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ABSTRACT

Reconstructing dynamic scenes from image inputs is a fundamental computer
vision task with many downstream applications. Despite recent advancements, ex-
isting approaches still struggle to achieve high-quality reconstructions from unseen
viewpoints and timestamps. This work introduces the ReMatching framework,
designed to improve generalization quality by incorporating deformation priors into
dynamic reconstruction models. Our approach advocates for velocity-field-based
priors, for which we suggest a matching procedure that can seamlessly supplement
existing dynamic reconstruction pipelines. The framework is highly adaptable
and can be applied to various dynamic representations. Moreover, it supports
integrating multiple types of model priors and enables combining simpler ones to
create more complex classes. Our evaluations on popular benchmarks involving
both synthetic and real-world dynamic scenes demonstrate a clear improvement in
reconstruction accuracy of current state-of-the-art models.

1 INTRODUCTION

This work addresses the challenging task of novel-view dynamic reconstruction. That is, given a
set of images of a dynamic scene evolving over time, the task objective is to render images from
any novel view or intermediate point in time. Despite significant progress in dynamic reconstruction
(Lombardi et al., 2021; Fridovich-Keil et al., 2023; Yunus et al., 2024), effectively learning dynamic
scenes still remains an open challenge. The main hurdle arises from the typically sparse nature of
multi-view inputs, both temporally and spatially. While tackling sparsity often involves incorporating
some form of prior knowledge into the dynamic reconstruction model - either from a physical prior
such as rigidity (Sorkine & Alexa, 2007), or learnable priors derived from large foundation models
(Ling et al., 2024; Wang et al., 2024) - the optimal scheme for integrating these priors without
compromising the fidelity of model reconstructions remains unclear.

To address this issue, this paper presents the ReMatching framework, a novel approach for designing
and integrating deformation priors into dynamic reconstruction models. The ReMatching framework
has three core goals: i) suggest an optimization objective that aims at achieving a reconstruction
solution that closely satisfies the prior regularization without compromising fidelity; ii) ensure
applicability to various model functions, including time-dependent rendered pixels or particles
representing scene geometry; and, iii) provide a flexible design of deformation prior classes, allowing
more complex classes to be built from simpler ones.

To support the usage of rich deformation prior classes, we advocate for priors expressed through
velocity fields. A velocity field is a mathematical object that describes the instantaneous change in time
the deformation induces. As such, a velocity field can potentially provide a simpler characterization
of the underlying flow deformation. For example, the complex class of volume-preserving flow
deformations is characterized by the condition of being generated by divergence-free velocity fields
(Eisenberger et al., 2019). However, representing a deformation through its generating velocity field
typically necessitates numerical simulation for integration, a procedure that can be computationally
expensive and time-consuming. Nevertheless, recent progress in flow-based generative models (Ben-
Hamu et al., 2022; Lipman et al., 2022; Albergo et al., 2023) supports simulation-free flow training,
inspiring this work to explore simulation-free training for flow-based dynamic reconstruction models.
Therefore, our framework is specifically designed to integrate with dynamic reconstruction models
that represent dynamic scenes directly through time-dependent reconstruction functions (Pumarola
et al., 2021; Yang et al., 2023).
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Exploiting the simplicity offered by velocity-field-based deformation prior classes, we observe that
the projection of a time-dependent reconstruction function onto a velocity-field prior class can be
framed as a flow-matching problem, solvable analytically. The opportunity to access the projected
flow is reminiscent of the Alternating Projections Method (APM) (Deutsch, 1992), a greedy algorithm
guaranteed in finding the closest points between two sets. Therefore, we suggest an optimization
objective aimed at re-projecting back onto the set of reconstruction flows. This corresponds to a
flow-matching loss that we term the ReMatching loss. Our hypothesis is that by mimicking the APM,
this optimization would converge to solutions that not only meet the reconstruction objective, but also
reach the closest possible alignment to the required prior class. By doing so, we achieve the desired
goal of improving generalization without compromising solutions’ fidelity levels.

We instantiate our framework with a dynamic model based on the popular Gaussian Splats (Kerbl et al.,
2023) rendering model. We explore several constructions for deformation prior classes including
piece-wise rigid and volume-preserving deformations. Additionally, we demonstrate our framework’s
usability for two different types of time-dependent functions: rendered image intensity values, and
particle positions representing scene geometry. Lastly, we evaluate our framework on standard
dynamic reconstruction benchmarks, involving both synthetic and real-world scenes, and showcase
clear improvement in generalization quality.

Our contributions. In summary, the main contributions of this paper are:

1. We propose the ReMatching framework, which controls the optimization of dynamic recon-
struction models to converge to solutions that closely align with a predefined prior class of
deformations, without strictly enforcing membership in the prior class, thereby improving
the ability to achieve high-fidelity reconstructions.

2. The framework unifies different types of model functions, including geometry represen-
tations and image rendering functions, under a single cohesive approach, ensuring wide
applicability and making future advancements within this framework relevant to many
models.

3. The framework allows for the combination of multiple prior classes, enabling users to design
the method for their specific reconstruction problem, enhancing adaptability across varied
scenarios.

2 RELATED WORK

Flow-based 3D dynamics. There is an extensive body of works utilizing flow-based deformations
for 3D related problems. For shape interpolation, (Eisenberger et al., 2019) considers volume-
preserving flows. For dynamic geometry reconstruction, (Niemeyer et al., 2019) suggests learning
neural parametrizations of velocity fields. This representation is further improved by augmenting
it with a canonicalized object space parameterization (Rempe et al., 2020; Ren et al., 2021) or
by simultaneously optimizing for 3D reconstruction and motion flow estimation (Vu et al., 2022).
Similarly to (Niemeyer et al., 2019), (Du et al., 2021) suggests flow-based representation of dynamic
rendering model based on a neural radiance field (Mildenhall et al., 2020). More recently, (Chu et al.,
2022; Yu et al., 2023) explores combining a time-aware neural radiance field with a velocity field
for modelling fluid dynamics. In contrast to our framework they focus exclusively on recovering the
deformation of specific fluids i.e. smoke and not on reconstructing generic non-rigid objects.

Dynamic novel-view rendering models. Neural Radiance Fields (NeRF) (Mildenhall et al., 2020)
is a popular image rendering model combining an implicit neural network with volumetric rendering.
Several follow-up works (Pumarola et al., 2021; Park et al., 2021a; Tretschk et al., 2021) explore using
NeRF for non-rigid reconstruction, by optimizing for time-dependent deformations. More recently,
several works (Fridovich-Keil et al., 2023; Cao & Johnson, 2023; Wu et al., 2023; Song et al., 2023;
Guo et al., 2023) try to address the training and inference inefficiencies of continuous volumetric
representations by incorporating planes and grids into a spatio-temporal NeRF. An alternative to
NeRF, suggesting an explicit scene representation, is the Gaussian Splatting (Kerbl et al., 2023)
rendering model. Several works incorporate dynamics with Gaussian Splatting. (Yang et al., 2023)
introduce a time-conditioned local deformation network. Similarly, (Wu et al., 2023) also relies on
a canonical representation of a scene but further improves efficiency by considering a deformation
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model based on on k-planes (Fridovich-Keil et al., 2023). (Lu et al., 2024) propose the integration of
a global deformation model.

