arxiv.org/abs/2310.02207
https://openreview.net/forum?id=JYs1R9IMJr
https://openreview.net/forum?id=JYs1R9IMJr
https://transformer-circuits.pub/2024/jan-update/index.html#open-problems
https://transformer-circuits.pub/2024/jan-update/index.html#open-problems
https://transformer-circuits.pub/2024/jan-update/index.html#open-problems
https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html
https://arxiv.org/abs/1312.5663
https://arxiv.org/abs/2310.06824
https://arxiv.org/abs/2310.06824
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=I4e82CIDxv
https://arxiv.org/abs/2307.15771
https://arxiv.org/abs/2307.15771
https://aclanthology.org/N13-1090/
https://aclanthology.org/N13-1090/
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

Improving reconstruction fidelity with jumprelu sparse
autoencoders. arXiv preprint arXiv: 2407.14435, 2024.

Templeton, A., Conerly, T., Marcus, J., Lindsey, J., Bricken,
T., Chen, B., Pearce, A., Citro, C., Ameisen, E., Jones,
A., Cunningham, H., Turner, N. L., McDougall, C.,
MacDiarmid, M., Freeman, C. D., Sumers, T. R.,
Rees, E., Batson, J., Jermyn, A., Carter, S., Olah,
C., and Henighan, T. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL https:
//transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Wang, J., Ge, X., Shu, W., Tang, Q., Zhou, Y., He, Z.,
and Qiu, X. Towards universality: Studying mechanis-
tic similarity across language model architectures. In
The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=2J18i8T0oI.

Zhang, Y., Luo, Y., Yuan, Y., and Yao, A. C.-C. Au-
tonomous data selection with language models for math-
ematical texts, 2024. URL https://arxiv.org/
abs/2402.07625.

11

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://openreview.net/forum?id=2J18i8T0oI
https://openreview.net/forum?id=2J18i8T0oI
https://arxiv.org/abs/2402.07625
https://arxiv.org/abs/2402.07625

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

A. Detailed Experimental Setup
A.1. Identification of feature predecessors

This experiment aims to validate our proposed approach for determining the origin of a feature. Specifically, we verify
whether the cosine similarity relations described for single-layer analysis align with the correlation between the features’
activations. For a target feature from RL, we consider it to originate from RL−1 if the matched feature on RL−1 is active
while the matched features on M and A are inactive. There are seven possible combinations of activated predecessors; if
none of these is active, the feature is assigned to an eighth group, “From nowhere.”

We use four datasets for this analysis: FineWeb (Penedo et al., 2024) (general-purpose texts), TinyStories (Eldan & Li,
2023) (short synthetic stories), AutoMathText (Zhang et al., 2024) (math-related texts), and PythonGithubCode3 (pure
Python code). From each dataset, we select 250 random samples; for each sample, we pick 5 random tokens (excluding the
BOS token). We then iterate over every activated feature on every layer and determine its group (i.e., which predecessor
combination leads to that feature’s activation).

A.2. Deactivation of features

To further validate the proposed method, we measure the causal relationship between a feature and its predecessor by
intervening directly in the model’s hidden state. Specifically, we deactivate the predecessor by removing its corresponding
decoder column from the relevant hidden state (i.e., at the MLP output, attention output, or previous layer output). We
expect that deactivating the matched predecessor feature will also deactivate the target feature (at the end of the layer).

Feature rescaling. Consider a hidden state ht ∈ Rd for a specific token t. Suppose we want to modify the strength of f
features within this hidden state. Let V ∈ Rd×f be the embeddings of these f features, and let at ∈ Rf be their activation
strengths for token t. We define rescaling as:

ht ← ht + (r − 1)(at ·V⊺),

where r is the rescaling coefficient. This method also allows us to rescale a feature to a desired strength for steering. We
refer to rescaling as positive when r ≥ 1, and negative otherwise.4

In the context of SAEs, we approximate hidden states with a linear combination of feature decoder columns (plus a bias term
that does not depend on activation strength, and is therefore omitted). Setting r = 0 removes the selected features from the
existing linear combination, which is (up to SAE reconstruction error) the same as setting those features’ activations to zero.

Experimental protocol. In this experiment, we apply the above transformation only to the specific token where we detect
the residual feature. We select 35 texts from FineWeb, choose 5 random tokens per text, and focus on layers 6, 12, and 18.
For each layer–token pair, we randomly sample up to 25 features and deactivate them if they do not belong to the “From
nowhere” group.

To assess the effectiveness of deactivation, we compare four matching methods:

• permutation: Deactivate the predecessor feature identified by permutation,

• top1: Deactivate the most similar predecessor feature (based on cosine similarity of decoder embeddings),

• topk (k = 5): Deactivate the five most similar predecessor features,

• random: Randomly choose one from the top five most similar features.

The top1 method is our main focus. For each method, we first identify the group of the target feature and then perform the
deactivation. For the top5 method, we consider the predecessor active if at least one of the 5 selected features is active.

