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ABSTRACT

Enabling robots to perform precise and generalized manipulation in unstructured
environments remains a fundamental challenge in embodied AI. While Vision-
Language Models (VLMs) have demonstrated remarkable capabilities in seman-
tic reasoning and task planning, a significant gap persists between their high-level
understanding and the precise physical execution required for real-world manipu-
lation. To bridge this “semantic-to-physical” gap, we introduce GRACE, a novel
framework that grounds VLM-based reasoning through executable analytic con-
cepts (EAC)—mathematically defined blueprints that encode object affordances,
geometric constraints, and semantics of manipulation. Our approach integrates a
structured policy scaffolding pipeline that turn natural language instructions and
visual information into an instantiated EAC, from which we derive grasp poses,
force directions and plan physically feasible motion trajectory for robot execution.
GRACE thus provides a unified and interpretable interface between high-level in-
struction understanding and low-level robot control, effectively enabling precise
and generalizable manipulation through semantic-physical grounding. Extensive
experiments demonstrate that GRACE achieves strong zero-shot generalization
across a variety of articulated objects in both simulated and real-world environ-
ments, without requiring task-specific training.

1 INTRODUCTION

Developing general robotic manipulation systems that can operate effectively in complex, dynamic,
and unstructured real-world environments remains a longstanding challenge (Xu et al., 2024). Re-
cent advances in large-scale pretraining have enabled Large Language Models (LLMs) (Naveed
et al., 2025; Achiam et al., 2023), including multimodal Vision-Language Models (VLMs) (Zhang
et al., 2024; Hurst et al., 2024), to acquire rich world knowledge, demonstrating considerable po-
tential in robotic manipulation tasks. These models are capable of processing complex semantic
information and facilitating robust reasoning and planning across diverse scenarios, substantially
reducing the dependence on large quantities of high-quality action demonstration data.

Existing VLM-based methods for robotic manipulation have achieved promising results in several
areas: task planning (Ahn et al., 2022; Driess et al., 2023), where VLMs interpret natural language
instructions and produce high-level action sequences; error detection and recovery (Duan et al.,
2024a), where they identify execution failures or environmental anomalies and trigger replanning;
and fine-grained action generation (Huang et al., 2025; 2023), where visual representations are ex-
tracted and used by VLMs to infer constraints, which are then solved to produce executable robot
motions. Another popular approach integrates VLMs with Vision-Language-Action (VLA) models
to form a hierarchical architecture: the high-level layer provides semantic reasoning through the
VLM, while the low-level layer handles motion planning and execution via the VLA (Ma et al.,
2024; Shi et al., 2025).

Despite these advances, VLMs primarily operate within the domain of internet-scale text and 2D
images, where they demonstrate strengths in dialogue and static image understanding. However, a
significant gap persists between these capabilities and the physical demands of real-world robotic
tasks, which is required by precise manipulation within 3D environments. Fine-tuning them into
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VLAs is a optional path, yet it is hindered by the high cost of data collection and the risk of creating
agent-specific models that lack generalization. Consequently, VLMs struggle to adapt effectively to
dynamic settings and complex physical interactions during embodied task execution.

This limitation underscores a fundamental challenge in merging VLMs with robotics: while VLMs
reason at a semantic level—interpreting goals and inferring action sequences—robot control oper-
ates at the physical level, dealing with forces, velocities, and positions. Bridging this “semantic-
to-physical” gap is nontrivial. On one hand, directly embedding LLM-derived knowledge as input
features to control policies is often inefficient, as the policy must re-learn physical principles from
scratch (Majumdar et al., 2023; Sun et al., 2025). On the other hand, VLMs struggle with the precise
numerical reasoning required to express commonsense knowledge in a physically accurate manner,
which is essential for tasks demanding high precision (Ahn et al., 2021).

To bridge the semantic knowledge inferred by VLMs and the physical realm in which robots operate,
we leverage the notion of analytic concepts (Sun et al., 2024). An analytic concept is a procedural
definition, expressed in mathematical terms, that captures the generalized physical commonality of
an object or task. When a VLM receives a task prompt and the scene information, we also supply it
with a library of concepts. Because the concepts are expressed in precise yet human-readable math-
ematics, the VLM can weave them naturally into its commonsense chain of thought: it selects the
concept that matches the visual evidence, instantiates its free parameters, and determines the seman-
tics of manipualtion. The result is an Executable Analytic Concept (EAC): a blueprint containing
grasp poses, force directions, and motion constraints expressed directly in robot coordinates. Within
this analytic-concept paradigm the VLM no longer stops at naming objects or describing goals; it
assembles a structured, physics-grounded plan whose parameters feed straight into a motion planner,
thereby closing the gap between high-level semantics and low-level control.

By mediating between semantic reasoning and physical execution through analytic concepts, our
approach leverages the robust commonsense capabilities of LLMs while enabling generalized, in-
terpretable, and precise manipulation of articulated objects. We propose GRACE (From VLM-
based Grounding to Robotic manipulation through Analytic Concept Execution) with the following
contributions:

• We introduce a novel plug-and-play framework that elicits the inherent robotic control
potential of VLMs by structured, physics-aware object representations. The framework
provides a unified interface that bridges high-level instructions and low-level executable
actions for long-horizon manipulation.

