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Abstract

Task-agnostic pre-training followed by task-
specific fine-tuning is a default approach to train
NLU models which need to be deployed on de-
vices with varying resource and accuracy con-
straints. However, repeating pre-training and fine-
tuning across tens of devices is prohibitively ex-
pensive. To address this, we propose SuperShaper,
a task-agnostic approach wherein we pre-train a
single model which subsumes a large number of
Transformer models via linear bottleneck matrices
around each Transformer layer which are sliced
to generate differently shaped sub-networks. De-
spite its simplicity, SuperShaper radically sim-
plifies NAS for language models and discovers
networks, via evolutionary algorithm, that effec-
tively trade-off accuracy and model size. Dis-
covered networks are more accurate than a range
of hand-crafted and automatically searched net-
works on GLUE benchmarks. Further, a critical
advantage of shape as a design variable for NAS
is that the networks found with these heuristics
derived for good shapes, match and even improve
on carefully searched networks across a range of
parameter counts.

1. Introduction
While the pre-train then fine-tune paradigm (Devlin et al.,
2019) has been very successful in developing state-of-the-
art NLP models, it is very compute intensive. This limits
the personalization of models for the product space of mul-
tiple tasks and devices. Super pre-training a model subsum-
ing a family of models instead of individually pre-training
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them, as performed in NAS-BERT (Xu et al., 2021), is
the most attractive solution. However, existing NAS-like
approaches utilise a complex design space with many explo-
ration dimensions. In this work, we set out to understand if
there is a simple characterization of the family of efficient
networks. We propose SuperShaper, a simple and elegant
method for super pre-training language models. It differs
from existing super pre-training efforts (Hou et al., 2020;
Zhang et al., 2021; Xu et al., 2021) in its characterisation
of design space. Our simple characterization is the notion
of a ”shape” of a network, which we define as the hidden
dimensions of each transformer layer enabled via bottleneck
matrices at the input and output of each layer (inspired by
MobileBERT (Sun et al., 2020)). These differently shaped
networks are randomly sampled by slicing the bottleneck
matrices and trained, similar to earliest proposed elastic
NAS efforts (Brock et al., 2018; Cai et al., 2019). Super-
Shaper can be enabled for any transformer model with just
20 lines of PyTorch code.

In order to choose optimal shapes we leverage Evolutionary
Algorithm (EA) to search over SuperShaper’s shape space.
This yields shapes that are competitive on GLUE tasks with
BERT-base as well as other compressed models (both hand-
crafted and NAS). Analysis of discovered networks across
parametric counts helps identify heuristics of good shapes,
which we call the pipe rule. By applying our pipe rule,
we hand-craft sub-networks which match or often exceed
the performance of networks discovered using EAs. These
hand-crafted sub-networks suggest a cigar-like shape. Thus,
our technique indicates that NAS can be performed with
radically simpler design spaces which generalise across
tasks and parameter counts.

2. Related Work

Three dominant strategies define efficient deployment of
language models: (a) model compression with low-rank ap-
proximation, pruning, and quantization (Wang et al., 2019;
Ma et al., 2019; Michel et al., 2019; Goyal et al., 2020; Shen
et al., 2020), (b) task-agnostic and task-specific knowledge
distillation (Sanh et al., 2019a; Jiao et al., 2020; Sun et al.,
2020; Wang et al., 2020b; Jiao et al., 2020; Tang et al., 2019;
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Figure 1. A Transformer layer in (a) BERT, and (b) Backbone in
SuperShaper with bottleneck matrices.

Turc et al., 2019a; Sun et al., 2019a; Chen et al., 2020a),
and (c) Neural Architecture Search (Gao et al., 2021; Chen
et al., 2020b; Xu et al., 2021; Zhang et al., 2021).

In contrast, SuperShaper provides a radically simple NAS
method to super pre-train a family of models enabling
the discovery of efficient models across the product space.
Model compression and knowledge-distillation are comple-
mentary to our effort and can be composed together for
further gains. In addition, SuperShaper uses a very simple
design space unlike other contemporary efforts (Xu et al.,
2021; Zhang et al., 2021).