We evaluate two main metrics:
3https://huggingface.co/datasets/tomekkorbak/python-github-code
4This is essentially equivalent to the method discussed in Templeton et al. (2024), see section “Methodological details.”

12

https://huggingface.co/datasets/tomekkorbak/python-github-code

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

Feature index Interpretation from Neuronpedia

3/res/9811 terms related to gravity and its influences
18/res/14053 terms related to theoretical frameworks and conceptual models
18/res/1336 references to Dark Matter and astronomical phenomena
20/res/4506 terms related to physical laws and scientific principles

21/res/13226 references to quantum concepts and theories
22/res/9002 terms related to models and their specifications,

22/res/15105 terms related to force and energy dynamics
23/res/4086 terms related to forces and dynamics in physical systems
24/res/7017 terms related to electromagnetic interactions and properties

24/res/14548 terms and references related to particle physics and standard model parameters

Table 2. Features initially chosen for deactivation of “Scientific concepts and entities” theme.

• Successful deactivations: The number of times a feature was deactivated, divided by the number of times it had an
active predecessor.

• Activation change: Defined as 1 −
(
znew
i /zold

i

)
for target feature i. This metric equals 1 when the feature is fully

deactivated, and can be interpreted as a measure of causal dependency between predecessor and target features.

B. Steering details
To further test whether our feature-matching approach enables effective model steering, we design a procedure to either
suppress or promote particular themes in the generated text. We begin by identifying a small set of features for each theme,
guided by Neuronpedia entries. We then build flow graphs (from layer 0 to layer 25) to trace how theme-related features
evolve across the network. If the semantic meaning of a feature remains consistent and relevant, we add it to our target
collection; otherwise, we continue searching until we have a satisfactory set of features.

We compare a single-layer steering strategy (affecting only the features of one layer) to a cumulative strategy (affecting
features from the current and all previous layers) to see whether distributing interventions across the network can produce
more robust thematic shifts. We also measure any corresponding changes in text coherence and the overall success in
promoting or suppressing the target themes.

B.1. Deactivation of theme

In the deactivation task, we target a theme we call “Scientific concepts and entities,” which is related to black holes, quantum
mechanics, and other advanced physics topics. The full list of related features is presented in Table 2.

Generation and evaluation setup. We use the prompt, “I think that the biggest problem of contemporary theoretical
physics is ”, and generate text with a maximum length of 96 tokens, topp = 0.7, and temperature T = 1.27. To determine
whether each theme is present in the generated text, we query a gpt4o-mini language model for a score from 0 to 5 on each
theme, following an approach similar to Chalnev et al. (2024). We use the following system prompt for validation:

"""You will receive a text that was generated by some language model.

You need to evaluate this text based on the following criteria:

1. Coherence score: text is gramatically correct, language is clear and coherent.
2. Behavioral score: text is directly related to some predefined subject.

The subjects are:
a) ** Personalities, their influence and achievements **. Text may contain
references to individual or group achievements or lack of results, discussion
about Nobel prizes etc.

13

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

Theme Feature index Interpretation

Anger and frustration 12/res/4111 expressions of anger and frustration
Mental health issues 12/res/16226 ref. to mental health issues and their connections to other health conditions
Wedding and marriage 12/res/4230 terms related to weddings and marriage ceremonies
Religion and God 12/res/5483 spiritual themes related to faith and divine authority

Table 3. Initial choice of feature for activation task.

b) ** Scientific concepts and entities **. Text relates to some specific
scientific concepts, such as particles, black holes, particular theories,
Standard Model, quantum wavefunctions, gravitation etc.
c) ** Research methodology and experimentation **. Text relates to methodology
and philosophy of science, scientific research techniques and procedures,
especially method of experiment, empirical basis of theories etc.

Rate the behavioral score in this order, i.e. [a, b, c].

Give an integer score from 0 to 5 for each criteria.
Do not judge text based on ethical considerations, preferences etc., it is
important for that evaluation to be objective.

Format your output as JSON:

{
"coherence": 5,
"behavioral": [1, 1, 1]

}

"""

And the following input formatting:

"""
Text:
\"\"\"
{text}
\"\"\"
"""

B.2. Activation of theme

We select the features used in Chalnev et al. (2024) (Table 3), so we do not significantly alter the initial feature choices.

Flow graph building. Starting from the target feature, we build a flow graph forward and backward, computing similarity
scores s(R), s(M), s(A) for each residual feature, referencing its predecessors. We then cut our graph on layers where s(R) is
below a threshold value t(R) = 0.5, forming the similarity span from lstart to lend. We also remove features from modules
using a threshold value of 0.15.

Feature activation transformation. For steering, we add scaled decoder columns of selected features:

ht ← ht + s ·V⊺,

where s ∈ Rf is a vector of scaling coefficients for f features whose embeddings are in V ∈ Rd×f . We apply this
transformation to all tokens to globally promote or suppress certain features.

14

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

Distribution of steering coefficient. To steer multiple related features, one can distribute a single steering coefficient
across them, rather than manually tuning each feature. We consider two main strategies.