• We develop a policy scaffolding pipeline that incorporates analytic concept to translate
object-centric semantic knowledge into physically meaningful blueprint, thereby building
executable guidance for robot control policies. The executive analytic concepts bridge the
gap between VLM’s commonsense reasoning and precise physical cognition.

• We demonstrate our approach’s outstanding performance in a wide range of manipulation
tasks, showcasing the remarkable zero-shot generalization capability in both simulated and
real-world environments. We also highlight the compatibility of our EAC-based approach
with VLA architecture.

2 RELATED WORK

Structural Representations for Manipulation. The structural representation chosen for a manip-
ulation system dictates how its modules interact and, consequently, shapes the system’s assumptions,
efficiency, and overall capability. Traditional approaches rely on rigid-body models: once an object’s
geometry and dynamics are fully specified, well-understood rigid-body motions can be executed in
free space and long-range dependencies are handled efficiently (Migimatsu & Bohg, 2020; Dantam
et al., 2018). Yet this strategy presupposes that accurate geometry and physical parameters of the en-
vironment are available a priori—a requirement rarely met outside carefully curated setups. To relax
this constraint, recent research has explored data-driven alternatives, including learned object-centric
embeddings (Hsu et al., 2023; Cheng et al., 2023; Yuan et al., 2022), particle-based modeling (Bauer
et al., 2024; Abou-Chakra et al., 2024), and keypoint or descriptors (Simeonov et al., 2022; Manuelli
et al., 2019; Huang et al., 2024b). Although promising, these approaches often suffer from instabil-
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ity, manual annotation, or a reliance on hand-crafted geometric priors, limiting their reliability and
breadth of application.

Vision-Language Models for Robotics. Our work builds upon recent advances in Vision-
Language Models (VLMs) for robotic control, which demonstrate remarkable capabilities in scene
understanding and high-level commonsense reasoning. Existing approaches can be broadly cate-
gorized into several paradigms (Shao et al., 2025). Some studies integrate environmental percep-
tion—including visual, linguistic, and robot state information—along with action generation into a
unified Visual-Language-Action (VLA) model (O’Neill et al., 2024; Zitkovich et al., 2023; Deng
et al., 2025). Alternatively, dual-system architectures employ a VLM backbone for scene interpreta-
tion and a separate action expert for policy generation, communicating through latent representation
exchanges. Despite their promise, these methods often require large-scale data collection and face
challenges in generalizing beyond training distributions. Other efforts seek to leverage visual foun-
dation models to extract operational primitives, which then serve as visual or linguistic prompts to
VLMs for task-level reasoning (Duan et al., 2024b; Huang et al., 2024a; Pan et al., 2025). These sys-
tems typically rely on traditional motion planners for low-level control. However, such approaches
are limited by the loss of geometric detail when compressing 3D physical interactions into 2D im-
ages or 1D textual descriptions, as well as by the inherent hallucination problems of VLMs. These
limitations often compromise the accuracy and executability of high-level plans generated by VLMs.

Addressing these challenges, we introduce analytic concepts as a core component that scaffolds the
VLM’s reasoning process, enabling it to progressively derive physical knowledge of objects from
fine-grained 3D geometric information and produce executable and accurate manipulation plans.

3 ANALYTIC CONCEPTS

The analytic concepts take inspiration from the advancements of researches on human cognition and
brain science, where it is discovered that we humans learn about the physical world by perceiving
geometry patterns from objects and inducing them along with related knowledge as commonsense
for future reference. Based on such findings, a novel knowledge annotation paradigm for object
understanding tasks is established by explicitly modeling such abstract commonsense information
as concepts for regular geometry patterns and reversing the induction process (Sun et al., 2024).
Specifically, by generalizing the concepts towards certain objects, various knowledge associated
with the concepts can be automatically propagated to all these objects.

In engineering and architecture, a blueprint is a detailed plan that defines the structure of an object
through specifications and guides its fabrication and assembly. We introduce analytic concepts to
play an analogous role for robots: they are procedural, mathematics-based definitions that capture
the shared physical essence of an object or its sub-components, turning abstract knowledge into an
executable blueprint for manipulation. At their foundation, analytic concepts include a “factory” of
geometric concept assets (Fig. 1a). Each asset code provides a set of free parameters to represent
diverse variations, a canonical structural definition, and affordance annotations as concise descrip-
tors of how the object can be grasped or acted upon. Besides, a function is also provided to render
instances of the assets in 3D space. These assets are the atomic building blocks from which every
executable blueprint is assembled with building structural blueprint and manipulation blueprint.

The analytic structural blueprint is a series of mathematical procedures revealing the essential com-
monality of the spatial structure, including spatial layout and structural relationships, shared by all
instances of the concept, as shown in Fig. 1b. Further, there are variable parameters in the proce-
dures to represent the variations among different physical instances. That is, a physical instance of
this concept can be created with specific parameters, and in turn, a target in the physical world can
be also resolved into parameters of a concept.