3. SuperShaper Methodology
SuperShaper methodology involves shape variable pre-
training, subnetwork search and fine-tuning.

3.1. Architecture and Pre-Training

We focus on the Transformer architecture (Vaswani et al.,
2017) used to train BERT-like encoders (see Figure 1). With
SuperShaper, we would like to explore subnetworks where
layers have different hidden dimensions. The intuition be-
hind this choice is that different layers may perform roles
of varying importance. For instance, earlier layers manipu-
late the input embeddings and the final layers responsible
for the output may require larger hidden dimensions. In-
spired by MobileBERT (Sun et al., 2020), we modify the
standard Transformer layer by inserting bottleneck layers
before and after each layer, as shown in Figure 1 (b). We
slice the bottleneck matrices at the input to project vectors
to a smaller dimension, and then at the output to project
them back to the original dimension. The weight matri-
ces of the transformer sublayers are appropriately sliced
to process the down-projected vectors. With this simple

change, we can generate differently shaped subnetworks for
super-pretraining.

We denote the SuperShaper backbone as T and any sub-
network sliced from the backbone as TS where S is the
shape vector that represents the layer-wise hidden dimen-
sions, Si for layer i. The set of all possible values of S
denotes the design space D. The smallest and largest sub-
networks in D are denoted as TS− and TS+ , respectively,
while a random sub-network is denoted as TSr .

From a given design space D, we randomly sample n differ-
ent shapes S and obtain TS for each by the slicing technique
described in the previous subsection. Additionally consider
the largest and smallest sub-networks TS+ and TS− , also
called the sandwich rule (Yu and Huang, 2019) which has
been shown to perform better for weight-sharing NAS in
computer vision (Yu and Huang, 2019; Yu et al., 2020; Wang
et al., 2021). The sampled sub-networks, are jointly trained
with the masked language model (MLM) objective.

3.2. Searching for optimal shapes

Once we have super pre-trained with a design space D, we
can sample TS for any S, which can then be fine-tuned. The
design space of all sub-networks can be large: A choice
of 7 shapes each for 12 layers can yield 14 billion sub-
networks. To find an optimal shape from S which meets
specific constraints on accuracy, parameter count, or latency
on devices, we adopt Evolutionary Algorithm (EA) from
(Real et al., 2017) which starts with a population of solu-
tions and over generations create new solutions by applying
genetic operations like mutation and crossover and retain
the fittest solutions based on defined metrics of interest. For
SuperShaper, the genetic representation of sub-networks
and genetic operations are natural and simply described by
the shape vector S. For the fitness metrics, we use perplexity
on language modelling and latency on a device. To amortize
the expense of computing these metrics for thousands of
solutions, we use fitness predictors that have been studied
elsewhere in NAS (Cai et al., 2019; Ganesan et al., 2020).

3.3. Fine-tuning TS from SuperShaper

A sampled sub-network TS can be fine-tuned via: direct
fine-tuning (), further pre-training and then fine-tuning (),
and pre-training TS from scratch before fine-tuning (). The
main results are reported for with further analysis on others
in Appendices C and G.

4. Experimental Setup and Results
We now detail the experimental setup and report a range of
findings to evaluate SuperShaper.
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4.1. Experimental Setup

We describe the experimental setups for pre-training and
fine-tuning. For details see Appendix A and B.

SuperShaper pre-training We insert randomly initialized
bottleneck matrices into BERT-base and slice them to pro-
duce Transformer layers of varying hidden dimensions in
{120, 240, 360, 480, 540, 600, 768}. Thereafter we follow
the training procedure in Section 3.1 using the MLM objec-
tive on the C4 RealNews dataset (Raffel et al., 2019) with a
batch size of 2048, with max seq. length of 128, and 175K
steps (or 26 epochs) on 8 A100 GPUs.

Evolutionary Algorithm (EA). We adapt the EA presented
in (Real et al., 2017) with population size 100, and mutation
prob 0.4 bounded by 300 iterations.