3 METHOD

Given a collection of images, Ft = {Iti}
M

i=1
, captured at T time steps, from M ≥ 1 viewing directions,

we seek to develop an image-based model for novel-view synthesis that can effectively render new
images from unseen viewpoints in any direction d ∈ S2 and any time t ∈ [t1, tT ]. Since we aim to
support several time-dependent elements in a dynamic reconstruction model, we employ a general
notation for a dynamic image model. That is,

t↦ Ψt = {ψ(t) ∣ψ ∶ R+ → V } , (1)

with Ψt representing the evaluation at time t of all of the model components. Each element function
ψ ∶ R+ → V , where V is a vector space, can specify any time-dependent quantity specified by the
model. V denotes a different vector space depending on the definition of ψ. For instance, if ψ models
time-dependent image intensity values, V = C1(Rd) = {f ∣f ∶ Rd → R,∇f exists and continuous}
with d = 2. Whereas, if ψ models the time-dependent position of n particles representing the
underlying scene geometry, V = Rn×d with d = 3. Lastly, in what follows, we interchangeably switch
between the notations ψ(t) and ψt.

We defer the specific details of the time-dependent reconstruction function Ψt to Section 5 and begin
by describing our proposed framework for incorporating priors via velocity fields.

3.1 VELOCITY FIELDS

We consider a velocity field to be a time-dependent function of the form:

v ∶ Rd ×R+ → Rd, (2)

where usually d = 3 or d = 2. A velocity field defines a time-dependent deformation in space
ϕt ∶ Rd → Rd, also known as a flow, via an Ordinary Differential Equation (ODE):

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂

∂t
ϕt(x) = v(ϕt(x), t)

ϕ0(x) = x.
(3)

Flow-based deformations are an ubiquitous modeling tool (Rezende & Mohamed, 2015; Chen et al.,
2018) that has been extensively used in various dynamic reconstruction tasks (Niemeyer et al., 2019;
Du et al., 2021). In a dynamic reconstruction model, a flow deformation can be incorporated by
defining a time-dependent function ψt ∶ Rd → R as a push-forward of some reference function
ψ0, i.e., ψt = ϕt∗ψ0. One key advantage of flow-based deformations is that they enable simple
parametrizations for the velocity field, in turn facilitating the integration of priors into the model.
For example, restricting ϕt to be volume-preserving can be achieved by imposing the condition
div(v) = 0 (Eisenberger et al., 2019).

However, recovering ψt values in the case ψt = ϕt∗ψ0 is not explicit. Typically, this is achieved by
solving the continuity equation 1

∂

∂t
ψt(x) + div (ψt(x)vt (x)) = 0,∀x ∈ Rd, (4)

which necessitates a numerical simulation. This introduces challenges for training flow-based models,
as errors in the numerical simulation can destabilize the optimization process. Therefore, to overcome
this hurdle, our framework assumes a reconstruction model consisting of functions ψt that are
simulation-free, i.e., each evaluation of ψt requires only a single step. Coupling ψt to a prior class
stemming from velocity-field-based formulation is the core issue our framework aims to address,
described in the following section.

1Assuming ψt obeys a conservation law, where v continuously deforms ψt.

3
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3.2 FLOW REMATCHING

We assume that for a time-dependent reconstruction function, ψt ∈ Ψt, there exists an underlying
flow ϕt such that ψt can be described as a push-forward by ϕt. We refer to such ϕt as reconstruction
flow and denote its velocity field by vt. Under our assumption that ψt is simulation-free, neither
ϕt nor vt is directly accessible. Nevertheless, let us assume that we can work with an element
vt ∈ V , where V represents the set of all the possible reconstruction generating velocity fields. Let
P ⊂ {ut ∣u ∶ Rd ×R+ → Rd} be a prior class of velocity fields to which v should belong. In Section
4, we discuss different choices for a class P .

In some of the choices for P , requiring v ∈ P could be over-restrictive, conflicting with the fact
that v also adheres to generate the reconstruction flow. Hence, an appealing objective would be
to optimize v so that it is the closest element to P out of the set V . We suggest an optimization
procedure mimicking the alternating projections method (APM) (Deutsch, 1992). The APM is
an iterative procedure where alternating orthogonal projections are performed between two closed
Hilbert sub-spaces V and P . Specifically, vk+1 = projV (projP (vk)) guarantees the convergence of
vk to dist(V,P ). Following this concept, our next step is to find a suitable notion for defining the
projection operator for reconstruction generating velocity fields.

Since v is unknown, in our case, we utilize the continuity equation (4), which provides both a
sufficient and a necessary condition for the generating velocity field of ϕt in terms of ψt and its
partial derivatives. In particular, we propose a projection procedure corresponding to the following
matching optimization problem on the reconstruction flow:

u(⋅, t) = argmin
ut∈P

ρ(ut, ψt), (5)

where,

ρ(ut, ψt) = ∫ ∣
∂

∂t
ψt(x) + div (ψt(x)ut(x))∣

2

dx. (6)

This procedure is illustrated in the right inset, where ut (red dot) is
the closest point to vt on P .

Following the alternating projections concept, the matched ut should
be projected back onto V to propose a better candidate for v. This
corresponds to a flow matching problem in ut. We refer to this
procedure as ReMatching and introduce the flow ReMatching loss,
LRM, a matching loss striving for the reconstruction flow to match
ut. That is,

LRM(θ) = Et∼U[0,1]ρ(ut, ψt) (7)
where θ denotes solely the parameters of ψt.

Algorithm 1 ReMatching loss

Require: Solver for 5, times {tl}
LRM = 0
for t ∈ {tl} do

ut(⋅) ← solve(ρ,ψt(⋅))
LRM ← LRM + ρ(ut(⋅), ψ)

end for
Return: LRM

The ReMatching loss is designed to supplement a reconstruc-
tion loss LREC on ψ parameters θ. Thus, our framework’s final
loss for dynamic reconstruction training is

L(θ) = LREC(θ) + λLRM(θ) (8)

where λ > 0 is a hyper-parameter. In practice, for the Re-
Matching procedure to be seamlessly incorporated into a re-
construction training process, it is essential that problem 5 can
be solved efficiently. Additionally, the integral in equation 7 is
approximated by a sum using random samples {tl} ∼ U[0,1].

Algorithm 1 summarises the details of computing 7. Note that calculating ∇θLRM does not nec-
essarily require the cumbersome calculation of ∇θ argminut∈P

ρ(u(⋅, t), ψt), since according to
Danskin’s theorem (Madry, 2017), ∇θρ(ut, ψt) = ∇θ minut∈P ρ(ut, ψt). Additional implementation
details regarding the losses can be found in the Appendix.

4 FRAMEWORK INSTANCES

This section presents several instances of the ReMatching framework discussed in this work. One
notable setting is when V = Rn×d, i.e., ψt = (γ1t ,⋯, γnt )T , where each γi ∶ R+ → Rd. In this case,

4
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equation 6 becomes:

ρ(ut, ψt) =
n

∑
i=1

∥ut(γit) −
d

dt
γit∥

2

. (9)

For the settings where V = C1(Rd), equation 6 involves the computation of a spatial integral, which
can be approximated by sampling a set of points {xi}ni=1. Moreover, taking into account that all prior
classes incorporated in this work are divergence-free, equation 6 becomes:

ρ(ut, ψt) =
n

∑
i=1

∣ ∂
∂t
ψt(xi) + ⟨∇ψt(xi), ut(xi)⟩∣

2

, (10)

since div (ψt(x)ut(x))) = ⟨∇xψt(x), ut(x)⟩ + ψt(x)divut(x).
We now formulate several useful prior classes of velocity fields P . A key feature of all the following
constructions is their reliance on linear parameterizations, capitalizing on the fact that linear subspaces
are sufficiently expressive to represent the velocity-based prior classes considered. This approach
enables the use of efficient solvers for problem 5, reducing the computational task to solving a system
of d linear equations, with a run-time complexity of at most O(n).