Let s be the initial scaling coefficient and l the layer index. We define exponential scaling of a related feature as:

s′ = s× eαl,

and linear scaling as:

s′ = k × l + b, where k =
s∗ − s

lend − lstart
and b = s− k × lstart,

where lstart, lend are the first and last layers on the obtained graph.

Our intuition is that the more features we steer across different layers, the less strength each subsequent feature should have.
Exponential scaling with α < 0 causes s′ to decrease monotonically. Linear scaling is essentially an interpolation between
(lstart, s) and (lend, s

∗). Constant scaling is a special case of both methods where s′ = s.

We also employ folding (Balagansky et al., 2024) to incorporate information about typical activation levels of different
features, helping us distribute the coefficient more effectively. We set α = −0.05 and s∗ = 1, based on generating a small
batch of test completions and manually checking the trade-off between coherence and theme intensity.

The single method reported in 5.3 employs a per-layer activation strategy, and other methods are cumulative.

Generation and evaluation setup. We use the prompt, “I think ”, a maximum generation length of 36 tokens, topp = 0.7,
and temperature T = 1.27. We validate the result with the following system prompt:

"""You will receive a text that was generated by some language model.

You need to evaluate this text based on the following criteria:

1. Coherence score: text is gramatically correct, language is clear and coherent.
2. Behavioral score: text has explainable relation to some predefined subject.

Give an integer score from 0 to 5 for each criteria.

Do not judge text based on ethical considerations, preferences etc., it is
important for that evaluation to be objective.

To evaluate behavioral score, also consider related terminology or entities
which may be not directly discuss the subject, but associated with it. The name
of the subject is just an orienting point for further search of ** explainable **
connection to that theme in text. For example, if subject is the History of Rome,
then strong presence of latin or italian language, or discussion about not
history, but architecture of ancient Rome should also lead to high behavioral
score, because it has strong explainable connection.

Format your output as JSON:

{
"coherence": 5,
"behavioral": 1

}

"""

And the following input formatting:

15

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

FineWeb TinyStories Python Code AutoMathText
0

10

20

30

40

50 From nowhere
From RES

From MLP
From ATT

From RES & MLP
From RES & ATT

From MLP & ATT
From RES & MLP & ATT

(a)

0.2

0.4

0.6

0.8

1.0
Layer 8 (sR)

0.0

0.2

0.4

0.6

0.8

1.0
Layer 8 (sM)

0.1

0.2

0.3

0.4

0.5

Layer 8 (sA)
From nowhere
From RES
From MLP
From ATT

0.2

0.4

0.6

0.8

1.0
Layer 18 (sR)

0.0

0.2

0.4

0.6

0.8

1.0
Layer 18 (sM)

0.2

0.4

0.6

0.8

Layer 18 (sA)
From RES & MLP
From RES & ATT
From MLP & ATT
From RES & MLP & ATT

(b)

Figure 12. (a) Percentage of feature groups obtained for each dataset. (b) Distribution of scores for layers 8 and 18. We observe a clear
distinction between groups, which additionally indicates the validity of the proposed method.

From nowhere From RES
From MLP From ATT

From RES & MLP
From RES & ATT

From MLP & ATT

From RES & MLP & ATT

From nowhere

From RES

From MLP

From ATT

From RES & MLP

From RES & ATT

From MLP & ATT

From RES & MLP & ATT

1 0.49 0.32 0.19 0.26 0.17 0.1 0.11

0.72 1 0.29 0.2 0.33 0.22 0.091 0.13

0.82 0.5 1 0.25 0.45 0.18 0.21 0.18

0.82 0.59 0.42 1 0.33 0.45 0.3 0.28

0.75 0.66 0.5 0.22 1 0.22 0.16 0.22

0.76 0.72 0.32 0.49 0.35 1 0.21 0.33

0.82 0.51 0.67 0.57 0.46 0.37 1 0.42

0.74 0.62 0.5 0.47 0.53 0.5 0.37 1

Figure 13. Probability of group A (row) to appear in group B (column), aggregated over all layers. For example, if we take the “From
ATT” group, then with a probability of 0.45, features from this group would appear in the “From RES & ATT” group. High scores for the
“From nowhere” group represent its stochasticity.

"""Subject: {theme}
Text:
\"\"\"
{text}
\"\"\"
"""

C. Additional results for experiments
C.1. Identification of feature predecessors

The “From nowhere” group is the most present among all other groups (Figure 12(a)). This may be the consequence of
sporadic activation of some features or a matching error. The absence of groups with attention module is probably the
consequence of our training procedure, which clearly contrasts with the distribution for Llama Scope (Figure 19(a)).

In Figure 12(b), we see that certain groups are indeed distinct with respect to corresponding similarity scores, which we
describe in Section 5.1. Figure 14 shows the percentage of tests passed with a p-value threshold 0.001 for each pair of
groups, aggregated for each layer and dataset.