Effective interaction requires more than geometric fidelity; it demands knowledge of functional
properties such as affordances and force dynamics. To this end, we can ground manipulation
blueprint (Fig. 1c) that meet the functional properties of the concept and force directions that would
cause effective movement. Similarly to the analytic structural blueprint, the analytic manipulation
blueprint is also formulated by mathematical procedures with variable parameters. It may incor-
porate multiple interaction strategies, each accompanied by a precise natural-language synopsis to
facilitate high-level reasoning by language models.
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(a) Geometric Concept Assets� �
# Structural Blueprint Code
class Curve_Handle:

def __init__(self, curveL, radian, innerRadius,
outerRadius, rotation, position, ...):

self.shape = Ring(curveL, radian, innerRadius,
outerRadius)

...
class Sunken_Door():

def __init__(self, size, sunken_size, handle_size,
handle_pos, rotation, position, ...):

self.bottom_shape = Cuboid(size)
self.top_shape = Rectangular_Ring(sunken_size)
self.handle = Curve_Handle(handle_size, handle_pos)� �

𝜃!""#

ℎ

𝑤

𝑙
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(b) Structural Blueprint� �
# Manipulation Blueprint Code
def get_grasp_pose(obj, initial_pose):

if (isinstance(obj, Curve_Handle)):
local_pose = translate_world2local(pose, init_pose)
grasp_pose = obj.apply_pose(local_pose)

if (isinstance(obj, Sunken_Door)):
...

return translate_local2world(grasp_pose)
def push(obj):

force_direction = get_direction(obj.axis...)
def pull(obj):

force_direction = get_direction(obj.axis...)� �
ℱ!"##

ℱ!"$%

(c) Manipulation Blueprint

Figure 1: Example implementation of executable analytic concepts. (a) Geometric Concept Assets.
Each asset exposes its free parameters (top), canonical structure (mid), and partial affordance cues
(bottom). (b) Structural Blueprint: higher-level objects are procedurally composed by wiring mul-
tiple geometric assets together, forming a parametric graph that captures their spatial layout and
structural relationships. (c) Manipulation Blueprint: parameterised routines compute grasp poses
and force directions that exploit the affordances encoded in the underlying structure.

4 METHODOLOGY

Problem Formulation. This paper addresses the challenge of enabling a robotic system to perform
manipulation tasks based on high-level language instructions. Our system is given a visual obser-
vation Ot of the environment and a natural language instruction l describing the desired task. The
core difficulty lies in bridging the gap between high-level human commands and low-level physical
actions due to the complexity of the object operated. The language instruction l can be both arbi-
trarily long-horizon and under-specified, requiring the system to possess advanced commonsense
reasoning to infer user intent and contextual details. To successfully complete the task with a par-
allel gripper, the robot must not only understand the object and task description but also manage
the complex physics of contact-rich interactions. This necessitates an intelligent system capable of
generating precise affordances and robust grasp strategies.

Overview As illustrated in Figure 2, the proposed GRACE framework orchestrates a pipeline built
around a Vision-Language Model (VLM) that transforms a natural language instruction and an RGB-
D image into a successful robot action. The process begins with (I) Task Parsing, where the VLM
parses and comprehends the user command (e.g., “Open the upper handle.”) within the visual context
of the observed scene. The core contribution of our work lies in (II) Policy Scaffolding, a sophisti-
cated VLM-driven process that constructs an Executable Analytic Concept (EAC). This is accom-
plished through a structured sequence: first segmenting the target point cloud, and then grounding
both structural and manipulation blueprint. Finally, the VLM performs reasoning over this rich,
structured EAC to generate precise motion parameters, which are subsequently passed to the mo-
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User: “Open the upper drawer.”

VLM

<Next>

1

4

2

3

Obs.:

1. Target Identification

2. Structural Blueprinting

3. Manipulation Blueprinting

4. Motion Planning

Grasp Pose
𝑮 = {𝐺!, ⋯ , 𝐺"}

Depth Point CloudRGB

Force Direction
ℱ = [𝑓# , 𝑓$ , 𝑓%]

class Sunken_Door():
self.bottom_shape =   Cuboid(size)
self.top_shape = Rectangular_Ring(sunken_size)

class Curve_Handle:
self.shape = Ring(innerRadius, outerRadius, radian,..)
...

Concept Parser Parameter Estimation Structure Blueprint

Scene Info

<Object List>

ℱ!"##

!
" ℎ$ %

II Policy ScaffoldingI Task Parsing

III Robot Execution

Figure 2: An overview of the proposed method GRACE. (I) Task Parsing: A Vision–Language
Model (VLM) parses the natural-language instruction based on the current RGB image. (II) Policy
Scaffolding: The process includes: 1. segmenting the target object from images and back-projecting
it to a partial point cloud; 2. parsing the analytic concept and estimating geometric parameters to
instantiate the structural blueprint; 3. constructing the manipulation blueprint to produce feasible
grasp poses and force directions; 4. generating a joint-space trajectory via a motion-planning module
using the blueprints. (III) Robot Execution: The trajectory is executed to complete the task.

tion planner for (III) Robot Execution. The EAC acts as the essential missing link that grounds the
VLM’s abstract “insight” into a physically precise and executable format.