4.1 PRIOR DESIGN

Directional restricted deformation. In certain scenarios, it is safe to assume that the reconstruction
flow can only deform along specific directions. For example, in an indoor scene, where furniture is
placed on the floor, deformations would typically occur only in directions parallel to the floor plane.
Let v ∈ span{v1,⋯,vl}, 1 ≤ l ≤ d and {v1,⋯,vl} is a predefined orthonormal basis in which the
flow remains static. Then, the prior class becomes:

PI = {ut∣ ⟨u(x, t),vm⟩ = 0,∀m ∈ [l]} . (11)

When considering the matching minimization problem 5 in the settings of equation 9, we get:

min
u∈PI

n

∑
i=1

∥ut(γit) −
d

dt
γit∥

2

=
n

∑
i=1

∥V T d

dt
γit∥

2

, (12)

where V = [v1,⋯.vl]. For the settings involving equation 10, the matching minimization problem is
solved by:

min
ut∈PI

n

∑
i=1

∣ ∂
∂t
ψt(xi) + ⟨∇ψt(xi), ut(xi)⟩∣

2

=
n

∑
i=1

∂

∂t
ψt(xi)2 (1 −

⟨∇ψt(xi),V∗∇ψt(xi)⟩
∥∇ψt(xi)∥2

)
2

,

(13)
where V∗ = (I −V V T ).

Rigid deformation. One widely used prior in the dynamic reconstruction literature is rigidity, i.e.,
objects in a scene can only be deformed by a rigid transformation consisting of a translation and
an orthogonal transformation. In a simple case, where it is assumed that the underlying dynamics
consists of one rigid motion, the reconstruction flow would be of the form

γ(t) =R(t)x0 + b(t) (14)

with R(t) ∈ O(3) and b(t) ∈ R3. Differentiating γ and solving for x0 yields that

d

dt
γ(t) = Ṙ(t)RT (t)(γ(t) − b(t)) + ḃ(t). (15)

Since Ṙ(t)RT (t) is a skew-symmetric matrix, we suggest the following natural parameterization
for the prior class

PII = {ut∣u(x, t) =Atx + bt,At ∈ Rd×d,At = −AT
t ,bt ∈ Rd} . (16)

Substituting PII in problem 5 using equation 9 yields the following minimization problem:

min
(At,bt)

n

∑
i=1

∥Atγ
i
t + bt −

d

dt
γit∥

2

s.t. At = −AT
t . (17)

5
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For the settings involving equation 10, the minimization problem 5 becomes:

min
(At,bt)

n

∑
i=1

∣ ∂
∂t
ψt(xi) + ⟨∇ψt(xi),Atxi + bt⟩∣

2

s.t. At = −AT
t . (18)

Importantly, both 17 and 18 are constrained least-squares problems. Thus, as detailed in Lemma 1,
they enjoy an analytic solution that can be computed efficiently.

Volume-preserving deformation. So far we have only covered prior classes that may be too
simplistic for capturing complex real-world dynamics. To address this, a reasonable assumption
would be to include deformations that preserve the volume of any subset of the space. Notably, the
rigid deformations prior class discussed earlier strictly falls within this class as well. Interestingly,
volume-preserving flows are characterized by being generated via a divergence-free velocity field,
i.e., divu = 0. To this end, we propose the following prior class:

PIII =
⎧⎪⎪⎨⎪⎪⎩
ut∣ut(x) =

k

∑
j=1

βjbj(x),β = [β1,⋯, βk]T ∈ Rk
⎫⎪⎪⎬⎪⎪⎭
, (19)

where for each basis bj ∶ Rd → Rd, we assume that div(bj) = 0. Clearly, div(ut) = 0 for any
choice of β ∈ Rk. Taking into account that div curlu = 0, we follow (Eisenberger et al., 2019), and
incorporate the following basis functions:

bj(x) ∈ {curl (ϕj(x)eT1 ) ,⋯, curl (ϕj(x)eTd )}, (20)

where ϕj ∶ Rd → R, ϕj(x) = ∏d
l=1 sin (jlπeTl x) with jl ∈ N denoting the frequency for the lth

coordinate of the jth basis function. Combining this prior with equation 9, yields the following
minimization problem:

min
β

n

∑
i=1

XXXXXXXXXXX

k

∑
j=1

βjbj(γit) −
d

dt
γit

XXXXXXXXXXX

2

. (21)

Similarly, for the case of equation 10, we get:

min
β

n

∑
i=1

RRRRRRRRRRR

∂

∂t
ψt(xi) + ⟨∇ψt(xi),

k

∑
j=1

βjbj(xi)⟩
RRRRRRRRRRR

2

. (22)

In particular, both minimization problems of 21 and 22 correspond to a standard least-squares problem
and have an analytic solution.

A key decision involved in using the prior class PIII is to select the number of basis functions k.
However, setting k equal to a large value would make PIII overly permissive, effectively neutralizing
the ReMatching loss. To address this, we propose an additional procedure for constructing more
complex prior classes, based on an adaptive choice of complexity level.

Figure 1: A vector
field in PV .

Adaptive-combination of prior classes. To address the challenge of set-
ting the complexity level of the prior class, we introduce an adaptive (learn-
able) construction scheme for a prior class. Let wj(x, t) ∶ Rd × R+ → R,
1 ≤ j ≤ k, be learnable functions, which are part of the reconstruction model,
i.e., wj(⋅, t) ∈ Ψt and wj are normalized, i.e., ∑k

j=1wj(x, t) = 1. The de-
tails of wj architecture are left to Section 5. We can construct a complex
prior class by assigning simpler prior classes to different parts of the space,
according to the weights wj . For example, let us consider a piece-wise rigid
deformation prior class defined as:

PIV =
⎧⎪⎪⎨⎪⎪⎩
ut∣u(x, t) =

k

∑
j=1

wj(x, t)uj(x, t), uj ∈ PII for 1 ≤ j ≤ k,
k

∑
j=1

wj(x, t) = 1
⎫⎪⎪⎬⎪⎪⎭
. (23)

In a similar manner, we can also combine PI with rigid deformations and derive a prior class defined
as:

PV =
⎧⎪⎪⎨⎪⎪⎩
ut∣u(x, t) =

k

∑
j=1

wj(x, t)uj(x, t), u1 ∈ PI , uj ∈ PII for 2 ≤ j ≤ k,
k

∑
j=1

wj(x, t) = 1
⎫⎪⎪⎬⎪⎪⎭
. (24)

6
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Figure 1 illustrates an element in PV , with weights wj dividing the plane to a restricted up direction
deformation above the diagonal, and a rigid deformation below the diagonal. Note that directly sub-
stituting an adaptive-combination prior class in 5 would no longer yield a linear problem. Therefore,
we propose to use a linear problem that upper bounds the matching optimization problem of 5. For
example, in the case of equation 9 with PIV , we can solve:

min
{(Ajt,bjt)}

n

∑
i=1

k

∑
j=1

wj(γit , t) ∥Ajtγ
i
t + bjt −

d

dt
γit∥

2

s.t. Ajt = −Ajt
T . (25)

Using Jensen’s inequality, it can be seen that 25 upper bounds the matching optimization from 5.
Again the minimization problem of 25 can be solved efficiently, as it corresponds to a weighted least
squares problem that is solvable independently for each j ∈ [k], similarly to problem 17.