However, we observe that features may fall into different groups depending on the context and chosen token (Figure 13),
which indicates that we need to estimate, for every feature, the most probable groups they fall into.

A three-part partition of the group distributions for both Gemma Scope (Figure 5) and Llama Scope (Figure 19(b)) aligns
with earlier observations on monosemanticity of neurons across layers (Gurnee et al., 2023). Partitioning the model into
the first 20%, the next 40%, and the final 40% of layers reveals varying degrees of monosemanticity, which may have a
connection with the three-part partition in the distribution of groups across layers – for Gemma Scope, we have mentioned

16

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

From nowhere
From RES

From MLP
From ATT

From RES & MLP

From RES & ATT

From MLP & ATT

From RES & MLP & ATT

From nowhere

From RES

From MLP

From ATT

From RES & MLP

From RES & ATT

From MLP & ATT

From RES & MLP & ATT

0 1 1 0.76 1 1 0.95 0.95

1 0 1 1 0.99 0.82 1 0.96

1 1 0 0.97 1 1 0.67 1

0.76 1 0.97 0 0.96 1 0.97 0.95

1 0.99 1 0.96 0 0.99 1 0.56

1 0.82 1 1 0.99 0 1 0.99

0.95 1 0.67 0.97 1 1 0 1

0.95 0.96 1 0.95 0.56 0.99 1 0

r(R)

From nowhere
From RES

From MLP
From ATT

From RES & MLP

From RES & ATT

From MLP & ATT

From RES & MLP & ATT

0 0.93 1 0.81 1 0.85 1 0.98

0.93 0 1 0.96 1 0.84 1 1

1 1 0 1 1 1 0.72 0.97

0.81 0.96 1 0 0.94 0.96 1 0.96

1 1 1 0.94 0 1 1 0.58

0.85 0.84 1 0.96 1 0 1 1

1 1 0.72 1 1 1 0 1

0.98 1 0.97 0.96 0.58 1 1 0

r(M)

From nowhere
From RES

From MLP
From ATT

From RES & MLP

From RES & ATT

From MLP & ATT

From RES & MLP & ATT

0 0.86 0.84 1 0.94 1 1 1

0.86 0 0.95 1 0.94 1 1 1

0.84 0.95 0 1 0.97 0.99 1 1

1 1 1 0 1 0.67 0.81 0.98

0.94 0.94 0.97 1 0 1 1 1

1 1 0.99 0.67 1 0 0.72 0.82

1 1 1 0.81 1 0.72 0 0.56

1 1 1 0.98 1 0.82 0.56 0

r(A)

Figure 14. Percentage of statistically significant differences between groups with respect to a certain score.

random permutation top-1 top-k
0

10

20

30

40

50

60

Percent of features per category
From nowhere
From RES
From MLP
From ATT

From RES & MLP
From RES & ATT
From MLP & ATT
From RES & MLP & ATT

(a)

res
Deactivated

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

From RES
Deactivated
From nowhere

mlp
Deactivated

From MLP
From RES
From MLP
From ATT

att
Deactivated

From ATT
From RES & MLP
From RES & ATT
From MLP & ATT
From RES & MLP & ATT

res mlp res & mlp
Deactivated

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

From RES & MLP

res att res & att
Deactivated

From RES & ATT

mlp att mlp & att
Deactivated

From MLP & ATT

res mlp att res & mlp res & att mlp & att res & mlp & att
Deactivated

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

From RES & MLP & ATT

(b)

Figure 15. (a) Percentage of features per each method. There was a total of 13106 activated features, and for every feature, four matching
strategies were applied. We see that top5 method detects many more combined groups than other methods, especially “From RES &
MLP”. (b) Probability for a feature from some group A (labeled as the subplot title) to become from group B (shown in legend) after
deactivation of some predecessor. Each bar shows the percentage of times the feature falls into a new category.

parts [0, 5], [6, 15], and [16, 25], and in the case of Llama Scope we observe segments [0,8], [9,16], and [17,31].

C.2. Deactivation of features

We observe that the top5 method happens to detect many more activated predecessors than other methods, and detects more
combined groups as depicted in Figure 17(a).

Deactivation of a residual predecessor in the case of “From RES & MLP” and “From RES & ATT” with almost equal chance
also deactivates the predecessor on the corresponding module or deactivates the target feature entirely, as depicted in Figure
15(b). This suggests that in those cases, the residual predecessor is indeed blocked from further propagation. However, in
most cases, full deactivation (of all predecessors) is required to deactivate the target feature. In many cases, “Deactivated”
and “From nowhere” are equally probable, which indicates remaining causal dependencies that we miss with our method.

We also observe the appearance of new groups, i.e., a feature might initially be “From MLP”, but after deactivation of the
MLP feature (which is actually a re-calculation of the full forward pass with intervention on the MLP module), we observe
that sometimes the feature might have new predecessors, for example, on the attention module. This is unexpected since the
MLP module actually comes after the attention module, but the presence of such groups is not so strong, so we think of it as
sporadic behavior of internal computations.