4.1 SPATIAL-AWARE TASK PARSING

Object Parsing. The Object Parsing step serves as the foundational stage for perception and lan-
guage grounding. Its objective is to interpret the natural language instruction l within the context
of the RGB-D scene images, producing a structured set of task-relevant object entities along with
their critical spatial information. This process distills the “what” and “where” from the command,
delivering a clean symbolic input for downstream task reasoning and planning.

We implement the parsing through a structured chain-of-thought (CoT) reasoning process with two
core steps: (i) The VLM first performs a coarse-to-fine analysis to identify primary objects, ex-
tracting noun phrases and their synonymous references grounded in the visual scene layout. (ii)
The VLM then assesses object states—particularly for articulated objects—and identifies binary
spatial relationships between entities. The final output is a structured graph G = (V, E), where V
denotes the set of object nodes—each represented as a structured dictionary containing id, name,
and state—and E constitutes a set of directed spatial relationships between objects, each expressed
as a triple eij = (vi, r, vj). This object-centric symbolic graph provides a semantically rich and
structurally explicit representation for subsequent reasoning stages.

Task Decomposition. For complex, long-horizon tasks, our approach first decomposes the primary
task into a series of stages, each defined by object interaction primitives with associated spatial con-
straints. Subsequently, a VLM, leveraging object parsing information, is used to decompose the
main task instruction l into a series of discrete sub-tasks, represented as li, along with a correspond-
ing verification condition ci , for i ∈ {1, . . . , n}. This transforms the instruction l into a sequence of
specific sub-tasks and conditions: {(l1, c1), (l2, c2), . . . , (ln, cn)}. For instance, the high-level task
“open the microwave door” could be decomposed into sub-tasks like “grasp the door handle” and
“pull open the door,” with verification conditions such as ”is the handle grasped?” and “is the door
opened?”. Each sub-task then undergoes an execution loop, as depicted in Fig. 2. After the initial
execution attempt, the task reasoning program is replaced with a corresponding condition verifica-
tion program to ensure the successful completion of that sub-task. This structured approach allows
for the precise definition of task requirements and facilitates the execution of complex manipulation
tasks. See Appendix D for prompts.
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4.2 POLICY SCAFFOLDING

Policy scaffolding as core first determines the target object or part that needs to be analyzed, and then
builds the structural and manipulation blueprint in turn to obtain the executable analysis concept.

4.2.1 TARGET IDENTIFICATION

In the object parsing step, we obtain a structured object graph G = (V, E). Using the names from
V as object category prompts, we leverage Visual Foundation Models (VFMs) to perform open-
vocabulary instance segmentation. Specifically, GroundingDINO (Liu et al., 2024) localizes referred
objects, and the Segment Anything Model (SAM) (Kirillov et al., 2023) generates fine-grained 2D
masks M = {Mi | i = 1, 2, . . . ,m} for all foreground objects relevant to the task. Each 2D mask
Mi is then back-projected into 3D using the corresponding depth image, producing a set of object-
centric 3D point clouds P = {Pi | i = 1, 2, . . . ,m}. These point clouds are associated with the
semantic nodes vi ∈ V , effectively grounding the symbolic elements of G into geometrically precise
representations.

4.2.2 STRUCTURAL BLUEPRINTING

With the obtained target part’s point cloud P , we proceed to ground its geometric structure in a
formalized representation. We do so by querying a pre-defined library of analytic concepts, which
are parameter-driven models that capture common structural archetypes (e.g., primitive geometries,
typical handle designs), each paired with a short natural-language synopsis. For example, in the
Fig. 1(b), take the concept of ring, which frequently appears in the design of handles, by discovering
the ring concept on a handle as an analytic description, we can identify its size (e.g., inner radius
and outer radius) and pose, as well as the detailed parameters for the orientation of its hinge. The
grounding procedure unfolds in two successive stages. First, we prune the concept library according
to the part category detected in the previous step, and prompt the VLM with the synopses of the
remaining candidates, asking: “Find the part to interact within <target object> the in order to
complete the task <sub-task>, and determine the <concept> of the part.” This query lets the VLM
map its high-level semantic perception onto a node in our geometric knowledge graph, thereby fixing
the symbolic layout of the structural blueprint.

Next, we must turn that symbolic layout into an executable program by instantiating every node with
concrete parameters, estimated directly from the point cloud P . These parameters are of two types:

• Structural parameters encode the concept’s intrinsic geometry of the analytic concept
(e.g., the size l, w, h of a sunken door). To estimate them, we encode the point cloud P
into a deep feature vector using an encoder. This feature vector is then fed into multiple
specialized MLP heads, each regressing a specific structural parameter.