Lastly, as incorporating PII in 5 involves a non standard least-squares problem which includes a
constraint, we formulate the analytic solutions for PIV in the next lemma, covering problems 17 and
18 as a special case.
Lemma 1. For the prior class PIV , the solutions (Ajt,bjt) to the minimization problem 25 are
given by,

[ vech(Ajt)
bjt

] = P −1jt [
vec(Γ̇T

t WjtΓjt −ΓT
jtWjtΓ̇t)

1
1TWjt1

1TWjtΓ̇t
]

where Γjt = [γ1t ,⋯, γnt ]
T ∈ Rn×d, Γ̇t = [ ddtγ

1
t ,⋯, d

dt
γnt ]

T ∈ Rn×d, Wjt = ∑n
i=1wj(γit , t)eieTi

with {ei} as the standard basis in Rn, vech(Ajt) ∈ R
d(d−1)

2 denotes the half-vectorization of the
anti-symmetric matrix Ajt, and the matrix P −1jt depends solely on Γjt, Γ̇t, and Wjt.

The solutions (Ajt,bjt) to the minimization problem 5 with 10 are given by,

[ vech(Ajt)
bjt

] = P −1jt [
∑n

i=1wj(xi, t)vec(si(xi[gi
t]T − gi

tx
T
i ))

GT
t Wjts

]

where gi
t = [∇ψt(xi)]T , Gt = [g1

t ,⋯,gn
t ]

T ∈ Rn×d, si = ∂
∂t
ψt(xi), s = [s1t ,⋯, snt ]

T ∈ Rn.

For the proof of lemma 1, including the details of P −1jt computation, we refer the reader to the
Appendix.

5 IMPLEMENTATION DETAILS

In this section, we provide additional details about the dynamic image model Ψt employed in this
work, based on Gaussian Splatting (Kerbl et al., 2023). We provide an overview of this image model,
followed by details about the dynamic model used in the experiments.

Gaussian Splatting image model. The Gaussian Splatting image model is parameterized by
a collection of n 3D Gaussians augmented with color and opacity parameters. That is, θ =
{µi,Σi,ci, αi}n

i=1
with µi ∈ R3 denoting the ith Gaussian mean, Σi ∈ R3×3 its covariance ma-

trix, ci ∈ R3 its color, and αi ∈ R its opacity. To render an image, the 3D Gaussians are projected to
the image plane to form a collection of 2D Gaussians parameterized by {µi

2D,Σ
i
2D}. Given K,E

denoting the intrinsic and extrinsic camera transformations, the image plane Gaussians parameters
are calculated using the point rendering formula:

µi
2D =K

Eµi

(Eµi)z
, (26)

and,
Σi

2D = JEΣiETJT , (27)
where J denotes the Jacobian of the affine transformation of 26. Lastly, an image pixel I(p) is
obtained by alpha-blending the ordered by depth visible Gaussians:

I(p) =
n

∑
i=1

ciαiσi (p)
i−1

∏
j=1

(1 − αjσj (p)) , (28)
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where σi(p) = exp (− 1
2
(p −µi

2D)
T (Σi

2D)−1 (p −µi
2D)).

Dynamic image model. We utilize the Gaussian Splatting image model to construct our dynamic
model as:

Ψt = {µi +µi(t),Σ +Σi(t),ci, αi,wij(t)}
n

i=1
, (29)

where µi(t) = fµ(µi, t), Σi(t) = fΣ(µi, t), wij(t) = eTj softmax(fw(µi + µi(t),µi, t)). We
follow (Yang et al., 2023) and each of the functions: fµ ∶ R3 × R → R3, fΣ ∶ R3 × R → R6,
fw ∶ R3 × R3 × R → Rk is a Multilayer perceptron (MLP). For more details regarding the MLP
architectures, we refer the reader to the Appendix. Note that the model elementwij(t) is only relevant
to instances where the adaptive-combination prior class is assumed. Lastly, in our experiments we
apply the ReMatching loss for µi +µi(t), and for time-dependent rendered images It.

Training details. We follow the training protocol of (Yang et al., 2023). We initialize the model
using n = 100K 3D Gaussians. Training is done for 40K iterations, where for the first 3K iterations,
only {µi,Σi,ci, αi}n

i=1
are optimized. In instances where the adaptive-combination prior class is

applied, we supplement the ReMatching optimization objective with an entropy loss on the weights
wij as follows:

Lentropy =
1

k

k

∑
j=1

1

n

n

∑
i=1

wij log(
1

n

n

∑
i=1

wij) . (30)

Lastly, for all the experiments considered in this work, we set the ReMatching loss weight λ = 0.001.
Additional details are provided in the Appendix.

6 EXPERIMENTS

We evaluate the ReMatching framework on benchmarks involving synthetic and real-world video cap-
tures of deforming scenes. For quantitative analysis in both cases, we report the PSNR, SSIM (Wang
et al., 2004)and LPIPS (Zhang et al., 2018) metrics.

D-NeRF synthetic. D-NeRF dataset (Pumarola et al., 2021) comprises of 8 scenes, each consisting
from 100 to 200 frames, hence providing a dense multi-view coverage of the scene. We follow
D-NeRF’s evaluation protocol and use the same train/validation/test split at 800 × 800 image reso-
lution with a black background. In terms of baseline methods, we consider recent state-of-the-art
dynamic models, including Deformable 3D Gaussians (D3G) (Yang et al., 2023), 3D Geometry-aware
Deformable Gaussians (GA3D) (Lu et al., 2024), Neural Parametric Gaussians (NPG) (Das et al.,
2024), and K-Planes (Fridovich-Keil et al., 2023). Note that some of these baselines incorporate
prior regularization losses such as local rigidity and smoothness to their optimization procedure.
Table 1 summarizes the average image quality results for unseen frames in each scene. We include
two variants of our framework: i) Using the divergence-free prior PIII ; and ii) Using the adaptive-
combination prior class PIV or the class PV specifically for scenes that include a floor component.

Bouncing Balls Hell Warrior Hook JumpingJacks

Method LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑
K-Planes (Fridovich-Keil et al., 2023) 0.0242 37.78 0.9929 0.1074 32.57 0.9316 0.0655 29.46 0.9481 0.0417 31.73 0.9715
D3G (Yang et al., 2023) 0.0089 41.52 0.9978 0.0261 41.28 0.9928 0.0165 37.03 0.9906 0.0137 37.59 0.9930
GA3D (Lu et al., 2024) 0.0093 40.76 0.9950 0.0210 41.30 0.9871 0.0124 37.78 0.9887 0.0121 37.00 0.9887
NPG (Das et al., 2024) 0.0537 38.68 0.9780 0.0460 33.39 0.9735 0.0345 33.97 0.9828
Ours - PIII 0.0087 41.84 0.9979 0.0244 41.59 0.9932 0.0161 37.19 0.9909 0.0134 37.72 0.9931
Ours - PIV or PV 0.0089 41.61 0.9978 0.0245 41.69 0.9977 0.0158 37.39 0.9911 0.0131 38.01 0.9934

Lego Mutant Stand Up T-Rex

Method LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑
K-Planes (Fridovich-Keil et al., 2023) 0.0472 25.15 0.9431 0.0215 35.30 0.9825 0.0211 36.55 0.9831 0.0284 30.41 0.9778
D3G (Yang et al., 2023) 0.0453 24.93 0.9537 0.0066 42.09 0.9966 0.0083 43.85 0.9970 0.0105 37.89 0.9956
GA3D (Lu et al., 2024) 0.0446 24.87 0.9420 0.0050 42.39 0.9951 0.0062 43.96 0.9948 0.0100 37.70 0.9929
NPG (Das et al., 2024) 0.0716 24.63 0.9312 0.0311 36.02 0.9840 0.0257 38.20 0.9889 0.0310 32.10 0.9959
Ours - PIII 0.0503 24.89 0.9522 0.0067 42.13 0.9966 0.0085 43.99 0.9969 0.0105 38.07 0.9958
Ours - PIV or PV 0.0456 24.95 0.9537 0.0065 42.40 0.9968 0.0081 44.31 0.9971 0.0103 38.38 0.9961

Table 1: Image quality evaluation on unseen frames for the D-NeRF dataset (Pumarola et al., 2021).
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Figure 2: Qualitative comparison of baselines and our model on the D-NeRF dataset (Pumarola et al.,
2021). We note that our framework consistently produces high fidelity reconstructions, accurately
capturing fine-grained details, as highlighted in the blue boxes.