We must take into account that there may be other causal relations for some feature to appear, for instance, interaction
between different tokens on the attention module, different features, different modules, or even different layers. Furthermore,
the appearance of a feature means a certain structure of the hidden state, and this structure was built by many previous
layers where information was somehow encoded in a complex way by the interaction of many different components and

17

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

0.0

0.1

0.2

0.3

0.4

0.5

0.6

To
ta

l

Anger and frustration
4
8

12
14

Mental health issues
9
15

21
24

Wedding and marriage
9
15

21
24

Religion and God
10
11

12
14

single constant exponential linear
0.0

0.2

0.4

0.6

0.8

Be
ha

vi
or

al

single constant exponential linear single constant exponential linear single constant exponential linear

Figure 16. From each flow graph, we select features on a particular layer l and perform steering with the four different strategies. Bars
represent the best result for each layer among all scores s. In some cases, steering on a layer other than 12 may improve results.

features. This is like an optimization process in a non-convex scenario, which may converge to some local minima with
certain properties, and the information processing inside the model may converge to a certain structure of hidden states with
certain semantics contained in it.

Therefore, in an ideal situation, to really deactivate some feature, we must somehow influence the hidden state to behave as
if there never had been such a feature, its evolutionary ancestors, or any other causal predecessors, and they had never been
involved in information processing. Our current steering procedure works in a “neighborhood” of some local hidden state
“minima”, but efficient deactivation consists of changing the convergence direction toward another hidden state “minima” at
an early stage of computations. This most likely also applies to the activation of some feature.

C.3. Model steering

We also measure the effect of steering on different layers. The best result among all available s is shown in Figure 16. Note
that single is a per-layer method, while the others are cumulative. We see that different layers perform differently, and while
the initial features were located at the 12th layer, sometimes the best layer is located elsewhere.

We also have performed a small experiment to test the activation of another theme with many flow graphs using the same
prompt as in the deactivation case. We start with the features described in Table 4 and build flow graphs from them. Then
we manually choose some of the subgraphs based on semantic considerations and threshold values. The total amount of
features selected on different layers is presented in Figure 15(a). After that, we steer the resulting features with manually
obtained s = 8 and α = −0.05 for the single-layer case, and s = 3 and α = −0.25 with the exponential decrease method
for the cumulative setting.

By using our method, we found influential features on the 5th layer that gave us the best result among all other layers (Figure
17(b)), while none of the initially found features were placed on that layer. However, we did not tune the hyperparameters
properly, so there may be room for another conclusion.

C.4. Comparison with Pearson Correlation Baseline

While data-driven methods provide useful insights, they face challenges with sparse SAEs and low-frequency features. Our
data-free approach overcomes these limitations through adjustable top-k matching, particularly advantageous in sparse
activation regimes.

We evaluated Pearson correlations on 100K non-special tokens from FineWeb’s ”default” subset for features in Gemma
Scope’s even layers and all layers of Pythia-70M-Deduped and GPT-2. Using an expanded sample size of 500 (Appendix A),
we identified feature groups. Figure 18 presents results for the Gemma model.

18

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

Feature index Interpretation from Neuronpedia

12/res/6778 references to testing and experimentation processes
16/res/13806 references to experimental studies and methodologies
18/res/1056 references to experiments and experimental protocols
18/res/7505 terms and phrases related to research activities and methodologies

23/res/10746 terms related to modeling and model-building in scientific contexts
24/res/11794 terms and phrases related to scientific reasoning and methodology
24/res/1027 concerns related to study validity and bias in research methodologies
24/res/7391 phrases related to inquiry and questioning
24/res/1714 references to academic studies and their outcomes
25/res/6821 terms related to experimental methods and results in scientific research

Table 4. Features initially chosen for activation of “Research methodology and experimentation” theme.

0 5 10 15 20 25
layer

0

2

4

6

8

co
un

t

res mlp att

(a)

1 5 10 15 20 25
Layer

0.0

0.2

0.4

0.6

0.8
Sc

or
e

Single-layer

1 5 10 15 20 25
Layer

Cumulative

Coherence Behavioral

(b)

Figure 17. (a) Amount of features selected for activation of “Research methodology and experimentation” theme. Vertical lines represent
the placement of the initially selected features. (b) Results for steering of selected features. Score is a total metric measured as
Behavioral × Cumulative. We can see that despite none of the initial features being placed on the 5th layer, it gives us the best result.

0

10

20

30

40

50

60

pe
ar

so
n

FineWeb
From nowhere
From RES

From MLP
From ATT

TinyStories
From RES & MLP
From RES & ATT

From MLP & ATT
From RES & MLP & ATT

Python Code

0 1 2 3 4 5
Layer

0

10

20

30

40

50

60

co
sin

e

0 1 2 3 4 5
Layer

0 1 2 3 4 5
Layer

Figure 18. Feature group identification comparison (Section 5.1) between top1 cosine similarity and Pearson correlation. While correlation
better captures predecessors with under-trained embeddings, it exhibits stronger dataset dependence and sparsity sensitivity.