Fitness Predictors. We randomly sample 10, 000 sub-
networks and build XGBoost-based (Chen et al., 2015)
fitness predictor models to predict perplexity on the C4-
RealNews validation dataset. These are used in the afore-
mentioned EA.

Fine tuning. We use standard hyperparameters for fine-
tuning on GLUE (Wang et al., 2018) and Squad V1 (Ra-
jpurkar et al., 2016). For the GLUE tasks RTE, MRPC and
STS-B, we start with a model fine-tuned on MNLI similar
to (Liu et al., 2019). We only hyperparameter tune for batch
size, weight decay, and warmup steps and report results on
best ones.

4.2. Main Results

Comparing with BERT-base. Using EA, we discover a
96M parameter sub-network from SuperShaper and com-
pare it with BERT-base (Xu et al., 2021) with 110M pa-
rameters. We witness an equal GLUE score of 83.7% for
lesser parameters and a comparable Squad v1 score of 88.2
showcasing the richness of SuperShaper.

Figure 2. Evolutionary search finds optimal models while simple
heuristics yield competitive models.

Comparing with compressed models. We now compare

SuperShaper models with state-of-the-art compressed mod-
els (both hand-crafted and NAS-discovered) within 60-67M
parameters range. The task-wise performance of the ob-
tained sub-network is reported in Table 1. On GLUE, our
63M sub-network performs competitively across the board
despite a simpler design space and even outperforms many
prominent hand-crafted networks. We derive similar in-
sights in SQuAD. NAS-BERT reports a higher GLUE and
EM/F1 scores, potentially attributed to the complex design
space with novel separable convolutions. Note, NAS-BERT
and DynaBERT use knowledge distillation and data augmen-
tation that are complementary to our approach and can be
combined for better performance. In summary, we establish
that SuperShaper with a simple design space and efficient
super pre-training implementation performs competitively
in compressing models to a given parameter count.

Comparing sub-networks with varying sizes. We use EA
to search for sub-networks ranging from 40 to 110M pa-
rameters. To understand the effectiveness of EA search, we
sample 10,000 random sub-networks and compute their per-
plexity. We then plot these points along with the networks
searched by EA in Figure 2. We make two key observations:
(a) sub-network’s shape critically affects perplexity, and
(b) EA effectively discovers accurate networks across the
spectrum. We report GLUE scores for these networks in
Appendix G.3.

4.3. Shape analysis of Super-Networks.

Given SuperShapers’s simple design space, we can ask the
question: Are there good shapes for different model sizes?

Performance of templated shapes. We first evaluate the
performance of the following templated shapes in the 63-
65M parameter range: lower triangle (hidden sizes increase
from lowest to highest layers), upper triangle (inverse of
lower triangle), rectangle (same hidden sizes in all layers),
diamond (hidden sizes increase up to middle layer and then
shrink), inverted diamond (inverse of diamond), bottle (same
as diamond but same hidden sizes in middle layers), and
inverted bottle (inverse of bottle). Details of the hidden
dimensions and sub-network perplexity for each network
are in Appendix G.1. We observe that lower triangle has the
lowest perplexity (7.31) while inverted bottle (9.22) has the
highest indicating shape’s strong impact.

Feature importance from optimal sub-networks. From
the analysis above and of sub-networks searched by EA,
we find that accurate networks have more parameters in
the later layers. We analyse this using a predictor trained
to estimate perplexity given the shape. For this predictor,
we compute the feature importance (plot in Appendix E)
of each layer’s shape and derive a set of heuristics of good
shapes, which we call pipe rule. Concretely, the pipe rule is
as follows: allocate the largest dimension to the last layer,
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Model Params MNLI-m QQP QNLI CoLA SST-2 STS-B RTE MRPC Avg.
GLUE SQuAD V1