Figure 2 provides a qualitative comparison of rendered test frames, highlighting the improvements
of our approach, which: i) produces plausible reconstructions that avoid unrealistic distortions, e.g.,
the human fingers in the jumping jacks scene; ii) reduces rendering artifacts of extraneous parts,
especially in moving parts such as the leg in the T-Rex scene.

Scene LPIPS ↓ PSNR ↑ SSIM ↑

Slice Banana

D3G 0.3692 24.87 0.7935
GA3D 0.4160 25.34 0.6722

Ours - PIII 0.3829 25.08 0.7992
Ours - PIV 0.3673 25.28 0.8025

Chicken

D3G 0.3030 26.66 0.8813
GA3D 0.4721 25.13 0.7555

Ours - PIII 0.2987 26.74 0.8836
Ours - PIV 0.3044 26.80 0.8835

Lemon

D3G 0.2858 28.65 0.8873
GA3D 0.3252 28.37 0.7596

Ours - PIII 0.2760 27.91 0.8842
Ours - PIV 0.2675 28.30 0.8883

Torch

D3G 0.2340 25.41 0.9207
GA3D 0.3278 23.79 0.8174

Ours - PIII 0.2221 26.00 0.9251
Ours - PIV 0.2260 25.62 0.9229

Split Cookie

D3G 0.0971 32.61 0.9657
GA3D 0.1144 32.28 0.9290

Ours - PIII 0.1097 31.31 0.9600
Ours - PIV 0.0937 32.67 0.9667

Table 2: Unseen frames evaluation for the Hy-
perNeRF dataset (Park et al., 2021b).

HyperNeRF real-world. The HyperNeRF dataset
(Park et al., 2021b) consists of real-world videos
capturing a diverse set of human activities involving
interactions with common objects. We follow the
evaluation protocol provided with the dataset, and
use the same train/test split. In table 2 we report
image quality results for unseen frames on 5 scenes
from the dataset: Slice Banana, Chicken, Lemon,
Torch, and Split Cookie. Figure 3 shows qualita-
tive comparison to the baseline D3G (Yang et al.,
2023). Our approach demonstrates similar types of
improvements as noticed in the synthetic case pro-
viding more realistic reconstructions, especially in
areas involving deforming parts.

Adaptive-combination prior class. Employing
the adaptive-combination prior classes PIV and PV

with learnable parts assignments {wij} raises the
question of whether the learning process success-
fully produced assignments {wij} that align with the scene segmentation based on its deforming
parts. Figure 4 shows our results for test frames from the Bouncing-Balls and Lego synthetic scenes
(left), and the Chicken real-world scene (right). For comparison, we include the results of the Seg-
ment Anything Model (SAM) (Kirillov et al., 2023), which tends to over-segment the scene, mostly
influenced by color variations and unable to capture the underlying geometry effectively.

ReMatching time-dependent image. In this experiment we validate the applicability of the
ReMatching loss for controlling model solutions via rendered images. To that end, we apply our
framework with the PIII prior class to the Jumping Jacks scene from D-NeRF on a single specific
front view through time. The qualitative comparison to D3G (Yang et al., 2023), as shown in the
Appendix, supports the benefits of prior integration in this case as well, demonstrating more plausible
reconstructions in areas involving moving parts.
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Figure 3: Qualitative comparison of our method to D3G (Yang et al., 2023) on the HyperNeRF
dataset (Park et al., 2021b). Our framework yields more accurate reconstructions, in particular around
moving parts.

7 CONCLUSIONS

Figure 4: Part assignments for the
adaptive-combination prior class.

We presented the ReMatching framework for integrating pri-
ors into dynamic reconstruction models. Our experimental
results align with our hypothesis that the proposed ReMatching
loss can induce solutions that match the required prior while
achieving high fidelity reconstruction. We believe that the
generality with which the framework was formulated would
enable broader applicability to various dynamic reconstruction
models. An interesting research venue is the construction of
velocity-field-based prior classes emerging from video gener-
ative models, possibly utilizing our ReMatching formulation for time-dependent image intensity
values. Another potential direction is the design of richer prior classes to handle more complex
physical phenomena, such as ones including liquids and gases.
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8 APPENDIX

8.1 PROOFS

8.1.1 PROOF OF LEMMA 1

Proof. (Lemma 1)

Let Γt, Γ̇t, Wjt be given. Without loss of generality, we show the proof only for individuals j ∈ [k]
and t. So in order to ease the notation, in what follows we omit the subscripts t and j. Let A ∈ Rd×d

and b ∈ Rd, and define [w1,⋯,wn]T =W1. First, we show that ∑n
i=1wi ∥Aγi + b − γ̇i∥

2
can be

reformulated as a weighted norm-squared minimization problem in A and b. That is,
n

∑
i=1

wi ∥A(γi − c) + b − γ̇i∥
2 =

n

∑
i=1

trA
√
wiγ

i√wiγ
iTAT− (31)

2tr
√
wi(γ̇i − b)

√
wiγ

iAT + tr
√
wi(γ̇i − b)

√
wi(γ̇i − b)T (32)

= trAΓTWΓAT − 2tr(Γ̇ − 1bT )TWΓAT+ (33)

tr(Γ̇ − 1bT )TW (Γ̇ − 1bT ) (34)

= ∥
√
W (ΓAT − (Γ̇ − 1bT ))∥

2
. (35)

Next, we consider the following optimization problem:

min
A,b
∥
√
W (ΓAT − (Γ̇ − 1bT ))∥

2
s.t. A = −AT . (36)

Use the fact that A = −AT to define the following Lagrangian,

L(A,b,Λ) = ∥
√
W (ΓA − 1bT + Γ̇)∥

2
+ trΛT (A +AT ). (37)

Then,
∂L
∂A
= 2ΓTW (ΓA − 1bT + Γ̇) +Λ +ΛT .
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Thus, ∂L
∂A
= 0 yields that ΓTW (ΓA − 1bT + Γ̇) is symmetric. Then, using again the fact that

A = −AT , we get that,

ΓTWΓA +AΓTWΓ + b1TWΓ −ΓTW1bT = Γ̇TWΓ −ΓTW Γ̇. (38)

Now, taking the derivative w.r.t. to b gives,

∂L
∂b
= −21TW (ΓA − 1bT + Γ̇)

and, ∂L
∂b
= 0, yields that,

−ŵTΓA + bT = ŵT Γ̇, (39)
where ŵ = W1

1TW1
. Vectorizing the LHS of 38 gives,

(Id ⊗ΓTWΓ +ΓTWΓ⊗ Id)Ddvech(A) + (ΓTW1⊗ Id − Id ⊗ΓTW1)b (40)

where Dd is the duplication matrix transforming vech(A) to vec(A), with vech(A) denoting the
half-vectorization of the anti-symmetric matrix A. Similarly, vectorizing the LHS of 39 yields,