• 6-DoF pose parameters locate the concept’s global position and orientation. These are
recovered analytically by combining the object’s known simulation pose with the newly
estimated structural variables.

4.2.3 MANIPULATION BLUEPRINTING

The structural blueprint tells us what the target part is; the manipulation blueprint specifies how to
interact with it. Affordances of geometric ontologies are encoded as analytic manipulation knowl-
edge for grasp poses, pushing contacts, and similar actions, while kinematic ontologies additionally
provide force directions that produce motion. All of this knowledge is expressed by mathematical
formulas with tunable parameters and offers critical guidance for downstream control.

We begin by presenting the VLM with the natural-language synopses of every candidate manipu-
lation function—e.g., “pull-type grasp on curve handle,” “push at door edge.” The VLM chooses
the module that best fulfils the high-level goal (“open the microwave door”) and returns its analytic
form. In this way, the model’s semantic understanding is mapped directly onto executable actions.

Each selected function defines a category of grasp poses belonging to the same pattern. An exact
grasp pose G is physically grounded by estimating the parameters of such analytic knowledge.
Different from the structural parameters which are unique for a specific part, grasp-pose parameters
have multiple valid solutions. For optimal door operation, grippers typically interact with the handle

6
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within its designed graspable range. However, under certain circumstances, the door edge itself also
presents functional affordances that enable operation. With the parameters, a physically grounded
grasp pose G can be calculated according to the analytic manipulation knowledge and initial grasp
pose G∗. For example, the equation

G = R(0, 0, ϑ)T(0,−Ro, 0)R(
π

2
, 0,

π

2
)G∗,−θc

2
≤ ϑ ≤ θc

2

indicates a function that transforms the initial gripper pose to a grasp pose for the curve handle shown
in Fig. 1(b). Once G is fixed, the force-direction formula—conditioned by the verb or manipulation
type chosen by the VLM (e.g., pull vs. push)—is invoked to produce the vector F , ensuring that
the applied force is semantically aligned with the selected action and correctly oriented on the target
part. Both G and F are exported as lightweight Python functions and fed to the physically-grounded
evaluator, closing the loop from language to low-level control.

4.3 LOW-LEVEL MOTION EXECUTION

Blueprint Execution. The instantiated structural and manipulation blueprints jointly output two
quantities in the local frame of the target part: a grasp pose Glocal = (tlocal, rlocal), and a force
direction Flocal. Running the blueprint therefore reduces to transforming these local descriptors into
the world frame and then feeding them to a standard motion–planning stack.

Transformation to World Coordinates. Let M ∈ R4×4 denote the homogeneous transform of
the target part with respect to the world frame, obtained from perception or simulation. For ev-
ery point–set or inequality description F in the blueprint we apply F

(
(x, y, z, 1)⊤

)
≤ 0 =⇒

F
(
M−1(x, y, z, 1)⊤

)
≤ 0, thereby re-expressing all structural constraints globally. The grasp pose

is mapped by Gworld = MGlocal. For rotationally symmetric geometries we additionally enforce a
minimal-rotation constraint on rlocal to obtain a unique orientation. The force vector is transformed
analogously: Fworld = RFlocal, where R is the rotational part of M.

Motion Planning and Execution. The world-frame grasp pose Gworld and force vector Fworld are
forwarded to a low-level planner. The planner first synthesises a collision-free approach path, then
a compliant trajectory to realise the grasp, and finally an interaction phase that applies a wrench
aligned with Fworld. The resulting joint-space command sequence is streamed to the robot controller,
closing the pipeline from high-level language to physical motion.

5 EXPERIMENTS

To comprehensively evaluate the effectiveness and generalization capability of our proposed
GRACE framework, we conduct extensive experiments in both simulated and real-world environ-
ments. This section is organized as follows: We begin with a zero-shot manipulation evaluation in
simulation in Section 5.1. In order to verify the structural understanding of articulated objects by the
process of policy scaffolding, additional interactive experiments are carried out in Section 5.2. We
also carry out the object manipulation experiments with physical robots in real-world environments
to provide a more comprehensive and stronger evaluation in Section 5.3. We provide implementation
details of GRACE in Appendix A.

5.1 MANIPULATION EVALUATION IN SIMULATION

We select SimplerEnv (Li et al., 2024c) as our simulation platform due to its open-source nature
and its focus on real-world robotic manipulation. It offers a standardized benchmark suite that
emphasizes reproducible results and maintains close alignment with physical hardware constraints
and realistic task conditions. We conduct quantitative evaluations of GRACE’s zero-shot execu-
tion performance on Google Robot tasks & Widow-X tasks and compare it to baselines including
Octo (Ghosh et al., 2024), OpenVLA (Kim et al., 2024) and more concurrent works (Qi et al., 2025;
Qu et al., 2025; Li et al., 2024b).

On the four Widow-X tasks (Table 1), GRACE powered by GPT-4o achieves an average success rate
of 86.1%, clearly outperforming the strongest published baseline, SoFar (58.3%). Although it is not
the best on every single task, GRACE never performs poorly, maintaining consistently high scores
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Table 1: SimplerEnv simulation evaluation results for the WindowX Robot task. We report both
the final success rate (“Success”) along with partial success (e.g., “Grasp Spoon”). “FT” denotes
performance of the fine-tuned models.