LayerDrop (Fan et al., 2019) 66M 80.7 88.3 88.4 45.4 90.7 - 65.2 85.9 - -

DistilBERT (Sanh et al., 2019b) 66M 82.2 88.5 89.2 51.3 91.3 86.9 59.9 87.5 79.6 79.1 / 86.9

Bert-PKD (Sun et al., 2019b) 66M 81.5 70.7 89.0 - 92.0 - 65.5 85.0 - 77.1 / 85.3

MiniLM (Wang et al., 2020b) 66M 84.0 91.0 91.0 49.2 92.0 - 71.5 88.4 - -

Ta-TinyBert (Jiao et al., 2020) 67M 83.5 90.6 90.5 42.8 91.6 86.5 72.2 88.4 80.8 -

Tiny-BERT (Jiao et al., 2020) 66M 84.6 89.1 90.4 51.1 93.1 83.7 70.0 82.6 80.6 79.7 / 87.5

BERT-of-Theseus (Xu et al., 2020) 66M 82.3 89.6 89.5 51.1 91.5 88.7 68.2 - - -

PD-BERT (Turc et al., 2019b) 66M 82.5 90.7 89.4 - 91.1 - 66.7 84.9 - -

ELM (Jiao et al., 2021) 67M 84.2 91.1 90.8 54.2 92.7 88.9 72.2 89.0 82.9 77.2 / 85.7

NAS-BERT∗ (Xu et al., 2021) 60M 83.3 90.9 91.3 55.6 92.0 88.6 78.5 87.5 83.5 80.5 / 88.0

DynaBERT† (Hou et al., 2020) 60M 84.2 91.2 91.5 56.8 92.7 89.2 72.2 84.1 82.8 -

YOCO-bert (Zhang et al., 2021) 59-67M 82.6 90.5 87.2 59.8 92.8 - 72.9 90.3 - -

SuperShaper (ours) 63M 82.2 90.2 88.1 53.0 91.9 87.6 79.1 89.5 82.7 78.25 / 86.01

SuperShaper heuristic-shaped (ours) 61M 82.0 90.3 88.4 52.6 91.6 87.8 77.6 86.5 82.1 77.86 / 85.83

Table 1. Comparison of SuperShaper with 60-67M parameter constraint models on development set of GLUE. † trained with data
augmentation, ∗ trained without knowledge distillation during fine-tuning
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Figure 3. Hidden sizes (y-axis) at different layers (x-axis) for
heuristically shaped models resemble cigars.

followed by first, then early middle layers (2-5), and finally
later middle layers (6-11). We denote this as a cigar-like
shape.

Heuristically shaped models. Using pipe rule, we hand-
craft subnetworks for a given parameter range (say 60-65M)
with cigar-like shapes as shown in Figure 3 and evaluate
them on perplexity (for ). We find that the performance is
competitive and even outperforms sub-networks discovered
with EAs (see Figure 2). We also take one of the mod-
els built using pipe rule (for 61M) and pre-train and fine-
tune them on GLUE (see Table 1). Similar to our subnet-
work identified through EA (63M), the pipe rule model out-
performs prominent hand-crafted or compressed networks.
This strongly demonstrates the generalization of the derived
heuristics across model size. To the best of our knowledge,
this is the first such generalization demonstrated for NAS.

5. Conclusions
We proposed SuperShaper, a simple and elegant pre-training
approach to train a family of language models by varying
shapes of Transformer layers to identify optimal shapes,
given a budget, via Evolutionary Algorithms. We obtained
networks that are competitive with state-of-the-art model
compression techniques on GLUE benchmarks. We discov-
ered that cigar-like shapes of networks generalize across
parameter counts is insensitive to shape. Consequently, we
demonstrated that NAS can be performed with radically
simple design space and implementation, while deriving
generalization across tasks and model sizes.

6. Limitations
We identify the following limitations of our work: (a) Since
subtransformer slices are randomly sampled during super
pre-training, there is a possibility that optimal slices may
not be fully trained. Additionally, given the billion choices
evolutionary search may not always find the best models,
(b) Some sub-transformers (smaller prefixes) may get signif-
icantly more gradient updates than others and their overall
effect on super pre-training needs to be evaluated, and (c)
Best downstream performance is obtained from rather than
or (it is noteworthy, however, that the latter exhibits compet-
itive performance). This involves additional training effort.