− 1

1TW1
(Id ⊗ 1TWΓ)Ddvech(A) + b. (41)

Based on 40 and 41, we can define the following block matrix:

P = [ Q =Q′Dd R = ΓTW1⊗ Id − Id ⊗ΓTW1
S = S′Dd T = Id

] (42)

where Q′ = Id ⊗ΓTWΓ +ΓTWΓ⊗ Id, and, S′ = − 1
1TW1

(Id ⊗ 1TWΓ). Then, let,

U = (Q −RT −1S)−1 = Ld (Q′ −RS′)−1 (43)

where Ld is the matrix satisfying DdLd = Id2 . Consequently,

P −1 = [ U −UR

−S′ (Q′ −RS′)−1 Id +S′ (Q′ −RS′)−1R ] (44)

and,

[ vech(A)
b

] = P −1 [ vec(Γ̇TWΓ −ΓTW Γ̇)
ŵT Γ̇

] . (45)

Now, for the second part of the lemma. Let gi = [∇ψt(xi)]T , si = ∂
∂t
ψt(xi). Consider the following

energy,

L =
n

∑
i=1

wi (gT
i (Axi + b) + si)

2
. (46)

Note that,
gT
i Axi = yT

i a (47)
where a ∶= vec(A), and yi ∶= xi ⊗ gi. Then,

L =
n

∑
i=1

wi (aTyiy
T
i a + bTgigT

i b + 2aTyig
T
i b + 2gT

i sib + 2siaTyi + s2i ) . (48)

Define the Lagrangian,

L(a,b, λ) = aT∑
i

yiwiy
T
i a + bTGTWGb + 2aT∑

i

yiwig
T
i b+ (49)

2sTWGb + 2aT∑
i

wiyisi + tTWt + λT (a + Pa) (50)
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where P is the permutation matrix s.t. vec(AT ) = Pa.

Then,
∂L
∂a
= 2∑

i

wiyiy
T
i a + 2∑

i

wiyig
T
i b + 2∑

i

wiyisi + λ + Pλ (51)

Equating the above to 0 and unvectorizing it, yields the following matrix equation,
n

∑
i=1

wi(gigT
i Axix

T
i + gigT

i bx
T
i + sigixT

i ) =
1

2
(Λ +ΛT ), (52)

yielding that the LHS is a symmetric matrix. Therefore,
n

∑
i=1

wi(gigT
i Axix

T
i +xig

T
i bx

T
i + sigixT

i ) =
n

∑
i=1

wi(xix
T
i A

Tgig
T
i +xib

Tgig
T
i + sixig

T
i ). (53)

Rearranging the above and half-vectorizing both sides yields that,
n

∑
i=1

wi(xix
T
i ⊗ gig

T
i + gigT

i ⊗xix
T
i )Ddvech(A) +wi(xi ⊗ gig

T
i − gigT

i ⊗xi)b = (54)

n

∑
i=1

wivec(si(xig
T
i − gixT

i )). (55)

Now,
∂L
∂b
= 0 (56)

yields that,
GTWGb +∑

i

wigiy
T
i Ddvech(A) = −GTWs. (57)

Therefore,

P = [ Q =Q′Dd R = ∑n
i=1wi(xi ⊗ gig

T
i − gigT

i ⊗xi)
S = S′Dd T =GTWG

] , (58)

where S′ = ∑n
i=1wigiy

T
i , and Q′ = ∑n

i=1wi(xix
T
i ⊗ gig

T
i + gigT

i ⊗xix
T
i ). Then, let,

U = (Q −RT −1S)−1 = Ld (Q′ −RT −1S′)−1 (59)

where Ld is the matrix that satisfies DdLd = Id2 . Consequently,

P −1 = [
U −URT −1

−T −1S′ (Q′ −RT −1S′)−1 T −1 + T −1S′ (Q′ −RT −1S′)−1RT −1
] . (60)

8.1.2 CONTINUITY EQUATION CONSTRAINT DERIVATION FOR V = Rn

In the main text, we stated that in the case when V = Rn, i.e., ψt = (γ1t ,⋯, γnt )T , equation 6 becomes:

ρ(ut, ψt) =
n

∑
i=1

∥ut(γit) −
d

dt
γit∥

2

. (61)

To see this formally, let δ(x − a) denote the Dirac delta generalized function concentrated around a,
satisfying

δ(x − a) = 0,∀x ≠ a, (62)
and,

∫ ϕ(x)δ(x − a)dx = ϕ(a), (63)

for any test function ϕ. Consider ψt(x) = ∑n
i=1 ψ

i
t(x), where ψi

t(x) = δ(x − γit). Note that under
this definition of ψt, V is in fact the space of generalized functions. Then,

∂

∂t
ψi
t = ⟨∇δ(x − γit),−

d

dt
γit⟩ , (64)
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and, using the chain rule as applied in the simplification of equation 10, we have that,

divψi
tu(x) = ⟨∇δ(x − γit), u(x)⟩ + δ(x − γit)div(u(x)). (65)

Substituting these computations in the continuity equation 4, yields that,

0 = ∫ ∣
∂

∂t
ψt(x) + div (ψt(x)vt (x))∣ dx ≥ (66)

∣∫
∂

∂t
ψt(x) + div (ψt(x)vt (x))dx∣ = (67)

∣∫ ⟨∇δ(x − γit),−
d

dt
γit⟩ + ⟨∇δ(x − γit), u(x)⟩ + δ(x − γit)div(u(x))dx∣ = (68)

∣∫ ⟨∇δ(x − γit), u(x) −
d

dt
γit⟩ dx + ∫ δ(x − γit)div(u(x))dx∣ . (69)

Now, under the assumption that div(u) = 0 almost everywhere, using 63 yields that the second term
in the last equation vanishes. Therefore,

0 = ∣∫ ⟨∇δ(x − γit), u(x) −
d

dt
γit⟩ dx∣ = (70)

∣∫ δ(x − γit) ⟨∇ log δ(x − γit), u(x) −
d

dt
γit⟩ dx∣ ≥ (71)

∫ δ(x − γit) ∥∇ log δ(x − γit)∥ ∥u(x) −
d

dt
γit∥ dx, (72)

where we applied the Cauchy-Schwarz inequality in the final step. Therefore,

∫ δ(x − γit) ∥∇ log δ(x − γit)∥ ∥u(x) −
d

dt
γit∥ dx = 0. (73)

Applying property 63 yields that equation 73 can be true only if when x = γit , we have that,

∥u(x) − d

dt
γit∥ = 0. (74)

Utilizing this constraint for each i, we can derive equation 9.

8.2 ADDITIONAL IMPLEMENTATION DETAILS

8.2.1 ARCHITECTURE

Figure 5: Illustration of the architecture for Ψt used in the experiments, based on (Yang et al., 2023).
Reference Gaussians parameters are propagated to time t through a shared function, ψ1

t , implemented
as an MLP with positional encoding features to compute time-varying point features of dimension
df. These features are then processed by a second shared function, ψ2

t , to generate time-varying
Gaussians parameters. Finally, given a chosen viewing direction, the Gaussian Splatting rendering
model is used to produce a rendered image.