Correlation-based matching reduced the ”From nowhere” group presence and improves predecessor identification on
attention module, though potential misalignment between our attention SAEs and Gemma Scope’s residual/MLP SAEs
may affect quality. Results aligned closely with Llama Scope for Pythia (showing clearer attention features), while GPT-2
displayed increasing ”From nowhere” presence in later layers.

The correlation method failed to consistently outperform top1 cosine similarity, particularly on out-of-distribution Python
code. Strong agreement emerged between methods for Gemma Scope and GPT-2 residual SAEs, but weaker alignment
occurred for module-based SAEs, consistent with prior feature propagation studies.

19

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

FineWeb TinyStories Python Code AutoMathText
0

10

20

30

40

50 From nowhere
From RES
From MLP
From ATT

From RES & MLP
From RES & ATT
From MLP & ATT
From RES & MLP & ATT

(a)

5

10

15

20

25

30

35

40

FineWeb

From nowhere
From RES

From MLP
From ATT

TinyStories

From RES & MLP
From RES & ATT

From MLP & ATT
From RES & MLP & ATT

0 5 10 15 20 25 30

5

10

15

20

25

30

35

40

Python Code

0 5 10 15 20 25 30

AutoMathText

(b)

0.2

0.4

0.6

0.8

1.0

Layer 8 (sR)

0.0

0.2

0.4

0.6

0.8

Layer 8 (sM)

0.1

0.2

0.3

0.4

0.5

Layer 8 (sA)

From nowhere
From RES
From MLP
From ATT

0.2

0.4

0.6

0.8

1.0
Layer 16 (sR)

0.2

0.4

0.6

0.8

Layer 16 (sM)

0.1

0.2

0.3

0.4

0.5

0.6

Layer 16 (sA)

From RES & MLP
From RES & ATT
From MLP & ATT
From RES & MLP & ATT

0.2

0.4

0.6

0.8

1.0

Layer 24 (sR)

0.0

0.2

0.4

0.6

0.8

Layer 24 (sM)

0.1

0.2

0.3

0.4

0.5

0.6

Layer 24 (sA)

(c)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

s(M
)

Layer 4

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Layer 16

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

Layer 28

0.2 0.4 0.6 0.8 1.0
s(R)

0.2

0.4

0.6

0.8

1.0

s(A
)

From nowhere
From RES

From MLP
From ATT

0.2 0.4 0.6 0.8 1.0
s(R)

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0
s(R)

0.2

0.4

0.6

0.8

(d)

Figure 19. (a) Distribution of groups for Llama Scope. We observe a clear distinction from Gemma Scope results (Figure 12(a)) due to a
much smoother distribution. This may be a consequence of various factors: the architecture of the models or SAEs, the training procedure,
differences in data distribution, etc. (b) Distribution of groups across multiple layers. We observe approximately the same pattern as for
Gemma Scope (Figure 5), indicating shared properties between the models. (c) Distribution of scores for different groups. We see that the
groups are slightly less distinct from each other compared to the case of Gemma Scope (Figure 12(b)), but they are still present. This is
also reflected in (d) the separability of different groups based on their cosine similarity relations.

D. Experiments with Llama Scope
We have also used the Llama Scope SAE pack (He et al., 2024) to evaluate our proposed approach and have found that it is
well aligned with the results we observe for Gemma Scope. However, we did not perform a steering experiment or graph
building, and we consider it as one of the future study directions. For these SAEs, the main picture remains the same.

First, they have a more uniform distribution of feature groups, with a clear prevalence of attention features (Figure 19(a)).
This indicates that our attention SAEs for Gemma were perhaps not trained well enough. We suspect that experiments with
other models will show that Llama Scope results are more accurate with respect to predecessors distribution.

Second, despite the uniformity, we observe that Llama Scope groups are slightly harder to separate from each other in terms
of similarity scores (Figures 19(c) and 19(d)), which may also be the consequence of the different architecture of the model
itself or because these SAEs initially were trained with the TopK activation function.

Third, the dynamics of the group distribution is slightly different (Figure 19(b)), but the overall pattern (with a three-part
separation and an increase of “From RES” in the latter layers) and overall percentage is still approximately the same. Perhaps
we may interpret this similarity between Llama Scope and Gemma Scope as an argument for the validity of our analysis;
however, it still requires experimentation with other architectures and sizes.

20

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

terms related to organizational structures and ...

0 5 10 15 20 25

MLP

Residual Stream

London Graph

Layer

keywords and concepts related to fashion

 references to fashion and related concepts

words and phrases related to fashion

references to the city of London

mentions of London and its associated contexts

 references to iron and its related elements in various contexts

references to conferences and related events

Figure 20. Flow graph for the 12/res/14455 feature. As reported in Chalnev et al. (2024), steering of that feature might produce themes
related to fashion, and we clearly observe that our flow graph captures this semantics in the earlier layers.