Model

Put Spoon
on Towel

Put Carrot
on Plate

Stack Green
Block on Yellow

Put Eggplant
in Basket Avg

Grasp
Spoon Success Grasp

Carrot Success Grasp
Block Success Grasp

Eggplant Success

RT-1-X 16.7% 0.0% 20.8% 4.2% 8.3% 0.0% 0.0% 0.0% 1.1%
Octo-small 77.8% 47.2% 27.8% 9.7% 40.3% 4.2% 87.5% 56.9% 30.0%
OpenVLA 4.1% 0.0% 33.3% 0.0% 12.5% 0.0% 8.3% 4.1% 1.0%
RoboVLM 37.5% 20.8% 33.3% 25.0% 8.3% 8.3% 0.0% 0.0% 13.5%
RoboVLM (FT) 54.2% 29.2% 25.0% 25.0% 45.8% 12.5% 58.3% 58.3% 31.1%
SpatialVLA 25.0% 20.8% 41.7% 20.8% 58.3% 25.0% 79.2% 70.8% 34.4%
SpatialVLA (FT) 20.8% 16.7% 29.2% 25.0% 62.5% 29.2% 100.0% 100.0% 42.7%
SoFar 62.5% 58.3% 75.0% 66.7% 91.7% 70.8% 66.7% 37.5% 58.3%

SpatialVLA-EAC 91.7% 87.5% 79.2% 62.5% 75.0% 50.0% 79.2% 79.2% 69.8%
GRACE(Qwen2.5-VL) 83.3% 83.3% 79.2% 79.2% 87.5% 83.3% 91.7% 91.7% 84.4%
GRACE(GPT-4o) 83.3% 83.3% 79.2% 79.2% 87.5% 87.5% 95.8% 95.8% 86.1%

Table 2: SimplerEnv simulation evaluation results for the Google Robot setup. We present
success rates for the “Variant Aggregation” and “Visual Matching” approaches. “FT” denotes per-
formance of the fine-tuned models.

Model
Variant Aggregation Visual Matching

AvgPick
Coke Can Move Near Open/Close

Drawer
Pick

Coke Can Move Near Open/Close
Drawer

RT-1-X 49.0% 32.3% 29.4% 56.7% 31.7% 59.7% 43.1%
Octo-Base 0.6% 3.1% 1.1% 17.0% 4.2% 22.7% 8.11%
OpenVLA 54.5% 47.7% 17.7% 16.3% 46.2% 35.6% 36.3%
RoboVLM 68.3% 56.0% 8.5% 72.7% 66.3% 26.8% 49.8%
RoboVLM(FT) 75.6% 60.0% 10.6% 77.3% 61.7% 43.5% 54.8%
SpatialVLA 89.5% 71.7% 36.2% 81.0% 69.6% 59.3% 67.9%
SpatialVLA(FT) 88.0% 72.7% 41.8% 86.0% 77.9% 57.4% 70.6%
SoFar 90.7% 74.0% 29.7% 92.3% 91.7% 40.3% 69.6%

SpatialVLA-EAC 88.9% 77.9% 83.3% 86.1% 79.2% 85.4% 83.4%
GRACE(Qwen2.5-VL) 90.3% 87.5% 88.9% 91.7% 88.9% 84.7% 88.7%
GRACE(GPT-4o) 91.7% 87.5% 90.3% 90.3% 91.7% 88.9% 90.1%

across the entire suite. The pattern repeats on the Google-robot tasks (Table 2): GRACE(GPT-4o)
attains 89.8% mean success, exceeding the best prior result by almost 30 pp. Notably, on the artic-
ulated Open/Close Drawer task the jump is the largest, rising from 29.7% (SoFar) and 36.2% (Spa-
tialVLA) to 90.3% with GRACE for “Variant Aggregation”, highlighting the advantage of EACs
when precise kinematic reasoning is required.

To isolate the contribution of analytic concepts, we retrofit SpatialVLA by replacing its native, end-
to-end action output with EAC-guided motion planning when the gripper approaches the target; this
variant is denoted SpatialVLA-EAC. The simple swap boosts SpatialVLA’s average success to 69.8%
on Widow-X and to 83.4% on the Google robot, demonstrating that EACs can be used as a plug-and-
play module to substantially enhance existing VLA architectures. Finally, GRACE’s performance is
insensitive to the underlying VLM. The fully open-source Qwen2.5-VL backend trails GPT-4o by
only 1–2 pp on both robot families, yet still outperforms every external baseline, confirming that the
bulk of the gain comes from the analytic-concept layer rather than the choice of language model.