We first describe the construction of the Gaussian Splatting dynamic image model referenced in
section 5. An illustration of this model is presented in Figure 5. The time invariant base of
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the model is optimized throughout training and consists of the following set of parameters θ =
{µi,Si,Ri, ,ci, αi}n

i=1
with Gaussian mean µi ∈ R3, scaling Si ∈ R3, rotation quaternion Ri ∈ R4,

color ci ∈ R3 and opacity αi ∈ R. The covariance matrix Σi is calculated during the rendering
process from the temporally augmented scaling and rotation parameters.

The time dependent deformation model transforms the time invariant Gaussian mean µi and selected
time t into the deformation of the mean, scaling, rotation and the model element w in the case of the
adaptive-combination prior.

We generate positional embeddings (Mildenhall et al., 2020) of the time and mean inputs, which we
pass to the deformation model Multilayer perceptrons.

Embtime(t) ∶ R→ Rdtime emb

Embmean(µi) ∶ R3 → Rdmean emb

The deformation model is made up of layers of the form:

ψ(n, din, dout) ∶X ↦ ν (XW + 1bT )

where ν = Softplusβ , with β = 100.

For the deformation of the mean, scaling and rotation, the model takes the same form with minor
differences in the final layer depending on the deforming parameter.

Embtime(t) → ψ(n, dtime emb,256) → ψ(n,256, dτ) → τ

[τ,Embmean(µ)] → ψ(n, dτ + dmean emb,256) → ψ(n,256,256) →
ψ(n,256,256) → ψ(n,256,256) → [τ,Embmean(µ), ψ(n,256,256)] →
ψ(n, dτ + dmean emb + 256,256) → ψ(n,256,256)] → ψ(n,256,256)] → ω

Mean ∶ ω → ψ(n,256,3) → µ(t)
Scaling ∶ ω → ψ(n,256,3) → S(t)
Rotation ∶ ω → ψ(n,256,4) →R(t)

For the prediction of the w we use a shallower Multilayer perceptron.

[τ,Embmean(µ + µ(t)),Embmean(µ)] → ψ(n, dτ + 2 ⋅ dmean emb,256) →
ψ(n,256,K) → Softmax→ w(t)

8.2.2 HYPER-PARAMETERS AND TRAINING DETAILS

We set dmean emb = 63, dtime emb = 13 and dτ = 30. For optimization we use an Adam optimizer with
different learning rates for the network components, keeping the hyper-parameters of the baseline
model (Yang et al., 2023).

In the case of the adaptive-combination prior we select k based on a hyper-parameter search between 1
and 35. The optimal value for most scenes ranges between 5 and 15, though the number also depends
on the selected composition of priors. For example, a single volume-preserving class can supervise
multiple moving objects as opposed to a single rigid deformation class. We use the ReMatching loss
weight λ = 0.001. When supplementing the ReMatching loss with an additional entropy loss, we use
0.0001 as the entropy loss weight.
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In calculating the partial derivatives of ψt , we note that the input dimension for predicting ψt is
relatively small − 1 for time or d for spatial coordinates − compared to the output dimension, which
can be n×d for spatial ReMatching orH ×W in image-space ReMatching. Given this, forward-mode
automatic differentiation proves to be more efficient than backward-mode differentiation for this
specific computation, both computationally and in terms of memory usage. Consequently, we utilize
forward-mode autodiff to compute the partial derivatives of ψt required for the ReMatching loss.
Once the ReMatching loss is incorporated, we employ backward-mode autodiff to compute the
gradient of the overall loss with respect to the model parameters.

8.2.3 REMATCHING RENDERED IMAGE

The reconstruction model architecture in the case of the image ReMatching is the same as for the
other experiments. At initialization we select a fixed viewpoint for the evaluation of the image space
loss, which is kept throughout training. At every iteration we sample a random time and evaluate the
ReMatching loss from the fixed viewpoint.

For approximating equation 10, we calculate a sample by choosing points that their image value is
close to 0 after applying the following transformation:

f(x) = −0.1 ⋅ ln(1 − ∣x∣) ⋅ sign(x) (75)

on the image.

Next, we compute the image gradient using automatic differentiation and use our single class div-free
solver to reconstruct the flow and calculate the loss.

Figure 6: Qualitative comparison of the ReMatching loss applied in the image space. Each group of
3 is showing Ground-Truth (left), Ours (center), and D3G (right).

8.3 ADDITIONAL EVALUATION

To further evaluate the efficacy of the ReMatching framework in practical applications, we consider
the Dynamic Scenes dataset (Yoon et al., 2020), which captures forward-facing views of real-world
scenes exhibiting complex dynamics. To that end, we selected 4 scenes from the Human, Interaction,
and Vehicle categories, consisting of monocular videos with approximately 80–180 frames for
training and an additional 20 frames reserved for testing. Figure 7 shows qualitative comparison to
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the D3G (Yang et al., 2023) baseline, highlighting similar patterns of improvement as observed in
earlier experiments. Specifically, our approach better preserves fine details, such as the truck’s front
lights (Truck) and the bottom teeth (Dynamic Face). Additionally, it demonstrates a reduction in
reconstruction motion artifacts, as evident in the humans in motion (Jumping) and the legs and head
of the dinosaur (Balloon). Table 3 presents a quantitative evaluation, comparing two variants from
our prior classes, PIII and PIV to D3G. These results correlate with the qualitative improvements
discussed above.

Balloon Truck Jumping Dynamic Face

Method LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑
D3G (Yang et al., 2023) 0.1584 26.79 0.9349 0.2922 26.01 0.9046 0.2726 23.12 0.8958 0.0806 29.22 0.9756
Ours - PIII 0.1592 26.96 0.9348 0.2782 25.49 0.9071 0.2720 22.89 0.8971 0.0794 29.30 0.9761
Ours - PIV 0.1578 26.95 0.9356 0.2533 26.66 0.9197 0.2501 23.63 0.9037 0.0793 29.23 0.9754

Table 3: Unseen frames evaluation for the dynamic scenes dataset (Yang et al., 2023).

Figure 7: Qualitative comparison of our method to D3G (Yang et al., 2023) on the dynamic scenes
dataset (Yoon et al., 2020).

8.4 RECONSTRUCTION FLOW EVALUATION

In this section, we evaluate the ability of the ReMatching framework to recover the underlying
reconstruction flow ϕt. Since the reconstruction flow is generally unknown, we use the following
simple flow to generate training data:

ϕt(x) =R(t)Sx (76)

where RT (t)R(t) = Id, and S = diag {s1,⋯, sd}. We evaluate our framework in its two settings: i)
equation 9, corresponding to V = Rn×d; and, ii) equation 10, corresponding to V = C1(Rd).
The V = Rn×d case. We evaluate these settings for d = 3, following a similar approach to the
dynamic image model based on Gaussian Splatting described in Section 5. To construct the training
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Figure 8: Training frames from the rotating colored box scene.

Figure 9: Evaluation of unseen timestamps in the rotating colored box scene.

set, we use a reference scene of a colored box and apply the ground-truth flow ϕt, to create a
dynamic scene consisting of multi-view captures over 12 time stamps. For the flow ϕt, the following

parameters are used: S = I3, R =
⎡⎢⎢⎢⎢⎣

cos 2πt − sin 2πt 0
sin 2πt cos 2πt 0

0 0 1

⎤⎥⎥⎥⎥⎦
. Figure 8 shows selected images from

the training set. Two training procedures are considered: (i) a baseline approach using only the
reconstruction loss, similar to the D3G model; and, (ii) our approach where both the reconstruction
loss and the ReMatching loss are optimized. For the ReMatching loss, we employ the global rigid
motion prior class PII . Figure 9 compares ground-truth images from time-stamps unseen during
training with the model’s predicted renderings. Notably, the ReMatching loss allows the model to
generalize in alignment with the ground-truth flow ϕt. This is a result of the ReMatching objective’s
ability to converge to matched priors ut that accurately recover the ground truth velocities ∂

∂t
ϕt.