E. Examples of flow graphs
In this section, we describe some of the interesting flow graphs we have found. For simplicity, we denote each feature as
“layer index / module / feature index”.

Particle physics graph. We start with the graph presented in Figure 2 that was built from feature 24/res/14548. Once we
obtain it, we might explore how its semantics evolved across different layers. The full list of features with interpretations
that belong to this graph is presented in Table 5.

From the first to the sixth layers, we have semantics mainly related to experiments and abstract particle physics. Then we
have feature 7/res/16335 with the following scores: s(M) = 0.82 for 7/mlp/6110, with semantics related to datasets and
measurements, and s(R) = 0.3 for 6/res/2452 with semantics about Dark Matter. After this, the semantic flow has a tighter
connection to measurement and observation-related themes, while maintaining the quantum physics semantics.

We hypothesize the following relation: initially, the flow graph was related to science and experiment, and on the 7th layer it
was transformed in a way that 7/mlp/6110 introduced a slightly new semantics to the already existing one, perhaps also
replacing the vague “experimentation” theme. Thus, we think of this interaction as an example of a linear circuit, and feature
7/res/16335 falls into the processed category.

After the 7th layer, we observe a slight strengthening of particle physics semantics, perhaps because of some other
interactions, while also introducing the bosons theme. From this layer, s(R) is large and s(M) is small. On the 17th layer,
we encounter feature 17/res/8130 with s(R) = 0.48 and s(M) = 0.79 for 16/res/10649 and 17/mlp/8454, respectively. The
MLP feature relates to gauge theories and theoretical matters, and the feature 17/res/8130 drifts toward gauge bosons and
their interaction theme. We also hypothesize that at this particular point, the feature from MLP added new information to the
already existing one; therefore, 17/res/8130 is also a processed feature.

After this, the semantic meaning sticks more to the Standard Model and particle interaction, but with less practical (such as
measurements and data) and more theoretical aspects. We can also see that MLP features on layers from 20 to 24 are more
related to theoretical aspects than their residual matches.

London graph. An interesting observation was made in Chalnev et al. (2024): steering feature 12/res/14455 with
interpretation “mentions of London and its associated contexts” with a large steering coefficient led to the generation of a
theme related to fashion, design, and exhibition. If we build the flow graph from this feature, we observe that in the first half
it clearly has fashion-related semantics (Figure 20). This indicates that feature 12/res/14455 contains the semantics of its
evolutionary predecessors. We also see feature 17/res/9260 with references to conferences (followed by feature 18/res/2010
with the same semantics), which relates to shows and exhibitions mentioned in Chalnev et al. (2024). Perhaps we might
interpret this particular flow graph as “references to fashion and design exhibitions performed in London”.

21

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

references to official agreements and diplomatic ...
 events related to openings and inaugurations

references to wedding ceremonies and related ...

references to weddings and related events

attends to numerical tokens from descriptive ...

references to weddings and marriage anniversaries

attends to the token "boot" from ...

references to weddings and marriage

0 5 10 15 20 25

MLP

Residual Stream

Attention

Wedding Graph

Layer

events involving official openings and inaugurations

statements and confirmations regarding events or actions taken by officials or figures in positions of authority

statements made by individuals, particularly those involving quotations or direct speech

references to weddings, anniversaries, and related ceremonies

Figure 21. Flow graph for the 12/res/4230 feature. In this case, we observe that the second half of the model is closely related to wedding
and marriage ceremonies. We believe that the “official” aspect in the interpretation of features in earlier layers is closely related to the fact
that wedding ceremonies and marriage are themselves official procedures—the registration of a specific type of interpersonal relationship.

Figure 22. Two SAEs with a learned transition matrix T can be seen as a transcoder from layer t to layer t+ 1.

Wedding and marriage graph. We have observed in our experiments that steering feature 12/res/4230 with interpretation
“terms related to weddings and marriage ceremonies” indeed increases the presence of ceremony-related tokens in a wedding
context. If we obtain a flow graph for that feature, we see that it begins with themes related to official meetings and
agreements, suggesting that the “ceremony” part of the flow graph interpretation may arise from this official context.

We conclude that these flow graphs may be used not only for interpretation and understanding of feature evolution, but they
can also explain the outcomes of certain steering procedures.

F. Similarity between Matching and Transcoders
Dunefsky et al. (2024) proposed using transcoders to study computational graphs, and Balagansky et al. (2024) proposed
using a permutation P to find matching features across layers. In this section, we study the similarity between these two
methods. Similarly to Balagansky et al. (2024), we chose explained variance as a metric to measure the quality of the
translayer transcoder. See Figure 22 for the schematic overview of the transcoders obtained by transition mapping Tt→t+1.

Setup. We use SAE trained on the residual stream after layers 14 and 15. We vary the methodology to find and apply the
transition T. In our cases, we consider only a linear map so that T ∈ R|F|×|F|.