5.2 MANIPULATION EXPERIMENT OF ARTICULATED OBJECTS

To focus on articulated objects manipulation, we evaluate the GRACE through the success rate
of interaction on the proposed task, i.e., changing an articulated object from its initial state to
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a target final state. The success rate can reveal the quality of articulated concept discovery, in-
cluding ontology discovery and affordance grounding. All experiments are carried out in SAPIEN
under the standard Where2Act (Mo et al., 2021) settings (Appendix B for detail). We compare
our method against three baselines, i.e., Where2Act, Where2Explore (Ning et al.) and Mani-
pLLM (Li et al., 2024a), each representative of a distinct modelling paradigm for articulated–object
manipulation. To isolate the contribution of VLM reasoning, we also report an ablated variant,
GRACE-w/o-VLM, in which the concept-selection step is replaced by ground-truth ontology labels.

Table 3: Comparison of performance on different
objects (icons represent object categories).

Objects
Where2Act 0.14 0.68 0.27 0.23 0.15 0.15
UMPNet 0.44 0.54 0.28 0.54 0.28 0.25

ManipLLM 0.65 0.71 0.77 0.43 0.65 0.26
w/o-VLM 0.85 0.91 0.90 0.70 0.78 0.65
(GPT-4o) 0.84 0.85 0.88 0.70 0.72 0.60

Table 3 demonstrates that GRACE(GPT-4o)
achieves the highest scores across all cat-
egories. For instance, it attains 0.65 for
“faucet” objects and 0.91 on “cabinet” doors,
significantly outperforming ManipLLM, which
scores 0.26 and 0.71, respectively. These re-
sults decisively surpass both pixel-level af-
fordance methods and the LLM-based Mani-
pLLM. The substantial numerical margins un-
derscore the advantage of integrating VLM-
based reasoning with analytically grounded
control. Replacing the oracle concept label
with GPT-4o’s automatic selection reduces per-
formance only slightly—from an average of 0.80 to 0.77, a drop of roughly three percentage points.
The small gap indicates that the few remaining failures are due primarily to occasional VLM mis-
classification rather than limitations of the analytic concepts themselves; once the correct concept is
chosen, execution is highly reliable.

5.3 OBJECT MANIPULATION EVALUATION IN REAL-WORLD

Stapler (90%) Mug (80%) Bucket (70%) Microwave (80%)

Figure 3: Visualize the results of grasping objects
and their corresponding EAC. The red parts in the
second column indicate the target part.

We conducted experiments in a real-world
tabletop environment using a Realman RM75
robotic arm equipped with a parallel gripper.
Detailed visualizations of the environment and
additional robot setup specifications are pro-
vided in Appendix B. For qualitative analysis,
we first visualize the outputs and success rate of
our approach for four different objects in Fig. 3,
demonstrating the promising zero-shot manipu-
lation capability of EAC for physics-grounded
planning. Experimental results indicate that the
VLM only needs to identify the target part of
an object and construct its EAC representation
to enable the robot to successfully complete the
task. To further thoroughly assess the general-
ization ability of GRACE, we designed a long-
horizon manipulation task involving six diverse objects. Preliminary observations suggest that
GRACE maintains robust task reasoning capabilities even as task complexity increases. The overall
performance in this long-horizon task is presented in the supplementary video.

6 CONCLUSION

We have introduced GRACE, a plug-and-play framework that grounds visual observations with a
VLM, reasons over Executable Analytic Concepts, and converts the result into precise robot ac-
tions. Extensive experiments on simualtion and real world demonstrate marked gains in zero-shot
success rates, particularly on kinematically challenging tasks. In future work we plan to extend ana-
lytic concepts to multi-fingered hands and to explore on-the-fly concept refinement from real-world
interaction data.
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A IMPLEMENTATION DETAILS OF METHOD

Segmentation. We use Grounded-SAM (Ren et al., 2024) consisting of two major components,
Grounding-Dino (Liu et al., 2024) and SAM (Kirillov et al., 2023). We keep SAM frozen and fine-
tune Grounding-Dino with RGB images with ground-truth bounding boxes of the actionable objects
or parts, along with natural language prompt that describes the actionable objects or parts provided
by VLM.

Parameter Estimation. The encoder is a Point-Transformer that extracts 128 groups of points
with size 32 from the input with 2048 points and has 12 6-headed attention layers. The subsequent
MLP has three layers with ReLU activation and outputs the structural parameters. The network is
trained with L2 loss between the estimated and ground-truth structural parameters. Throughout the
operation of the GRACE framework, the model parameters remain fixed. To construct the training
dataset for our models, we first create analytic concept annotations for real-world objects. Specifi-
cally, we label the concept parameters of the training objects from PartNet-Mobility. Each object is
then imported into the SAPIEN simulator, where a virtual camera captures RGB images and depth
maps. Using the object’s URDF file together with our analytic annotations, we can automatically
generate ground-truth data—including bounding boxes, point clouds and structural parameters for
every actionable part. Additionally, we leverage the FoundationPose (Wen et al., 2024) model for
6D object pose estimation.