To further support this claim, Figure 10 illustrates the velocities of the dynamic Gaussian centers,
{µ̇i(t)}. These results demonstrate that the ReMatching loss effectively controls {µ̇i(t)}, resulting
with solutions {µ̇i(t)} that match the prior class PII and recover the ground-truth velocities ∂

∂t
ϕt.
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Figure 10: Visualization of {µi(t), µ̇i(t)} from multiple timestamps.

Figure 11: Visualization of the training set made up of three functions ψGT(⋅, ti).

The V = C1(Rd) case. We evaluate these settings for d = 2. Using the flow described above, we
define the following ground-truth scalar function, ψGT ∶ R2 → R, as:

ψGT(x, t) = ∥ϕ−1t (x)∥∞ − b. (77)

The training data is constructed using three time-stamps, specifically t ∈ {0.0,0.25,0.5}. The

parameter choices for this procedure are: b = 0.2, and S = diag {0.6,1.4}, R(t) = [ cosπt sinπt
− sinπt cosπt

].
Figure 11 visualizes the three distinct functions ψGT(⋅, t) that constitute the training set. To model ψt,
we employ a multi-layer perceptron (MLP) architecture, as described in Section 8.2.1, with the only
modification of a scalar output dimension in the final layer. For the reconstruction loss, we adopt the
standard L1 loss:

LREC =
3

∑
i=1

E ∥ψ(x, ti) − ψGT(x, ti)∥ . (78)

For the ReMatching loss, we employ the global rigid motion prior class PII . Two training pro-
cedures are considered: (1) a baseline approach where only the reconstruction loss is used as the
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optimization objective, and (2) our suggested approach where both the reconstruction loss and the
ReMatching loss are optimized. Figure 12 displays the results of the trained models for times
t ∈ {0,0.0625,0.125,0.1875,0.25,0.3125,0.375,0.4375}. Among these, only t ∈ {0,0.25,0.5},
shown in the leftmost column, correspond to the training set frames. While both the baseline and our
approach perform similarly on the training frames, the results for unseen frames clearly demonstrate
the benefits of incorporating the ReMatching loss. Specifically, the ReMatching loss allows the model
to recover the ground-truth flow ϕt, avoiding the unrealistic distortions observed in the baseline
results. To further illustrate this, Figure 13 depicts the matched priors ut (white arrows) obtained
by solving equation 5, alongside the velocity field of the ground-truth flow ∂

∂t
ϕt (green arrows).

These comparisons show that the ReMatching loss successfully converges to matched priors ut that
closely approximate the ground truth. In contrast, the matched priors ut obtained with the baseline
approach (without the ReMatching loss) deviate significantly from the ground truth. This emphasizes
the importance of the reprojection procedure. Not all velocity fields in the prior class are suitable for
guiding the optimization process, but the ReMatching loss ensures convergence to an appropriate
prior, enabling an accurate recovery of the underlying flow.

8.5 RUNTIME AND CONVERGENCE ANLAYSIS

We note that our framework is applied solely during the training phase of the algorithm, leaving
inference times unaffected. To evaluate computational efficiency, we measured the average time
(seconds) for a forward and backward pass over 100 iterations for varying sizes n of Gaussians sets.
Figure 14 presents the results, comparing the computation time of the ReMatching framework to the
D3G baseline. The runtime analysis was conducted on a single NVIDIA RTX A6000.

To examine the convergence of the reconstruction model, we compare the loss convergence curves
of the D3G (Yang et al., 2023) model and our model. Figure 15 shows that the addition of the
ReMatching loss does not affect the convergence behavior of the optimization. We also show the
loss curve of theReMatching loss itself in figure 16. It is important to note that for the ReMatching
formulation, the optimal solution does not necessarily achieve 0 loss, simliarly to the APM procedure
(Deutsch, 1992). Instead, it achieves the lowest loss possible given the reconstruction task and
selected prior.

8.6 ABLATION OF FRAMEWORK HYPERPARAMETERS

In this section, we present an ablation study on key hyperparameters introduced by the ReMatching
framework: i) the weight of the ReMatching loss, λ, as defined in equation 8; ii) maximum number
of parts selection, k, for the adaptive prior class; and iii) the weight of the entropy loss (equation 30),
used to optimize the learned part assignments when employing an adaptive prior class.

ReMatching loss weight. We note first that a consistent value of λ = 0.001 was used across all
scenes experimented with in section 6, already demonstrating the robustness of this parameter. To
further test this, we conducted experiments on the Hell Warrior and Lego scenes from the D-NeRF
dataset, evaluating how different λ values influence solution quality. Figure 17 shows these findings.
We note that for the Hell Warrior scene, we employed the PIV prior class, while the Lego scene
used the PV class. The results indicate stable improvement within the range of λ ∈ [5e−4,5e−3],
while small values λ ≤ 5e−5 aligns with the baseline. Larger values, λ ≥ 1e−2, may compete with
the reconstruction loss, leading to suboptimal solutions.

Maximum number of parts selection. To assess the impact of the hyperparameter k, we selected
the Mutant scene, which aligns with the adaptive prior class PIV , and the Lego scene, corresponding
to the adaptive prior class PV and evaluated how varying k affects solution quality. Figure 18 presents
the results of this analysis. The findings suggest relatively stable performance within the range k = 5
to k = 15, offering flexibility in selecting k based on leveraging prior knowledge about the expected
number of moving parts in the scene.

Entropy loss weight. Similar to the λ hyperparameter, the entropy loss weight was kept fixed
across all experiments in section 6. To further examine its impact, we evaluated its influence on
performance with varying weight values for the Hell Warrior scene. Figure 19 presents the results of
this experiment, demonstrating stable performance within the range [1e−4,1e−3].
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Figure 12: Comparisons of ψt converged solutions between the baseline and our approach, displayed
in order of increasing time (left to right, top to bottom).

8.7 ADDITIONAL QUALITATIVE EVALUATION

To further support the qualitative results presented in Figures 2 and 3, the supplementary material
includes additional evidence showcasing novel-view video reconstruction results. These compar-
isons highlight the performance of our model relative to baseline approaches, providing a more
comprehensive validation of its efficacy.
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Figure 13: Comparisons of the converged ut (white arrows) between the baseline and our approach
that uses the ReMatching loss. The ground-truth velocities, ∂

∂t
ϕt, are shown as green arrows. When

the matched ut aligns with the ground truth, the green arrows become indistinguishable.

Figure 14: Combined average time (seconds) for a forward and backward pass for varying size of n.
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Figure 15: Loss curves report of our model and D3G (Yang et al., 2023) over 40k training iterations.

Figure 16: Loss curve report for the ReMatching loss, showing a running average with a window size
of 20.
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Figure 17: Effect of the weight parameter λ on the PSNR evaluation metric for the Hell Warrior scene
(left) and the Lego scene (right).

Figure 18: Impact of varying k values on the PSNR evaluation metric for the Mutant scene (left) and
the Lego scene (right).
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Figure 19: Impact of varying entropy loss weights on the PSNR evaluation metric for the Hell Warrior
scene.
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