7. Ethical Considerations
We do not create any datasets or collect annotations in this
paper. We have used publicly available datasets and models
for super pre-training and fine-tuning and thus the models
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will contain biases. Debiasing techniques will help resolve
these issues but that is beyond the scope of this work.
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A. Fine tuning tasks and Evaluation metrics
We report performance metrics on the dev version of the
benchmark. For RTE, MRPC and STS-B, we start with a
model fine-tuned on MNLI similar to (Liu et al., 2019; Xu
et al., 2021). For metrics, we report Matthews correlation
for CoLA (Wang et al., 2018), Spearman correlation for
STS-B (Wang et al., 2018) and accuracy for all other tasks.
For MNLI-m (Wang et al., 2018), we report accuracy on the
matched set. For Squad, we report exact match and F1 score.
Following (Devlin et al., 2019; Xu et al., 2021; Zhang et al.,
2021; Hou et al., 2020), we also exclude the problematic
WNLI dataset. For all the datasets in GLUE, we use the
official train and dev splits and download the datasets from
HuggingFace datasets1.

B. Training details and Hyperparameters used
in SuperShaper

We initialize our backbone with BERT-base-cased model
trained on Wikipedia and BookCorpus with identity bottle-
neck matrices. We then super pre-train the backbone using
MLM over the C4 RealNews dataset with effective batch
size of 2048, max sequence length 128, for 175K steps (or
26 epochs) on 8 A100 GPUs. The hyperparameters we used
for MLM pretraining and finetuning tasks are detailed in
Table 2 and Table 3.

Data C4/RealNews
Max sequence length 128
Batch size 2048
Peak learning rate 2e-5
Number of steps 175K
Warmup steps 10K
Hidden dropout 0
GeLU dropout 0
Attention dropout 0
Learning rate decay Linear
Optimizer AdamW
Adam ϵ 1e-6
Adam (β1, β2) (0.9, 0.999)
Weight decay 0.01
Gradient clipping 0

Table 2. Hyperparameters for MLM super pre-training on C4 Re-
alNews. Super pre-training was done on 8 A100 GPUs

C. Effectiveness of super pre-training.
We ask two questions towards evaluating the effectiveness
of super pre-training: (a) Is the relative performance of
sampled sub-networks on the MLM perplexity () corre-

1https://huggingface.co/datasets/glue

CoLA
Other
GLUE
tasks

Squad V1

Batch size {16, 32} 32 {8, 16, 32}
Weight decay {0, 0.1} 0 {0, 0.1}
Warmup steps {0, 400} 0 {0, 1000}
Max sequence length 128 128 512
Peak learning rate 5e-5 5e-5 1e-5

Number of epochs 10
Hidden dropout 0
GeLU dropout 0
Attention dropout 0
Learning rate decay Linear
Optimizer AdamW
Adam ϵ 1e-6
Adam (β1, β2) (0.9, 0.999)
Gradient clipping 0

Table 3. Hyperparameters for fine-tuning on GLUE and SQuAD
V1

lated with performance of the same sub-networks when
pre-trained individually from scratch ()?, and (b) Does the
super pre-training afford sub-networks an advantage when
being fine-tuned for tasks? For the first question, we sample
a set of sub-networks TS of both varying (33-96M) and
similar (63-65M) parameter counts, and plot and in Fig-
ure 4 (b). We notice that and are highly correlated with
a Spearman correlation coefficient of 0.954. This implies
that the sub-network’s measured MLM perplexity after su-
per pre-training is a good proxy for final performance. We
also observe that networks sampled at the similar parameter
count (63-65M) have varying performance suggesting the
sensitive role of shape in accuracy.