First, we study how folding proposed in Balagansky et al. (2024) affects final transition performance. Results are presented in
Figure 23. From these results, we conclude that folding is useful in the inference case to match different scales of activations
across layers; in contrast, it has almost no effect on finding permutations, with the exceptional case of incorporating benc to
find permutations. Notably, the baseline with a simple approach of finding cosine similarity outperforms permutations.

Second, we compare cosine similarity with other methods to obtain the transition map T. Instead of relying on a matrix
containing 0 and 1, we use the topk operator. Results are presented in Figure 24. Interestingly, folded top2 W

(14)⊺
dec W

(15)
dec

outperforms the permutation baseline; however, cosine similarity (Ix>0 top 1W
(14)⊤
dec W

(15)
dec) performs best.

22

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

W(14)
enc W(15)

enc W(14)
dec W(15)

dec W(14)
enc W(15)

enc + W(14)
dec W(15)

dec W(14)
enc W(15)

enc + W(14)
dec W(15)

dec + b(14)
enc b(15)

enc

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Ex
pl

ai
ne

d
Va

ria
nc

e

0.791

0.747
0.751 0.749

0.631

0.747
0.751 0.751 0.749

0.783
0.786 0.784

0.669

0.783
0.786 0.786 0.785

Ix > 0top1 W(14)
dec W(15)

dec
Not Folded
Folded Permute Finding
Folded Inferwnce + Not Folded Finding
Folded All

Figure 23. Explained variance of the various permutation variants. Cosine similarity between decoders’ vectors
(Ix>0 top 1W

(14)⊤
dec W

(15)
dec) performs best. See Appendix F for more details.

1 2 3 4 5
k

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ex
pl

ai
ne

d
Va

ria
nc

e

Layer 15-16 Residual

topk(W(A)
encW(B)

enc)
topk(W(A)

dec W(B)
enc)

topk(W(A)
dec W(B)

dec)
topk(W(A)

decW
T(B)
dec + WT(A)

enc W(B)
enc)

Folded topk(W(A)
encW(B)

enc)
Folded topk(W(A)

dec W(B)
enc)

Folded topk(W(A)
dec W(B)

dec)
Folded topk(W(A)

decW
T(B)
dec + WT(A)

enc W(B)
enc)

Ix > 0top1 W(14)
dec W(15)

dec
Permutations

Figure 24. Comparison of various k in topk operator and different weights of the SAE. Cosine similarity (Ix>0 top 1W
(14)⊤
dec W

(15)
dec)

performs best. See Appendix F for more details.

23

Analyze Feature Flow to Enhance Interpretation and Steering in Language Models

Layer Feature index Interpretation

0 0/mlp/12987 punctuation, particularly quotation marks and dialogue indicators
0/res/14403 elements that indicate neglect or care in familial relationships

1 1/mlp/16168 mentions of astronomical phenomena and their characteristics
1/res/13755 metaphorical language and scientific terminologies related to variables and coefficients

2/res/12939 numerical data or metrics related to surveys and observations
3/res/16138 scientific terminology related to study results and causes
4/res/11935 terms related to particle physics and their interactions
5/res/14558 numeric or symbolic representations related to mathematical notation or scientific data
6/res/2452 key terms related to Dark Matter detection and experimental setups

7 7/mlp/6110 terms related to datasets and classification in statistical or machine learning contexts
7/res/16335 technical terminologies related to particle physics measurements

8/res/9666 scientific measurements and data related to particle physics
9/res/8318 references to particle physics concepts and measurements

10/res/13754 technical terms and measurements related to particle physics
11/res/7614 terms related to particle physics and specifically the properties of W and Z bosons
12/res/2812 statistical terms and measurements associated with quark interactions
13/res/4955 terms and concepts related to particle physics experiments and measurements...
14/res/5262 keywords related to particle physics, specifically concerning quarks and their properties
15/res/9388 concepts related to particle physics measurements and events

16/res/10649 complex scientific terms and metrics related to particle physics experiments

17 17/mlp/8454 theoretical concepts and key terms related to physics and gauge theories
17/res/8130 terms related to gauge bosons and their interactions within the context of particle physics

18/res/11987 technical and scientific terminology related to particle physics
19/res/15694 references to scientific measurements and results related to particle physics...

20 20/mlp/601 terms associated with quantum mechanics and transformations
20/res/12523 terms and concepts related to particle physics and the Standard Model

21 21/mlp/594 technical terminology and classifications related to data or performance metrics
21/res/14511 scientific terminology and concepts related to fundamental physics...

22 22/mlp/14728 references to gauge symmetries in theoretical physics
22/res/11460 terms and concepts related to particle physics and theoretical frameworks

23 23/mlp/6936 terms related to theoretical physics and particle interactions
23/res/9592 terms related to particle physics and their interactions

24 24/mlp/11342 terms and concepts related to theoretical physics and particle interactions
24/res/14548 terms and references related to particle physics and standard model parameters

25/res/1646 technical terms and measurements related to particle physics and the Standard Model

Table 5. Graph built from 24/res/14548 feature with MLP features dropped by threshold t(M) = 0.25.

24