B EXPERIMENTAL SETUP

Articulated Objects Manipulation Setup All evaluations are carried out in the SAPIEN [33]
physics simulator. At the start of each manipulation episode, the target object is placed at the scene
origin. Its articulated joint is initialized randomly: there is a 50 % chance of starting in the fully
closed configuration and a 50 % chance of starting in a random open configuration. An RGB-D
camera with known intrinsics is aimed at the scene centre from a point sampled on the upper hemi-
sphere, with azimuth uniformly drawn from [0◦, 360◦) and elevation from [30◦, 60◦]. Interaction is
performed with a two-finger “flying” Franka Panda gripper. We restrict the controller to two primi-
tive actions: pushing and pulling. A flying Franka-Panda gripper serves as the agent, and perception
is obtained from a single RGB-D camera placed five units from the object centre.

Realsense
D435

Realman
RM75 Arm

Workspace

Figure 4: Hardware Configuration.

Real World Robot Setups We detail our
hardware setup in Figure 4, which centers on a
Realman RM75 Arm. For perception, we inte-
grate a single RGB-D camera (Intel RealSense
D435) mounted on the end-effector. The sys-
tem is powered by a workstation equipped with
an Intel Core i9-14900K processor, 64GB of
RAM, and an NVIDIA RTX 4090 GPU, ensur-
ing real-time inference and planning.

Long-horizon Task We design a long-
horizon task to validate the capabilities of our
framework. All the objects being manipulated
are not seen by the model. The task instruction
is: tidy up the table and open the microwave.
The overall performance in this long-horizon
task is presented in the supplementary video.

C SYSTEM ERROR BREAKDOWN

The primary sources of failure in our system are pose estimation and inverse kinematics (IK). Our
analysis indicates that employing multi-view images for 3D object reconstruction significantly en-
hances the success rate of pose estimation. It is also recommended to use high-resolution cameras
to further improve estimation accuracy. Although structural parameter estimation introduces some
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error, its impact on the overall success rate is relatively minor. In contrast, the VFM-based object
grounding module, alongside the VLM-based task parsing and concept construction, demonstrates
high stability and contributes negligibly to system failures.

D PROMPTS FOR TASK PARSING� �
Task_Parsing_PROMPT_TEMPLATE_1 = """
**Role:** You are an expert robotic task planner. Your job is to analyze

a visual scene image and break down a high-level manipulation command
into a sequence of low-level, executable actions for a robot arm

equipped with a gripper.
**Task:** {task}
**Example:** Task: "Pour the water from the blue cup into the red mug."
**Scene Image Context:**
the given image
**Robot Capabilities:**
- The robot has a single arm with a parallel-jaw gripper.
- It can perform primitives: grasp(object_name), lift(height), pour(

into_object_name), place_on(object_name), release(), push(object_name
), pull(object_name).

- It cannot perform actions requiring complex dexterity (e.g., tying
knots, unscrewing tight lids).

- It must avoid collisions with all objects not involved in the task.

**Output Instructions:**
1. **Reasoning:** First, reason step-by-step. Identify the key objects

involved and their properties. The final output is a structured
object graph G = (V, E), where V denotes the list of object nodes,
each represented as a structured dictionary containing id, name, and
state, and E constitutes a list of directed spatial relationships

between objects, each expressed as a triple e = (vi, r, vj).
2. **Plan:** Based on your reasoning, generate a sequence of action

commands. The sequence must be logical, safe, and efficient. Each
action instruction must include a validation condition that can be
understood, such as verifying the target object is successfully
grasped.

3. **Final Output:** Provide **only** a valid JSON array as the final
output. Do not add any other text. The JSON must follow this schema:

json
{{
"task": "original_task_description",
"objects_graph_V": "structured object list",
"objects_graph_E": "structured object spatial relationships list",
"action_instruction_sequence": [
{{"id": 1, "action": "action_name", "parameter": "

target_object_or_value", "success":"validation_condition"}},
{{"id": 2, "action": "action_name", "parameter": "

target_object_or_value", "success":"validation_condition"}}
]

}}

**Now, analyze the provided scene image and complete the task.**
"""

Task_Parsing_PROMPT_TEMPLATE_2 = """
**Role:** You are a robotic task completion verifier. Your job is to

analyze whether a manipulation task has been successfully completed
by comparing the current scene state with the expected goal state.

**Original Task:** "{Origin_Task_Description}"

**Expected Goal State Description:**
{Validation_Condition}

15
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**Scene Image Context:**
the given image

**Final Output:**
Provide **only** a valid JSON array as the final output. Do not add any

other text. The JSON must follow this schema:
json

{{
"task_completed": boolean,
"error_message": string

}}
"""� �
E STATEMENT ON LARGE LANGUAGE MODEL USAGE

This paper employed Large Language Models to assist in the writing process. The LLM was used
exclusively for the purpose of language polishing, which included:

• Correcting grammatical errors.
• Improving sentence fluency and readability.
• Refining word choice for better academic tone.

The LLM was not used for generating original ideas, formulating research hypotheses, conducting
data analysis, or interpreting results. All intellectual content and scholarly contributions are solely
those of the authors. The authors have thoroughly reviewed, revised, and take complete responsibil-
ity for the entire content of this manuscript.
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