For studying the second question, we pre-train and then fine-
tune the varying parameter count sub-networks (33-96M) in
two ways (a) by retaining the weights learnt during super
pre-training (), and (b) starting with random initialization .
We plot two quantities in Figure 4 (c): the amount of pre-
training time saved with (a) and the additional GLUE score
obtained with (a). We observe that models with fewer param-
eters (30-50M) show significant savings in the pre-training
time (up to 6.6×) and simultaneously benefit from improved
GLUE accuracy (up to 3%). The gains on both axes for
larger models are smaller. This suggests that smaller models
whose parameters receive more weight updates due to shar-
ing of the earlier rows and columns across sub-networks
benefit more from super pre-training. This is encourag-
ing because most effort in deployability is concerned with
models of smaller size.
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Figure 4. (a) SuperShaper is a fast and accurate proxy for sub-network perplexity, and (b) inherited sub-networks only require a fraction
of pre-training cost (in blue) i.e. 1.3-6.6x reduction to reach optimum. This comes at a higher average gain in GLUE score (in red).

D. Efficient Deployment of SuperShaper
sub-networks

Once the sub-networks are identified through evolutionary
search or proposed heuristics, we combine the output bottle-
neck matrices of layer i with the input bottleneck matrices
of layer i+1 for further parameter efficiency while retaining
the functionality.

E. Feature importances for optimal
sub-networks.

E.1. Perplexity Predictor importances.

F. Efficient Pytorch implementation

Pytorch code addition for slicing
1 class CustomLinear(nn.Linear):
2 def __init__(
3 self, super_in_dim,

super_out_dim, bias=True,
uniform_=None, non_linear="
linear"

4 ):
5 self.samples = {}
6 ...
7 def set_sample_config(self,

sample_in_dim, sample_out_dim):
8 sample_weight = weight[:, :

sample_in_dim]
9 sample_weight = sample_weight[:

sample_out_dim, :]
10 self.samples["weight"] =

sample_weight
11 self.samples["bias"] = self.bias

[..., : self.sample_out_dim]
12
13 def forward(self, x):
14 #override the Forward pass to use

the sampled weights and bias
15 return F.linear(x, self.samples["

weight"], self.samples["bias"
])

The above code shows the additional lines added to PyTorch
linear layer to support slicing for super pre-training. We add
this to all the fundamental layers - embedding layer, Linear
layer and Layernorm which adds up to 20 additional lines.

This implementation is inspired from HAT2

G. Performance of SuperShaper
G.1. Fine-tuning TS from SuperShaper

Table 6 compares the different methods of fine-tuning TS ,
i.e. , , and respectively for a 63M network configuration
obtained through evolutionary search. From the table, it
is clear that and have better average GLUE performance.
It is noteworthy, however, that SuperShaper is able to al-
ready provide good models that perform close to the best
performance.

G.2. Comparing with BERT models

Table 4 shows the performance of a base model for Su-
perShaper, searched for 100M constraint compared against
BERT-Base. As discussed in the main paper, SuperShaper
provides models that match the performance of BERT-Base
models for a significantly fewer parameters.

G.3. Average GLUE performance of best models from
Evolutionary Search

Table 5 shows the average GLUE performance for all the
best models found through evolutionary search for refer-
ence.

G.4. Comparison with HAT(Wang et al., 2020a) and
OFA(Cai et al., 2019)

HAT compresses encoder-decoder models by elasticizing
number of layers, hidden size and number of attention heads
for machine translation task while OFA proposed a com-
pression for CNN based models on image classification task.
To compare our approach with these techniques, We use the
results from (Zhang et al., 2021) who reimplement these
approaches and report on three Glue tasks - MRPC, SST2
and RTE for 2 compression ratios - 0.75x and 0.5x. We
compare these results against our pareto evolutionary search
models that have compression ratios of 0.78x (90.5M) and
0.54x (63M). The results are reported in table Table 8 and

2https://github.com/mit-han-lab/hardware-aware-transformers
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Title Suppressed Due to Excessive Size

Model Params MNLI-m QQP QNLI CoLA SST-2 STS-B RTE MRPC Avg.
GLUE Squad V1

BERT-Base (from NAS-BERT) 110M 85.2 91 91.3 61 92.9 90.3 76 87.7 84.4 81.8 / 88.9

BERT-Base (from DistilBERT) 110M 86.7 89.6 91.8 56.3 92.7 89 69.3 88.6 83 81.2 / 88.5

SuperShaper (ours) 96M 83.9 90.86 90.92 56.58 92.89 88.3 77.98 88.48 83.7 80.19 / 88.2

Table 4. Comparing SuperShaper with BERT-Base models.

Params (M) MNLI-m QQP QNLI CoLA SST-2 STS-B RTE MRPC Average
GLUE

33 10.82 12.44 73.45 84.71 80.52 10.27 85.32 82.65 65.70 82.11 70.59

53 8.59 6.02 79.40 89.51 86.38 33.85 89.11 86.66 68.23 84.56 77.21

63 7.09 4.55 82.23 90.18 88.05 53.00 91.86 87.63 79.06 89.46 82.68

69 6.62 4.28 82.74 90.45 89.54 54.98 91.28 88.42 77.98 87.75 82.89

80 6.17 4.02 83.05 90.56 89.22 54.87 93.10 88.46 80.14 87.75 83.39

90.5 5.83 3.79 83.06 90.51 88.72 58.87 91.51 88.47 77.26 88.97 83.42

96 5.65 3.73 83.90 90.86 90.92 56.58 92.89 88.30 77.98 88.48 83.74

Table 5. Performance of best models from parameter-constrained evolutionary search

Shapes Params (M) G direct G scratch L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

EvoSearch 1 65 6.86 4.45 480 360 360 240 240 360 480 480 360 480 540 540

Evo Search 2 63 7.09 4.55 480 240 360 240 540 480 360 360 360 360 540 480

Lower Triangle 64 7.31 4.67 120 120 240 240 360 360 360 480 540 540 600 768

Random 64 7.49 4.91 480 360 360 540 480 540 360 480 540 120 360 540

Rectangle 58 7.5 4.72 360 360 360 360 360 360 360 360 360 360 360 360

Inverted Diamond 65 8.12 4.93 768 600 360 240 240 120 120 240 240 360 600 768

Bottle 64 8.31 4.9 120 120 120 120 120 120 600 600 600 600 600 768

Diamond 64 8.36 5.13 120 240 360 480 480 540 768 540 480 360 240 120

Upper Triangle 64 8.43 5.16 768 600 540 540 480 360 360 360 240 240 120 120

Inverted Bottle 64 9.22 5.37 768 600 600 600 600 600 120 120 120 120 120 120

Table 6. Hidden dimensions of templatized shapes and their corresponding perplexities for and .

Evo-search parameters Parameter range Number of networks Spearman Correlation Pearson Correlation

53 8.59 52-54 54 71.03 67.95

63 7.09 62-64 704 80.34 82.52

65 6.86 63-65 862 69.47 71.34

69 6.62 68-70 1065 47.22 52.06

80 6.17 79-81 486 72.32 67.34

90.5 5.83 89-91 47 56.8 54.67

96 5.65 95-97 6 65.71 69.65

Table 7. Shape difference positively correlates with difference across a wide parameter range

we see that SuperShaper outperforms both these approaches
with a significant margin.
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Title Suppressed Due to Excessive Size

Model MRPC SST2 RTE
AVG

Compression Ratio

0.75x 0.5x 0.75x 0.5x 0.75x 0.5x

HAT-BERT 82.2 82.6 88.6 88.6 65.0 64.6 78.6

OFA-BERT 87.6 85.2 89.3 89.8 62.8 65.3 80.0

YOCO-BERT 90.4 87.6 92.9 91.9 75.1 69.3 84.5

SuperShaper(ours)∗ 88.97 89.46 91.51 91.86 77.26 79.06 86.4

Table 8. Comparison with HAT, OFA and YocoBert with SuperShaper. ∗ We use models with compression ratios of 0.78x (90.5M) and
0.54x (63M)
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